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In a scalar-coupled-gravity model, the quadratically divergent counterterm appearing in the mass
renormalization of the scalar fields must inherit corrections arising out of gravitational interactions. In this
work we have explicitly demonstrated that there are no such corrections of gravitational origin to the
quadratic divergences in the mass counter terms. This statement holds true irrespective of the nature of the
gravitational interaction, i.e., whether gravity is described by general relativity or f(R) theory. Interestingly,
it also turns out that the one loop effective action of scalar-coupled-gravity system will be well-behaved if
and only if the fðRÞ theory is free from ghosts. In particular, the results derived in the context of f(R) theory
are shown to be in exact agreement with the corresponding results derived from the equivalent scalar-tensor
representation. Our analysis suggests the tantalizing possibility that the masses of the scalar fields can be
consistently kept smaller than some ultraviolet (UV) cutoff scale and is independent of the nature of the
gravity theory, which may involve higher curvature corrections. All these will be true provided the matter
fields and the gravity theory can be embedded consistently into a UV complete theory at the Planck scale.
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I. INTRODUCTION

The discovery of the Higg’s boson at the Large Hadron
Collider (LHC) has provided the missing bit of the
Standard Model, thus cementing its place as the most
successful model describing the microworld [1–9].
However, it has also opened up the Pandora’s box, paving
way for several intriguing questions to emerge into the
limelight. In particular, the apparent discrepancy between
the electroweak (mEW) and the Planck (mPl) scale requires
an immediate answer. This discrepancy, which originates
from the very small ratio ðmEW=mPlÞ ∼ 10−17, requires an
abnormal fine tuning in order to arrive at the observed value
for the Higg’s mass. This fine tuning problem is also known
as the gauge hierarchy problem and has been one of the key
research direction, in the arena of theoretical high energy
physics, for the last decade (see [10] and the references
therein). There have been several proposals, of very differ-
ent kind and sometimes exotic, to resolve this issue. These
include low energy supersymmetry [11,12], technicolor
[13,14] and spatial extra dimensions [15–17], among
others. However, as the recent LHC data suggests, there
have been no sign whatsoever, in favour of any of these
models [18–24]. This motivates the suggestion that any
solution to the gauge hierarchy problem will possibly
deviate very little from the Standard Model of particle
physics. Following which an alternative method, based on
the implementation of approximate conformal symmetry in

the effective low energy theory, has recently been invoked
in order to avoid the gauge hierarchy problem without
deviating much from the Standard Model [25–27].
The idea of approximate conformal symmetry, or softly

broken conformal symmetry can be explained along the
following lines. One starts from the assumption that there
exists some UV finite theory, which inherits a satisfactory
resolution of the gauge hierarchy problem. The UV finite
theory also introduces some distinguished UV scale Λ
(∼Planck scalemPl). Integrating out the degrees of freedom
with energy scales greater than Λ in the UV finite theory,
one arrives at a low energy effective action, which
presumably will resemble the Standard Model to a very
good accuracy. The classical conformal symmetry is
broken in the Standard Model by the presence of the mass
term in the Lagrangian for the Higg’s field, but only weakly.
Since the mass of the Higg’s field is much small compared
to the UV cutoff scale Λ. In the context of softly broken
conformal symmetry one not only demands the bare mass
parameters to be small compared to the distinguished UV
scale Λ, but also requires the cancellation of the quadratic
divergences arising from the counterterms in the renormal-
ized mass scales of the theory. It must be emphasized that in
the perturbative approach considered here, such a cancel-
lation of the quadratic divergences has to be performed by
taking into account all the loop orders. In other words, we
must add all the contributions to the quadratic divergences
arising out of all the loop orders together and then shall
adjust the bare couplings accordingly, so that the quadratic
divergences vanish. Since it is very difficult to compute*sumantac.physics@gmail.com
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higher loop effects in an interacting theory in an explicit
manner, one generically demonstrates the cancellation of
quadratically divergent term at the one loop order and then
higher loop contributions are ascertained to be small [28–31].
Since the two loop effects depend primarily on the quadratic
of the one loop effect, it is expected that vanishing of
quadratic divergence at one loop order will keep the two
loop contribution to be small, which can be cancelled by
slight modification of the bare parameters [26]. Furthermore,
since the bare couplings do not appear in the physical
processes, adjusting the same to cancel the quadratic diver-
gences will not affect the physics of the system in any way.
Hence for the theory at energy scale Λ, the fields will
effectively be massless and conformal symmetry will be
(weakly) respected. Note that the above argument requires
the matter fields to be renormalizable and the bare couplings
are related to the running couplings at the scale Λ, i.e.,
λbare ¼ λðΛÞ. Therefore, in the context of softly broken
conformal symmetry, the physical masses can be kept as
small as one desires in a perturbative treatment as their
quantum corrections has no quartic or quadratic divergences
depending on the cutoff scale Λ. Rather they may have a
weak logarithmic dependence on the cutoff [26,27,32–34].
It has been demonstrated recently in [27] that the

physical masses can be kept small enough in a self-
consistent manner even if the gravitational perturbations
originating from the Einstein-Hilbert action are taken into
account. However, near the Planck scale it is not at all
justified to use simply the Einstein-Hilbert term to describe
the gravitational dynamics, rather one should take into
account higher curvature corrections as well. There can be
several possibilities for such higher curvature corrections,
to be added to the Einstein-Hilbert action. Restricting the
attention to those theories for which Ostrogradsky’s insta-
bility can be avoided [35], it turns out that there are only a
handful of such correction terms to the gravitational action.
These include, fðRÞ gravity (for reviews see, [36–38] and
for applications in the context of the gauge hierarchy
problem see, [39–42]), Gauss-Bonnet term or, in general,
the full Lanczos-Lovelock series (for various geometrical
aspects, see [43–45] while thermodynamical aspects have
been discussed in [46]) and the Horndeski theories [47–51].
In four spacetime dimensions, the only nontrivial dynamics
due to the higher curvature terms is from the fðRÞ theories
of gravity (Horndeski theories include additional scalar
fields and thus will further complicate the situation). The
Lovelock Lagrangians will make contribution only in the
presence of higher spacetime dimensions. As the motiva-
tion of this work is precisely not to explore exotic
possibilities, such as extra dimensions, we will concentrate
with the fðRÞ theory in four spacetime dimensions, as the
one describing gravitational interaction at the scale Λ.
The paper is organized as follows: In Sec. II we will

discuss the basic set up with fðRÞ gravity and n real scalar
field. We will also present the perturbative expansion

of the gravity plus matter action upto quadratic order.
Subsequently, performing a path integral over the perturba-
tions we will determine the effective action in Sec. III. From
the effective actionwe can read off the corrections to themass
of the particles and hence we can comment on breaking of
conformal symmetry. For completeness, in Sec. IV we have
discussed the equivalence of the above result involving fðRÞ
gravity with the scalar-tensor framework. Finally we con-
clude with a discussion on the results obtained.
Notations and conventions: We will work with mostly

positive signature convention, such that the flat spacetime
metric in Cartesian coordinates in four dimensional space-
time becomes diagð−1; 1; 1; 1Þ. Lowercase roman letters
a; b;… denote spacetime indices and uppercase roman
letters A;B;… count all the scalar fields in the problem.
We also set the fundamental constants c and ℏ to unity.

