
 

Rotating black holes in valid vector-tensor theories after GW170817

Siddarth Ajith, Alexander Saffer , and Kent Yagi
Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

(Received 31 May 2020; accepted 24 August 2020; published 11 September 2020)

Vector-tensor theories beyond General Relativity have widely been studied in the context of ultraviolet
completion of gravity, endowing a mass to the graviton and explaining dark energy phenomena. We here
construct rotating black hole solutions in vector-tensor theories valid after the binary neutron star merger
event GW170817 that placed very stringent bound on the propagation speed of gravitational waves away
from the speed of light. Such valid vector-tensor theories are constructed by performing a generic
conformal transformation to Einstein-Maxwell theory, and the new rotating black hole solutions are
constructed by applying the same conformal transformation to the Kerr-Newman solution. These theories
fall outside of beyond generalized Proca theories but are within an extended class of vector-tensor theories
that satisfy a degenerate condition to eliminate instability modes and are thus healthy. We find that such
conformal Kerr-Newman solutions preserve the location of the singularities, event horizons, and ergoregion
boundary from Kerr-Newman, as well as the multipole moments and the Petrov type. On the other hand, the
Hamilton-Jacobi equation is no longer separable, suggesting that the Carter-like constant does not exist in
this solution. The standard Newman-Janis algorithm also does not work to construct the new solutions. We
also compute the epicyclic frequencies, the location of the innermost stable circular orbits, and the
Schwarzschild precession and apply the latter to the recent GRAVITY measurement to place bounds on the
deviations away from Kerr-Newman for Sgr A*.
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I. INTRODUCTION

General Relativity (GR) has been repeatedly supported
by experimental evidence for the past century [1–3];
a modern example of this success is the advent of
gravitational waves, which through the LIGO/Virgo
Collaborations has become an incredibly relevant topic
of research [4–10]. Yet there are questions in modern
physics research which are not modeled completely by
Einstein’s theory of GR. As such, there are many attempts
to define a theory of gravity beyond GR, motivated by, for
example, a hopefulness to establish quantum gravity and
explain dark energy phenomena [3,11–15].
One of the most well-studied theories beyond GR is the

scalar-tensor class, where scalar fields are coupled to
gravity. The most generic scalar-tensor theory containing
up to 2nd derivatives in the field equations is Horndeski
theory [16,17]. This theory was later extended to beyond
Horndeski theory that contains higher derivatives but
avoids ghost modes [18]. This theory was further gener-
alized to degenerate higher-order scalar-tensor (DHOST)
theories that satisfies a degenerate condition to eliminate
Ostrogradski modes. See e.g., [19] for a recent review.
Another important class of non-GR theories is the

vector-tensor class, which generically introduces a pre-
ferred direction in spacetime and breaks Lorentz invariance.
Such gravitational Lorentz violation is motivated by e.g.,

ultraviolet completion of gravity [20–23]. Vector-tensor
theories also arise within the context of massive gravity
[24,25]. Lorentz violation has been constrained very
stringently in the matter sector [26], while it has not been
constrained so strongly in the gravity sector [27–30].
Similar to the scalar-tensor case, generic vector-tensor
theories have been constructed within the context of
generalized Proca (GP) [31–36] and beyond GP theories
[37,38]. In some cases, there has been evidence of
experimental support that GP theories better model cos-
mological problems than GR [39]. These theories in
particular account for vector Galileons which have been
used to show applications in current interests of cosmology
such as dark matter and dark energy properties [40–43]. GP
and beyond GP theories (together with various other
theories) have been constrained from GW170817 [44–
46]. These (beyond) GP theories were further generalized
to extended vector-tensor theories without Ostrogradski
modes that satisfy a degenerate condition [47].
In this paper, we construct rotating black hole (BH)

solutions within a class of extended vector-tensor theories
that are valid after GW170817 and study their properties
and astrophysical implications. Examining the BH solution
of alternative theories is of special interest since the
frontiers of their application are expanding quickly with
further data from gravitational-wave experiments [48], BH
shadow observations with the Event Horizon Telescope
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[49], and stellar motion around Sgr A* with GRAVITY
[50]. Nonrotating BH solutions within GP frameworks
have been constructed in [51–54], while rotating stealth BH
solutions (the Kerr solution with nontrivial vector field
configurations) were found in [51]. Another rotating BH
solution was constructed by applying a disformal trans-
formation to the Kerr-Newman solution [55]. However, a
disformal transformation generically changes the propaga-
tion speed of perturbations, and such a vector-tensor theory
constructed by disformally transforming from Einstein-
Maxwell theory has been effectively ruled out from
GW170817 [44,46].
Instead, we here apply a generic conformal transforma-

tion to Kerr-Newman that preserves the causal structure of
the original spacetime to derive a rotating BH solution in a
subclass of vector-tensor theories valid after GW170817.
Such conformal (together with disformal) transformations
havewidely been used to generate new solutions in non-GR
theories (see e.g., [56–62]). Vector-tensor theories con-
structed by conformally transforming Einstein-Maxwell
theory fall outside of beyond GP theories but are still
within the extended vector-tensor theories and are thus
healthy and free of Ostrogradski instabilities [47].
Let us now briefly summarize our findings. The con-

