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The area of a future holographic screen increases monotonically. This area can be associated with
entropy, resulting in a generalized second law for cosmology (GSLC). However, such an area law has no
thermodynamical interpretation, in contrast to black hole horizons. We propose a thermodymical
interpretation by relating the screen area to a phase space by means of a geometrical construction. This
enables us to uniquely identify the direction of foliation necessary in order to present the entropy of any
holographic screen as entropy derived from phase space. Moreover, by construction, this allows us to
associate a specific temperature with each holographic screen. In the case of accelerated observers, these
quantities coincide with the entropy and temperature that they detect due to their acceleration. Thus, using
the equivalence principle, we obtain a thermodynamical interpretation for the GSLC.
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I. INTRODUCTION

The connection between thermodynamics and gravity
dates back to the seminal paper of Bekenstein showing that
black holes have entropy leading to the generalized second
law of thermodynamics (GSL) [1]. The relation between
the black hole entropy and its area is

SBH ¼ AEH

4G
; ð1Þ

where c ¼ ℏ ¼ 1, SBH is the entropy of the black hole, and
AEH is its area with its radius being the event horizon.
Incorporating it into a generalized second law of thermo-
dynamics (GSL) results in,

dSgen ≥ 0; ð2Þ

where Sgen ≡ Sout þ AEH
4G , and Sout is the von Neumann

entropy of the matter outside the black hole. Hence, when
matter falls into the black hole, an increase in the horizon
area can compensate for the loss of matter entropy.
Therefore, the GSL prevents what would otherwise be a
violation of the (ordinary) second law of thermodynamics
to observers outside the event horizon. Because the entropy

of a black hole is proportional to its area rather than its
volume, major attempts have been carried out to generalize
this notion to other space domains.
The GSL depends on the event horizon, or some form of

a causal horizon such as the Rindler horizon. These
horizons depend on the distant future, which is unsatis-
factory in the context of locality. Furthermore, in cosmol-
ogy this future is unknown. Thus, cosmology is an
immediate example where the GSL and area law cannot
be applied. A more local version of the area theorem and
the GSL, without using the event horizon, was derived
using the construction of holographic screens. Holographic
screens are defined quasilocally, and obey an area theorem
if the null energy condition (NEC) holds [2,3]. Therefore,
they also obey a GSL for cosmology (GSLC) [4]. Contrary
to Bekenstein’s original GSL that was deduced from
thermodynamical considerations, the GSLC does not have
a thermodynamical counterpart [6]. Let us note that the
holographic screens defined in [2,3] are purely geometrical.
Other definitions, that are more “thermodynamic” rely on
the equipartition theorem, for example [7].
Considering the entropy of systems, there is a well-

known covariant entropy bound [8], that limits the entropy
of null hypersurfaces in arbitrary space-times. The bound
could be interpreted as a limit on the number of allowed
degrees of freedom, making the question of the phase space
of gravity a highly relevant one. Additionally, efforts have
tried to express thermodynamical quantities related to
gravity in terms of phase space variables and microstates.
Such phase space constructions of black holes and accel-
erated observers have been carried out: For black holes, the
constructions are in agreement with the black hole Wald’s
entropy formula [9], and were used to obtain expected
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conical singularities in the D1D5 black hole originated
form string excitations [10]. For accelerated observers the
phase space suggestion matches the degrees of freedom
(DoF) surface density [11]. Both derivations are valid also
in generalized theories of gravity.
In this short article, we propose a thermodynamical