II. f(R) GRAVITY COUPLED WITH SCALAR
FIELDS: PERTURBATIVE EXPANSION

In this section, we will be studying the perturbations of
both gravitational and scalar degrees of freedom for an
interacting theory involving fðRÞ gravity coupled with n
scalar fields. As emphasized in the introduction itself, in four
spacetime dimensions, fðRÞ gravity provides one of the
most non-trivial higher curvature corrections to the Einstein-
Hilbert action, free fromOstrogradsky’s ghost. The final aim
is to probe the mass renormalization of these scalar fields
and determining the condition for vanishing of quadratic
divergences in the one loop effective action for the fðRÞ
theory coupled with n scalar fields. For this purpose, wewill
first express the action for the full system up to quadratic
order in the gravitational as well as scalar field perturbation,
whose subsequent integration over the gravitational
and scalar perturbation will result into the one loop effective
action,1 which we describe in the next section.
To begin with, we write down the gravitational plus

matter action involving fðRÞ gravity coupled with n scalar
field, which takes the following form,

A¼ 2

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gab∂aΦA∂bΦA−VðΦAΦAÞ

�
; ð1Þ

where fðRÞ is an arbitrary function of the Ricci scalar,
ΦA ¼ δABΦB and VðΦAΦAÞ is an arbitrary function of
the scalar fields, depending on the combination ΦAΦA.
Further, κ2 ¼ 32πG, where G is the Newton’s constant and
A takes values from 1;…; n with repeated index denoting

1Certain aspects of one loop effective action for fðRÞ gravity in
the context of de Sitter background has been studied in [52–54].
While for general ideas about one loop effective action, the reader
may consult [55].
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summation over all the scalar fields. Given the above
action, we wish to expand the metric around the flat
background and hence express the gravitational action
up to quadratic order in the perturbation. Similarly, the
scalar field will also be expanded around some background
value and the matter action will involve both the back-
ground fields and perturbations up to quadratic order. For
this purpose, we introduce the following perturbation for
the metric as well as for the scalar field, which reads,

gab ¼ ηab þ κhab; ΦA ¼ ϕA þ sA: ð2Þ

Here ηab is the background Minkowski spacetime and ϕA is
the background value for the scalar field. Note that we will
not consider the back-reaction of the scalar field on the
background spacetime and hence ϕA can have nonzero
value even though the background spacetime is flat. This is
akin to the notions of test fields living in the flat spacetime.
Since we are perturbing around a flat background, which
has vanishing Ricci scalar, it follows that we can also
expand fðRÞ around R ¼ 0. This yields,

fðRÞ ¼ fðR ¼ 0Þ þ f0ðR ¼ 0ÞRþ 1

2
f00ðR ¼ 0ÞR2

þ 1

3!
f000ðR ¼ 0ÞR3 þOðR4Þ: ð3Þ

Here, fðR ¼ 0Þ acts as an effective cosmological constant
term, which is not compatible with flat background and
hence we must have fðR ¼ 0Þ ¼ 0. Note that this excludes
the presence of any inverse powers of Ricci scalar in the
theory. Further, the Ricci scalar, when expanded around the
flat background depends on hab linearly to the leading
order [39]. Thus the term R3 will start contributing to the
action only at cubic order in hab. Hence, to the quadratic
order, there will be no contribution in the gravitational
action from the terms involving R3 and higher powers of R.
Therefore, for the purpose of this work, it will suffice if we
restrict our attention up to the terms quadratic in the Ricci
scalar in the expansion of fðRÞ presented in (3). Following
this strategy, the gravitational Lagrangian up to quadratic
order in hab, can be expressed in the following form [39],

Lgrav ≡ 2

κ2
ffiffiffiffiffiffi
−g

p
fðRÞ ≃ f0ðR ¼ 0Þ

�
2

κ2
ffiffiffiffiffiffi
−g

p
R

�

þ 1

2
f00ðR ¼ 0Þ

�
2

κ2
ffiffiffiffiffiffi
−g

p
R2

�

¼ f0ðR ¼ 0Þ
�
1

2
hab□hab −

1

2
h□h

− ∂ah∂bhab þ ∂ahab∂chcb

�

þ f00ðR ¼ 0Þð∂a∂bhab −□hÞ2: ð4Þ

In order to arrive at the above expression we have not
invoked any gauge choice, therefore this is an appropriate
place to choose a particular gauge. It is customary to work
in the Lorentz gauge, i.e., to impose the condition
∂afhab − ð1=2Þηabhg ¼ 0. We can either impose this
gauge condition directly in (4) or, we can add a gauge
fixing term to the gravitational Lagrangian. Such a gauge
fixing term, in the present context, takes the following
form,

Lgf ¼
1

ξ

�
∂ahab −

1

2
∂bh

�
2

þ 1

η

�
∂a∂bhab −

1

2
□h

��
∂a∂bhab −

3

2
□h

�
; ð5Þ

where ξ and η are constants to be fixed later.We see that under
the Lorentz gauge condition, ∂afhab−ð1=2Þηabhg¼0, the
above gauge fixing Lagrangian identically vanishes, as it
should. Thus the total Lagrangian density involving both
gravitational aswell as the gauge fixing term,when expanded
up to quadratic order in the perturbation, will predominantly
depend on the combinations ff0ðR ¼ 0Þ þ ð1=ξÞg as well as
ff00ðR ¼ 0Þ þ ð1=ηÞg respectively. Thus to simplify the
total Lagrangian we may as well choose the gauge fixing
coefficients ξ and η, such that, ξ−1 ¼ −f0ðR ¼ 0Þ as well as,
η−1 ¼ −f00ðR ¼ 0Þ.With these choices for ξ and ηwe obtain
the total Lagrangian density of gravity and gauge fixing term
together, yielding,

Lgrav þ Lgf ¼ −
f0ðR ¼ 0Þ

2
habPab;cd□hcd

þ f00ðR ¼ 0Þ
4

ð□hÞ2; ð6Þ

where, Pab;cd≡ð1=2Þðηabηcd−ηacηbd−ηadηbcÞ. Following
the same line of arguments, as adopted for the gravitational
perturbation above, it is possible to expand the matter
Lagrangian containing terms upto quadratic order in hab
aswell as in sA. Such a decomposition has been performed in
Appendix A.We quote here the final result for the expansion
of the matter Lagrangian along with the gravitational
Lagrangian and the gauge fixing term, up to quadratic order
in the perturbations, yielding,

Ltot≡LgravþLgfþLmatter

¼−
1

2
habPab;cd

�
f0ðR¼0Þ□þκ2

2
V0

�
hcd−

κ

2
hðsA∂AVÞ

þ1

2
δABsA□sB−

1

2
sAsB∂A∂BVþf00ðR¼0Þ

4
h□2h; ð7Þ

where, V0 is the scalar potential constructed out of the
background scalar field ϕA in Minkowski spacetime. Also in
arriving at the above expression we have assumed the
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background scalar fieldsϕA to be constants. The above setup
will be sufficient for describing the conformal symmetry
through mass renormalization in the presence of higher
curvature terms. The above expression for the Lagrangian
density Ltot can be casted into a more suitable form, by

using the explicit expression for Pab;cd as well as the
following decomposition of the gravitational perturbation,
hab ¼ Hab þ ð1=4Þηabh, where h is the trace of the gravi-
tational perturbation andHab denotes the traceless part. This
results into,

Ltot ¼ −
1

8
h

�
f0ðR ¼ 0Þ□þ κ2

2
V0 − 2f00ðR ¼ 0Þ□2

�
hþ 1

2
Hab

�
f0ðR ¼ 0Þ□þ κ2

2
V0

�
Hab

−
κ

2
hð∂AVÞsA −

1

2
sAð−δAB□þ ∂A∂BVÞsB: ð8Þ

Note that the traceless part of the gravitational perturbation does not couple to the scalar fields, while the trace part couples
with sA. Moreover, the information about the background field is contained in the potential term V0 and as we will see later,
this term will be of prime importance in the mass renormalization scenario. Thus we may reexpress the above Lagrangian in
the following form,

