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Using a Hamiltonian approach, we introduce black hole entropy for Kerr-AdS spacetimes with torsion as
the canonical charge on horizon. In spite of a completely different geometric setting with respect to GR, the
resulting thermodynamic variables, energy, angular momentum and entropy, are shown to be proportional
to the corresponding GR expressions. The validity of the first law is confirmed.
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I. INTRODUCTION

The entropy of black holes plays a crucial role in black
hole thermodynamics. In the approach of Wald [1], entropy
is introduced in the framework of (Riemannian) diffeo-
morphism invariant theories as the Noether charge on
horizon. In these theories, the gravitational dynamics is
described by a metric of spacetme only, as is the case in
general relativity (GR), and matter fields are tensor fields
on spacetime manifold. After some time, Jacobson and
Mohd [2] extended these considerations to theories whose
spacetime geometry is described by an orthonormal
coframe and the related Lorentz (or spin) connection.
Staying close to the spirit of GR, they restricted their
analysis to a torsionless Lorentz connection, which is
completely determined in terms of the coframe field.
Thus, in spite of the change of basic dynamical variables,
the geometry of spacetime remained Riemannian.
A quite natural extension of the treatment of entropy was

proposed recently in Ref. [3], where the Lorentz connection
was liberated from its Riemannian constraints by going
over to Poincaré gauge theory (PG), a modern gauge-field-
theoretic approach to gravity [4,5]. In analogy to gauge
theories of internal symmetries, PG is constructed by
localizing the Poincaré group (translations and Lorentz
rotations) of spacetime symmetries. In PG, the basic
gravitational variables are again the coframe and the
Lorentz connection, but here, in contrast to GR, the
spacetime geometry is characterized by two types of field
strengths, the torsion and the curvature.
The Hamiltonian approach to entropy proposed in Ref. [3]

describes the asymptotic charges (energy and angular
momentum) and entropy as the canonical charges at infinity
and horizon, respectively. It was successfully applied to
spherically symmetric and asymptotically flat Kerr solutions
in PG, and to the Kerr-anti–de Sitter (Kerr-AdS) black holes

in GR [3,6,7]. Once the asymptotic charges and entropy are
calculated, they are also shown to satisfy the first law of
black hole thermodynamics, which is an independent test of
the formalism. The objective of the present paper is to extend
our Hamiltonian approach to physically more interesting but
technically rather involved case of the Kerr-AdS black hole
with torsion [8,9]; see also [10,11].
The paper is organized as follows. In Sec. II, we describe

basic aspects of our Hamiltonian approach to entropy in PG,
and Sec. III offers a review of the geometry of Kerr-AdS
spacetimes with torsion. Then, in Sec. IV, we apply the
Hamiltonian approach to calculate energy and angular
momentum of the Kerr-AdS black hole in PG, with respect
to the AdS background configuration. In this analysis, a
particular attention is payed to a proper treatment of the
Boyer-Lindquist coordinate system in the asymptotic region.
Section V is the central part of the present paper as it contains
a detailed derivation of the Kerr-AdS black hole entropy.
In Sec. VI, we give a short verification of the validity of the
first law of black hole thermodynamics, and Sec. VII is
devoted to concluding remarks. Finally, three appendixes
contain some technical details of our analysis of entropy.
Our conventions are the same as in Refs. [3,6,7]. The

latin indices ði; j;…Þ are the local Lorentz indices, the
greek indices ðμ; ν;…Þ are the coordinate indices, and both
run over 0,1,2,3. The orthonormal coframe (tetrad) is
bi ¼ biμdxμ, the dual basis (frame) is hi ¼ hiμ∂μ, ωij ¼
ωij

μdxμ is the Lorentz connection, the metric components
in the local Lorentz and coordinate basis are ηij ¼
ð1;−1;−1;−1Þ and gμν ¼ gijbiμbjν, respectively, and
εijmn is the totally antisymmetric symbol with ε0123 ¼ 1.
The Hodge dual of a form α is denoted by ⋆α, and the wedge
product of forms is implicitly understood.

II. ENTROPY AS THE CANONICAL CHARGE

To prepare our analysis of entropy for Kerr-AdS black
holes with torsion, we start with a short account of the
(geometric and) dynamical structure of PG [4,5] and the
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basic aspects of the Hamiltonian understanding of black
hole entropy [3,6,7].
The geometric structure of spacetime in PG is

characterized by the existence of two gauge potentials,
the coframe (tetrad) bi and the Lorentz connection
ωij ¼ −ωji (1-forms), the related field strengths are the
torsion Ti ≔ dbi þ ωi

kbk and the curvature Rij ≔ dωij þ
ωi

kω
kj (2-forms), and the associated spacetime structure is

described by a Riemann-Cartan (RC) geometry.
The PG dynamics is determined by a Lagrangian L ¼

LG þ LM (4-form), where LG is the pure gravitational part
and LM describes matter fields and their gravitational
interactions. The gravitational Lagrangian is assumed to
be parity invariant and at most quadratic in the field
strengths,

LG ¼ −⋆ða0Rþ 2ΛÞ þ Ti
X3
n¼1

⋆ðanðnÞTiÞ

þ 1

2
Rij

X6
n¼1

⋆ðbnðnÞRijÞ; ð2:1Þ

where ða0;Λ; an; bnÞ are the coupling constants, and
ðnÞTi; ðnÞRij are irreducible parts of the field strengths;
see, for instance, Ref. [3]. The variation of LG with respect
to bi and ωij yields the gravitational field equations in
vacuum. After introducing the covariant gravitational
momenta Hi ≔ ∂LG=∂Ti and Hij ≔ ∂LG=∂Rij (2-forms),
and the associated energy-momentum and spin currents,
Ei ≔ ∂LG=∂bi and Eij ≔ ∂LG=∂ωij (3-forms), the gravi-
tational field equations take a compact form,