formal Kerr-Newman solution preserves the location of
singularities, event horizons, and ergoregion boundary
from Kerr-Newman. We also found that the multipole
moments (at least up to the octupole order) and the
Petrov type are the same as Kerr-Newman. On the other
hand, the separability structure is lost, and the Newman-
Janis algorithm does not apply to find a rotating solution
from a seed nonrotating one. The epicyclic frequencies and
the location of innermost stable circular orbits (ISCOs)
depend on the conformal factor, and thus deviations away
from Kerr-Newman may be probed with BH observations
of quasiperiodic oscillations and continuum spectrums with
X-rays. We also applied the recent Schwarzschild preces-
sion measurement of S2 around Sgr A* with GRAVITY
and found bounds on the deviations from Kerr-Newman as
a function of the vector charge of Sgr A*.
The rest of the paper is organized as follows. In Sec. II,

we review the vector-tensor theory that we consider in this
paper. In Sec. III, we explain how we can construct a
rotating BH solution. In Sec. IV, we study various proper-
ties of such a BH solution. In Sec. V, we investigate
whether the Newman-Janis algorithm works in the vector-
tensor theory. In Sec. VI, we study astrophysical implica-
tions, such as quasiperiodic oscillation frequencies, ISCOs
and Schwarzschild precession. We conclude in Sec. VII and
discuss possible avenues for future work. Throughout, we
use the geometric unit of c ¼ G ¼ 1.

II. THEORY

Let us first review a healthy vector-tensor theory after
GW170817. In [47], the authors constructed extended

vector-tensor theories that extend (beyond-) GP theories.
These theories satisfy degenerate conditions and thus are
unaffected by the Ostrogradski instabilities. Moreover,
Ref. [47] shows how conformal/disformal transformation
of the metric takes one from one theory to another.
In this paper, we seek to work in a healthy vector-tensor

theory after GW170817 that preserves the propagation
speed of tensor perturbations to be the speed of light. We
start from Einstein-Maxwell theory and apply a certain
transformation to the metric. Given that a conformal
transformation does not alter the causal structure of a
spacetime (and thus has been used widely to e.g., construct
Penrose diagrams) whereas disformal transformation
changes the propagation speed in general, we only consider
the following conformal transformation:

ḡμν ¼ ΩðYÞgμν; ð1Þ

where we go from an original metric ḡμν to a new metric gμν
withΩðYÞ being an arbitrary function of Y ≡ AμAμ with the
new vector field Aμ. Y in the new frame and Ȳ (≡ĀμĀμ) in
the original frame are related by [47]

Ȳ ¼ Y
Ω
; ð2Þ

where we assume that Aμ is invariant under the trans-
formation: Aμ ¼ Āμ.
Applying the above conformal transformation to

Einstein-Maxwell theory, we arrive at an extended vector-
tensor theory with an action [47]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κΩR −

1

4
FμνFμν þ 3Ω2

Y

4Ω
½AμAνSμρSνρ

þ AμAνFμρFν
ρ − 2AμAνFμ

ρSνρ�
�
; ð3Þ

with κ ¼ 1=ð16πÞ, ΩY ¼ dΩ=dY, and

Sμν ¼ ∇μAν þ∇νAμ; Fμν ¼ ∇μAν −∇νAμ: ð4Þ

In [44,46], the authors derived the propagation speed of the
tensor modes in GP theories and showed that the coefficient
in front of the Ricci scalar in the action needs to be
independent of Y (unless we impose a fine-tuned condition
among arbitrary functions in the theories) to satisfy the
GW170817 bound. This condition does not apply to the
action in (3) since it does not belong to GP (nor beyond GP)
theories (but we stress that it is still a healthy vector-tensor
theory).

III. ROTATING BLACK HOLE SOLUTIONS

We here apply the conformal transformation to the Kerr-
Newman metric, that is a charged, rotating BH solution in
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Einstein-Maxwell theory, to construct a new rotating BH
solution in the vector-tensor theory in Eq. (3). The Kerr-
Newman metric is given by [63]

ds2KN ¼ ḡKNμν dxμdxν

¼ −
Δ
ρ2

ðdt − asin2θdϕÞ2 þ ρ2
�
dr2

Δ
þ dθ2

�

þ sin2θ
ρ2

½ðr2 þ a2Þdϕ − adt�2; ð5Þ

ĀKN
μ ¼

�
−
Qr
ρ2

; ArðrÞ; 0;
aQr sin2 θ

ρ2

�
; ð6Þ

with

Δ ¼ r2 − 2Mrþ a2 þQ2; ρ2 ¼ r2 þ a2cos2θ: ð7Þ

HereM andQ are the BH mass and charge while a ¼ J=M
is the Kerr parameter with J representing the spin angular
momentum. ArðrÞ is an arbitrary function of r due to the
gauge symmetry. Although the choice of Ar does not affect
the metric in GR, different choices of Ar give different
results after the transformation. For simplicity, we choose
Ar ¼ 0. ȲKN is given by

ȲKN ¼ ĀKN
μ Āμ

KN ¼ −
Q2r2

Δρ2
: ð8Þ

We now construct a new BH solution in the vector-tensor
theory by conformally transforming the Kerr-Newman
solution. We introduce the following generic conformal
factor:

ΩðYÞ ¼ f1þ f½ȲðYÞ�g−1; ð9Þ

for an arbitrary function f. The metric reduces to the
original one when f → 0. Because the vector-tensor theory
metric is, from Eq. (1), gμν ¼ Ω−1ḡKNμν , we choose the form
Eq. (9) for Ω with exponent −1 such that the vector-tensor
metric is simply obtained from Kerr-Newman by adding a
term that is linear in f times ḡKNμν . This solution is fairly
simple while keeping f to be general. The new conformal
Kerr-Newman solution is therefore

gμν ¼ ½1þ fðȲÞ�ḡKNμν ; Aμ ¼ ĀKN
μ : ð10Þ

To keep the leading asymptotic behavior of the metric at
infinity to be the same as Kerr-Newman, we require

fð0Þ ¼ 0: ð11Þ

Also, we require that Ω−1 is regular and does not vanish
everywhere outside the event horizon. We will work on the
metric in Eq. (10) in most of this paper.

In Sec. VI, we discuss astrophysical implications of the
above conformal Kerr-Newman metric. To put this into
context, we will consider a simple example function of

fðȲÞ ¼ β

2

Ȳ
1 − Ȳ

; ð12Þ

and the conformal Kerr-Newman solution with this func-
tion is given by

gμν ¼
�
1 −

β

2

Q2r2

Q2r2 þ Δρ2

�
ḡKNμν : ð13Þ

Here, β denotes a scale factor of deviation from GR, and Q
now corresponds to the vector charge rather than an electric
charge. This form of fðȲÞ in Eq. (12) with 1 − Ȳ in the
denominator is selected in order to prevent gμν from
diverging at the event horizon since Ȳ → −∞ as Δ → 0.
Notice the denominator of the β term in Eq. (13) never
vanishes outside of the event horizon since Q2r2 þ Δρ2 >
0 everywhere Δ ≥ 0, and the above metric simply reduces
to gμν → ð1 − β=2Þḡμν when Ȳ → −∞. Therefore, the
conformal factor is well-behaved and nonvanishing outside
of the event horizon when β < 2.

IV. METRIC PROPERTIES

We study several properties of the new BH solution in
Eq. (10) in this section. Since we require the conformal
factor to be regular and nonvanishing everywhere outside
the horizon and the conformal transformation does not
change the causal structure, the location of the singularity,
event horizon and ergoregion boundary is unaltered from
Kerr-Newman. The Lorentz signature (the sign of the
determinant of the metric) is also unchanged. Below, we
focus on finding the multipole moments, separability and
Petrov type of the conformal Kerr-Newman solution.

A. Multipole moments

We now derive mass and current multipole moments of
the conformal Kerr-Newman solution. We follow Thorne
[64] and compute these quantities in asymptotically
Cartesian and mass centered (ACMC) coordinates using
the “flat-space normalized” basis:

et ¼ ∂t; er ¼ ∂r;

eθ ¼ r−1∂θ; eϕ ¼ ðr sin θÞ−1∂ϕ: ð14Þ

We focus on the asymptotic behavior of the metric at
infinity:

gtt ¼ −1þ 2M
r

þ ðf00 − 1ÞQ2

r2
−
2a2Mcos2θ

r3
þO

�
1

r4

�
;

ð15Þ
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grr ¼ 1þ 2M
r

þ 4M2 −Q2ð1þ f00Þ − a2sin2θ
r2

þ 2M½4M2 − a2ð2 − cos2θÞ − 2Q2ð1þ f00Þ�
r3

þO
�
1

r4

�
; ð16Þ

gθθ ¼ 1þ a2cos2θ −Q2f00
r2

−
2MQ2f00

r3
þO

�
1

r4

�
; ð17Þ

gϕϕ ¼ 1þ a2 −Q2f00
r2

þ 2Mða2sin2θ −Q2f00Þ
r3

þO

�
1

r4

�
; ð18Þ

gtϕ ¼ −
2aM sin θ

r2
þ aQ2 sin θ

r3
þ 2a sin θMða2cos2θ þQ2f00Þ

r4
þO

�
1

r5

�
; ð19Þ

where f00 ≡ f0ð0Þ1 and we used fð0Þ ¼ 0. To move to the ACMC frame, we eliminate terms containing a2 sin2 θ and
a2 cos2 θ at Oð1=r2Þ in grr and gθθ by performing the following coordinate transformation:

r ¼ r0 þ a2cos2θ0

2r0
; θ ¼ θ0 −

a2 cos θ0 sin θ0

2r02
; ϕ ¼ ϕ0; t ¼ t0: ð20Þ

This yields

gt0t0 ¼ −1þ 2M
r0

þQ2ðf00 − 1Þ
r02

−
3a2Mcos2θ0

r03
þO

�
1

r04

�
; ð21Þ

gr0r0 ¼ 1þ 2M
r0

þ −a2 þ 4M2 −Q2ð1þ f00Þ
r02

þM½8M2 − 4a2 − 4Q2ð1þ f00Þ − a2cos2θ0�
r03

þO
�
1

r04

�
; ð22Þ

gθ0θ0 ¼ 1þ a2 −Q2f00
r02

−
2MQ2f00

r03
þO

�
1

r04

�
; ð23Þ

gϕ0ϕ0 ¼ 1þ a2 −Q2f00
r02

þ 2Mða2 sin θ02 −Q2f00Þ
r03

þO
�
1

r04

�
; ð24Þ

gt0ϕ0 ¼ −
2aM sin θ0

r02
þ aQ2 sin θ0

r3
þ aM sin θ0

5a2 cos2 θ0 þ 2Q2f00
r04

þO
�
1

r05

�
; ð25Þ

gr0θ0 ¼ −
2Ma2 sin θ0 cos θ0

r03
þO

�
1

r04

�
: ð26Þ

We can now compare the above expressions to those in Eq. (11.4) of [64]. In particular, from the 1=r03 (1=r04) term of gt0t0
(gt0ϕ0), one can read off the quadrupole mass moment M2 and octupole current moment S3 as