Ltot ¼
1

2
Hab

�
f0ðR ¼ 0Þ□þ κ2

2
V0

�
Hab

−
1

2

�
h
2

sA
��

f0ðR ¼ 0Þ□þ κ2

2
V0 − 2f00ðR ¼ 0Þ□2 κ∂AV

κ∂AV −δAB□þ ∂A∂BV

�� h
2

sA

�
: ð9Þ

This provides a natural division of the total Lagrangian
density into two parts, one depending on the nine gravita-
tional degrees of freedom encoded in the traceless tensor
Hab and the other corresponds to (nþ 1) degrees of free-
doms. These involve the trace of the gravitational perturba-
tion h and n scalar degrees of freedom sA respectively. As
evident from (9), we have a higher order differential operator
□

2 acting on the trace of the perturbation h, which has a
coefficient proportional to f00ðRÞ. Such higher derivative
terms arise solely due to the presence of higher curvature
corrections to the Einstein-Hilbert action. Interestingly, for
theories with f00ðR ¼ 0Þ ¼ 0, such higher derivative cor-
rections will be absent and the Lagrangian, up to quadratic
order in the perturbations will be identical to the general
relativistic counterpart [27]. The above analysis provides us
the final form for the Lagrangian involving the gravitational
perturbation hab, the matter perturbations sA, as well as the
background field configurations ϕA. In the next section, we
will integrate out both the gravitational and the matter
perturbations, thus determining the effective Lagrangian
for the background scalar fieldϕA, which will be essential to
comment on the issue of mass renormalization.

III. EFFECTIVE ACTION AND MASS
RENORMALIZATION IN f(R) GRAVITY

In the previous section, we have derived the Lagrangian
density for gravity and matter, where the gravitational sector
is described by fðRÞ gravity and the matter sector consists of
n real scalar fields. In the Lagrangian we have kept terms up
to quadratic order in themetric aswell asmatter perturbations
around flat Minkowski background, see (9). The gravita-
tional perturbation has been decomposed into its traceless
part Hab and the trace h, which couples with the scalar
perturbation sA. Thus when we are computing the effective
action for the background scalar field ϕA by integrating over
the gravitational degrees of freedom and scalar perturbations,
this interaction will affect the effective action for the scalar
field. Furthermore, the trace part of the gravitational pertur-
bation involves higher curvature terms (appearing as higher
derivative operators) and hence these will affect the effective
action for the background scalar field as well. Since the
Lagrangian is quadratic in the perturbations, the path integral
over the gravitational as well as scalar perturbations can be
computed, leading to the following functional determinant,

M ¼
�
f0ðR ¼ 0Þ□þ κ2

2
V0

�−9=2

× det

0
B@

�
f0ðR ¼ 0Þ□þ κ2

2
V0 − 2f00ðR ¼ 0Þ□2

�
κ
2
ð∂BVÞ

κ
2
ð∂BVÞ −δAB□þ ∂A∂BV

1
CA

−1=2

: ð10Þ
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The first term comes from the nine traceless modes
in Hab, which are decoupled from the rest of the
degrees of freedom. While the second factor, which is
the determinant of a ðnþ 1Þ × ðnþ 1Þ matrix, comes
from integrating out the trace part of h and scalar

perturbations sA. Due to the coupling of the trace part h
with the scalar field perturbation sA, the functional
determinant involves cross terms. Thus we obtain, in the
Fourier space, the following expression for the functional
determinant M,

M ¼
�
−f0ðR ¼ 0Þp2 þ κ2

2
V0

�−9=2
det

0
B@

�
−f0ðR ¼ 0Þp2 þ κ2

2
V0 − 2f00ðR ¼ 0Þp4

�
κ
2
∂BV

κ
2
∂BV δABp2 þ ∂A∂BV

1
CA

−1=2

; ð11Þ

where, we have used the result, □ ¼ −p2 in the Fourier
space. Since we are adopting the mostly positive signature
convention, we know that p2 < 0 for causal fields. The first
term in the functional determinant does not depend on the
scalar field and hence the effect of the scalar field on the
effective action is completely contained in the second term.
This necessitates the evaluation of the second term, which

is the determinant of a ðnþ 1Þ × ðnþ 1Þ matrix. Finding
the determinant, can in principle be a humongous task, but
to determine the quadratically divergent terms in the
effective action, we simply need the sum of the eigenvalues
of this functional determinant. The sum of eigenvalues can
be found out, by simply expanding this determinant to first
two leading orders in −p2, which yields,

ð−1Þn det
� ð−f0ðR ¼ 0Þp2 þ κ2

2
V − 2f00ðR ¼ 0Þp4Þ κ

2
∂BV

κ
2
∂BV δABp2 þ ∂A∂BV

�

¼ −2f00ðR ¼ 0Þð−p2Þnþ2 þ f0ðR ¼ 0Þð−p2Þnþ1 þ 2f00ðR ¼ 0Þ
�Xn

A¼1

∂A∂AV
�
ð−p2Þnþ1 þOð−p2Þn

¼ −2f00ðR ¼ 0Þ
Ynþ2

i¼1

ð−p2 −M2
i Þ þOð−p2Þn; ð12Þ

where, the sum of the eigenvaluesM2
i , is determined by the

coefficient of the ð−p2Þnþ1 term in the above expansion of
the determinant, yielding,

Xnþ2

i¼1

M2
i ¼

f0ðR ¼ 0Þ
2f00ðR ¼ 0Þ þ

�Xn
A¼1

∂A∂AV

�
: ð13Þ

The above expression for the summation over all the
eigenvalues is intimately connected with stability of the
theory. Note that the positivity of the left-hand side of (13)
demands, f0ðR ¼ 0Þ and f00ðR ¼ 0Þ to be positive, which is
crucial for the stability of the fðRÞ model under consid-
eration. Further, we also require ∂A∂AV to be positive,
which ensures that the background scalar field is near the
minima of the scalar potential. This in turn ensures stability
of the matter sector as well. Therefore we can conclude that
the existence of such positive eigenvalues for the functional
determinant is intimately connected with the stability of the
fðRÞ model and the scalar field Lagrangian respectively.
Thus after all these algebraic manipulations, the functional
determinant takes the following form,

M ∝ ½2f00ðR ¼ 0Þ�−1=2
�
−f0ðR ¼ 0Þp2 þ κ2

2
V0

�
−9=2

×

	Ynþ2

i¼1

ð−p2 −M2
i Þ


−1=2

; ð14Þ

where some numerical factors have been neglected. It is
worth emphasizing that, (14) has no general relativity limit,
since the analysis leading to (14) demands f00ðR ¼ 0Þ ≠ 0.
For the situation with f00ðR ¼ 0Þ ¼ 0, we will have to go
back to (11), which will reproduce the correct general
relativity limit.
Having determined the functional determinant in the

presence of higher curvature terms arising out of the path
integral over the perturbations, let us work out the effective
Lagrangian by wick rotating the background spacetime
coordinates. This amounts to transforming to the Euclidean
domain, yielding, p2 ¼ −p2

E. Substituting the above trans-
formation to the Euclidean domain in the functional
determinant presented in (14), whose Logarithm yields
the effective Lagrangian ΓðϕAÞ for the background scalar
fields as,
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ΓðϕAÞ ¼
Z