δbi∶ ∇Hi þ Ei ¼ 0; ð2:2aÞ

δωij∶ ∇Hij þ Eij ¼ 0: ð2:2bÞ

In the presence of matter, the right-hand sides of (2.2a)
and (2.2b) contain the corresponding matter currents.
The explicit expressions for the covariant momenta,

Hi ¼ 2
X2
m¼1

⋆ðanðmÞTiÞ; ð2:3aÞ

Hij ¼ −2a0⋆ðbibjÞ þ 2
X6
n¼1

⋆ðbnðnÞRijÞ; ð2:3bÞ

play and important role in the analysis of black hole
entropy.
The asymptotic conserved charges (energy and angular

momentum) in PG are closely related to the regularity
(functional differentiability) of the canonical gauge gen-
erator of local Poincaré symmetries. Following the ideas of
Regge and Teitelboim [12], the canonical form of these

charges can be expressed in terms of certain surface
integrals at spatial infinity; see Refs. [10,13,14]. On the
other hand, the concept of black hole entropy in GR is
best understood as the Noether charge on horizon [1]. As
shown in Ref. [3], this idea can be quite naturally extended
to PG by introducing entropy as the canonical charge on
horizon. By construction, this extension can be applied not
only to black holes with torsion but also to Riemannian
black holes.
For a stationary black hole spacetime, its spatial section

Σ is assumed to have two components, one at infinity and
the other at horizon, ∂Σ ¼ S∞ ∪ SH. The corresponding
boundary integral Γ has two parts, Γ ¼ Γ∞ − ΓH, which are
determined by the following variational equations:

δΓ∞ ¼
I
S∞

δBðξÞ; δΓH ¼
I
SH

δBðξÞ; ð2:4aÞ

δBðξÞ ≔ ðξ⌟ biÞδHi þ δbiðξ⌟HiÞ þ
1

2
ðξ⌟ωijÞδHij

þ 1

2
δωijðξ⌟ δHijÞ: ð2:4bÞ

Here, ξ is the Killing vector which takes the values ∂t
and/or ∂φ on S∞, and becomes a linear combination thereof
on SH, such that ξ2 ¼ 0. The variation δB is determined in
accordance with the boundary conditions, which must
be chosen so as to ensure the solutions for Γ∞ and δΓH
to exist and be finite. In particular, δ is required to satisfy
the following rules:
(r1) On S∞, the variation δ acts on the parameters of a black

hole solution, but not on the parameters of the back-
ground configuration.

(r2) On SH, the variation δ must keep surface gravity
constant.

When the variational equations (2.4) are δ-integrable and
the solutions for Γ∞ and ΓH are finite, they are interpreted
as the asymptotic charges and black hole entropy,
respectively.
Although Γ∞ and ΓH are defined as a priori independent

quantities, the analysis of their construction [3] reveals that
the regularity of the canonical gauge generator is ensured
by the relation,

δΓ≡ δΓ∞ − δΓH ¼ 0; ð2:5Þ

which is equivalent to the first law of black hole
thermodynamics.

III. KERR-ADS BLACK HOLE WITH TORSION

In this section, we present Baekler et al. Kerr-AdS
solution [8,9] in the framework of a wider class of parity
even PG Lagrangians [10]; for an extension to the general
parity violating Lagrangian, see Obukhov [11].
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A. Metric and tetrad

The metric of Kerr-AdS spacetime in Boyer-Lindquist
coordinates takes the form [15–17],

ds2 ¼ Δ
ρ2

�
dtþ a

α
sin2θdφ

�
2

−
ρ2

Δ
dr2 −

ρ2

f
dθ2

−
f
ρ2

sin2θ

�
adtþ ðr2 þ a2Þ

α
dφ

�
2

; ð3:1aÞ

where

ΔðrÞ ≔ ðr2 þ a2Þð1þ λr2Þ − 2mr; α ≔ 1 − λa2;

ρ2ðr; θÞ ≔ r2 þ a2cos2θ; fðθÞ ≔ 1 − λa2cos2θ:

ð3:1bÞ

Here, m and a are the parameters of the solution,
λ ¼ −Λ=3a0, α normalizes the range of the angular variable
φ to 2π, and 0 ≤ θ < π. For m ¼ 0, the metric reduces to
the AdS form, albeit in somewhat “twisted” coordinates
[15,16]. The metric possesses two Killing vectors, ∂t
and ∂φ, and the larger root of ΔðrÞ ¼ 0 defines the outer
horizon,

ðr2þ þ a2Þð1þ λr2þÞ − 2mrþ ¼ 0: ð3:2Þ

The angular velocity is given by

ωðrÞ ≔ gtφ
gφφ

¼ aα½fðr2 þ a2Þ − Δ�
fðr2 þ a2Þ2 − a2Δsin2θ

;

ωðrþÞ ¼
aα

r2þ þ a2
: ð3:3Þ

Note that ωðrÞ does not vanish for large r, ω ∼ −λaþO2.
Surface gravity has the form,