M2 ¼ −8
ffiffiffiffiffi
π

15

r
Ma2; S3 ¼

8

3

ffiffiffiffiffiffiffiffi
π

105

r
Ma3; ð27Þ

which are exactly the same as those for Kerr and Kerr-Newman. In order to differentiate multipole moments from the Kerr-
Newman case, one may need to examine the electromagnetic multipole moments [65], which, to the best of our knowledge,
have not been computed within Thorne’s formalism.

B. Petrov type classification

Petrov types are a way to classify what symmetries the Weyl tensor contains. This is realized by looking at the principal
null directions of the Weyl tensor, which will require the null tetrad formalism. There are six classifications, starting from

1f00 ¼ 1=2 when using the metric in Eq. (13).
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type I which is the most algebraically general until type O
where the Weyl tensor is algebraically special and will
vanish [66]. We note that the Kerr-Newman metric is of
Petrov type D. In this section, we show that the conformal
Kerr-Newman metric has the same type.
To find the Petrov type of a given spacetime, we must

find a set of null tetrads lα, nα, mα, m̄α (with a bar
representing the complex conjugate) such that the follow-
ing relationships are met [66]:

gαβ ¼ −lαnβ − nαlβ þmαm̄β þ m̄αmβ; ð28Þ

gαβ ¼ −lαnβ − nαlβ þmαm̄β þ m̄αmβ; ð29Þ
with

lαlα ¼ nαnα ¼ mαmα ¼ m̄αm̄α ¼ 0; ð30Þ

lαmα ¼ nαmα ¼ lαm̄α ¼ nαm̄α ¼ 0; ð31Þ

lαnα ¼ −1; mαm̄α ¼ 1: ð32Þ
Such null tetrads can be constructed from the orthonormal
tetrad ðe0Þα, ðe1Þα, ðe2Þα, ðe3Þα satisfying

gαβ ¼ −ðe0Þαðe0Þβ þ ðe1Þαðe1Þβ
þ ðe2Þαðe2Þβ þ ðe3Þαðe3Þβ; ð33Þ

as [67]

lα ¼
ðe0Þα þ ðe3Þαffiffiffi

2
p ; nα ¼

ðe0Þα − ðe3Þαffiffiffi
2

p ; ð34Þ

mα ¼
ðe1Þα þ iðe2Þαffiffiffi

2
p ; m̄α ¼

ðe1Þα − iðe2Þαffiffiffi
2

p : ð35Þ

Let us now apply the above formalism to the conformal
Kerr-Newman solution. First, the orthonormal tetrads in
this metric are related to those for Kerr-Newman (found
e.g., in [68]) as

ðeμÞα ¼ Ω−1=2ðeμÞKNα : ð36Þ
From this, we construct the null tetrads that are related to
the Kerr-Newman ones as

lα ¼ Ω−1=2lKNα ; nα ¼ Ω−1=2nKNα ; ð37Þ

mα ¼ Ω−1=2mKN
α ; m̄α ¼ Ω−1=2m̄KN

α : ð38Þ

Next, we determine the Petrov type of the new BH
solution by computing the Weyl scalars: [69]

Ψ0 ¼ Cαβγδlαmβlγmδ; ð39Þ

Ψ1 ¼ Cαβγδlαnβlγmδ; ð40Þ

Ψ2 ¼ Cαβγδlαmβm̄γnδ; ð41Þ

Ψ3 ¼ Cαβγδlαnβm̄γnδ; ð42Þ

Ψ4 ¼ Cαβγδnαm̄βnγm̄δ; ð43Þ

where Cαβγδ is the Weyl tensor. Under a conformal trans-
formation, the Weyl tensor transforms as [70]

Cαβγδ ¼ Ω−1CKN
αβγδ: ð44Þ

Thus, all the Weyl scalars transform in the same way as

ΨA ¼ ΩΨKN
A : ð45Þ

The conformal Kerr-Newman solution satisfies the rela-
tions

I3 ¼ 27J2; ð46Þ

I ≠ 0 ≠ J; ð47Þ

as for Kerr-Newman, where [69]

I ¼ Ψ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2; ð48Þ

J ¼
������
Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

������
¼ −Ψ3

2 þ 2Ψ1Ψ2Ψ3 þ Ψ0Ψ2Ψ4 −Ψ4Ψ2
1 − Ψ0Ψ2

3: ð49Þ

These relations rule out Types I, III, and N. Next, we find
that the conformal Kerr-Newman solution satisfies

K ¼ N ¼ 0; ð50Þ

as for Kerr-Newman, where

K ¼ Ψ1Ψ2
4 − 3Ψ2Ψ3Ψ4 þ 2Ψ3

3; ð51Þ

L ¼ Ψ2Ψ4 − Ψ2
3; ð52Þ

N ¼ 12L2 −Ψ2
4I: ð53Þ

This means that the conformal Kerr-Newman metric is of
Type D and conformal transformations do not alter
Petrov types.