description of the GSLC.We show that a (seemingly) phase
space: the extrinsic curvature and its canonical conjugate,
can be used in order to construct the relevant entropy
expected from the holographic screen. This suggests that
the entropy of holographic screens is originated from a
phase space which is a first step for establishing thermo-
dynamical interpretation of the area law for cosmology
[12]. Moreover, since this same phase space can be related
to accelerating observers, this construction enables us to
identify the entropy of the holographic screens as the
entropy detected by accelerating observers due to their
acceleration. Thus, having identified the acceleration rel-
evant to each holographic screen, on the one hand, and
using Unruh’s temperature and the equivalence principle on
the other hand we can relate to each holographic screen a
local temperature. This leads to the final step: Using
Jacobson’s arguments in [13] one finds that the first law
of thermodynamics δQ ¼ TdS also applies for the entropy
defined in [2,3] when T is the holographic screens’
temperature. This provides the thermodynamical interpre-
tation of the GSLC.
The paper is organized as follows. We start by reviewing

the Bousso-Engelhardt construction of screens, the new
area law and previous constructions of gravitational phase
spaces using the extrinsic curvature and its canonical
conjugate. We then match between the two and find the
conditions that the area law has an interpretation in terms of
phase space. We give a few examples and then discuss the
relevance of our findings to the temperature of the holo-
graphic screens.

II. A NEW AREA LAW IN GENERAL RELATIVITY

In [2,3], Bousso and Engelhardt proved a new area law
that is applicable for cosmology and other situations where
the black hole area law fails. They defined two kinds of
holographic screens: future and past. Future holographic
screens arise in gravitational collapse while past holo-
graphic screens exist in our own expanding universe.
A future holographic screen H is a smooth hypersurface

admitting a foliation by marginally trapped surfaces called
leaves and a past holographic screen by marginally anti-
trapped surfaces. A marginally trapped surface is a codi-
mension 2 compact spatial surface σ whose two future
directed orthogonal null geodesic congruences satisfy

θk ≡ ∇̂aka ¼ 0; θl ≡ ∇̂ala < 0; ð3Þ

where ka and la are the two future directed null vector fields
orthogonal to σ, θk and θl are the null expansions, and ∇̂a is

computed with respect to the induced metric on σ. They
also defined a tangent vector field ha onH which is written
as a (unique) linear combination of the two null vector
fields orthogonal to each leaf: ha ¼ αla þ βka and fixed the
normalization of ha by requiring that the function r
increases at unit rate along ha, hðrÞ ¼ haðdrÞa ¼ 1. The
leaves are labeled by σðrÞ. In this way they get a (non-
unique) evolution parameter r along the screen H such that
r is constant on any leaf and increases monotonically along
the fibers γ, (a fibration of H). They then proved the area
law: The area A of the leaves of any regular future
holographic screen H increases strictly monotonically.
Moreover, the construction implies more specifically,

that the area of leaves increases at the rate

dA
dr

¼
Z
σðrÞ

ffiffiffiffiffiffiffiffiffi
hσðrÞ

p
αθσðrÞl > 0; ð4Þ

where hσðrÞ is the determinant of the induced metric on the
leaf σðrÞ. Past holographic screens also obey an appropriate
area theorem and our thermodynamical interpretation dis-
cussed here is valid for them as well.

III. THE ENTROPY SURFACE DENSITY AS A
GRAVITATIONAL PHASE SPACE

Ideally, one would like to associate thermodynamical
properties of gravitational systems to correct counting of
microscopic degrees of freedom. Such deeds require
knowledge of quantum gravity. Since we do not possess
such knowledge we consider a different aspect of gravity:
The gravitational entropy surface density can be regarded
as a gravitational phase space. To start with, this phase
space can be related to the surface density of space time
degrees of freedom (DoF) which are expected to be
observed by an accelerating observer in curved spacetime
[14]. This DoF surface density was first derived by
Padmanabhan for a static spacetime using thermodynam-
ical considerations. It was found that, if the foliation of
spacetime is done with respect to the direction of the
acceleration, then this density can also be constructed from
a specific extrinsic curvature and its canonical conjugate
[11]. Other examples are also discussed in [9–11,15].
All these example have two things in common: Deriving

a phase space by foliating space-time along a spatial
direction (the radial direction for a black hole and the
acceleration direction for accelerating observers), and
identifying the relevant gravitational phase space as the
extrinsic curvature of a specific hypersurface and its
canonical conjugate.
Thus, in this paper we assume that there exists some

form of microscopic spacetime degrees of freedom (DoF),
and that these DoF are counted properly if we use the
extrinsic curvature and its canonical conjugate as the phase
space of these DoF [16].
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Let us summarize the derivation which relates the surface
density of space time DoF to the gravitational phase space:
extrinsic curvature and its canonical conjugate.