κ ¼ ½∂Δ�rþ
2ðr2þ þ a2Þ ¼

rþð1þ λa2 þ 3λr2þ − a2=r2þÞ
2ðr2þ þ a2Þ : ð3:4Þ

The orthonormal tetrad associated to the metric (3.1) is
chosen in the form,

b0 ¼ N

�
dtþ a

α
sin2θdφ

�
; b1 ¼ dr

N
;

b2 ¼ Pdθ; b3 ¼ sin θ
P

�
adtþ ðr2 þ a2Þ

α
dφ

�
; ð3:5Þ

where

Nðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δ=ρ2

q
; Pðr; θÞ ¼

ffiffiffiffiffiffiffiffiffiffi
ρ2=f

q
:

A simple calculation of the horizon area yields

AH ¼
Z
rþ
b2b3 ¼ 4πðr2þ þ a2Þ

α
: ð3:6Þ

The Riemannian connection ω̃ij is defined in the usual
way as

ω̃ij≔
1

2
½hi⌟ dbj−hj⌟ dbi−ðhi⌟ ðhj⌟ dbmÞÞbm�; ð3:7Þ

see also Appendix A.

B. Torsion, connection and curvature

The ansatz for torsion is given by [9,10]

T0 ¼ T1 ¼ 1

N
½−V1b0b1 − 2V4b2b3�

þ 1

N2
½V2b−b2 þ V3b−b3�;

T2 ≔
1

N
½V5b−b2 þ V4b−b3�;

T3 ≔
1

N
½−V4b−b2 þ V5b−b3�; ð3:8Þ

where b− ≔ b0 − b1 and the torsion functions Vn have
the form,

V1 ¼
m
ρ4

ðr2 − a2cos2θÞ; V2 ¼ −
m
ρ4P

ra2 sin θ cos θ;

V3 ¼
m
ρ4P

r2a sin θ; V4 ¼
m
ρ4

ra cos θ; V5 ¼
m
ρ4

r2:

ð3:9Þ

Thus, the torsion tends to zero at spatial infinity. The
irreducible components of Ti are displayed in Appendix A;
in particular, ð3ÞTi ¼ 0. After introducing the contorsion
1-form,

Kij ≔
1

2
½hi⌟ Tj − hj⌟ Ti − ðhi⌟ ðhj⌟ TkÞÞbk�; ð3:10aÞ

or more explicitly,

K01 ¼ 1

N
V1b−;

K02 ¼ K12 ¼ −
1

N2
V2b− þ 1

N
ðV5b2 − V4b3Þ;

K03 ¼ K13 ¼ −
1

N2
V3b− þ 1

N
ðV4b2 þ V5b3Þ;

K23 ¼ −
2

N
V4b−; ð3:10bÞ

the RC connection is given by
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ωij ¼ ω̃ij þ Kij: ð3:11Þ

(i) The tetrad field bi and the Lorentz connection ωij

are basic elements of the RC geometry of spacetime.
The RC curvature Rij ¼ dωij þ ωi

kω
kj has only two

nonvanishing irreducible parts, ð4ÞRij and ð6ÞRij; with
A ¼ ð0; 1Þ and c ¼ ð2; 3Þ, they are given by

ð6ÞRij ¼ λbibj; ð4ÞRAc ¼ λmr
Δ

B−bc: ð3:12Þ

The quadratic invariants,

Rij⋆Rij ¼ 12λ2ϵ̂; Ti⋆Ti ¼ 0; ð3:13Þ

where ϵ̂ ≔ b0b1b2b3 is the volume 4-form, are regular.
Note that the curvature invariant differs from its
Riemannian analogue [7].
The effective form of the Lagrangian is determined by

the nonvanishing irreducible parts of the field strengths,

LG ¼ −⋆ða0Rþ 2Λ0Þ þ Ti⋆ða1ð1ÞTi þ a2ð2ÞTiÞ

þ 1

2
Rij⋆ðb4ð4ÞRij þ b6ð6ÞRijÞ: ð3:14Þ

The Kerr-AdS geometry is a solution of the PG field
equations (2.2) provided the Lagrangian parameters satisfy
the following restrictions:

2a1þa2¼0; a0−a1−λðb4þb6Þ¼0; 3λa0þΛ¼0:

ð3:15Þ

With the above form of LG, the covariant momenta (2.3) are
determined by

Hi ¼ 2a1⋆ðð1ÞTi − 2ð2ÞTiÞ;
Hij ¼ −2ða0 − λb6Þ⋆ðbibjÞ þ 2b4⋆ð4ÞRij; ð3:16Þ

see also Appendix A.

IV. ASYMPTOTIC CHARGES

As shown by Carter [15] and Henneaux and Teitelboim
[16], Boyer-Lindquist coordinates are not adequate for
analyzing the asymptotic charges of Kerr-AdS spacetime
since the corresponding asymptotic behavior of the metric
components is twisted with respect to the standard AdS
background configuration. However, as we discussed in
[7], one can use Boyer-Lindquist coordinates as a techni-
cally simple first step in the calculations, whereupon the
transition to the new, “untwisted” coordinates,