C. Hamilton-Jacobi equation separability

Let us now study whether the Hamilton-Jacobi equation
is separable for the vector-tensor BH solution. The
Hamilton-Jacobi equation is given by [66]
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2
∂S
∂τ ¼ gμν

∂S
∂xμ

∂S
∂xν : ð54Þ

Here, S is Hamilton’s principal function, and τ is an affine
parameter. In order to have a separable solution, Ref. [66]
shows that S must be in the form

S ¼ δ1τ

2
− Etþ Lzϕþ FrðrÞ þ FθðθÞ; ð55Þ

where E is specific energy, Lz is specific angular momen-
tum, and Fr and Fθ are functions of r and θ, respectively.
Additionally, note δ1 takes the form

δ1 ¼
�
0 for null geodesics;

1 for timelike geodesics:
ð56Þ

If S is separable, we can find the Carter-like constant of
motion which indicates that we can present the solution of
the geodesic equation as integral expressions explicitly.
Substituting Eq. (55) into Eq. (54), one finds

Δ
�∂Fr

∂r
�

2

þ
�∂Fθ

∂θ
�

2

þ csc2θðasin2θE − LzÞ2

−
½aLz − ða2 þ r2ÞE�2

Δ
− δ1ρ

2½1þ fðȲÞ� ¼ 0: ð57Þ

Now, we can see that the null geodesic equation has a
separable solution; when we take δ1 ¼ 0 in Eq. (57), no
individual term has both r and θ dependence. This is
consistent with the results found by Walker and Penrose in
[71] which states that all Petrov type D solutions have
separable solutions to the Hamilton-Jacobi equation for
null case. We can see that Eq. (57) is the same as the Kerr-
Newman case since f is absent when δ1 ¼ 0.
Next, we examine the separability of the original and

conformal Kerr-Newman solution based on the above
equation in the timelike case. When f ¼ 0, the coefficient
of δ1 can be separated to functions of either r or θ. Thus
each term in Eq. (57) is a function of either r or θ (or a
constant), making the equation separable. On the other
hand, when f ≠ 0, the f-dependent term is a function of
both r and θ in general. Therefore, we conclude that the
Hamilton-Jacobi equation for the conformal Kerr-Newman
solution in the Boyer-Lindquist-like coordinates is not
separable for the timelike case, which suggests that a
Carter-like constant may not exist in general.
To elaborate on this point further, we perform another

test on the separability structure of the conformal Kerr-
Newman solution. Benenti and Francaviglia [72] showed
that if a spacetime admits a separable structure, its metric
components can be expressed in the following form (see
[73–77] for related works):

grr ¼ Q̄ðrÞ
r2 þ p2

; gθθ ¼ P̄ðpÞ
ðr2 þ p2Þa2sin2θ ;

gAB ¼ Q̄ðrÞ
r2 þ p2

ζABr ðrÞ þ P̄ðpÞ
r2 þ p2

ζABp ðpÞ; ð58Þ

where p≡ a cos θ and ðA;BÞ are either t or ϕ. Q̄ðrÞ and
ζABr ðrÞ are arbitrary functions of r while P̄ðpÞ and ζABp ðpÞ
are arbitrary functions of p. We checked that the conformal
Kerr-Newman in the Boyer-Lindquist-like coordinates
cannot be mapped to the above form. For example, grr

and gθθ are

grr ¼ 1

r2 þ p2

r2 − 2Mrþ a2 þQ2

1þ fðȲÞ ; ð59Þ

gθθ ¼ 1

r2 þ p2

1

1þ fðȲÞ ; ð60Þ

and thus they cannot be mapped to Eq. (58) unless f is a
constant. There is a possibility that one needs to perform a
coordinate transformation to map the conformal Kerr-
Newman solution to Eq. (58). However, if we perform
such a transformation between ðr; θÞ, it generates grθ which
is absent in Eq. (58). Therefore, we believe the conformal
Kerr-Newman cannot be mapped Eq. (58) in any
coordinates.

V. NEWMAN-JANIS ALGORITHM

We next study whether the Newman-Janis algorithm
[78–80] applies to the conformal Kerr-Newman solution in
the vector-tensor theory. The algorithm was developed to
construct a rotating BH solution from a static one. Such
algorithm works for constructing the Kerr and Kerr-
Newman solutions, though it does not necessarily hold
in theories beyond GR [81].2 We will primarily follow the
prescription by Giampieri [85] that is simpler than the
original algorithm by Newman and Janis.

A. Algorithm

Let us first prescribe the algorithm following [80].