IV. GRAVITATIONAL PHASE SPACE: EXTRINSIC
CURVATURE AND ITS CANONICAL CONJUGATE

One starts by defining the direction of the spacelike
vector field in a stationary D-dimensional spacetime. (This
direction is the acceleration direction for accelerating
observers and is the radial direction of a black hole). In
general one considers a D velocity unit vector field ua and
acceleration aa ¼ ub∇bua ≡ ana (where na is a unit vector
and uana ¼ 0) [17]. One foliates spacetime with respect to
the unit vector field na by defining a (D − 1)- hypersurface
ΣD−1, which is normal to na.
As was first noted by Brown [18] for generalized theories

of gravity, the canonical conjugate variable of the extrinsic
curvature Kbc is 4

ffiffiffiffiffiffi
−h

p
nandUabcd

0 . Uabcd
0 is an auxiliary

variable, which equals ∂L
∂Rabcd

when the equations of motion
hold. From [11] the relevant phase space for detectors with
D-velocity ua at point P can be identified by projection of
the extrinsic curvature tensor and its canonical conjugate
variable on the vector field ua [19]:

fKnmumun; 4
ffiffiffi
h

p
Uabcd

0 naubucndg: ð5Þ

The gravitational degrees of freedom density detected by an
accelerating detector with D-velocity ua at point P is
constructed from multiplying these special canonically
conjugate variables. Thus, using Kabubua ¼ naaa ¼ a,
the gravitational D − 2 surface density of the spacetime
DoF observed by an accelerating observer Δn per unit time
Δt is

Δn
Δt

¼ 4a
ffiffiffi
h

p
Uabcd

0 naubucnd; ð6Þ

where theD − 2 hyper-surface is orthogonal to both ua and
na. Finally, using the Euclidean limit and integrating over
Euclidean time, the expected spacetime D − 2 hyper-
surfaces entropy density for accelerating observer was
derived [11]. This proves that this entropy is constructed
from the extrinsic curvature and its canonical conjugate as
long as they are derived by foliating spacetime with respect
to the direction of the acceleration.

V. THE AREA LAW AND THE GRAVITATIONAL
PHASE SPACE

We have seen that for certain D − 2 hyper-surfaces, one
can construct a phase space using the extrinsic curvature
and its canonical conjugate, while in [2,3] D − 2 hyper-
surfaces were used as leaves to prove the area law. We
therefore wish to find what are the conditions where these
hypersurfaces are the same. If so, then we have succeeded

in constructing the phase space associated with the area
growth.
We start with the vector ha (defined in [2,3] as ha ¼

αla þ βka where ka and la are the two future directed null
vector fields orthogonal to σ) and rewrite it in terms of a
non-null unit vector ua as ha ¼ Nua þ Va where ua is a
vector field orthogonal to σ (and thus Va is also normal to
σ). We choose the direction of ua so that the direction of its
acceleration, namely ab ¼ ua∇aub, is a vector field
orthogonal to σ and to ua. The magnitude of the accel-
eration is given by a ¼

ffiffiffiffiffiffiffiffiffiffi
abab

p
and we define its direction

by the unit vector na ¼ aa=a. One can always find such
unit vectors na and ua which are normal to each other, to σ,
and fulfills ua∇aub ¼ anb.
Next we construct our foliation using the two unit vector

fields na and ua. We start by foliating spacetime with
respect to the unit vector field na. In order to do that we
define a ΣD−1 hyper-surfaces. The ΣD−1 hyper-surfaces
metric hab is given by gab ¼ hab þ nanb. Its lapse function
M and shift vector Wa satisfy ta ¼ Mna þWa where
ta∇at ¼ 1 and t is constant on ΣD−1. The extrinsic
curvature of the hyper-surfaces is given by Kab ¼
− 1