T ¼ t; ϕ ¼ φ − λat; ð4:1Þ

yields the correct final result. In fact, Henneaux and
Teitelboim’s analysis, based on the properties of asymptotic
states, yields formulas for the new coordinates which also
include an additional part transforming ðr; θÞ into ðR;ΘÞ.
However, that part is not needed in our approach which is
based on the Hamiltonian variational approach (2.4).
Under the coordinate transformation (4.1), the compo-

nents od the Killing vector ξ and the metric tensor gμν
transform according to

ξT ¼ ξt þ λaξφ; ξϕ ¼ ξφ;

gTϕ ¼ gtt þ λagφφ; gϕϕ ¼ gφφ;

gTT ¼ gtt þ 2λagtφ þ ðλaÞ2gφφ: ð4:2Þ

Before we begin with calculations, let us note that the
background configuration, which is defined by m ¼ 0, also
depends on the parameter a. Hence, in order to avoid the
variation of those a’s that “belong” to the background, we
introduce an improved interpretation of the rule (r1)
formulated in Sec. III:
(r1′)In the variational equation (2.4) for δΓ∞ðξÞ, first apply

δ to all the parameters ðm; aÞ appearing in BðξÞ, then
subtract those δa terms that survive the limit m ¼ 0, as
they originate from the variation of the AdS back-
ground.

In the calculations that follow, we use the notation,

A0 ≔ a0 − λðb4 þ b6Þ≡ a1;

dΩ ≔ sin θdθdφ → 4π;

dΩ0 ≔ sin3θdθdφ →
2

3
4π: ð4:3Þ

Various components of ωij and Hi, Hij can be found with
the help of Appendix A.

A. Angular momentum

We start the analysis of angular momentum by calculat-
ing the expression δEφ ≔ δΓ∞ð∂φÞ. For simplicity, we
write δEφ in the form δEφ ¼ δEφ1 þ δEφ2, where

δEφ1 ≔
1

2
ωij

φδHij þ
1

2
δωijHijφ;

δEφ2 ≔ biφδHi þ δbiHiφ; ð4:4Þ

and the integration over S∞ is implicitly understood. The
calculation is performed by ignoring δa terms that are
independent of m, even when they are divergent, and by
omitting asymptotically vanishing Oðr−nÞ terms. The non-
vanishing contributions are given by
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δEφ1 ¼ ω13
φδH13 þ δω13H13φ

¼ ðω13
φδH13θφ þ δω13

φH13θφÞdθdφ

¼ δðω13
φH13θφÞdθdφ ¼ 2A0δ

�
ma
α2

�
dΩ0; ð4:5aÞ

δEφ2 ¼ b0φδH0 þ δb0H0φ

¼ ðb0φδH0θφ þ δb0φH0θφÞdθdφ

¼ δðb0φH0θφÞdθdφ ¼ 4a1δ

�
ma
α2

�
dΩ0: ð4:5bÞ

Summing up the two terms and using A0 ¼ a1, one obtains

Eφ ¼ 16πA0δ

�
ma
α2

�
¼ Eϕ: ð4:6Þ

The last equality follows from the trivial coordinate trans-
formation ξϕ ¼ ξφ; see (4.2).

B. Energy

Going over to the energy, we represent the expression
δEt ≔ δΓ∞ð∂tÞ by the sum of

δEt1 ¼
1

2
ωij

tδHij þ
1

2
δωijHijt;

δEt2 ¼ bitδHi þ δbiHit: ð4:7Þ

The nonvanishing contributions to δEt1 are

δω12H12t ¼ ðδω12
θH12tφÞdθdφ ¼ −A0m

δf
αf

sin θdθdφ;

δω13H13t ¼ ð−δω13
φH13tθÞdθδφ

¼ −A0m
2fδα − αδf

α2f
sin θdθdφ;

⇒ δEt1 ¼ −2A0m
δα

α2
¼ 2A0mδ

�
1

α

�
× 4π: ð4:8aÞ

In a similar manner,

b0tδH0 ¼ ðb0tδH0θφÞdθdφ ¼ 4a1
αδm −mδα

α2
sin θdθdφ;

⇒ δEt2 ¼ 4a1δ

�
m
α

�
× 4π: ð4:8bÞ

Thus, the complete result takes the form,

δEt ¼ 16πA0

�
m
2
δ

�
1

α

�
þ δ

�
m
α

��
; ð4:9Þ

which shows why Boyer-Lindquist coordinates are inad-
equate. Namely, if (4.9) were the final result, the variational
equation for energy would not be integrable, and

consequently, energy would not be even defined. As we
noted earlier, the correct result can be obtained only by
going over to the untwisted ðT;ϕÞ coordinates. Indeed,
using the transformation law (4.2)1 for the components of
ξ, the expression for δEt ¼ δΓ∞ð∂tÞ is transformed into the
final result for δET ≔ δΓ∞ð∂TÞ, given by

δET ¼ δEt þ λaδEφ ¼ 16πA0δ

�
m
α2

�
: ð4:10Þ

The results (4.10) and (4.6) for the asymptotic charges
ET and Eϕ, respectively, coincide with those obtained by
Hecht and Nester [10]; in the GR limit, they reduce to
the form found earlier by Henneaux and Teitelboim [16];
see also Ref. [7].