1. Seed metric

The algorithm begins with the seed metric and gauge
field for a nonrotating BH spacetime, given by

ds2 ¼ −ftðrÞdt2 þ frðrÞdr2 þ fΩðrÞdΩ2; ð61Þ

A ¼ φðrÞdt: ð62Þ

2See e.g., [82–84] for examples in which the Newman-Janis
algorithm works in non-GR theories.
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2. Null coordinate transformation

Next, the metric and gauge field are transformed into null
coordinates ðu; r; θ;ϕÞ where

dt ¼ du −

ffiffiffiffiffi
fr
ft

s
dr; ð63Þ

which yields

ds2 ¼ −ftdu2 þ 2
ffiffiffiffiffiffiffiffiffi
ftfr

p
drduþ fΩdΩ2; ð64Þ

A ¼ φ

 
du −

ffiffiffiffiffi
fr
ft

s
dr

!
: ð65Þ

One can find a gauge transformation such that the r
component of A vanishes. Doing so, one finds

A ¼ φdu: ð66Þ
3. Giampieri prescription

The next step is to introduce the transformation

du ¼ du0 − ia sin θdθ; ð67Þ

dr ¼ dr0 þ ia sin θdθ: ð68Þ

One then performs further transformation

idθ ¼ sin θdϕ; ð69Þ

as an alternative to the Newman-Janis prescription. This
prescription is simpler as it avoids the use of Newman-
Penrose formalism. One then finds

du ¼ du0 − a sin2 θdϕ; ð70Þ

dr ¼ dr0 þ a sin2 θdϕ: ð71Þ
4. Radial transformation

One then needs to introduce a complex radial coordinate
with the following rules:

r →
rþ r̄
2

¼ ℜðrÞ; ð72Þ

1

r
→

1

2

�
1

r
þ 1

r̄

�
¼ ℜðrÞ

jrj2 ; ð73Þ

r2 →jrj2: ð74Þ

However, Eq. (68) implies

jrj2 ¼ ρ2; ℜðrÞ ¼ r: ð75Þ

Thus, r remains unchanged while 1=r and r2 transform as

1

r
→

r
ρ2

; ð76Þ

r2 → ρ2: ð77Þ

The metric and gauge field are given by

ds2 ¼ −f̄t

 
du0 þ

ffiffiffiffiffi
f̄r
f̄t

s
dr0 þ ω sin θdϕ

!2

þ 2af̄rsin2θdrdϕþ f̄Ωðdθ2 þ σsin2θdϕ2Þ; ð78Þ

A ¼ φ̄ðdu0 þ a sin2 θdϕÞ; ð79Þ

where

ω ¼ a sin θ

 
−1þ

ffiffiffiffiffi
f̄r
f̄t

s !
; ð80Þ

σ ¼ 1þ f̄r
f̄Ω

a2 sin2 θ: ð81Þ

A bar on f and φ refers to these functions after the radial
transformation in Eqs. (76) and (77).

5. Boyer-Lindquist-like coordinates

The final step of the algorithm is to transform into
Boyer-Lindquist-like coordinates which describe the metric
with the minimal number of components. In order to
eliminate the ðt; rÞ and ðr;ϕÞ components of the metric,
we perform the following coordinate transformation:3

du0 ¼ dt0 − gðrÞdr; dϕ ¼ dϕ0 − hðrÞdr: ð82Þ

Here,

gðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf̄tf̄rÞ−1

p
f̄Ω þ a2sin2θ
Δ̄

; hðrÞ ¼ a
Δ̄
; ð83Þ

with Δ̄ðrÞ ¼ f̄Ω=f̄r þ a2 sin2 θ. This transformation is
possible only if g and h are functions of r only. After
carrying out this transformation, we arrive at the final
metric and gauge field expression (omitting primes on t
and ϕ):

ds2 ¼ −f̄tðdtþ ω sin θdϕÞ2 þ f̄Ω
Δ̄

dr2

þ f̄Ωðdθ2 þ σ sin2 θdϕ2Þ; ð84Þ

3We omit the prime on r.
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A ¼ φ̄

�
dt −

f̄Ω
Δ̄

ffiffiffiffiffiffiffiffiffi
f̄tf̄r

p dr − a sin2 θdϕ

�
: ð85Þ

Again, the r component of the gauge field can usually be
eliminated upon an appropriate gauge transformation.

B. Application to BH solutions

1. Kerr-Newman

As an example, let us see how the above algorithm can
be applied to derive the Kerr-Newman metric. The seed
metric is Reissner-Nordström, whose seed functions are
given by

ft ¼ f−1r ¼ 1 −
2M
r

þQ2

r2
; ð86Þ

fΩðrÞ ¼ r2; φ ¼ −
Q
r
: ð87Þ

By complexifying the radial coordinate, these functions can
be turned into

f̄t ¼ f̄−1r ¼ 1 −
2Mr
ρ2

þQ2

ρ2
; ð88Þ

f̄ΩðrÞ ¼ ρ2; φ̄ ¼ −
Qr
ρ2

: ð89Þ

Plugging in these functions into Eqs. (84) and (85), one can
correctly reproduce the Kerr-Newman metric in Eq. (5) and
its associated gauge field in Eq. (6).

2. Conformal Kerr-Newman

Let us next see whether one can use the algorithm to
derive the conformal Kerr-Newman metric in Eq. (13) in
the vector-tensor theory. Given that the Kerr-Newman
solution can be reproduced via the algorithm, the question
reduces to whether the conformal factor is correctly
recovered under the algorithm.
Since such a factor depends only on Ȳ, the question

further reduces to whether Ȳ is correctly recovered through
the algorithm. Ȳ in the Reissner-Nordström BH solution is
given by

Ȳja¼0 ¼ −
Q2

r2

�
1 −

2M
r

þQ2

r2

�−1
: ð90Þ

Using the replacement in Eqs. (76) and (77), this changes to

Ȳja¼0 → −
Q2

ρ2

�
1 −

2Mr
ρ2

þQ2

ρ2

�−1

¼ −
Q2

ρ2 − 2MrþQ2
≠ Ȳ: ð91Þ

Thus, the Newman-Janis algorithm does not work for the
conformal Kerr-Newman BH solution in the vector-tensor
theory.

