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Entropy in Poincaré gauge theory: Kerr-AdS solution
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Using a Hamiltonian approach, we introduce black hole entropy for Kerr-AdS spacetimes with torsion as
the canonical charge on horizon. In spite of a completely different geometric setting with respect to GR, the
resulting thermodynamic variables, energy, angular momentum and entropy, are shown to be proportional
to the corresponding GR expressions. The validity of the first law is confirmed.
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I. INTRODUCTION

The entropy of black holes plays a crucial role in black
hole thermodynamics. In the approach of Wald [1], entropy
is introduced in the framework of (Riemannian) diffeo-
morphism invariant theories as the Noether charge on
horizon. In these theories, the gravitational dynamics is
described by a metric of spacetme only, as is the case in
general relativity (GR), and matter fields are tensor fields
on spacetime manifold. After some time, Jacobson and
Mohd [2] extended these considerations to theories whose
spacetime geometry is described by an orthonormal
coframe and the related Lorentz (or spin) connection.
Staying close to the spirit of GR, they restricted their
analysis to a torsionless Lorentz connection, which is
completely determined in terms of the coframe field.
Thus, in spite of the change of basic dynamical variables,
the geometry of spacetime remained Riemannian.

A quite natural extension of the treatment of entropy was
proposed recently in Ref. [3], where the Lorentz connection
was liberated from its Riemannian constraints by going
over to Poincaré gauge theory (PG), a modern gauge-field-
theoretic approach to gravity [4,5]. In analogy to gauge
theories of internal symmetries, PG is constructed by
localizing the Poincaré group (translations and Lorentz
rotations) of spacetime symmetries. In PG, the basic
gravitational variables are again the coframe and the
Lorentz connection, but here, in contrast to GR, the
spacetime geometry is characterized by two types of field
strengths, the torsion and the curvature.

The Hamiltonian approach to entropy proposed in Ref. [3]
describes the asymptotic charges (energy and angular
momentum) and entropy as the canonical charges at infinity
and horizon, respectively. It was successfully applied to
spherically symmetric and asymptotically flat Kerr solutions
in PG, and to the Kerr-anti—de Sitter (Kerr-AdS) black holes
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in GR [3,6,7]. Once the asymptotic charges and entropy are
calculated, they are also shown to satisfy the first law of
black hole thermodynamics, which is an independent test of
the formalism. The objective of the present paper is to extend
our Hamiltonian approach to physically more interesting but
technically rather involved case of the Kerr-AdS black hole
with torsion [8,9]; see also [10,11].

The paper is organized as follows. In Sec. II, we describe
basic aspects of our Hamiltonian approach to entropy in PG,
and Sec. III offers a review of the geometry of Kerr-AdS
spacetimes with torsion. Then, in Sec. IV, we apply the
Hamiltonian approach to calculate energy and angular
momentum of the Kerr-AdS black hole in PG, with respect
to the AdS background configuration. In this analysis, a
particular attention is payed to a proper treatment of the
Boyer-Lindquist coordinate system in the asymptotic region.
Section V is the central part of the present paper as it contains
a detailed derivation of the Kerr-AdS black hole entropy.
In Sec. VI, we give a short verification of the validity of the
first law of black hole thermodynamics, and Sec. VII is
devoted to concluding remarks. Finally, three appendixes
contain some technical details of our analysis of entropy.

Our conventions are the same as in Refs. [3,6,7]. The
latin indices (i, j,...) are the local Lorentz indices, the
greek indices (p, v, ...) are the coordinate indices, and both
run over 0,1,2,3. The orthonormal coframe (tetrad) is
b" = b',dx", the dual basis (frame) is h; = h*0,, @' =
w' xdx* is the Lorentz connection, the metric components
in the local Lorentz and coordinate basis are 7;; =
(1,-1,-1,-1) and g, = g;;b',b’,, respectively, and
€;jmn 18 the totally antisymmetric symbol with &j;53 = 1.
The Hodge dual of a form « is denoted by *a, and the wedge
product of forms is implicitly understood.

II. ENTROPY AS THE CANONICAL CHARGE

To prepare our analysis of entropy for Kerr-AdS black
holes with torsion, we start with a short account of the
(geometric and) dynamical structure of PG [4,5] and the
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basic aspects of the Hamiltonian understanding of black
hole entropy [3.,6,7].