V. ENTROPY

Entropy is defined by the variational equation for ΓHðξÞ,
with

ξ≔∂T −Ωþ∂ϕ¼∂t−ωþ∂φ;

ωþ¼ aα
r2þþa2

; Ωþ¼ωþþλa¼að1þλr2þÞ
r2þþa2

: ð5:1Þ

In the analysis of δΓHðξÞ, the following relations are very
useful:

N∂rNjrþ ¼ κðr2þ þ a2Þ
ρ2þ

; NδNjrþ ¼ 0;

ξb0jrþ ¼ N
ρ2þ

r2þ þ a2
; ξbajrþ ¼ 0:

They allow us to easily obtain the interior products ξα≡ αξ
for any form α expressed in the orthonormal basis. Thus,
for instance, using the expressions for the Riemannian
connection ω̃ij displayed in Appendix A, one finds

ξ⌟ ω̃01 ¼ −N0ðξb0Þ ¼ −κ; ξ⌟ ω̃02 ¼ Na2 sin θ cos θ
Pðr2þ þ a2Þ ;

ξ⌟ ω̃13 ¼ −
Narþ

Pðr2þ þ a2Þ sin θ; ξ⌟ ω̃03 ¼ ξ⌟ ω̃12 ¼ 0;

ξ⌟ ω̃23 ∼ N2:

In a similar manner, one can calculate the interior products
ξ⌟ωij, ξ⌟Hij, and ξ⌟Hi, appearing in the variational
equation (2.4).
In order to make our analysis of entropy as transparent

as possible, we organize the calculations in several
simpler steps.
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A. The basic result

We begin with the calculation of the expression δΓHðξÞ, given in Eq. (2.4), by dividing it into two parts, denoted
symbolically by δΓ1 and δΓ2. We use the notation A0

0 ≔ a0 − λb6.

1. δΓ1 =
1
2ω

ij
ξδHij +

1
2 δω

ijHijξ

The only nonvanishing contributions stemming from the first element of δΓ1 are

ω01
ξδH01½¼�ω01

ξδH01θφ ¼ 2A0
0

�
κ − V1

ρ2þ
r2þ þ a2

�
δ

�
r2þ þ a2

α

�
sin θ; ð5:2aÞ

ω03
ξδH03 þ ω13

ξδH13½¼�K03
ξδðH03θφ þH13θφÞ þ ω̃13

ξδH13θφ

¼ 2A0
0

�
1

N
V3

ρ2þ
r2þ þ a2

�
· δ

�
PN

a
α

�
sin2θ þ 2λb4

arþN
Pðr2þ þ a2Þ δ

�
mrþ
Nρ2þ

Pa
α

�
sin3θ: ð5:2bÞ

Here, the symbol ½¼� stands for an equality up to the factor dθdφ. In δH13θφ, the term proportional to A0
0 is omitted as it

vanishes on horizon, NδNjrþ ¼ 0.
In the second element of δΓ1 there are 2þ 2 nonvanishing contributions,

δω02H02ξ þ δω12H12ξ½¼�δω̃12
θH12ξφ þ δK02

θðH02ξφ þH12ξφÞ

¼ −2A0
0δ

�
mPr2þ
Nρ4þ

�
Nρ2þ
Pα

sin θ − 2λb4δ

�
NPrþ
ρ2þ

�
mrþ
NPα

sin θ; ð5:3aÞ

and

δω03H03ξ þ δω13H13ξ½¼� ≈ −δK03
φðH03ξθ þH13ξθÞ − δω̃13

φH13ξθ

¼ −2A0
0δ

�
mr2þ

NPρ2þα

�
NPρ2þ
r2þ þ a2

sin θ − 2λb4δ

�
Nrþ
αP

�
mrþ
N

P
r2þ þ a2

sin θ: ð5:3bÞ

In H13ξθ, the term proportional to A0
0 is omitted.

2. δΓ2 = biξδHi + δbiHiξ

The only nonvanishing contributions from δΓ2 are

b0ξδH0½¼�b0ξδH0θφ ¼ N
ρ2þ

r2þ þ a2
δ

�
2a1mr2þ
Nαρ4þ

ðr2þ þ a2 þ ρ2þÞ
�
sin θ; ð5:4aÞ

δb0H0ξ½¼� − δb0φH0ξθ ¼ −2a1δ
�
Na
α

�
V3P
N

ρ2þ
r2þ þ a2

sin2θ; ð5:4bÞ

δb2H2ξ½¼�δb2θH2ξφ − δb2φH2ξθ ¼ 2a1ðδPÞðV1 − V5Þ
sin θ
Pα

ρ2þ; ð5:4cÞ

δb3H3ξ½¼� − δb3φH3ξθ ¼ 2a1δ

�
r2þ þ a2

Pα

�
ðV1 − V5ÞP

ρ2þ
r2þ þ a2

sin θ: ð5:4dÞ

B. Simplifications

The expressions for entropy found in (5.2)–(5.4) look rather complex. It is almost evident that prior to any direct
calculation, they should be simplified. The evidence for the existence of the following two simplifications is provided in
Appendix B:
(T1). The sum of the terms proportional to δN=N in (5.2)–(5.4) vanishes.
(T2). The sum of the terms proportional to δP=P in (5.2)–(5.4) vanishes.
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As a consequence, the original expressions become notably
simpler,

ð5.2aÞ∶ 2A0
0

�
κ − V1

ρ2þ
r2þ þ a2

�
· δ

�
r2þ þ a2

α

�
sin θ;

ð5.2bÞ∶ 2A0
0

�
V3P

ρ2þ
r2þ þ a2

�
· δ

�
a
α

�
sin2θ

þ 2λb4
arþ

ðr2þ þ a2Þ δ
�
mrþ
ρ2þ

a
α

�
sin3θ: ð5:5aÞ

ð5.3aÞ∶ −2A0
0δ

�
mr2þ
ρ4þ

�
ρ2þ
α
sinθ−2λb4δ

�
rþ
ρ2þ

�
mrþ
α

sinθ;