2
Lnhab where Ln is the Lie derivative along na. The

ΣD−2ð≡σÞ hyper-surfaces metric σab is given by
hab ¼ σab − uaub. The lapse function N and shift vector
Va satisfy ha ¼ Nua þ Va where haDar ¼ 1 and r (and
also t) are constant on ΣD−2 and Da ¼ hab∇b is the
derivative computed with respect to the induced metric
on ΣD−1. Note that since the vector ha also satisfies ha ¼
αla þ βka where ka and la are the two future directed null
vector fields orthogonal to σ, we find that the shift vector
Va may only have a component along na and thus we may
write Va ¼ Vna.
To summarize, our induced D − 2 metric is defined as:

σab ¼ gab þ ðuaub − nanbÞ: ð7Þ

On the other hand, theD − 2metric discussed in [3] should
be orthogonal to both la and ka. For laka ¼ −1, a natural
candidate is

qab ¼ gab þ ðlakb þ kalbÞ: ð8Þ

One can always find α̃ and β̃ which relate the null vectors la
and ka to the unit vectors ua and na:

ua ¼ α̃la þ β̃ka; na ¼ α̃la − β̃ka: ð9Þ

Requiring σab ¼ qab only imposes a normalization con-
dition:

2α̃ β̃ ¼ 1: ð10Þ

Note that this also leads to:
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θn ¼ θu ¼ α̃θl: ð11Þ

Similar to the analysis of black holes and accelerated
observers, we suggest that the relevant entropy density
related to trajectories along the unit vector field ua can
be constructed by these conjugate variables Kbc and
4

ffiffiffiffiffiffi
−h

p
nandUabcd

0 , at point P after projecting them along
ua [20]:

fKnmumunðxÞ; 4
ffiffiffi
h

p
Uabcd

0 naubucndðxÞg; ð12Þ

where we mark the coordinates by ðt; r; xÞ ¼ ðt; r;
x1;…; xD−2Þ. Since Kabubua ¼ −uaub∇bna ¼ a where
by construction aa ¼ ub∇bua ¼ ana we deduce that the
gravitational density degrees of freedom along the direction
ha at point P is constructed from multiplying these special
canonically conjugate variables. Thus, the gravitational
D − 2 surface density of the spacetime DoF, Δn, obtained
due to varying along the direction ha ¼ Nua þ Va per unit
“time” r is

Δn
Δr

¼ 4aN
ffiffiffi
σ

p
Uabcd

0 naubucndðxÞ; ð13Þ

where
ffiffiffi
h

p ¼ N
ffiffiffi
σ

p
, since N is the lapse function of the

direction of the vector ua. For Einstein theory where
L ¼ 1

16πGR, using Uabcd
0 ¼ ∂L

∂Rabcd
¼ 1

16πG
1
2
ðgacgbd−gadgbcÞ,

we find that Uabcd
0 naubucnd ¼ 1

32πG, and thus

ΔN0

Δr
¼

Z
σðrÞ

Δn
Δr

¼
Z
σðrÞ

1

8πG
aN

ffiffiffi
σ

p ðxÞ; ð14Þ

where N0 is the number of DoF on the area of the screen.
On the other hand, according to [2,3] the area growth of

the holographic screens is given by

ΔA
Δr

¼
Z
σðrÞ

αθl
ffiffiffi
σ

p ðxÞ: ð15Þ

Note that it is expected that in order to obtain from (15) the
rate of entropy growth one should divide it by 4G.
Finally, we demand that the rate of change of the entropy

of the holographic screens will be the same as the rate of
change of their gravitational DoF along the same direction,
and equate (14) to (15) divided by 4G. We find:

a ¼ ηN−1αθl ð16Þ

where we introduce a constant of proportionality η between
the entropy and the gravitational DoF. From now on, we set
η ¼ 1=4 because it will reproduce the Schwarzschild black
hole temperature for α ¼ −1.
Equation (16) is the major result of this work. It provides

an algorithm that associates the area growth of holographic
screens to the density growth of the gravitational phase

space observed by accelerated observers. Moreover, as we
will see, this allows us to prove that the entropy of the
holographic screens can be interpreted as the entropy of
accelerated observers and thus provide the desired thermo-
dynamical interpretation.
It is easy to prove that for any given α one can find a β

that will give a direction of an acceleration na (i.e., to give a
physical (i.e., positive) solution to α̃2 and β̃2). To see this
note that uaub ¼ σab − gab þ nanb, and thus a ¼ Θn − θn.
Using (11) we arrive at the following equation

Θn ¼ ðα̃þ N−1α=4Þθl ð17Þ

using the customary notation of the expansion rate
Θx ≡∇axa. Moreover, since Va, the shift vector of ha is
orthogonal to ua, we can extract the lapse function, N as a
function of α; α̃; β; β̃ via: N¼−haua¼−ðαlauaþβkauaÞ¼
αβ̃þβα̃ yielding

Θn ¼ ðα̃þ ðαβ̃ þ βα̃Þ−1α=4Þθl: ð18Þ

For constant α̃ and β̃, one finds Θn ¼ α̃Θl − β̃Θk. Using the
normalization condition (10), we find that for Θl ≠ θl:

2α̃21;2¼
α
β ðΘl−3=2θlÞ−Θk

2ðΘl−θlÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαβ ðΘl−3=2θlÞ−ΘkÞ2þ4α

βΘkðΘl−θlÞ
q

2ðΘl−θlÞ
ð19Þ

while for Θl ¼ θl:

2α̃2 ¼ −αΘk

α=2Θl þ βΘk
: ð20Þ

To summarize, in [2,3] it was shown that different screens
due to different βs will have the same growth rate. We have
shown that for each given holographic screen with specified
α, β, there is a single associated accelerated observer
determined by (10), and (19) or (20). These accelerating
observers will relate (the growth of) the holographic
screens to (the growth of) the expected entropy due to
their acceleration.

VI. EXAMPLES

Let us now demonstrate this construction in a few
examples and explicitly construct the different vectors.
In each example, we define two null vectors la and ka and
calculate the relevant expansions rates. Next, by using the
conditions in [2,3] we find the holographic screen relevant
to the null vectors. Finally, we use (19) or (20) in order to
calculate α̃. Note that since (9) and (10) give

ua ¼ α̃la þ ð2α̃Þ−1ka ð21Þ
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this determines the velocity vector field of the accelerated
observers.

A. The black hole/star example

Consider a kind of a black hole in Eddington-Finkelstein
coordinates:

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ; ð22Þ

where for the Schwarzschild black hole fðrÞ¼ð1−2M=rÞ.
Constructing the two null vectors:

la ¼ 1ffiffiffi
2

p ð0; 1; 0; 0Þ; ka ¼ 1ffiffiffi
2

p ð−2;−fðrÞ; 0; 0Þ: ð23Þ

Calculation of the expansion rates reveals as expected:

θk ¼ −
2fðrÞ
r

; Θk ¼ −
2fðrÞ
r

− f0ðrÞ;

Θl ¼ θl ¼ −
2

r
: ð24Þ

So θl < 0 always, and fðr0Þ ¼ 0 is the only hypersurface at
which θk ¼ 0. Note that this is the horizon r0 ¼ 2m in the
Schwarzschild case. Using (20) we find

2α̃2 ¼ −αf0ðr0Þ
α=r0 þ βf0ðr0Þ

: ð25Þ

For the Schwarzschild black hole, this simplifies to

2α̃2 ¼ −α
αþ β

: ð26Þ

Since α < 0, this requires the denominator to be positive,
and weakly restricts β. Interestingly enough, the above
result for α̃ is valid also for a nonstationary metric such as
the Vaidya metric, that describes a “star" or a “black hole”
with infalling or outgoing null shells of energy. The
interesting difference is that now the horizon is a time-
dependent shell according to r ¼ 2MðvÞ where v is the
timelike coordinate.