The geometric structure of spacetime in PG is
characterized by the existence of two gauge potentials,
the coframe (tetrad) b’ and the Lorentz connection
'/ = —w/" (1-forms), the related field strengths are the
torsion 7% := db’ + w';b* and the curvature RY := dw'/ +
'@ (2-forms), and the associated spacetime structure is
described by a Riemann-Cartan (RC) geometry.

The PG dynamics is determined by a Lagrangian L =
Lg + Ly (4-form), where L is the pure gravitational part
and L, describes matter fields and their gravitational
interactions. The gravitational Lagrangian is assumed to
be parity invariant and at most quadratic in the field
strengths,

3
L =—*(aR +2A)+ T *(a,"T))
n=1
6

1.
+ 5 RY Zl*(bn@mij),

(2.1)
where (ag, A, a,,b,) are the coupling constants, and
(”)T,-,<”>R,»j are irreducible parts of the field strengths;
see, for instance, Ref. [3]. The variation of L; with respect
to b’ and w" yields the gravitational field equations in
vacuum. After introducing the covariant gravitational
momenta H; := Lg/0T" and H;; := OLg/OR" (2-forms),
and the associated energy-momentum and spin currents,
E; = 0Lg/0b" and E;; := OL;/0w" (3-forms), the gravi-
tational field equations take a compact form,

sbi: VH,+E; =0, (2.2a)

In the presence of matter, the right-hand sides of (2.2a)
and (2.2b) contain the corresponding matter currents.

The explicit expressions for the covariant momenta,

2
Hi =2 *a,"T)), (2.3a)
m=1
6
H;j = —2ay*(b;b;) + 22 *(bn(n)Rij)v (2.3b)

n=1

play and important role in the analysis of black hole
entropy.

The asymptotic conserved charges (energy and angular
momentum) in PG are closely related to the regularity
(functional differentiability) of the canonical gauge gen-
erator of local Poincaré symmetries. Following the ideas of
Regge and Teitelboim [12], the canonical form of these

charges can be expressed in terms of certain surface
integrals at spatial infinity; see Refs. [10,13,14]. On the
other hand, the concept of black hole entropy in GR is
best understood as the Noether charge on horizon [1]. As
shown in Ref. [3], this idea can be quite naturally extended
to PG by introducing entropy as the canonical charge on
horizon. By construction, this extension can be applied not
only to black holes with torsion but also to Riemannian
black holes.

For a stationary black hole spacetime, its spatial section
2 is assumed to have two components, one at infinity and
the other at horizon, 0% = S U Sy. The corresponding
boundary integral I" has two parts, ' = ', — 'y, which are
determined by the following variational equations:

ST, = jém 5B(E), 6Ty — ]éﬁ 5B(&), (2.4a)
SB(E) = (&, b')SH, + 6b/ (2, H,) + % (& )5H,;
5 b0 (&, 5H,). (2.4b)

Here, ¢ is the Killing vector which takes the values 0,
and/or (94, on S, and becomes a linear combination thereof
on Sy, such that £2 = 0. The variation 6B is determined in
accordance with the boundary conditions, which must
be chosen so as to ensure the solutions for I'y, and oIy
to exist and be finite. In particular, ¢ is required to satisfy
the following rules:

(rl) On S, the variation ¢ acts on the parameters of a black
hole solution, but not on the parameters of the back-
ground configuration.

(r2) On Sy, the variation 6 must keep surface gravity
constant.

When the variational equations (2.4) are o-integrable and

the solutions for I', and 'y are finite, they are interpreted

as the asymptotic charges and black hole entropy,
respectively.

Although I and I'y; are defined as a priori independent
quantities, the analysis of their construction [3] reveals that
the regularity of the canonical gauge generator is ensured
by the relation,

o =o'y, —6l'y =0, (2.5)
which is equivalent to the first law of black hole
thermodynamics.