ð5.3bÞ∶ −2A0
0δ

�
mr2þ
ρ2þα

�
ρ2þ

r2þþa2
sinθ

−2λb4δ

�
rþ
α

�
mrþ

r2þþa2
sinθ: ð5:5bÞ

ð5.4aÞ∶ 2a1
ρ2þ

r2þþa2
δ

�
mr2þ
αρ4þ

ðr2þþa2þρ2þÞ
�
sinθ;

ð5.4bÞ∶ −2a1δ

�
a
α

�
V3P

ρ2þ
r2þþa2

sin2θ;

ð5.4cÞ∶ ¼ 0;

ð5.4dÞ∶ 2a1δ

�
r2þþa2

α

�
ðV1−V5Þ

ρ2þ
r2þþa2

sinθ: ð5:5cÞ

In further analysis, we shall use the relation A0
0 ¼

A0 þ λb4 to express these results in terms of only two
independent coupling constants, A0 and λb4. In this
process, one should use the identity a1 ≡ A0.

C. The terms proportional to λb4
Since the contributions in (5.5c) are proportional to

a1 ≡ A0, the λb4 contributions are determined by replacing
A0
0 → λb4 into (5.5a) and (5.5b). Then, by dividing each

term by 2λb4 (for simplicity), one obtains

ð5.2aÞ∶
�
κ −

mðr2þ − a2cos2θÞ
ρ2þðr2þ þ a2Þ

�
δ

�
r2þ þ a2

α

�
sin θ;

ð5.2bÞ∶ amr2þsin3θ
ρ2þðr2þ þ a2Þ δ

�
a
α

�
þ arþ
r2þ þ a2

δ

�
mrþ
ρ2þ

a
α

�
sin3θ;

ð5.3aÞ∶ −
�
ρ2þ
α
δ

�
mr2þ
ρ4þ

�
þmrþ

α
δ

�
rþ
ρ2þ

��
sin θ;

ð5.3bÞ∶ −
�

ρ2þ
r2þ þ a2

δ

�
mr2þ
αρ2þ

�
þ mrþ
r2þ þ a2

δ

�
rþ
α

��
sin θ:

ð5:6Þ

These contributions can be further simplified, as shown in
Appendix B.
(T3). When the sum of the terms in (5.6) is integrated

over dθdφ, it vanishes.
This result allows us to go over to the final stage of the
analysis of entropy.

D. The terms proportional to A0

The remaining contributions proportional to A0 are
obtained by the substitution A0

0 → A0 into (5.5a) and
(5.5b). By a suitable rearrangement, the result can be
expressed as

ð5.2aÞ þ ð5.2bÞ1 þ ð5.3aÞ1 þ ð5.3bÞ1∶ 2A0 sin θ

��
κ −

V1ρ
2þ

r2þ þ a2

�
δ

�
r2þ þ a2

α

�
þ amr2þsin2θ
ρ2þðr2þ þ a2Þ δ

�
a
α

�

−
ρ2þ
α
δ

�
mr2þ
ρ4þ

�
−

ρ2þ
r2þ þ a2

δ

�
mr2þ
αρ2þ

��
;

ð5.4aÞ þ ð5.4bÞ þ ð5.4cÞ þ ð5.4dÞ∶ 2a1
ρ2þ

r2þ þ a2
sin θ

�
V1δ

�
r2þ þ a2

α

�
−
amr2þsin2θ

ρ4þ
δ

�
a
α

�

þ r2þ þ a2

α
δ

�
mr2þ
ρ4þ

�
þ δ

�
mr2þ
αρ2þ

��
:

After using A0 ¼ a1, all these contributions sum up to a
simple expression,

ð5.2Þ þ ð5.3Þ þ ð5.4Þ ¼ 2A0κ sin θδ

�
r2þ þ a2

α

�
: ð5:7Þ

Then, the integration over dθdφ yields the final result,

δΓH ¼ 8πA0κδ

�
r2þ þ a2

α

�
¼ TδS;

S ≔ 16πA0

πðr2þ þ a2Þ
α

; ð5:8Þ

where T ¼ κ=2π is the black hole temperature and S the
Kerr-AdS entropy in PG.
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VI. THE FIRST LAW

In the Hamiltonian approach described in Sec. II, the
asymptotic charges and entropy are defined by the varia-
tional equations (2.4) as a priori independent quantities.
The results that we found for δET, δEφ and δΓH, combined
with the identity derived in Appendix C, imply the validity
of the first law of black hole thermodynamics for the Kerr-
AdS black hole,

TδS ¼ δET − ΩþδEφ; ð6:1Þ

in accordance with Eq. (2.5).

VII. CONCLUDING REMARKS

In the present paper, we performed a classical
Hamiltonian analysis of the thermodynamic variables,
energy, angular momentum and entropy, for the Kerr-
AdS spacetimes in PG.
Our analysis relies on the Kerr-AdS solution with

torsion, constructed some thirty years ago by Baekler et al.
[8,9]. The results for energy and angular momentum
coincide with those obtained by Hecht and Nester [10].
In both their and our analyses, it was essential to understand
the limitations of the Boyer-Lindquist coordinates at large
distances in accordance with the ideas of Henneaux and
Teitelboim [16], the ideas which can be traced back to the
work of Carter [15].
As far as we know, the result (6.1) for entropy is

completely new in the literature, although our earlier results
for the spherically symmetric and asymptotically flat Kerr
solutions [3,6,7] led to certain ideas on what might be the
answer in the Kerr-KAdS case. The calculations producing
the final result for the Kerr-AdS entropy are rather com-
plex, but at the end, they confirm that black hole entropy in
PG can be interpreted as the canonical charge on horizon.
In spite of a very different geometric/dynamical content

of PG and GR, our analysis shows that the related Kerr-AdS
thermodynamic variables differ solely by a constant multi-
plicative factor. This somewhat puzzling situation may
indicate the need for a deeper understanding of the role of
boundary conditions at horizon; see for instance [18].
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APPENDIX A: TECHNICAL ASPECTS
OF KERR-ADS SOLUTION

In this appendix, we present some detailed technical
characteristics of the Kerr-AdS solution.