Λ

0

d4pE

ð2πÞ4 logM

¼ −
1

2

Z
Λ

0

d4pE

ð2πÞ4
�
9 ln

	
κ2
�
f0ðR ¼ 0Þp2

E þ
κ2

2
V0

�

þ
Xnþ2

i¼1

ln½κ2ðp2
E −M2

i Þ� þ ln

�
2f00ðR ¼ 0Þ

κ2

��

¼ −
1

2

Z
Λ

0

d4pE

ð2πÞ4
	
ðnþ 11Þ lnðκ2p2

EÞ þ 9 ln

�
1þ κ2V0

2f0ðR ¼ 0Þp2
E

�
þ
Xnþ2

i¼1

ln

�
1 −

M2
i

p2
E

�

þ 9 ln f0ðR ¼ 0Þ þ ln

�
2f00ðR ¼ 0Þ

κ2

�

: ð15Þ

Here Λ is the cutoff scale of the problem, which is of the
same order as the Planck scale mpl ∼ κ−1. The above
integral involves three separate pieces, (a) integral over
lnðκ2p2

EÞ, (b) integral over lnf1 − ðm2=p2
EÞg and (c) integral

over constant pieces from the fðRÞ gravity model. The first
and third one, i.e., involving lnp2

E and constant terms when
integrated over the four dimensional Euclidean manifold
yields quartic divergences,

Z
Λ

0

d4pE

ð2πÞ4
	
ðnþ 11Þ ln ðκ2p2

EÞ þ 9 ln f0ðR ¼ 0Þ þ ln

�
2f00ðR ¼ 0Þ

κ2

�


¼ Λ4

32π2

	
ðnþ 11Þ ln ðκ2Λ2Þ − ðnþ 11Þ

2
þ 9 ln f0ðR ¼ 0Þ þ ln

�
2f00ðR ¼ 0Þ

κ2

�

: ð16Þ

Thus the quartically divergent term also depends on the
presence of the higher curvature corrections, i.e., on the
structure of the fðRÞ Lagrangian. There are two possible
ways to get rid of the quartically divergent term:

(i) If we assume that near the Planck scale, some form
of supersymmetry will be realized, then the fer-
mionic degrees of freedom will have a contribution
to the quartically divergent term, which will be
identical but of opposite sign compared to the
Bosonic contribution above. Thus the quartically
divergent term can be avoided. We must emphasize
that the supersymmetry is employed at the Planck
scale and not at any low energy scale.

(ii) In general relativity, the only way to get rid of
the quartic divergent term is to employ Planck
scale supersymmetry [27], as described above.
However, in the context of fðRÞ gravity, the
above divergent term can also be avoided by
choosing lnð2f00ðR ¼ 0Þ=κ2Þ þ 9 ln f0ðR ¼ 0Þ ¼
−ðnþ 11Þ lnðκ2Λ2Þ þ ð1=2Þðnþ 11Þ, without re-
quiring supersymmetry at all. In particular, for
the Starobinsky model, fðRÞ ¼ Rþ αR2 the above
condition yields, lnð4αm2

PlÞ¼−ðnþ11ÞlnðΛ2=m2
PlÞþ

ð1=2Þðnþ11Þ. Thus for Λ < mPl, we can choose
αm2

Pl > ð1=4Þ, while for Λ ¼ mPl, αm2
Pl is uniquely

determined by the number of scalar field species in
the problem. This suggests that the dimensionless
coupling parameter αm2

Pl acts as a natural cutoff

scale for the theory, whose appropriate choice will
cancel the quartically divergent term. Therefore, use
of the higher curvature terms may allow one to set
the quartic divergent terms to zero, without invoking
supersymmetry and may give an idea about the
coupling parameters appearing in the fðRÞ model.

On the other hand, the integral of ln½1 − ðm2=p2
EÞ� over the

four dimensional Euclidean manifold has both quadrati-
cally divergent as well as logarithmically divergent term.
The contribution to the quadratically divergent term from
the effective action can be expressed in the following form,

ΓquadðϕAÞ¼ Λ2

32π2

�
f0ðR¼ 0Þ
2f00ðR¼ 0Þþ

�X
A

∂A∂AV

�
−
9

2
κ2V0

�

þOðlnΛÞ: ð17Þ
Thus we observe that alike the quartically divergent term,
the quadratically divergent contribution to the effective
action also depends heavily on the presence of the
parameter f00ðR ¼ 0Þ. Further the stability of the fðRÞ
theory demands f00ðRÞ as well as f0ðRÞ to be positive,
which in turn leads to a positive contribution to the
quadratically divergent term of the effective action. Using
the following generic form for the potential,

VðϕAÞ ¼ 1

2
m2

ABϕ
AϕB þ 1

4!
λABCDϕ

AϕBϕCϕD

þOðκ2Þ; ð18Þ
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where m2
AB is the mass matrix of the n scalar fields and

λABCD are the dimensionless coupling constants of quartic
interaction between the scalar fields, the quadratically
divergent part of the effective action reads,

ΓquadðϕAÞ ¼ Λ2

32π2

�
f0ðR ¼ 0Þ
2f00ðR ¼ 0Þ þ

�Xn
A¼1

m2
AA

�

þ
�
1

2

Xn
A¼1

λAACD −
9

4
κ2m2

AB

�
ϕAϕB þOðϕ4Þ

�
:

ð19Þ

Given the above expression for the quadratically divergent
part of the effective action, one can read off the corrections
to the mass matrixm2

AB as the coefficient of quadratic terms
in the background scalar field, which takes the form

δm2
AB ¼ −

Λ2

16π2

�
1

2

Xn
A¼1

λAACD −
9

4
κ2m2

AB

�
: ð20Þ

It is evident that, in the absence of gravitational interaction,
the second term in the above expression will be absent,
since it explicitly depends on the gravitational constant. If
initially the masses of the scalar fields were small enough,
i.e., m2

AB ≪ Λ2, then for κ ∼m−1
Pl ∼ Λ−1, it follows that

κ2m2
AB ≪ Oð1Þ. Therefore, the corrections to the mass

matrix due to quadratic divergences in the one loop
effective action have negligible contributions from the
gravitational corrections, be it Einstein gravity or higher
curvature theory. Hence the renormalized mass matrix will
depend solely on the bare couplings present in the theory
and can be set to zero by choosing the scale Λ and bare
coupling parameters appropriately (for a similar scenario in
the context of Higgs’ boson, see [32]). Then we have
δm2

AB ∼OðlnΛÞ and hence the masses of the scalar fields
can be consistently kept small all the way up to Planck
scale. Therefore, the conformal invariance of the theory
will only be softly broken.