III. KERR-ADS BLACK HOLE WITH TORSION

In this section, we present Baekler et al. Kerr-AdS
solution [8,9] in the framework of a wider class of parity
even PG Lagrangians [10]; for an extension to the general
parity violating Lagrangian, see Obukhov [11].
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A. Metric and tetrad

The metric of Kerr-AdS spacetime in Boyer-Lindquist
coordinates takes the form [15-17],

A 2 2
ds? == (dt + Esin2<9d¢> P ar -
P a A

(r? + a?) d(p} 2’
a

2
P~ m
—do
S

- iz sin’@ {adt + (3.1a)
p

where

A(r) = (r* + a®)(1 + Ar?) = 2mr, a:=1-1d,
p*(r,0) = r* + a*cos?6, £(0) =1 - la*cos?6.
(3.1b)

Here, m and a are the parameters of the solution,
A = —A/3a,, a normalizes the range of the angular variable
@ to 2x, and 0 < @ < z. For m = 0, the metric reduces to
the AdS form, albeit in somewhat “twisted” coordinates
[15,16]. The metric possesses two Killing vectors, 0,

and J,,, and the larger root of A(r) = 0 defines the outer
horizon,
(rX +a*)(1 + Ar%) —=2mr, = 0. (3.2)
The angular velocity is given by
2.4 2
—-A
w(r) = T _ a;r[f(rz j—a )2 .]2 ’
9pp  f(r* +a°)* —a*Asin’0
aa
=5—7. 33
w(ry) 2 td (3.3)

Note that w(r) does not vanish for large r, ® ~ —la + O,.
Surface gravity has the form,

[0A], (1 +Aa* + 32 —a?/r%)
2(r% + a?) 2(r3 + a?) '

(3.4)

The orthonormal tetrad associated to the metric (3.1) is
chosen in the form,

d
bo = N(dt + ﬁsinZQd(p), pl =
a N
: 2 2
P =Pdo, b= —5129 [adt G} )dt/)], (3.5)
a

where

N(r.0) = /Al P(ro) =@/,

A simple calculation of the horizon area yields

4 2 2
AH:/ b2b3:M. (3.6)

a

The Riemannian connection @ is defined in the usual
way as

@' s= 5l db) —hT b~ (' (W], db™))b, s (3.7)

see also Appendix A.

B. Torsion, connection and curvature

The ansatz for torsion is given by [9,10]

1
TO - Tl — N [_VlbObl - 2V4b2b3}

1
+ 5 [Vab™b? + V3b7 b7,
N
1
T2 = I [Vsb™b* + Vb~ b7,
1
1% i= < [=Vab™b? + Vs, (3.8)

where b~ := b® — b! and the torsion functions V, have
the form,

Vv, = ﬁ4(r2 — a?c0s%0), V, = —4ira2 sin @ cos 6,
p PP
m m m
Vi =——rlasiné, V,=—racos@, Vs=—r.
PP p* P
(3.9)

Thus, the torsion tends to zero at spatial infinity. The
irreducible components of 7" are displayed in Appendix A;
in particular, )T" = 0. After introducing the contorsion
1-form,

K= S (WL T = W, T = (W (WS T9)by). (3.100)

or more explicitly,

K :%Vlb‘,

K% = K12 = ‘%Vzb— +%(V5b2 — V4b?),

K% = KB = —$v3b— qL%(vétb2 + Vsb?),

K5 — —%V4b‘, (3.10b)

the RC connection is given by
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o' =@l + KV,

(3.11)

(i) The tetrad field 5’ and the Lorentz connection o'/

are basic elements of the RC geometry of spacetime.

The RC curvature RY = dw” + ';@*/ has only two

nonvanishing irreducible parts, YRV and (ORY; with
A=(0,1) and ¢ = (2,3), they are given by

@Rt = pepe

©RY = \bib/, = (3.12)
A
The quadratic invariants,
Rif*Rij = 1242%¢, T™*T, =0, (3.13)

where & :=bb'b%b3 is the volume 4-form, are regular.
Note that the curvature invariant differs from its
Riemannian analogue [7].

The effective form of the Lagrangian is determined by
the nonvanishing irreducible parts of the field strengths,

LG = —*(CloR + 2A0) + Ti*(a](l)T,- + GQ(Z)TI')

|
+3 RU*(byWR;; + bsO'Ry)). (3.14)
The Kerr-AdS geometry is a solution of the PG field
equations (2.2) provided the Lagrangian parameters satisfy
the following restrictions:
2611 + a, = 0,

ao—a,—A(by+bg) =0, 3lag+A=0.

(3.15)

With the above form of L, the covariant momenta (2.3) are
determined by

Hi = 2a1*((1)T,- - 2(2>Ti)’

H;;j = —2(ag — Abg)*(b;b;) + 2b,* ¥R ; (3.16)

ij —

see also Appendix A.