First, we display here the explicit form of the
Riemannian Kerr-AdS connection (3.7),

ω̃01 ¼ −N0b0 −
ar
Pρ2

sin θb3;

ω̃02 ¼ a2 sin θ cos θ
Pρ2

b0 −
aN
ρ2

cos θb3;

ω̃03 ¼ −
ar
Pρ2

sin θb1 þ aN
ρ2

cos θb2;

ω̃12 ¼ a2 sin θ cos θ
ρ2P

b1 þ rN
ρ2

b2;

ω̃13 ¼ −
ar
Pρ2

sin θb0 þ Nr
ρ2

b3;

ω̃23 ¼ −
aN
ρ2

cos θb0 þ P cos θ − ∂θP sin θ
P2 sin θ

b3: ðA1Þ

Then, the irreducible components of the torsion 2-form
(3.8) are found to be

ð2ÞT0 ¼ ð2ÞT1 ¼ 1

3N
ð−V1 þ 2V5Þb0b1;

ð2ÞTc ¼ 1

3N
ð−V1 þ 2V5Þb−bc; c ¼ ð2; 3Þ;

ð1ÞT0 ¼ ð1ÞT1 ¼ −
1

N

�
2

3
ðV1 þ V5Þb0b1 þ 2V4b2b3

�

þ 1

N2
Vcb−bc;

ð1ÞT2 ¼ 1

N

�
1

3
ðV1 þ V5Þb−b2 þ V4b−b3

�
;

ð1ÞT3 ¼ 1

N

�
1

3
ðV1 þ V5Þb−b3 − V4b−b2

�
:

ð3ÞTi ¼ 0: ðA2Þ

Finally, the explicit forms of the covariant momenta read

H01 ¼ −2A0
0b

2b3;

H02 ¼ 2A0
0b

1b3 þ 2b4
λmr
Δ

b−b3;

H12 ¼ −2A0
0b

0b3 − 2b4
λmr
Δ

b−b3;

H03 ¼ −2A0
0b

1b2 − 2b4
λmr
Δ

b−b2;

H13 ¼ 2A0
0b

0b2 þ 2b4
λmr
Δ

b−b2;

H23 ¼ −2A0
0b

0b1; ðA3Þ
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H0 ¼ −H1 ¼
4a1
N

½−V4b0b1 þ V5b2b3�

þ 2a1
N2

½b−ð−V2b3 þ V3b2Þ�;

H2 ¼ −
2a1
N

½ð−V1 þ V5Þb−b3 þ V4b−b2�;

H3 ¼ −
2a1
N

½ðV1 − V5Þb−b2 þ V4b−b3�: ðA4Þ

APPENDIX B: ON THE EVALUATION OF
ENTROPY

In this appendix, we discuss certain technical details of
the derivation of entropy given in the main text.

1. Elimination of δN=N and δP=P terms

Starting from the basic results on entropy obtained in
Eqs. (5.2)–(5.4), we are now going to show that both δN=N
and δP=P terms cancel out.
Consider first the coefficients of the δN=N terms. By a

suitable rearrangement of these coefficients, shown in the
following formulas:

ð5.3aÞ1þð5.3bÞ1∶ 2A0
0

mr2þ
αρ2þ

�
1þ ρ2þ

r2þþa2

�
sinθ;

ð5.3aÞ2þð5.3bÞ2∶ −2λb4
mr2þ
αρ2þ

�
1þ ρ2þ

r2þþa2

�
sinθ;

ð5.4aÞ∶ −2a1
mr2þ
αρ2þ

�
1þ ρ2þ

r2þþa2

�
sinθ; ðB1aÞ

one can directly conclude that their sum vanishes, as a
consequence of A0

0 ≡ a1 þ λb4. There are two more con-
tributions of this type,

ð5.2bÞ∶ 2ðA0
0 − λb4Þ

mr2þa2

αρ2þðr2þ þ a2Þ sin
3θ;

ð5.4bÞ∶ − 2a1
mr2þa2

αρ2þðr2þ þ a2Þ sin
3θ; ðB1bÞ

whose sum also vanishes. Hence, all ðδNÞ=N terms in
entropy can be simply ignored.
A similar analysis shows that the sum of all δP=P terms

also vanishes,

ð5.2bÞ1 þ ð5.3aÞ1 þ ð5.3bÞ1∶ 2A0
0

mr2þ sin θ
α

�
a2sin2θ

ρ2þðr2þ þ a2Þ −
1

ρ2þ
þ 1

r2þ þ a2

�
¼ 0;

ð5.2bÞ2 þ ð5.3aÞ2 þ ð5.3bÞ2∶ 2λb4
mr2þ sin θ

α

�
a2sin2θ

ρ2þðr2þ þ a2Þ −
1

ρ2þ
þ 1

r2þ þ a2

�
¼ 0;