VI. ASTROPHYSICAL APPLICATIONS

In addition to the properties already presented with the
new metric (see Sec. IV), we may investigate some
applications which can be studied in an astrophysical
sense. Because the vector-tensor BH solution has the same
Hamilton-Jacobi equation as the Kerr-Newman metric for
null geodesics, it would be difficult to test this theory using
BH shadow observations recently made with the Event
Horizon Telescope [49]. Thus, we shift our focus to
timelike particle motion. In particular, we consider epicy-
clic frequencies and ISCOs of particles orbiting around a
black hole and the Schwarzschild precession of S2 around
Sgr A*. We assume that both particles and S2 are
uncharged and thus follow geodesic motions.

A. Epicyclic frequencies and ISCOs

A natural starting point to investigate is that of geodesic
motion, which can be studied by investigating the conse-
quences that our metric imposes on timelike particles. In
this subsection, we consider an example conformal func-
tion in Eq. (12) and work in a conformal Kerr-Newman
solution in Eq. (13).
Due to the static and axisymmetric nature of our

spacetime, we are immediately allowed to define two
conserved quantities which we will call specific energy
(E) and specific angular momentum (L) based on the
timelike (ξðtÞ) and azimuthal (ξðϕÞ) Killing vectors of our
spacetime. These quantities are defined by

E ¼ −uαξðtÞα ; L ¼ uαξðϕÞα ; ð92Þ

where uα ¼ dxα=dτ with τ representing the proper time.
The normalization of the four velocity of a timelike particle
indicates

gαβuαuβ ¼ −1: ð93Þ

From this expression, and taking the case of equatorial
geodesics (θ ¼ π=2), we obtain

1

2
_r2 ¼ VeffðrÞ; ð94Þ

where the dot represents a derivative with respect to the
proper time while VeffðrÞ is the effective potential for our
system.
From the effective potential we may study the motion of

test particles for a circular orbit. This is found by observing
the conditions VeffðrÞ ¼ 0 and ∂rVeffðrÞ ¼ 0. We define
the angular velocity relative to a rest frame at spatial infinity
by
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ωϕ ≡ uϕ

ut
; ð95Þ

which can be rewritten in terms of our conserved quantities
as

ωϕ ¼ −
Egtϕ þ Lgtt
Egϕϕ þ Lgtϕ

: ð96Þ

In addition to this, there is another frequency which is of
interest to study. That is the epicyclic frequency, defined
to be4

ω2
r ¼ −

1

_t2
∂2VeffðrÞ

∂r2 : ð97Þ

Equation (97) is found by perturbing Eq. (94) about the
ISCO, which we define to be the radius solving the
equation

dE
dr

����
r¼RISCO

¼ 0: ð98Þ

Figure 1 presents one frequency against another for various
combinations of a, Q, and β. Note that the values are
chosen to emphasize the difference between the vector-
tensor theory and GR; however, most of the values
presented are reasonable within the tests we describe in
Sec. VI B and the restrictions to β that we have already
outlined in Sec. III. Although β ¼ 2 leads to gμν ¼ 0 at the
event horizon, we include this to show maximum deviation.

We also note that the bound on the BH electric charge in
GR from the binary BH merger event GW150914 is not so
stringent,Q=M < 0.4 [88]. Moreover,Q is a parameter that
is unique to each BH. Hence, even if Q=M has been
constrained stringently with one BH, it does not mean that
other BHs need to have small charges.
We also show how the ISCO is modified for various

values of spin, charge, and β in Fig. 2. Observe that the
ISCO locations (considered to be the inner edge of typical
accretion disks and one may extract these from BH
observations with X-rays) varies from the GR case
(β ¼ 0) especially when the vector charge is large.
We may apply Eqs. (96) and (97) to study a phenomena

known as quasiperiodic oscillations (QPOs). The origin of
QPOs is still an open area of discussion, with proposed
explanations ranging from orbital resonances [89] to the
motion of relativistic matter near a compact object [90].
Regardless of the explanation, observations of QPOs could
be used to test GR and provide insights into the nature of
gravity close to compact objects [87,91]. The fact that there
is a noticeable difference in various curves in Fig. 1
suggests that one can in principle use QPO observations
to probe the vector-tensor theory once the systematic errors
are under control. It should be noted that different combi-
nations of parameters have the potential to yield similar
curves (e.g., the negative spin curves in Fig. 1). Therefore,
this method may only be useful in placing limits on the
combination of parameters, and other methods of constraint
will be needed to break this degeneracy.

B. Schwarzschild precession

Another astrophysical test of BHs is to use the
Schwarzschild precession. Recently, GRAVITY measured
the Schwarzschild precession of a star S2 orbiting around
Sgr A* [50]. The Schwarzschild precession is given by

FIG. 1. (left) Epicyclic frequency versus orbital frequency for various (a=M, Q=M, β). The solid (dashed) lines correspond to the
positive (negative) spin parameters. (right) Similar to the left plot; however, we instead show how variation of β affects the outcome of
frequencies. Note that β ¼ 2 results in gμν ¼ 0 at the event horizon, but we include it here in order to show maximum deviation with
positive β.

