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We propose a microscopic quantum description for Hawking radiation as Andreev reflections, which
resolves the quantum information paradox at black hole event horizons. The detailed microscopic analysis
presented here reveals how a black hole, treated as an Andreev reflecting mirror, provides a manifestly
unitary description of an evaporating black hole, expanding our previous analysis presented in [S. K.
Manikandan and A. N. Jordan, Phys. Rev. D 96, 124011 (2017), S. K. Manikandan and A. N. Jordan, Phys.
Rev. D 98, 124043 (2018)]. In our analogy, a black hole resolves the information paradox by accepting
particles—pairing them with the infalling Hawking quanta into a Bardeen-Cooper-Schrieffer (BCS) like
quantum ground state—while Andreev reflects the quantum information as encoded in outgoing Hawking
radiation. The present approach goes beyond the black hole final state proposal by Horowitz and
Maldacena [J. High Energy Phys. 02 (2004) 008] by providing necessary microscopic details which allows
us to circumvent important shortcomings of the black hole final state proposal. We also generalize the
present Hamiltonian description to make an analogy to the apparent loss of quantum information possible
in an Einstein-Rosen bridge via crossed Andreev reflections.
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I. INTRODUCTION

Andreev reflections are a mode conversion process at the
interface between a normal metal and a superconductor,
originally discussed by A. F. Andreev to describe the
anomalous thermal resistance of a superconductor in the
intermediate state [1]. It is a special scattering event that
involves mode conversions between particle and holelike
modes, exchanging a Cooper pair of electrons with the
superconducting condensate [1–12]. Reflecting an incoming
mode without changing its momentum is a nontrivial
problem, especially in the limit where Δ ≪ EF, where the
incoming electron has high kinetic energy and the super-
conducting barrier isweak, yet unable to transmit the electron
as there are no allowed electron states within the energy gap
Δ. Beenakker describes the process as similar to an “unmov-
able rock meeting an irresistible object [11]”. The super-
conductor resolves this paradoxical situation by Andreev
reflection of a holelike quasiparticle instead that has approx-
imately the same momentum as the incoming electron.
Analogous retroreflection processes from the interface

between a normal fluid and superfluid state of bosons,
which involve an exchange of a pair of bosons with the
superfluid condensate, have also been discussed [13].
Another remarkably similar problem in solid state physics
having some correspondence to Andreev reflections is the

Klein tunneling process [14–17]. In the original relativistic
situation discussed by Klein, a potential barrier can
surprisingly become transparent to incident electrons below
the potential, resulting in perfect transmission [16]. See
Refs. [18,19] for a comprehensive discussion of the problem.
Andreev reflections have found new realms of interest

recently as a potential mechanism to resolve major para-
doxes pertaining to the quantum description of black holes
[20–22]. Possible implications for Andreev reflections in
black hole thermodynamics was first discussed by
Jacobson [20] as a resolution to the trans-Planckian
reservoir problem, which in Hawking’s original calculation
appears as the presence of frequencies exceeding the
Planck scale [23]. The frequency of modes propagating
just outside the event horizon are redshifted by arbitrary
large amounts prior to escaping as outgoing modes—as a
result, the modes associated to the spectrum of frequencies
which can be measured by distant observers at later times
would have had to originate with very high frequencies,
including frequencies exceeding the Planck scale [24].
One would doubt the validity of quantum field theory at
correspondingly high energies. Therefore, the question
relevant to various semiclassical treatments of black hole
evaporation is to describe possible ways in which these
outgoing modes can exist, without having to depend on a
reservoir of ultrahigh (trans-Planckian) frequencies.
The trans-Planckian problem has been approached from

different directions in the literature (see, for instance,*skizhakk@ur.rochester.edu

PHYSICAL REVIEW D 102, 064028 (2020)