IV. EQUIVALENCE OF THE EFFECTIVE ACTION
AND MASS RENORMALIZATION IN THE
SCALAR-TENSOR REPRESENTATION

In the previous sections, we have explicitly demonstrated
how the presence of higher curvature terms in the guise of
fðRÞ gravity affects the effective action but still keeps the
corrections to the counterterm in the mass renormalization
negligible. We have also demonstrated that the stability of
the fðRÞ theory is intimately connected with the existence
of a well-defined effective action for the gravity plus scalar
system. However, we also know that any fðRÞ Lagrangian
can equivalently be expressed in the scalar-tensor repre-
sentation as well [56,57]. Thus the above conclusions
should hold true in the scalar-tensor representation as well.
This is what we will explicitly establish in this section. For
this purpose, it is instructive to start with the standard fðRÞ
Lagrangian along with the matter sector involving n scalar
fields, and from which we will make a transition to the
Einstein frame. This procedure involves three steps. First of
all, one rewrites the original Lagrangian for fðRÞ gravity in
the following form,

LJordan¼
2

κ2
ffiffiffiffiffiffi
−g

p ½Rf0ðχÞ−fχf0ðχÞ−fðχÞg�þ ffiffiffiffiffiffi
−g

p
Lmatter;

where χ is an auxiliary field. Note that the variation of
the above Lagrangian density with respect to the auxiliary
field χ yields, the equation of motion of χ to be, R ¼ χ.
Then the on-shell value of the above Lagrangian becomes
identical to the Lagrangian for fðRÞ gravity coupled
with matter field. At the second step one uses the conformal
transformation, ḡab ¼ Ω2gab. Under such a conformal
transformation the Ricci scalar gets modified, such
that, R ¼ Ω2R̄ − 6ḡab∇aΩ∇bΩþ 6Ω2

□̄ lnΩ. Therefore,
the above Lagrangian in terms of the conformally trans-
formed metric ḡab becomes,

LJordan ¼
2

κ2
Ω−4 ffiffiffiffiffiffi

−ḡ
p ½f0ð χÞfΩ2R̄ − 6ḡab∇aΩ∇bΩþ 6Ω2

□̄ lnΩg − f χf0ð χÞ − fð χÞg� þΩ−4 ffiffiffiffiffiffi
−ḡ

p
L̄matter

¼ 2

κ2
ffiffiffiffiffiffi
−ḡ

p fΩ−2f0ð χÞgðR̄ − 6ḡab∇a lnΩ∇b lnΩþ 6□̄ lnΩÞ

−
2

κ2
ffiffiffiffiffiffi
−ḡ

p
Ω−4f χf0ð χÞ − fð χÞg þΩ−4 ffiffiffiffiffiffi

−ḡ
p

L̄matter: ð21Þ

The third and last step involves relating Ω to the auxiliary
field χ and introduce a scalar field ψ , such that Ω2 ¼ f0ð χÞ
and κψ ¼ 2

ffiffiffi
6

p
lnΩ. With these identifications, the gravi-

tational Lagrangian takes the following form in the Einstein
frame,

LE ¼ 2

κ2
ffiffiffiffiffiffi
−ḡ

p
R̄ −

1

2

ffiffiffiffiffiffi
−ḡ

p
ḡab∇̄aψ∇̄bψ þ 12

κ2
ffiffiffiffiffiffi
−ḡ

p
□̄ lnΩ

−
2

κ2
ffiffiffiffiffiffi
−ḡ

p
Ω−4f χf0ð χÞ − fð χÞg þ Ω−4 ffiffiffiffiffiffi

−ḡ
p

Lmatter:

ð22Þ
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In the above expression for the Lagrangian, the term
depending on □̄ lnΩ will not contribute, since it will yield
a boundary term when integrated over four dimensional
spacetime with conformally transformed metric ḡab. Thus
neglecting such boundary contributions we obtain the
Lagrangian of the gravity plus matter system in the
conformally transformed frame, to yield,

LE ¼ 2

κ2
ffiffiffiffiffiffi
−ḡ

p
R̄þ ffiffiffiffiffiffi

−ḡ
p �

−
1

2
ḡab∇̄aψ∇̄bψ −WðψÞ

�

þ ffiffiffiffiffiffi
−ḡ

p �
−
1

2
Ω−2δABḡab∂aΦA∂bΦB −Ω−4VðΦÞ

�
:

ð23Þ

Here we have introduced the quantity WðψÞ, which can be
defined as,

WðψÞ≡ 2

κ2
Ω−4fχf0ðχÞ−fðχÞg; κψ¼

ffiffiffi
6

p
lnf0ðχÞ: ð24Þ

The Lagrangian in the Einstein frame, as depicted in (23)
must be contrasted with the Lagrangian presented
in [27]. There are two main differences between the two
Lagrangians—(a) The kinetic term for the scalar fieldΦA in
the Lagrangian of (23) is not canonical, as it couples to the
scalar degree of freedom arising from the fðRÞ model.
While in [27], the kinetic terms for the scalar fields are
strictly canonical; (b) The potential term is no longer
simply VðΦAΦAÞ, rather it is coupled with a function of the
scalar degree of freedom from the fðRÞ gravity model,
which is also different from [27]. If we consider the
limit fðRÞ → R, then we will have Ω → 1 and hence the
above Lagrangian will indeed reduce to that of [27]. This
can be taken to be a consistency check of the computation
presented here.
In what follows we will resort to the same strategy as in

the previous section, i.e., expand the above Lagrangian
around flat spacetime, such that ḡab ¼ ηab þ hab. If we
want a correspondence with the fðRÞ gravity, then for the
background spacetime we must have Ω ¼ 1 and hence
ψ ¼ 0 for the background spacetime. Thus in the above

Lagrangian ψ itself can be considered as a perturbation
about flat background. Therefore, in the scalar-tensor
representation we have three perturbation variables, the
gravitational perturbation hab, scalar perturbation ψ and
matter perturbation sA. Wewill now expand the gravity plus
matter Lagrangian to quadratic order in these perturbation
variables and integrate over them in order to derive the
effective action.
In order to proceed further, we will borrow the results

from the previous sections and hence determine the
Ricci scalar up to quadratic order in the gravitational
perturbation hab. This can be achieved by setting
f0ðR ¼ 0Þ ¼ 1 and f00ðR ¼ 0Þ ¼ 0 in (6), such that the
Einstein-Hilbert term in the Lagrangian, along with the
gauge fixing term yields,

Lgr þ Lgf ¼
1

2
hab□hab −

1

4
h□h ¼ −

1

2
habPab;cd

□hcd;

Pab;cd ≡ 1

2
ðηabηcd − ηacηbd − ηadηbcÞ: ð25Þ

The matter Lagrangian constructed out of the scalar ψ
originating from the scalar-tensor representation of the
fðRÞ gravity, when expanded to quadratic order in the
perturbation variables can be expressed as,

Lscalar−tensor
matter ¼ ffiffiffiffiffiffi

−ḡ
p �

−
1

2
ḡab∇̄aψ∇̄bψ −WðψÞ

�

¼ −
κ

2
hψð∂W=∂ψÞ − 1

2
ηab∂aψ∂bψ

−
1

2
ψ2ð∂2W=∂ψ2Þ; ð26Þ

where the potential term WðψÞ has been expanded as a
Taylor series around the background ψ ¼ 0. Finally the
original matter Lagrangian involving n scalar fields can
also be expanded up to quadratic order in the perturbations,
which has been performed in Appendix B. Therefore the
total Lagrangian involving all the perturbations at the
quadratic order takes the following form,

Lgr þ Lgf þ Lscalar−tensor
matter þ Lmatter ¼

1

2
Hab

�
□þ κ2

2
V0

�
Hab −

1

8
h

�
□þ κ2

2
V0

�
h

−
κ

2
hψ

�
ð∂W=∂ψÞ − 2κV0ffiffiffi

6
p

�
−
1

2
ψ2

�
ð∂2W=∂ψ2Þ þ 2κ2V0

3

�

−
1

2
ηab∂aψ∂bψ −

κ

2
hsA∂AV −

1

2
δABη

ab∂asA∂bsB

−
1

2
sAsB∂A∂BV − 2

�
−
κψffiffiffi
6

p
�
sA∂AV: ð27Þ
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Here Hab is the traceless part of the gravitational pertur-
bation and h is the trace part. It should also be emphasized
that the perturbation ψ in the scalar-tensor sector is actually
originating from the higher curvature corrections present in
the fðRÞ theory of gravity. Since our interest lies in the

determination of the effective action for the background
scalar field, we need to integrate over all the perturbed
quantities,Hab, h, ψ and sA. Such a functional integral over
all the perturbed quantities yield the following functional
determinant,