IV. ASYMPTOTIC CHARGES

As shown by Carter [15] and Henneaux and Teitelboim
[16], Boyer-Lindquist coordinates are not adequate for
analyzing the asymptotic charges of Kerr-AdS spacetime
since the corresponding asymptotic behavior of the metric
components is twisted with respect to the standard AdS
background configuration. However, as we discussed in
[7], one can use Boyer-Lindquist coordinates as a techni-
cally simple first step in the calculations, whereupon the
transition to the new, “untwisted” coordinates,

T =1,

¢ =@ —Aat, (4.1)

yields the correct final result. In fact, Henneaux and
Teitelboim’s analysis, based on the properties of asymptotic
states, yields formulas for the new coordinates which also
include an additional part transforming (7, 0) into (R, ®).
However, that part is not needed in our approach which is
based on the Hamiltonian variational approach (2.4).

Under the coordinate transformation (4.1), the compo-
nents od the Killing vector ¢ and the metric tensor g,
transform according to

éT = ét +/1aé:(pv f(p = é(p»
gT{/) = 9n + lag(p(p’ g(/)(/) = g(p(p’

grr = i + 24ag,, + (2a)*g,,- (4.2)

Before we begin with calculations, let us note that the
background configuration, which is defined by m = 0, also
depends on the parameter a. Hence, in order to avoid the
variation of those a’s that “belong” to the background, we
introduce an improved interpretation of the rule (rl)
formulated in Sec. III:

(r1")In the variational equation (2.4) for 6, (&), first apply
§ to all the parameters (m, a) appearing in B(£), then
subtract those da terms that survive the limit m = 0, as
they originate from the variation of the AdS back-
ground.

In the calculations that follow, we use the notation,

Ag = ay— A(by + bg) = ay,
dQ :=sin0dOdep — 4r,

2
dQY = sin*0d0dy — T4r. (4.3)

Various components of " and H;, H;; can be found with
the help of Appendix A.

A. Angular momentum

We start the analysis of angular momentum by calculat-
ing the expression E, :=dI'y,(0,). For simplicity, we

write 0E,, in the form 6E, = 0E,,; + OE,,, where

1 .. 1. ..
5E(,,1 = ij(ﬂaHij +§5CUJHU(/,,

5E(p2 = bi(péH,’ + 5biHi¢,

(4.4)
and the integration over S, is implicitly understood. The
calculation is performed by ignoring da terms that are
independent of m, even when they are divergent, and by
omitting asymptotically vanishing O(r™") terms. The non-
vanishing contributions are given by
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5E(p1 = w13(p5H13 + 5(1)13H13(/}
= ((1)13¢5H139(/, + 5(1)13¢H139¢)d9d(p

= (", H39,)d0dgp = 245 (mf) dQ,  (4.52)
(04
5E(/}2 = bO(/,(SHO + 5b0H0[/}
= (b0¢5H09(p + 5b0(pH09¢)d6d§0

— 5(b°, Hog,)dOdep = 4a,5<%> dQ.  (4.5b)
Summing up the two terms and using A, = a,, one obtains

ma
E, = 162A46 <?> = E,. (4.6)

The last equality follows from the trivial coordinate trans-
formation £, = &,; see (4.2).

B. Energy

Going over to the energy, we represent the expression
SE, := 6", (0,) by the sum of

| 1. .
5Et1 = Ew”t(‘)‘H,-j +§5(0qu'/'[,

SE,, = b',6H; + Sb'H,,. (4.7)

The nonvanishing contributions to dF,; are

1)
50)12H12t = ((30)123H12t(p)d9d(p = —Aom —t]; sin Gde(p,
a

Sw'3H 3, = (=60" ,H 13,9)d05¢

2fda — ad
_ _pgm 2S00 = of S f sin0dodo,
af
oa 1
= Ok, = =2Aym— = 2Aymd | — | X 4x. (4.8a)
a a
In a similar manner,
0 0 adm — moa .
b°6Hy = (b°,6Hy,)d0dy = 4a, 5 sin 0dOd,
a
m
= (SEtZ = 4a15<—> X 4. (48b)
a
Thus, the complete result takes the form,
1
SE, = 1614, Fa(-) + 5@)}, (4.9)
2 \a a

which shows why Boyer-Lindquist coordinates are inad-
equate. Namely, if (4.9) were the final result, the variational
equation for energy would not be integrable, and

consequently, energy would not be even defined. As we
noted earlier, the correct result can be obtained only by
going over to the untwisted (7, ¢) coordinates. Indeed,
using the transformation law (4.2)1 for the components of
&, the expression for 6E, = 6I'(9,) is transformed into the
final result for SE; = 6 (J7), given by