ð5.4cÞ þ ð5.4dÞ∶ 2a1ðV1 − V5Þ
sin θ
α

ρ2þ − 2a1
r2þ þ a2

α
ðV1 − V5Þ

ρ2þ
r2þ þ a2

sin θ ¼ 0: ðB1cÞ

2. Elimination of λb4 terms

Let us now analyze Eq. (5.6) from the main text, which is focused on the contributions from the λb4 terms.
In order to simplify the formulas, we temporarily omit the common factor sin θ and rewrite the result in a more
convenient form,

ð5.2aÞ∶
�
κ −

mðr2þ − a2cos2θÞ
ρ2þðr2þ þ a2Þ

�
δ

�
r2þ þ a2

α

�
;

ð5.2bÞ∶ arþsin2θ
r2þ þ a2

�
2
mrþ
ρ2þ

δ

�
a
α

�
þ a
α
δ

�
mrþ
ρ2þ

��
;

ð5.3aÞ∶ −
ρ2þ
α

�
rþ
ρ2þ

δ

�
mrþ
ρ2þ

�
þ 2

mrþ
ρ2þ

δ

�
rþ
ρ2þ

��
;

ð5.3bÞ∶ −
ρ2þ

r2þ þ a2

�
rþ
α
δ

�
mrþ
ρ2þ

�
þ 2

mrþ
ρ2þ

δ

�
rþ
α

��
: ðB2Þ

Now, if the first term in (5.2a) is replaced by using

κδ

�
r2þ þ a2

α

�
¼ 2r2þ

αðr2þ þ a2Þ δmþ 2amð−1þ 3λr2þÞ
α2ðr2þ þ a2Þ δa; ðB3Þ

see (C2), one can directly conclude that
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(i) the sum of all δm terms in (B2) vanishes.
As a consequence, one can further simplify the form of (B2). By rearranging the last three lines, (B2) becomes

ð5.2aÞ∶ 2amð−1þ 3λr2þÞ
α2ðr2þ þ a2Þ δa −

mðr2þ − a2cos2θÞ
ρ2þðr2þ þ a2Þ δ

�
r2þ þ a2

α

�
;

ð5.2bÞ2 þ ð5.3aÞ þ ð5.3bÞ1∶
mrþ

αðr2þ þ a2Þ δ
�
rþ
ρ2þ

�
½−2ρ2þ − 2ðr2þ þ a2Þ�;

ð5.2bÞ1 þ ð5.3bÞ2∶ 2
mrþ

r2þ þ a2

�
arþsin2θ

ρ2þ
δ

�
a
α

�
− δ

�
rþ
α

��
: ðB4Þ

a. The δr+ terms in (B4) vanish

In Eqs. (B4), one can treat δrþ and δa as two indepen-
dent variations on horizon. Consider first the δrþ part of
(B4), defined by δa ¼ 0, but with a ≠ 0. Then, by
integrating ðB4Þ × δΩ, where dΩ≡ sin θdθdφ, one finds
that the sum of these terms vanishes.

b. The δa terms in (B4) vanish

The remaining, explicit δa terms in (B4) are given by

2amð−1þ 3λr2þÞ
α2ðr2þ þ a2Þ δa −

mðr2þ − a2cos2θÞ
ρ2þðr2þ þ a2Þ δ̂

�
r2þ þ a2

α

�
;

−
mrþ

αðr2þ þ a2Þ δ̂
�
rþ
ρ2þ

�
½2ρ2þ þ 2ðr2þ þ a2Þ�;

2
mrþ

r2þ þ a2

�
arþsin2θ

ρ2þ
δ̂

�
a
α

�
− δ̂

�
rþ
α

��
; ðB5aÞ

where the variation δ̂X acts only on a’s that are explicitly
present in X,

δ̂

�
r2þ þ a2

α

�
¼ 2að1þ λr2Þ

α2
δa;

δ̂

�
rþ
ρ2þ

�
¼ −

rþ
ρ4þ

ð2acos2θÞδa;

δ̂

�
a
α

�
¼ 1þ λa2

α2
δa; δ̂

�
rþ
α

�
¼ 2λarþ

α2
δa:

ðB5bÞ

A direct integration of the terms in ðB5aÞ × dΩ shows that
their sum vanishes.
To summarize:

(i) The sum of the λb4 terms in ðB4Þ × dΩ vanishes
after integration.

APPENDIX C: ELEMENTARY FIRST LAW
AS AN IDENTITY

Here, we consider an “elementary” version of the first
law. Lets us define

S ≔
r2þ þ a2

α
; M ≔

m
α2

; J ≔ Ma: ðC1Þ

By calculating δS as a function of δrþ and δa, one can use
the horizon equation to express δrþ in terms of δm and δa,
which yields

κδrþ ¼ rþ
r2þ þ a2

δm −
að1þ λr2þÞ
r2þ þ a2

δa;

κ

2
δS ¼ r2þ

αðr2þ þ a2Þ δmþ að1þ λr2þÞð−1þ 3λr2þÞ
2α2rþ

δa:

ðC2Þ

Then, after calculating the variation of the charge on
horizon,

δM −ΩδJ ¼ r2þ
αðr2þ þ a2Þ δmþ amð−1þ 3λr2þÞ

α2ðr2þ þ a2Þ δa; ðC3Þ

one obtains the relation,

κ

2
δS ¼ δM −ΩδJ on horizon: ðC4Þ

This identity is an elementary version of the first law,
determined solely from the definition of horizon.
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