M ¼
�
□þ κ2

2
V0

�−9=2
det

0
BBB@

□þ κ2

2
V0

κ
2

n
ð∂W=∂ψÞ − 2κV0ffiffi

6
p

o
κ
2
∂BV

κ
2

n
ð∂W=∂ψÞ − 2κV0ffiffi

6
p

o
−□þ

n
ð∂2W=∂ψ2Þ þ 2κ2V0

3

o
−
�

2κffiffi
6

p
�
∂AV

κ
2
∂BV −

�
2κffiffi
6

p
�
∂AV −δAB□þ ∂A∂BV

1
CCCA

−1=2

: ð28Þ

Note that in the case of fðRÞ gravity, the n scalar fields were coupled with the trace of the gravitational perturbation. In the
present context, along with the trace part, the scalar fields are also coupled to ψ , the field appearing from the transition of
fðRÞ theory to scalar-tensor representation. It is instructive to transform the above functional determinant to the Fourier
space, which amounts to transforming □ to −p2 in the above expression. Therefore, the functional determinant in the
Fourier space becomes,

M ¼
�
−p2 þ κ2

2
V0

�−9=2
det

0
BBB@

−p2 þ κ2

2
V0

κ
2

n
ð∂W=∂ψÞ − 2κV0ffiffi

6
p

o
κ
2
∂BV

κ
2

n
ð∂W=∂ψÞ − 2κV0ffiffi

6
p

o
p2 þ

n
ð∂2W=∂ψ2Þ þ 2κ2V0

3

o
−
�

2κffiffi
6

p
�
∂AV

κ
2
∂BV −

�
2κffiffi
6

p
�
∂AV δABp2 þ ∂A∂BV

1
CCCA

−1=2

: ð29Þ

In order to find out the functional determinant one needs to work out the determinant of the ðnþ 2Þ × ðnþ 2Þ matrix
originating from the n scalar fields, the trace of the gravitational perturbation h and the additional scalar field ψ . This in
practice is a very complicated computation to perform, but for our purpose of determining the leading order divergent
contributions in the effective action, it will suffice to consider the first two leading order powers of the momentum. This
yields,

ð−1Þnþ1 det

0
BBB@

−p2 þ κ2

2
V0

κ
2

n
ð∂W=∂ψÞ − 2κV0ffiffi

6
p

o
κ
2
∂BV

κ
2

n
ð∂W=∂ψÞ − 2κV0ffiffi

6
p

o
p2 þ

n
ð∂2W=∂ψ2Þ þ 2κ2V0

3

o
−
�

2κffiffi
6

p
�
∂AV

κ
2
∂BV −

�
2κffiffi
6

p
�
∂AV δABp2 þ ∂A∂BV

1
CCCA

≃
�
−p2 þ κ2

2
V0

�	
−p2 −

�
ð∂2W=∂ψ2Þ þ 2κ2V0

3

�
	
ð−p2Þn − ð−p2Þn−1

Xn
A¼1

∂A∂AV




¼ ð−p2Þnþ2 − ð−p2Þnþ1

�
−
κ2

2
V0 þ ð∂2W=∂ψ2Þ þ 2κ2V0

3
þ
X
A

∂A∂AV

�

¼
Ynþ2

i¼1

ð−p2 −M2
i Þ; ð30Þ
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where, M2
i are certain characteristic mass scales associated

with this problem, satisfying the following result,

X
i

M2
i ¼ ð∂2W=∂ψ2Þ þ

X
A

∂A∂AV þ κ2V0

6
: ð31Þ

Again the left-hand side of the above equation must be
positive definite, which requires the potentialWðψÞ as well
as the potential VðϕÞ to have a minimum. This shows
another crucial difference with [27], as in the present
context the positive definiteness of the eigenvalues M2

i
not only requires the potential VðΦAΦAÞ to have a minima,
but also it demands existence of minima for WðψÞ as well.

Thus once again the stability of the theory is intimately
connected with the positivity of M2

i , which is extremely
important for (almost) conformal invariance of the theory.
Hence the equivalence between the stability of the fðRÞ
theory and its scalar-tensor representation is manifest from
the above analysis.
Let us proceed further and determine the effective

action by taking the logarithm of the functional determinant
presented above by integrating over the four momentum.
It is advantageous to translate the above results into
Euclidean manifold by performing a Wick rotation.
Under such a transformation, p2 → −p2

E and hence the
effective Lagrangian in the Euclidean domain will read,

ΓðϕAÞ ¼
Z

Λ

0

d4pE

ð2πÞ4 logM

¼ −
1

2

Z
Λ

0

d4pE

ð2πÞ4
�
9 ln

	
κ2
�
p2
E þ

κ2

2
V0

�

þ
Xnþ2

i¼1

ln½κ2ðp2
E −M2

i Þ�
�

¼ −
1

2

Z
Λ

0

d4pE

ð2πÞ4
	
ðnþ 11Þ lnðκ2p2

EÞ þ 9 ln

�
1þ κ2V0

2p2
E

�
þ
Xnþ2

i¼1

ln

�
1 −

M2
i

p2
E

�

: ð32Þ

Here also, the integral has two main ingredients—(a) terms
involving lnðκ2p2

EÞ and (b) terms involving ln½1 − ðm2=p2
EÞ�.

The integral over lnðκ2p2
EÞ will lead to quartically divergent

contribution, which can be set to zero by assuming existence
of supersymmetry at a high energy scale. This is because,
existence of supersymmetry will induce an identical but

opposite contribution coming from the fermionic sector as
well, which will make the total contribution of bosonic and
fermionic system to be vanishing. On the other hand the
integral involving ln½1 − ðm2=p2

EÞ�will yield a quadratically
divergent contribution along with a logarithmic correction
term, such that the effective action to leading order becomes,

ΓquadðϕAÞ¼ Λ2

32π2

	
ð∂2W=∂ψ2Þþ

Xn
A¼1

∂A∂AVþ κ2V0

6
−
9

2
κ2V0



: ð33Þ

Simplifying further and using the generic form for the scalar potential as presented in (18), along with the expression for
ðd2W=dψ2Þ from C we obtain the following expression for the effective action,

ΓquadðϕAÞ ¼ Λ2

32π2

	
1

3

f0ðR ¼ 0Þ2
f00ðR ¼ 0Þ þ

Xn
A¼1

m2
AA þ

�
1

2

Xn
A¼1

λAACD −
13

6
κ2m2

CD

�
ϕCϕD þOðϕ4Þ



: ð34Þ

It is evident from the above expression that except for some
numerical factors ofOð1Þ, the quadratically divergent piece
of the effective action in the scalar-tensor representation is
identical to the one in fðRÞ theory. This explicitly dem-
onstrates the equivalence between the two. Further, the
conclusion regarding smallness of the quadratically diver-
gent counterterm in mass renormalization also remain

unchanged. To see this explicitly, we write down the
corrections δm2

AB to the mass matrix m2
AB, below

δm2
CD ¼ −

Λ2

16π2

�
1

2

Xn
A¼1

λAACD −
13

6
κ2m2

CD

�
: ð35Þ
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As evident from the above expression, if the elements of the
mass matrix m2

AB were much smaller than the scale Λ, we
have κ2m2

AB ≪ Oð1Þ as well. Therefore, the corrections to
the mass matrix arising out of the gravitational interaction
are negligible. Hence the masses will remain smaller even
when the gravitational and higher loop effects are taken
into account. This suggests that the conformal symmetry of
the original Lagrangian will remain weakly broken, as
desired. Note that we had arrived at the same conclusion
in the context of fðRÞ theory as well. Furthermore, if
κ2m2

AB ≪ Oð1Þ, and the potential due to ψ dominates at
high energy, it follows that the quadratically divergent term
can be made smaller altogether.
This analysis serves two purposes for us. First, it

strengthens the equivalence between the fðRÞ theory
and its scalar-tensor representation in the context of one
loop effective action and mass renormalization. Second,
it demonstrates the robustness of the fact that gravitational
interaction has very little effect on the mass renormalization
of the matter fields, provided the original masses were
small (compared to the scale Λ) to begin with. Moreover
this is true even in the context of higher curvature gravity.