SEy = OE, + JadE,, = 16xA¢ (@) (4.10)
a

The results (4.10) and (4.6) for the asymptotic charges
Er and E,, respectively, coincide with those obtained by
Hecht and Nester [10]; in the GR limit, they reduce to
the form found earlier by Henneaux and Teitelboim [16];
see also Ref. [7].

V. ENTROPY

Entropy is defined by the variational equation for 'y (£),
with

£=07-Q,05=0,—w.0,,

aa a(l1+ar%)
0, =——, Q,=w,+la=——".
R A r+a?

(5.1)

In the analysis of 6I'y (&), the following relations are very
useful:

2 2
NON|, = Lja) N&N|, =0,
Py
0 &
), =Nl =0

They allow us to easily obtain the interior products a = a;
for any form a expressed in the orthonormal basis. Thus,
for instance, using the expressions for the Riemannian
connection @'/ displayed in Appendix A, one finds

Na?sin0cos @

~01 0y — =02
fJa) ! - _Nl(gb ) = —K, fJa) - P(r%_ + az)
B Nar . - -
§J 0)13 = ——P(ri -|—+a2) s 9, §J CUOS = 5_] a)12 = 07
£, ~ N2

In a similar manner, one can calculate the interior products
& w, & H;;, and & H;, appearing in the variational
equation (2.4).

In order to make our analysis of entropy as transparent
as possible, we organize the calculations in several
simpler steps.
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A. The basic result

We begin with the calculation of the expression 8I'y (&), given in Eq. (2.4), by dividing it into two parts, denoted
symbolically by 6I'; and éI",. We use the notation Aj, := ay — Abg.

The only nonvanishing contributions stemming from the first element of 61"y are

2 24 q?
" :5H o [=]0" :5Ho16, = 24| <1< -Vi5 - 2)6( + ) sin 0, (5.2a)
ry+a a

% :6H 3 + 03 :6H 3[=]K® :6(H 39, + H39,) + @' :6H 3,

1 2 N P
— 24y (~ V32 ) 5 PNZ)sin20 + 20, — ot~ 5 ( 22 ) sin6. (5.2b)
N "ri+a a P(ri+a*) \Npj «a

Here, the symbol [=] stands for an equality up to the factor dfdgp. In 6H 3, the term proportional to Aj is omitted as it
vanishes on horizon, NoN|, = 0.

In the second element of oI'; there are 2 + 2 nonvanishing contributions,
8" Hyoe + 60" 2H 156 [=]6@"%gH 3¢, + 5K p(H ooz, + Hie,)

P2\ Np? NP
= 2A}5 (";v Z*) —asing - 2/1b45< 2”) 7 Gine, (5.3)
P a P+ a

and
50" Hyse + S H 3= » —5K03¢(H0359 + H3) — 55’]3¢H1359

2\ NPp? N P
= Al () P ing — 24,8 [~ ) Bt S sino. (5.3b)
NPpia) ri +a aP ) N ri+a

In H 3z, the term proportional to Aj is omitted.

2. 5F2 = b’gﬁH, + 6blHl§

The only nonvanishing contributions from I, are

DO 5Ho[]b°6Hog, = N2 6] 29™% (2 4 2 4 2] sino (5.42)
= = r a sin 6, 4a
seHo &0 00g r2+ T a2 Napi + P5
Na V3P p2 .
(SbOHoé[:] - 5bO¢HO§9 = —2(115<7> T ri —:az Sln29, (54b)
sin @
5b> Ho|=16b%gH s, — 60% Hozg = 2a,(5P)(Vy = Vs) Epi’ (5.4¢)
2 2 2
(3b3H3§[:] - 5b3¢H3§0 = 2015<r+ ta )(Vl - V5)P%Sln9 (54(1)
a ri+a

B. Simplifications

The expressions for entropy found in (5.2)—(5.4) look rather complex. It is almost evident that prior to any direct
calculation, they should be simplified. The evidence for the existence of the following two simplifications is provided in
Appendix B:

(T1). The sum of the terms proportional to SN/N in (5.2)—(5.4) vanishes.
(T2).  The sum of the terms proportional to §P/P in (5.2)—(5.4) vanishes.
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As a consequence, the original expressions become notably

simpler,
2 2
(5.2a) ZA{)[ v, 2”* }-5(r++a>sin9,
ri+a? a
2
. Py ay .
(52b). 2A6 <V3P’W> 5<a> Sln29
ar mr_a
+2b u 5( u )sm3€ 5.5a
T\ a >3
(5.3): —2A65<pi>p;sm€ 2&1;45(;:)’"7&119
s3b): —2ar5("E) P Ging
0 2 2 2
pia)ri+a
r mr
— by — *_sin@. 5.5b
4 <0!)r2+—|-a281n ( )
: pr [mrh :
(5.43). Zdlmé ap (r++a +p+) Sln9,
2
5.4b): —2a,8( 2\ viP—Lsin%,
2 2
a ri+a
(5.4c): =0,
2 2 2
(5.4d): 2a15(r++a>(V1—V5)%sin0. (5.5¢)
ry+a

In further analysis, we shall use the relation A} =
Ay + Aby to express these results in terms of only two
independent coupling constants, A, and Ab,. In this
process, one should use the identity a; = A,.

(5.2a) + (5.2b), + (5.32), + (5.3b),: 24, Sin9|:<l< -

2

mr4

2

C. The terms proportional to Ab,

Since the contributions in (5.5¢) are proportional to
a; = Ay, the 1b, contributions are determined by replacing
Aj = Ab, into (5.5a) and (5.5b). Then, by dividing each
term by 21b, (for simplicity), one obtains

2 2

2 29 2
(5.22): [K_’"“; areos >}5<”++“)sme,
pi(ri +a) a
2 sin0
(5:20): S (S ) 4 s TR sinde,
pi(ri+a’) \a rita Y
2
(5.3a): {pﬂs(m”) +mr+5( )]siné’,
a pL a P
2
(5.3b): —{/* 25("";>+ e 5( )]sin@.
ri+a apy ri+a* \a

(5.6)

These contributions can be further simplified, as shown in

Appendix B.

(T3).  When the sum of the terms in (5.6) is integrated
over dOd, it vanishes.

This result allows us to go over to the final stage of the

analysis of entropy.

D. The terms proportional to A,

The remaining contributions proportional to A, are
obtained by the substitution Aj — A, into (5.5a) and
(5.5b). By a suitable rearrangement, the result can be
expressed as

Vip2 ri+a? amr’sin’0 _(a
2 7)90 T 52 7ol -
r+—|—a a pi(ri+a*) \a

2
r

_ﬂ_+5<

a

(5.4a) + (5.4b) + (5.4c) + (5.4d): 24,5

+
2 2
ry+a

a

After using A, = a,, all these contributions sum up to a
simple expression,

2

). (5.7)

Then, the integration over dfdg yields the final result,

2
(5.2) + (5.3) + (5.4) = 24,k sin 05 (” ta
a

fa

(e

) r++a (
2 2

st s1n¢9{\/ 5<r+ +a ) amr+s1n <_>

a’ a

ap’.

))

a

mry mr4.

)il

pL ap’.

2 2
STy = 87AgKS <r+ ta ) — T5S.
(04
2 2
§ = 16na, "4 (5.8)
a

where T = k/2x is the black hole temperature and S the
Kerr-AdS entropy in PG.
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VI. THE FIRST LAW

In the Hamiltonian approach described in Sec. II, the
asymptotic charges and entropy are defined by the varia-
tional equations (2.4) as a priori independent quantities.
The results that we found for 6E7, 6E,, and 6I'y, combined
with the identity derived in Appendix C, imply the validity
of the first law of black hole thermodynamics for the Kerr-
AdS black hole,

T6S = 6E7 — Q. 5E,, (6.1)

in accordance with Eq. (2.5).

VII. CONCLUDING REMARKS

In the present paper, we performed a classical
Hamiltonian analysis of the thermodynamic variables,
energy, angular momentum and entropy, for the Kerr-
AdS spacetimes in PG.