2470-0010=2020=102(6)=064028(13) 064028-1 © 2020 American Physical Society

https://orcid.org/0000-0001-6128-7947
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.064028&domain=pdf&date_stamp=2020-09-10
https://doi.org/10.1103/PhysRevD.96.124011
https://doi.org/10.1103/PhysRevD.98.124043
https://doi.org/10.1103/PhysRevD.98.124043
https://doi.org/10.1088/1126-6708/2004/02/008
https://doi.org/10.1103/PhysRevD.102.064028
https://doi.org/10.1103/PhysRevD.102.064028
https://doi.org/10.1103/PhysRevD.102.064028
https://doi.org/10.1103/PhysRevD.102.064028


Chap. 4.6, Ref. [24]); the work of Unruh, discussing a sonic
analogue to the event horizon by considering sound waves
propagating in a moving fluid [25,26], suggested that the
ultrahigh frequencies appearing in the original work of
Hawking [23,27] may not be necessary to obtain the
Hawking thermal spectrum in a sonic black hole.
Jacobson’s approach in [20], considering Unruh’s sonic
black hole analogy, suggested that the origin of outgoing
Hawking modes at the event horizon can be explained from
mode conversion processes similar to Andreev reflections
and therefore not have to rely on a trans-Planckian reservoir
at the horizon.
This analogy has been explored further from the per-

spective of black hole information mirror models that
resolve the quantum information paradox [28–30] in
Refs. [21,22]: The analogy maps the interior of a black
hole to the superfluid condensate, the exterior to the normal
metal/fluid, the interface between normal metal/fluid, and
the superconductor/superfluid to the event horizon in black
holes, and Hawking radiation [23] to Andreev reflections
from the interface. The information mirror models [28,29]
suggest that a black hole, in its late stages of the
evaporation process,1 accepts particles, while reflecting
the quantum information in the outgoing modes. In the
Horowitz-Maldacena model [28], this is achieved by
conjecturing a unique quantum final state at the black hole
singularity. Unitarity is ensured when the interactions
within the black hole are maximally entangling [30,31],
where the model suggests that a black hole in its late stages
of the evaporation process can teleport or swap the quantum
information by encoding it in the outgoing Hawking
radiation.
Alternatively, the black hole final state proposal [28] can

be viewed as the black hole imposing a special quantum
final state boundary condition for the infalling modes.
When the final state corresponds to a maximally entangled
state, it can act like a fixed point in the Hilbert space, while
respecting the unitarity of the processes involving the final
state. The analogy presented in Refs. [21,22] primarily
suggested that superfluid quantum ground states of fer-
mions and interacting bosons, respectively, have several
desired qualities to be considered as this final quantum
ground state for the modes falling into a black hole. In the
analogy, Andreev reflection processes were described as a
physical process at the interface between the superfluid and
the normal fluid, that preserves quantum information
without changing the quantum ground state of the super-
fluid. Effectively, the superfluid wave function acts like a
fixed point in the Hilbert space, respecting the unitarity of

mode conversion processes happening at the interface with
a normal fluid.2

While the description of Andreev reflection as resulting
from applying a final state boundary condition is a useful
approach to discuss the analogy between Andreev reflec-
tions and the quantum physics of a black hole [21,22], we
note that resolving the shortcomings of the Horowitz-
Maldacena model using this analogy requires one to
expand beyond the details of the final state projection
approach. One of the major criticisms on the final state
projection approach for black hole evaporation is that the
unitarity of the scattering matrix is assured only when the
interactions are maximally entangling, as pointed out by
Gottesman and Preskill [31]. Small departures from uni-
tarirty in a final state projection can lead to superluminal
signaling and computational enhancements beyond that of
a standard quantum computer [30–37], further suggesting
the inadequacy of the final state projection approach to
fully describe the dynamics. Our present approach resolves
these important issues by considering a fully microscopic
quantum description of Andreev reflections developed by
Nakano and Takayanagi [38]. We discuss connections
between the projection approach and the microscopic
model at relevant places. Although we only discuss the
fermionic case in the present article, we note that a similar
analysis should also hold for bosons.
We emphasize that, albeit the shortcomings, the final