4Note that this is different than the definition presented in
[86,87]. However, this stems from differences in defining the
effective potential term, and does not contribute differences in the
calculated value of ωr.
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Δω ¼ 6πM
āð1 − e2Þ fsp; ð99Þ

where ā is the semimajor axis while e is the orbital
eccentricity. fsp is a parameter controlling the relativistic
effect. GR predicts fsp ¼ 1 while fsp → 0 corresponds to
the Newtonian limit. GRAVITY placed a bound on this
parameter as fsp ¼ 1.1� 0.19 [50]. fsp is also related to the
parametrized post-Newtonian (PPN) parameters as [1]

fsp ¼
2 − 2γPPN − βPPN

3
: ð100Þ

These PPN parameters enters in the metric as

gtt ¼ −1þ 2M
r

þ 2ðβPPN − γPPNÞ
M2

r2
þO

�
M3

r3

�
; ð101Þ

grr ¼ 1þ 2γPPN
M
r
þO

�
M2

r2

�
: ð102Þ

GR is recovered in the limit γPPN → 1 and βPPN → 1.
We can use the above Schwarzschild precession meas-

urement to constrain the vector-tensor theory. We assume
that the vector charge of S2 is negligible (so that a
Coulomb-like interaction force is absent) and that it is in
a geodesic motion as in GR. Comparing Eqs. (15) and
(101), we find

γPPN ¼ 1; βPPN − 1 ¼ Q2

2M2
ðβf00 − 1Þ: ð103Þ

When γPPN ¼ 1, GRAVITY’s measurement can be mapped
to bounds on the PPN parameters as

βPPN − 1 ¼ −0.3� 0.57: ð104Þ

A similar bound has been obtained in [92]. From Eqs. (103)
and (104), one can constrain the parameter space of the
vector-tensor theory. Figure 3 shows the bound on f00 as a
function of the vector charge Q=M for Sgr A*.5 As
expected, we cannot place any bounds when Q=M ¼ 0,
while the bound becomes stronger for larger jQ=Mj. In
addition, the figure also shows that in GR (β ¼ 0), the
GRAVITY measurement does not constrain the electric
charge of Sgr A*.

FIG. 2. Various ISCO locations in units of M for Q=M ¼ 0.3
(top), Q=M ¼ 0.6 (middle), and Q=M ¼ 0.9 (bottom) as func-
tions of the dimensionless spin χ ¼ a=M and β. We bound the
spins to values which admit real values for the event horizon.

-1 -0.5 0 0.5 1
Q/M

-4

-3

-2

-1

0

1

2

3

4

f 0
’

FIG. 3. Bounds on the theoretical parameter f00 as a function of
the dimensionless vector charge Q=M of Sgr A* from the
Schwarzschild precession measurement by GRAVITY. The
shaded region is the allowed region.

5Note that most values presented in Figs. 1 and 2 (with
f00 ¼ β=2) are mostly within these derived bounds. Moreover,
there is no problem in choosing parameters outside of the allowed
region in Fig. 3 since Q=M in the figure is specific to Sgr A* and
if its charge is close to 0, f00 remains almost unconstrained.
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VII. CONCLUSIONS

We derived rotating BH solutions in a certain class of
extended vector-tensor theory by applying a conformal
transformation to the Kerr-Newman solution in GR. Such
transformation does not alter the causal structure of
spacetime and thus the theory is healthy and valid even
after GW170817.
We then studied various properties of the conformal

Kerr-Newman solution by keeping the conformal factor
arbitrary (but require it to be regular and nonvanishing
outside the event horizon and asymptotes to 1 at infinity).
We found that the locations of the singularity, event
horizons, and ergosphere are unaffected from the Kerr-
Newman case. We also found that the multipolar structure
of the metric is the same as that of Kerr-Newman (though
the asymptotic behavior of the metric at infinity acquires
corrections from GR), while the metric does not allow for
the separability of the Hamilton-Jacobi equation, sug-
gesting that a Carter-like constant does not exist in such
a solution. The new BH solution can be classified as Petrov
type D, which is identical to Kerr-Newman since the
conformal transformation does not alter the Petrov type.
We also checked that the standard Newman-Janis algorithm
cannot be applied to derive the solution.
We finally studied astrophysical implications, such as

epicyclic frequencies and ISCOs that are related to quasi-
periodic oscillations and inner edges of accretion disks. We

also used the recent Schwarzschild precession measure-
ment of S2 orbiting around Sgr A* using GRAVITY to
place bounds on a theoretical parameter as a function of the
vector charge of Sgr A*.
Various avenues exist for future work. For example, one

can consider perturbations of the new BH solution to study
its stability and derive quasinormal mode ringdown
frequencies and damping times (see [93–99] for related
works on Kerr-Newman). One can also study how gravi-
tational waveforms from binary BH coalescences are
modified from GR in this theory. It is interesting to extend
the astrophysical applications presented in this paper by
revisiting e.g., iron line spectrums [100] in vector-tensor
theories. It would also be interesting to perform gravita-
tional collapse simulations in this theory to study if there is
any expected range of Q in this theory.
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