V. CONCLUDING REMARKS

The gauge hierarchy problem and its possible resolution
has taken the center stage of the high energy physics for the
last decade. Even after advocating several intriguing and
exotic possibilities to bypass the gauge hierarchy problem,
none has been realized so far in the experiments. This has
provided significant motivation to look for other alternative
scenarios, where the gauge hierarchy problem can be
addressed without deviating much from the Standard
Model. One such possibility is the idea of softly broken
conformal invariance, where the bare couplings of the
theory are chosen in such a manner that counterterm to the
mass renormalization is unaffected by quadratically diver-
gent contributions arising out of higher loop corrections.
Since gravitational interaction is universal it will neces-
sarily couple with the matter fields, thereby modifying the
scenario presented above. As the scale at which bare
couplings are evaluated is OðmPlÞ, it is expected that the
gravitational interaction will inherit higher curvature cor-
rections. Following which, we have discussed the effect of
such higher curvature corrections, in the form of fðRÞ
gravity and its implications for mass renormalization
scenario.
Our analysis makes it clear that gravitational inter-

actions, be it Einstein gravity or f(R) gravity, has very
little effect on the mass renormalization scenario, provided
the bare masses of the scalar fields in the Lagrangian were
small compared to the cut off scale Λ (∼OðmPlÞ) to begin

with. Therefore, the quadratically divergent piece in the
counter term becomes identical to the contribution from flat
spacetime and can be set to zero by choosing the bare
couplings appropriately. Thus the masses of the scalar
fields can be kept identical to the original values m2,
satisfying m2 ≪ Λ2. This suggests that the conformal
symmetry will be approximately preserved at the energy
scale Λ.
Even though the higher curvature corrections do not

affect the mass renormalization scenario directly, it does
have indirect consequences. First of all, the functional
determinant, crucial in finding out the one loop effective
action, will have positive eigenvalues if and only if the fðRÞ
theory is stable, i.e., free from any ghost modes. Second,
the quartically divergent term in the effective action can be
eliminated without any necessity to invoke supersymmetry,
but by choosing the couplings in the fðRÞ model in a
suitable manner. Finally, we have also demonstrated that all
these results mentioned above hold correct in the scalar-
tensor representation as well. This shows another instance
of equivalence between fðRÞ gravity with its scalar-tensor
representation. In a nutshell, following the analysis of this
work we can safely conclude that weakly (or, softly) broken
conformal invariance for Standard Model seems to be a
viable candidate to address the gauge hierarchy problem
and is minimally affected by the gravitational interactions,
described by either general relativity or higher curvature
corrections transcending general relativity.
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APPENDIX A: EXPANSION OF THE MATTER
LAGRANGIAN UP TO QUADRATIC ORDER IN

THE PERTURBATIONS

The matter Lagrangian involving n real scalar fields,
minimally coupled with gravity, can also be expanded up to
quadratic order in the matter perturbation sA and gravita-
tional perturbation hab. The computation of the action
expanded up to second order, can be performed along the
following lines,
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Lmatter ¼
ffiffiffiffiffiffi
−g

p �
δAB

�
−
1

2
gab∂aΦA∂bΦB

�
− VðΦÞ

�

¼
	
1þ κ

2
h −

κ2

4

�
hαβhαβ −

1

2
h2
�
�

−
1

2
δAB½ðηab − κhab þ κ2hachbcÞ∂aðϕA þ sAÞ∂bðϕB þ sBÞ�

− VðϕÞ − sA∂AV −
1

2
sAsB∂A∂BV

�

¼
	
1þ κ

2
h −

κ2

4

�
hαβhαβ −

1

2
h2
�
�

−
1

2
δAB½ðηab − κhab þ κ2hachbcÞ

× ð∂aϕ
A∂bϕ

B þ 2∂aϕ
A∂bsB þ ∂asA∂bsBÞ� − VðϕÞ − sA∂AV −

1

2
sAsB∂A∂BV

�

¼
	
1þ κ

2
h −

κ2

4

�
hαβhαβ −

1

2
h2
�
	

−
1

2
δABðηab∂aϕ

A∂bϕ
BÞ − VðϕÞ

−
1

2
δABð−κhab þ κ2hachbcÞ∂aϕ

A∂bϕ
B − δABη

ab∂aϕ
A∂bsB − sA∂AV þ δABκhab∂aϕ

A∂bsB

−
1

2
δABðηab∂asA∂bsBÞ −

1

2
sAsB∂A∂BV þOðhigher order termsÞ




¼ L0 þ
	
κ

2
h −

κ2

4

�
hαβhαβ −

1

2
h2
�


L0 þ
κ

2
δABhab∂aϕ

A∂bϕ
B þ κ2

4
δABhhab∂aϕ

A∂bϕ
B

−
κ2

2
δABhachbc∂aϕ

A∂bϕ
B − δABη

ab∂aϕ
A∂bsB − sA∂AV þ κ

2
hð−δABηab∂aϕ

A∂bsB − sA∂AVÞ

þ δABκhab∂aϕ
A∂bsB −

1

2
δABðηab∂asA∂bsBÞ −

1

2
sAsB∂A∂BV

¼ L0 þ
�
κ

2
hL0 þ

κ

2
δABhab∂aϕ

A∂bϕ
B − δABη

ab∂aϕ
A∂bsB − sA∂AV

�
þ
	
−
κ2

4

�
hαβhαβ −

1

2
h2
�
L0

þ κ2

4
δABðhhab − 2hachbcÞ∂aϕ

A∂bϕ
B þ κ

2
hf−δABηab∂aϕ

A∂bsB − sA∂AVg

þ δABκhab∂aϕ
A∂bsB −

1

2
δABfηab∂asA∂bsBg −

1

2
sAsB∂A∂BV



: ðA1Þ

Here we have defined, L0 ≡ −ð1=2ÞδABðηab∂aϕ
A∂bϕ

BÞ − VðϕÞ, as the scalar field Lagrangian in flat spacetime. Thus
keeping terms quadratic in the gravitational and scalar perturbation, we obtain the following form of the Lagrangian,

Lquadratic
matter ¼ −

κ2

4

�
hαβhαβ −

1

2
h2
�
L0 −

κ

2
hðδABηab∂aϕ

A∂bsB þ sA∂AVÞ −
1

2
δABðηab∂asA∂bsBÞ

−
1

2
sAsB∂A∂BV þ κ2

4
δABðhhab − 2hachbcÞ∂aϕ

A∂bϕ
B þ δABκhab∂aϕ

A∂bsB: ðA2Þ

Further simplification can be performed by assuming the background scalar field ϕA to be constant. This is consistent with
the flat background considered in this work. Therefore the last two terms in the above expression does not contribute and the
matter Lagrangian density up to quadratic order in the perturbation can be expressed as,

Lmatter ¼ −
κ2

4

�
hαβhαβ −

1

2
h2
�
L0 −

κ

2
hðsA∂AVÞ −

1

2
δABðηab∂asA∂bsBÞ −

1

2
sAsB∂A∂BV

¼ habPab;cd

�
κ2

4
L0

�
hcd −

κ

2
hðsA∂AVÞ þ

1

2
δABsA□sB −

1

2
sAsB∂A∂BV; ðA3Þ
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where in the last line we have neglected some total derivative terms. Note that with the choice ϕA ¼ constant, the scalar field
Lagrangian for the flat background becomes −V0, where V0 is the potential associated with the background scalar fields.
This is the expression we have used in the main text.