state projection approach is indeed an insightful description
when the physics is described as a scattering process, where
the microscopic details of the scattering center are either
inaccessible (for example, in the context of a black hole) or
can be ignored. On the other hand, developing analogies as
such to contexts where the microscopic details are readily
available helps us to make an ansatz about the microstates
of the inaccessible system and improve our understanding
of its governing dynamical laws.
This article is organized as follows. We begin with a brief

overview of the Horowitz-Maldacena model [28]. We then
proceed to discussing Hawking radiation as Andreev
reflections, by adapting the Nakano and Takayanagi
description of Andreev reflections [38]. We then show
that such a microscopic description allows us to describe
the transfer of spin quantum information in Andreev
reflections as a manifestly unitary process, beyond the
final state projection approach previously studied [21,22].
We point out crucial similarities to the final state projection
approach; Andreev reflection proceeds by exchanging an
“informationless” Cooper pair with the black hole final
state as discussed previously in the information mirror
models [21,22]. We comment on how this is equivalent to

1The black hole information mirror models [28–30] describe
an evaporating black hole in its late stages of the evaporation
process, where the black hole has radiated away half of its initial
entropy (a black hole past the “halfway point” [29]).

2We resort to brief accounts of the analogy in the present
article, but we request a careful reader to look at Refs. [21,22],
where the analogy is developed in detail from both information
theoretic and thermodynamic considerations.
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applying a final state boundary condition (yielding a
scattering matrix which is unitary [21,28]), when treated
as a scattering process, while differing in microscopic
details that overcome shortcomings of the final state
projection approach [31–33]. We also discuss the impli-
cations of our results for the quantum physics of black
holes and Einstein-Rosen bridges [39] and make compar-
isons to more recent proposals resolving the information
paradox, presented in [40–45].

II. THE HOROWITZ-MALDACENA BLACK HOLE
FINAL STATE PROPOSAL

The black hole final state proposal by Horowitz and
Maldacena [28] is an intriguing attempt to resolve the
tension between certain string theories [46–50], which
suggests that the formation and evaporation of a black
hole is a unitary process and semiclassical descriptions
where pure states apparently evolve into mixed states
[23,27]. Horowitz and Maldacena suggest adapting an
unconventional, but known modification of standard quan-
tum mechanics [51–53] to resolve the problem which
necessitates a particular quantum final state boundary
condition at the black hole singularity. Such a modification
circumvents the requirement of tracing over the inacces-
sible degrees of freedom inside a black hole and therefore,
avoids scenarios where pure states can evolve into mixed
states. In addition to that, an appropriately chosen unique
quantum final state, where the collapsing matter is paired
with an infalling Hawking quantum, ensures that quantum
information is reflected in the outgoing Hawing quantum,
resolving the black hole information paradox [28,30,31].
Horowitz and Maldacena focus their discussion on

evaporating black holes with a spacelike curvature singu-
larity, like the Schwarzschild black hole [54], and they
discuss possible generalizations. Similar to other semi-
classical treatments, the Horowitz-Maldacena black hole
final state proposal assumes that a local quantum field
theoretical description is valid near the event horizon, and
one can factorize the Hilbert space across the horizon such
that

H ¼ Hm ⊗ Hi ⊗ Ho; ð1Þ

where Hm, Hi, and Ho represent the Hilbert spaces of
collapsing matter, states of quantized fluctuations localized
inside, and outside the horizon, respectively. In particular,
the factorization Hi ⊗ Ho discriminates between the states
across the event horizon where properties such as entan-
glement across the horizon can be defined between an
outgoing Hawking mode and a Hawking partner mode
trapped inside the horizon (the Unruh state [55]). The joint
Hilbert space, Hm ⊗ Hi, describes the “interior” of a
collapsing black hole, including the collapsing matter,
but an approximate distinction is made between the state
spaces of collapsing matter and trapped Hawking partner