Our analysis relies on the Kerr-AdS solution with
torsion, constructed some thirty years ago by Baekler et al.
[8,9]. The results for energy and angular momentum
coincide with those obtained by Hecht and Nester [10].
In both their and our analyses, it was essential to understand
the limitations of the Boyer-Lindquist coordinates at large
distances in accordance with the ideas of Henneaux and
Teitelboim [16], the ideas which can be traced back to the
work of Carter [15].

As far as we know, the result (6.1) for entropy is
completely new in the literature, although our earlier results
for the spherically symmetric and asymptotically flat Kerr
solutions [3,6,7] led to certain ideas on what might be the
answer in the Kerr-KAdS case. The calculations producing
the final result for the Kerr-AdS entropy are rather com-
plex, but at the end, they confirm that black hole entropy in
PG can be interpreted as the canonical charge on horizon.

In spite of a very different geometric/dynamical content
of PG and GR, our analysis shows that the related Kerr-AdS
thermodynamic variables differ solely by a constant multi-
plicative factor. This somewhat puzzling situation may
indicate the need for a deeper understanding of the role of
boundary conditions at horizon; see for instance [18].
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APPENDIX A: TECHNICAL ASPECTS
OF KERR-ADS SOLUTION

In this appendix, we present some detailed technical
characteristics of the Kerr-AdS solution.

First, we display here the explicit form of the
Riemannian Kerr-AdS connection (3.7),

" = —N'B° = sin 0,
Pp

2 .

2 = 2 MTLOSY SI;GZCOS Hbo - @cos ob3,
P
N

0% = —a—’;sinﬁb‘ —I—a—20059b2,

Pp p
e a? sin(9cosé?b1 +ﬂb2

p°P s

N
B = = —sin0b’ + b,
P p

e _ﬂcoseb0+Pcost9—89Psin9

b3. Al
p? P?sin@ (A1)

Then, the irreducible components of the torsion 2-form
(3.8) are found to be

1
@70 = A7 = — (=V, +2V5)bb',

3N
C 1 .
@)7e :3—N(—V1 +2V5)b™be, c=(2,3),
12
70 = (IOt = -5 [g(v1 + Vs)b%b! + 2V4b2b3}
1 — JL,C
+ 2 Vb b,

1[1
M2 = v {5 (Vy + Vs)b~b*> + V4b‘b3] ,

1[1
73 = ¥ {g (Vi+ Vs)b™ b’ - V4b‘b2].

A1 = 0. (A2)

Finally, the explicit forms of the covariant momenta read

HO] - —2A6b2b3,

A
Hop = 2A40b'b +2by 07D,

2
Hy, = —2A)005° — 2b4%b‘b3,

p

Hyy = —2ALb'5° — 2b4%b‘b2,
p

Hys = 2406002 + 2b4¥b‘b2,

H23 - —2A6b0bl, (A3)
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4a
Hy=-H, = Nl [—V4b'b' 4 Vsb?b°]
2a
+N—‘[b (=Vab> + V3b?)),
2
H, = _%[(—Vl + Vs)b™b? + Vyb7b7,
2(11 —12 -3
Hy = =5 [(Vi = Vs)bb? + Vab~bY) (A4)

APPENDIX B: ON THE EVALUATION OF
ENTROPY

In this appendix, we discuss certain technical details of
the derivation of entropy given in the main text.

1. Elimination of 6N/N and 6P/P terms

Starting from the basic results on entropy obtained in
Eqgs. (5.2)—(5.4), we are now going to show that both SN /N
and 6P/P terms cancel out.

Consider first the coefficients of the SN/N terms. By a
suitable rearrangement of these coefficients, shown in the
following formulas:
|

PHYS. REV. D 102, 064034 (2020)
mr’ &
(5.3a);+(5.3b),: 24 <l—|— 5 2) siné,
p+ ri+a
2 2
(5.3),+(5.3b),: —2/1194""* 14— P ) sine,
+ +Cl
mrl, pi .
(5.4a): —2a, po l+r2 e sinf, (Bla)
i T

one can directly conclude that their sum vanishes, as a
consequence of A, = a; + Ab,. There are two more con-
tributions of this type,

2 2

(5.2b):  2(Al = Aby) —5 st sin®0),
ap? (r} + a*)
2 .2
(54b):  —2a; —— % _sindo, (B1b)

ap? (r} + a’)

whose sum also vanishes. Hence, all (6N)/N terms in
entropy can be simply ignored.