APPENDIX B: EXPANSION OF THE MATTER LAGRANGIAN UP TO QUADRATIC ORDER IN THE
PERTURBATIONS IN SCALAR-TENSOR REPRESENTATION

Let us consider the matter Lagrangian involving n scalar fields in the scalar-tensor representation of the fðRÞ gravity and
its expansion up to quadratic order in the perturbations, which takes the following form,

Lmatter ¼
ffiffiffiffiffiffi
−ḡ

p �
−
1

2
Ω−2δABḡab∂aΦA∂bΦB −Ω−4VðΦÞ

�

¼ ffiffiffiffiffiffi
−ḡ

p �
−
1

2
exp

�
−
κψffiffiffi
6

p
�
δABḡab∂aΦA∂bΦB − exp

�
−2

κψffiffiffi
6

p
�
VðΦÞ

�

≃
ffiffiffiffiffiffi
−ḡ

p 	
−
1

2
δABḡab∂aΦA∂bΦB − VðΦÞ



þ
�
−
κψffiffiffi
6

p
� ffiffiffiffiffiffi

−ḡ
p 	

−
1

2
δABḡab∂aΦA∂bΦB − 2VðΦÞ




þ 1

2

�
−
κψffiffiffi
6

p
�

2 ffiffiffiffiffiffi
−ḡ

p 	
−
1

2
δABḡab∂aΦA∂bΦB − 4VðΦÞ




¼ −
κ

2
hsA∂AV −

1

2
δABη

ab∂asA∂bsB −
1

2
sAsB∂A∂BV − 2

�
−
κψffiffiffi
6

p
�
sA∂AV

þ κ2

4

�
hαβhαβ −

1

2
h2
�
V0 − 2

�
−
κψffiffiffi
6

p
�

2

V0 −
�
−
κψffiffiffi
6

p
�
κhV0: ðB1Þ

Here we have assumed that the background scalar field ϕA is a constant, such that all the derivatives of ϕA can be set to zero.
Note that the above quadratic Lagrangian for the matter field depends not only on the scalar perturbation sA, but also on the
gravitational perturbation hab and scalar-tensor perturbation ψ . Thus the total Lagrangian involving perturbations up to
quadratic order becomes,

Lgr þ Lgf þ Lscalar−tensor
matter þ Lmatter ¼ −

1

2
habPab;cd

□hcd −
κ

2
hψð∂W=∂ψÞ − 1

2
ηab∂aψ∂bψ −

1

2
ψ2ð∂2W=∂ψ2Þ

−
κ

2
hsA∂AV −

1

2
δABη

ab∂asA∂bsB −
1

2
sAsB∂A∂BV − 2

�
−
κψffiffiffi
6

p
�
sA∂AV

−
κ2

4

�
hαβhαβ −

1

2
h2
�
L0 þ 2

�
−
κψffiffiffi
6

p
�

2

L0 þ
�
−
κψffiffiffi
6

p
�
κhL0; ðB2Þ

which has been used in the main text.

APPENDIX C: SCALAR POTENTIAL IN THE SCALAR-TENSOR REPRESENTATION

To demonstrate the equivalence of the results derived in the context of scalar-tensor representation with the corresponding
results for fðRÞ gravity we need to evaluate derivatives of the scalar potentialWðψÞ. This is nontrivial, since the potential is
known only an implicit function of the scalar field ψ . In this appendix we will determine the scalar potential and its
derivatives with respect to the scalar field, which will be useful in various contexts in this paper. The scalar potential in the
conformally transformed frame associated with the scalar field ψ can be read off from (24), which reads,

WðψÞ ¼ 2

κ2
exp

�
−

2ffiffiffi
6

p κψ

�
f χf0ð χÞ − fð χÞg; f0ð χÞ ¼ exp

�
κψffiffiffi
6

p
�

ðC1Þ

Thus taking derivative of the function WðψÞ with respect to ψ , we obtain,

dW
dψ

¼ −
4ffiffiffi
6

p
κ
exp

�
−

2ffiffiffi
6

p κψ

�
f χf0ð χÞ − fð χÞg þ 2

κ2
exp

�
−

2ffiffiffi
6

p κψ

�
χf00ð χÞ

�
d χ
dψ

�
: ðC2Þ
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Given the relation between χ and ψ in (C1), we obtain,

dψ
d χ

¼
ffiffiffi
6

p

κ

f00ð χÞ
f0ð χÞ : ðC3Þ

Substituting this expression for ðdψ=d χÞ in the expression for ðdW=dψÞ derived above we obtain,

dW
dψ

¼ −
4ffiffiffi
6

p
κ
exp

�
−

2ffiffiffi
6

p κψ

�
f χf0ð χÞ − fð χÞg þ 2

κ2
exp

�
−

2ffiffiffi
6

p κψ

�
χf00ð χÞ

� ffiffiffi
6

p

κ

f00ð χÞ
f0ð χÞ

�−1

¼ −
4ffiffiffi
6

p
κ
exp

�
−

2ffiffiffi
6

p κψ

�
f χf0ð χÞ − fð χÞg þ 2ffiffiffi

6
p

κ
exp

�
−

2ffiffiffi
6

p κψ

�
χf0ð χÞ: ðC4Þ

Finally, the computation of the second derivative of WðψÞ proceeds along the following lines,

d2W
dψ2

¼ 4

3
exp

�
−

2ffiffiffi
6

p κψ

�
f χf0ð χÞ − fð χÞg − 4ffiffiffi

6
p

κ
exp

�
−

2ffiffiffi
6

p κψ

�
χf00ð χÞ

�
d χ
dψ

�

−
2

3
exp

�
−

2ffiffiffi
6

p κψ

�
χf0ð χÞ þ 2ffiffiffi

6
p

κ
exp

�
−

2ffiffiffi
6

p κψ

�
ff0ð χÞ þ χf00ð χÞg

�
d χ
dψ

�

¼ exp

�
−

2ffiffiffi
6

p κψ

��
2

3
χf0ð χÞ − 4

3
fð χÞ

�
−
2

3
exp

�
−

2ffiffiffi
6

p κψ

�
χf0ð χÞ þ 1

3
exp

�
−

2ffiffiffi
6

p κψ

��
f0ð χÞ2
f00ð χÞ þ χf0ð χÞ

�

¼ −
4

3
fð χÞ exp

�
−

2ffiffiffi
6

p κψ

�
þ 1

3
exp

�
−

2ffiffiffi
6

p κψ

��
f0ð χÞ2
f00ð χÞ þ χf0ð χÞ

�
: ðC5Þ

This expression when evaluated for the background spacetime, where ψ ¼ 0 and on-shell χ ¼ R ¼ 0. Thus we obtain the
above second derivative term to yield,

d2W
dψ2

¼ −
4

3
fðR ¼ 0Þ þ 1

3

f0ðR ¼ 0Þ2
f00ðR ¼ 0Þ ðC6Þ

From our consideration of fðRÞ gravity, it follows that fðR ¼ 0Þ ¼ 0 and f0ðR ¼ 0Þ ¼ 1, which yields,
ðd2W=dψ2Þ ∼ f00ðR ¼ 0Þ−1. This result has been used in the main text.
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