modes. This is because the Killing field ∂
∂t corresponding to

the black hole symmetry is spacelike inside the horizon,
and therefore, physical states are possible with both
positive and negative Killing energies [28,56]. The col-
lapsing matter could have freely fallen across the horizon
from the outside where it has positive killing energy
(similar to states in Ho), and since Killing energy is
conserved, the collapsing matter can be identified as states
of positive Killing energy, with a corresponding Hilbert
space Hm. This also implies that states with negative
Killing energies represent states which can never escape
to the exterior or could never have freely fallen across the
horizon and therefore, can only be associated to states
localized inside the horizon, i.e., the Hilbert space of the
trapped Hawking quanta (Hi) [56]. Horowitz and
Maldacena also point out that the said symmetry is only
approximate for an evaporating black hole, which makes
the factorizability of Hm with Hi only approximate [28].
A desired resolution to the quantum information problem

can now be addressed from the perspective of an external
observer who assumes local quantum field theory is valid
and therefore, sees a unitary evolution of quantum states
between the Hilbert spaces Hm → Ho, described by a
scattering matrix S which is unitary. Note that this is
different from standard description of scattering problems
—where the asymptotic incoming and outgoing modes are
described as modes in the same Hilbert space—due to the
presence of an event horizon. An incoming mode from the
asymptote can freely fall across the horizon and become
states in the Hilbert space Hm of collapsing matter at the
interior of a black hole, which is different fromHo. Indeed,
the final state projection approach arrives at the desired
solution where the time evolution jψmi → jψoi is described
by a unitary scattering matrix by imposing a final state
boundary condition at the black hole singularity, but
importantly, Horowitz and Maldacena conclude their paper
by noting that the story is only complete when the precise
mechanism to describe this evolution is available [28].
We consider this endnote from Horowitz and Maldacena as
an important pretext to the present article.
Additionally, Horowitz-Maldacena model considers a

fixed geometry in which black hole evaporation is a slow
process where the quantum fluctuations do not change the
energy of the final state. They speculate that the final state
should have an associated entropy of the same order of the
black hole entropy measured by an external observer. We
note that this ansatz by Horowitz and Maldacena also
translates to our Andreev reflection analogy, as discussed in
the subsequent sections.

III. MODE CONVERSION AT BLACK HOLE
HORIZONS: A QUANTUM PRESCRIPTION

We now revisit mode conversion processes at the event
horizon of a black hole, treated as analogous to Andreev
reflections in a normal-metal-superconductor interface
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(see Fig. 1). In doing so, we adopt a Hamiltonian description
for mode conversions at the event horizon, motivated by the
Nakano and Takayanagi approach to describe Andreev
reflections [38], which allows us to incorporate the effect
of quantum fluctuation of the black hole final state (super-
conducting quantum ground state in the analogy) on
Andreev reflections from a microscopic quantum physics
perspective. It should be noted that a few different
approaches have been used to describe Andreev reflections
in the past [1–10]. The final state projection approach used
to describe Andreev reflections in Refs. [21,22] treats the
effect of the condensate on Andreev reflections as imposing
a final state boundary condition on the infalling modes,
motivated by the black hole final state projection models.
The Nakano and Takayanagi [38] approach to describe
Andreev reflections provides a more detailed microscopic
description with some crucial similarities to applying a
final state boundary condition, that are highlighted in the
subsequent discussions.
Nakano and Takayanagi suggest a microscopic

Hamiltonian to describe mode conversions at a normal
metal superconductor interface, where the factorization of
Hilbert spaces is evident in terms of individual modes. We
stick to the one-dimensional model for simplicity. The
effective Hamiltonian describing the interface in one
dimension (considering excitations below the supercon-
ducting gap that lead to Andreev reflections) in the Nakano
and Takayanagi model is given by [38,57]

Heff ¼HbþHI; whereHb ¼−
λ2

2

X
k;σ

BkC
†
k;σCk;σ; and;