A similar analysis shows that the sum of all 6P/ P terms
also vanishes,

2
5.2b), + (5.3a), + (5.3b),: 24} mrising ( asin’d 1 1 — 0,
( 1 1 1 2 2 2 2 2
a ‘i +a) pt rita
mr* sin 0 a’sin%6 1 1
5.2b), + (5.3a), + (5.3b),: 2iby—- (p - —):0,
(520); + (30) + (53b)y: 220 MR (S
9 2 2
5.4¢) + (5.4d):  2a,(V, - Vs &p ~2q, rita V= Vs) =2 sing = 0. Blc
+ 2 2
I a

2. Elimination of Ab, terms

Let us now analyze Eq. (5.6) from the main text, whic
In order to simplify the formulas, we temporarily omit the
convenient form,

h is focused on the contributions from the Ab, terms.
common factor sin@ and rewrite the result in a more

(5.2a): [K' - m(rzi —2a2co§20)} 5<ri il az),
pi(ri+a%) a
(5.2b): 7"?““229 [2mr+5< )+“5(m;’*>}
riy+a p+ a a P
(530): - _5('“_) L (p )]
a pPr \ Py i +
2
(5.3b): -2 Y—*é(”’”) 420 < ﬂ (B2)
ri+a |a pJr p+ a
Now, if the first term in (5.2a) is replaced by using
2 2 2r2 2am(—1 + 31r?
z«s(” +a ) _ 2 syl (B3)
a a(ri + a*) a*(rk + a?)

see (C2), one can directly conclude that
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(i) the sum of all ém terms in (B2) vanishes.

As a consequence, one can further simplify the form of (B2). By rearranging the last three lines, (B2) becomes

2am(—1+3Ar%)

(5.2a):

052(1’?F +a?)

)
3 iR - 202 + )

m(r’ — a*cos’0) (13 +a®
T2 (2 70 ’
pi(ry +a’) a

(B4)

mr
5.2b 5.3 53b),: —
(5.2b), + (5.3a) + (5.3b), aZ 1)\ 2
mr
5.2b 5.3b),: 2 +
( )1+ ( )2 ri—&—az[

a. The or, terms in (B4) vanish

In Eqgs. (B4), one can treat 6r, and da as two indepen-
dent variations on horizon. Consider first the or, part of
(B4), defined by o6a =0, but with a # 0. Then, by
integrating (B4) x §Q, where dQ = sin0dfdy, one finds
that the sum of these terms vanishes.

b. The da terms in (B4) vanish

The remaining, explicit da terms in (B4) are given by

2am(—=1+31r%) 5 m(rt — a’cos*0) 8(& + a2>

a
2re) T AR

mry T+ 2 2 2
—————-6( = | [2p% +2(r% + a?)],
(et +20% v )

)
mr ar,sin“0 . (a AT
el ) ()]
ry+a P a a
where the variation X acts only on a’s that are explicitly
present in X,

S(ri + az) _ 2a(1 + Ar?)

(B5a)

oa,
a 2

a
i(-

p
g
A direct integration of the terms in (B5a) x dQ shows that

their sum vanishes.
To summarize:

+

) = —% (2acos?6)da,
P+

1+ Aa? . 2
) _ A, 5(’—*) — L sa,
a a a

RIS +P

(B5b)

o) ()]
t a a

(i) The sum of the Ab, terms in (B4) x dQ vanishes
after integration.

APPENDIX C: ELEMENTARY FIRST LAW
AS AN IDENTITY

Here, we consider an “elementary” version of the first
law. Lets us define

2 2
rio+a m
S=—"t—+,  M:=—,
a o

J:=Ma. (Cl)
By calculating 6S as a function of 6r, and da, one can use
the horizon equation to express or, in terms of ém and da,
which yields

1+ Ar?
K57‘+—72 T+ 5 _7a(2—|— r;)éa,
T +a ri+a
2 1+ Ar2) (=1 + 3272
—68 = 2r+ 25m+a( + r+)(2 + r+)5a.
a(riy +a*) 20°r,

(€2)

Then, after calculating the variation of the charge on
horizon,

2 -1+ 342
oM =057 = 4 ML) 5 (c3)
a(ri +a*) as(ry +a*)
one obtains the relation,
355 —6M —Q8J  on horizon. (C4)

This identity is an elementary version of the first law,
determined solely from the definition of horizon.
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