B. The cosmological example

Consider the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric, [21].

ds2 ¼ −dt2 þ a2ðtÞdr2 þ a2ðtÞr2dΩ2

The null vectors are

ka ¼ 1ffiffiffi
2

p ð−1;a−1ðtÞ;0;0Þ; la ¼ 1ffiffiffi
2

p ð−1;−a−1ðtÞ;0;0Þ:

Calculating θk, θl gives

θk ¼
2 − 2r _a

ra
; θl ¼ −

2þ 2r _a
ra

: ð27Þ

θk ¼ 0 imposes _a ¼ 1=r. Hence, θl ¼ −4 _a
a ¼ −4H < 0

(for H > 0), Θk ¼ −H and Θl ¼ −5H. Using (19), since
Θl ≠ θl results in:

2α̃21;2 ¼
−ðαþ βÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ βÞ2 þ 4αβ

p
2β

: ð28Þ

VII. DISCUSSION

In this paper we have established the connection between
thermodynamics and holographic screens in the cosmo-
logical case. We suggested identifying the (growing of the)
area of the holographic screens to the (growing of the) extra
DoF detected by accelerating observers. These extra DoF
are encoded in a unique kind of gravitational phase space,
which was found to be useful for the entropy of stationary
black holes, as well as for accelerating observers in a
stationary metric. This gravitational phase space has the
advantage that it can be constructed in any spacetime and
it is relevant also for the cosmological case and more
generally non stationary cases. The fact that we have
established a connection between the area and the gravi-
tational phase space proves that the entropy is indeed
proportional to the area.
Using this identification we have found that any holo-

graphic screen can be related (up to a sign) to a unique
accelerating observer. This can be seen from Eqs. (16), (19)
and (20). The foliation, α and β define the holographic
screen. Various screens will have the same growth rate
since it only involves α, (15). However, either (19) or (20)
uniquely determine the “accelerated observer,” so a single
“observer” is associated with each screen. Since β is
(almost) a free parameter in the derivation of the holo-
graphic screens, it poses a rather weak limitation on α̃, β̃
which determines the direction of the acceleration. Let us
note that while we have always used the term “accelerated
observer,” our construction is actually purely mathematical.
It is simply a method to identify the needed direction of the
foliation, by mapping of null vector fields la, ka to non-null
vector fields ua and na. As such, this can be done also
inside collapsing black holes or other regions, where an
actual “physical” accelerated observer may not exist.
Having identified the relevant gravitational phase space

for the holographic screens in the cosmological case, the
next step for constructing their thermodynamical properties
is identifying their temperature and verifying its entropy.
We start with identifying the holographic screens’ temper-
ature. Having identified the acceleration relevant to each
holographic screen in (16), on the one hand, and using
Unruh’s temperature: T ¼ Na=2π and the equivalence
principle on the other hand, the most natural identification
to the screens’ temperature is
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T ¼ αθl=8π ð29Þ
where we have used η ¼ 1=4 to match the known result of
black hole temperature for α ¼ −1. As expected, and can be
seen from the Vaidya and cosmological examples, this
leads to a time-dependent temperature. Finally, having the
holographic screens’ temperature, we can use Einstein’s

equations and derive the first law of thermodynamics
δQ ¼ TδS as in [13]. As a result, the holographic screens
have a well-defined phase space density, entropy, and
unique temperature. Hence, the GSLC is fully specified
by thermodynamical quantities, and we have a thermody-
namical interpretation of the GSLC.
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