HI ¼ λ2
X
k>0

Ak;−k½P†ðCk↑C−k↓þC−k↑Ck↓ÞþH:c:�

þ γ
X
k>0

ðC†
−kσCkσþH:c:Þ: ð2Þ

A similar Hamiltonian was also suggested as a phenom-
enological model to describe quantum fluctuations in a
normal metal/superconductor interface by Guinea and
Schön in [57]. The Hamiltonian Heff approximates the
interaction Hamiltonian of the interface up to unitary
transformations and making the wave bundle approxima-
tion on the normal side [38]. Here, operators labeled by C
annihilate wave bundle states on the normal side. We
denote the Hamiltonian terms describing Andreev reflec-
tions and ordinary reflections from the interface, using HI .
Although we proceed considering terms in HI as a
phenomenological model to describe Hawking radiation
in our Andreev reflection analogy, note that Nakano and
Takanayagi also estimates the coefficients in Heff in their
one-dimensional model [38]. The couplings λ and γ depend
on the density of states per unit length of the electrode
Nð0Þ, length of the electrodes a, and the bare transmission
(t) and reflection (r) coefficients of the electrodes in
contact, identified via the relations [38],

λ ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð0Þaδε

p
; and γ ¼ δεNð0Þra: ð3Þ

The average energy of a freely propagating wave bundle on
the normal side is εk (relative to the Fermi energy) with a
spread δε. The functions Ak;−k and Bk additionally depends
on the superconducting gap Δ and the energy εk via
relations [38],

Ak;−k ¼
ΔNð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ε2k

q arccos

�
Δ − εk
2Δ

�1
2

;

Bk ¼ const −
Nð0Þ lnðΔ − εkÞ

2
: ð4Þ

The fluctuations of the condensate in the Hamiltonian is
captured by the operator P† approximated as [38]

(a) (b)

FIG. 1. Andreev reflections from a superconducting condensate. (a) Scattering description of Andreev reflections. Here, the
superconducting region is described as a potential barrier of amplitude Δ, the superconducting energy gap. (b) Pairing dynamics in
Andreev reflections: an electronlike quasiparticle (blue) is retroreflected as a holelike quasiparticle (red), while contributing a Cooper
pair to the superconducting condensate. In the process, the spin quantum information (encoded in ψ) in the incoming electron is
transferred to the outgoing hole. Note that the present article discusses a simplified one-dimensional model [38].

SREENATH K. MANIKANDAN and ANDREW N. JORDAN PHYS. REV. D 102, 064028 (2020)

064028-4



P† ¼ J−1
X
k

d†k↑d
†
−k↓ ≈ e−iϕ̂; ð5Þ

which creates a Cooper pair in the superconducting con-
densate. An important difference with standard treatments
of Andreev reflections is that the phase is treated as an
operator ϕ̂, conjugate to the charge operator Q̂, i.e.,

½Q̂; ϕ̂� ¼ 2e
i
; ð6Þ

making it evident that the operator P† ≈ e−iϕ̂ changes the
charge across the superconductor-normal metal interface by
2e upon Andreev reflection [57]. We denote the electronic
creation operators on the superconducting side with d†, and
J is the maximum number of states Cooper paired electrons
occupy in the condensate, J ≈ Nð0ÞaℏωD. It is also
important to note that the pair creation operator P† is
associated with an interesting angular momentum algebra
of Anderson’s psuedospin observables describing the
superconducting condensate [38,58] with associated total
angular momentum J. Therefore, P† corresponds to a
macroscopic, many-body quantum operator of the con-
densate. The Hamiltonian HI connects this many-body
quantum operator of the condensate to quasiparticle modes
at the interface. ACooper pair is always exchanged with the
condensate when mode conversions occur, where the pair
creation/annihilation operator permits the description of an
addition/removal of a single Cooper pair with the con-
densate, without changing the quasiparticle occupancy of
the condensate [38,58].
This identification is also useful to comment on how the

condensate as a whole can be thought to influence mode
conversion processes at the boundary, as discussed in the
final state projection approach to describe Andreev reflec-
tions [21]. Here, the Hamiltonian HI makes it evident that
the condensate imposes a certain pairing symmetry for the
infalling modes as P† has singlet symmetry, while effec-
tively swapping the quantum information to an outgoing
mode via local interactions. The interaction is mediated via
the condensate, making Andreev reflections a nontrivial
mode swapping with some similarities to optical phase
conjugation in a third order nonlinear medium, via four-
wave mixing [11]. Here, the incoming electron in Andreev
reflections can be thought of as the signal beam in four
wave mixing, and the outgoing hole is analogous to the
retroreflected conjugate beam, while modes pairing in the
condensate mimic the pump beams. In the bosonic case,
this analogy is exact. The final state projection model,
where the condensate is treated as applying a singlet pairing
symmetry for the infalling modes, circumvents this detailed
dynamics but contains the essential nontrivial backaction of
the condensate on Andreev reflections.
It is worth mentioning that the Hamiltonian HI is not

fully perfect to describe Andreev reflections [38]; for

instance, HI describes Andreev reflections as a fully
momentum conserving, time-reversal symmetric process,
while in reality, Andreev reflections are not fully momen-
tum conserving on the normal side. This is because the
momentum of the Cooper pair generated in the Andreev
reflection process is not fully determined inHI [38]. In the
following, we may use a phenomenological modification to
HI to partially address this issue, where we replace the
matrix element of A with Aκ;q, which couple wave vectors
κ, q. While replacing q → −κ reduces to the above case
[38], it is known from experiments that Andreev reflec-
tions, in reality, corresponds to choices of κ, q such that the
momentum is only approximately conserved; here, κ is the
wave vector of an incoming electronlike mode, κ ¼ kF þ
δk and q ¼ −kF þ δk, where kF is the Fermi wave vector.
Note that in such a phenomenological modification, Aκ;q →
Aκ;−κ in the limit δk → 0, and therefore, the Andreev
reflection amplitudes Aκ;q may still be approximated in
this limit using Eq. (4). A physically relevant scenario
where the change in momentum upon Andreev reflections
is negligible is when Δ ≪ EF [11]; here, Andreev reflec-
tions occur as a fully momentum conserving process, where
HI in Eq. (2) tends to be exact.
In particular, we are interested in the time evolution of an

arbitrary incoming electronlike mode at the interface,

ψ†
κ;eð0Þ ¼ αC†

κ↑ þ βC†
κ↓; ð7Þ

where ψ† encodes quantum information about the ampli-
tudes α and β of the spin state,

jψi ¼ αj↑i þ βj↓i; ð8Þ

in the wave bundle mode denoted by wave vector κ. In the
analogy to the black hole context, ψ†

κ;e describes the
quantum information encoded in the incoming mode,
which is subsequently freely falling across the horizon,
mode converted as the collapsing matter. The conversion of
the mode ψ†

κ;e at the interface is determined by HI,
described by the dynamical equation,

iℏ
dψ†

κ;e

dt
¼ −γðαC†

−κ↑ þ βC†
−κ↓Þ þ λ2Aκ;qP†ðαCq↓ − βCq↑Þ

¼ −γψ†
−κ;e þ λ2Aκ;qP†ψ†

−q;h: ð9Þ

The presence of an energy gap in the superconductor
necessitates that the incoming electron has to be either
ordinarily reflected or Andreev reflected. The Hamiltonian
evolution at the interface shown in Eq. (9) demonstrates this
physics, where an infalling mode in an arbitrary quantum
spin state is mapped into an ordinarily reflected electron
ψ†
−κ;e (note that the momentum is changed κ → −κ), and an

Andreev reflected hole ψ†
−q;h (defined as a holelike exci-

tation with respect to the quasiparticle vacuum; see the
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Appendix A). Note that the spin quantum information is
manifestly preserved. Additionally, the operator P† indi-
cates that a Cooper pair has been added to the super-
conducting condensate.
One can also consider an ideal interface such that

reflectivity is zero. In this case, the quantum information
is fully Andreev reflected,

ψ†
κ;e → ψ†

−q;h; ð10Þ

by addition of a Cooper pair into the condensate (see
Appendix B). In the analogy to the black hole context,
ψ†
−q;h describes the quantum information encoded in the

outgoing Hawking quantum.
We now discuss how the first term in Hamiltonian HI ,

which describes Andreev reflections, naturally captures the
state dynamics between the incoming and outgoing modes
as a mapping between different Hilbert spaces involved, as
Horowitz and Maldacena describe. Here, a Cooper pair is
created by mode converting the incoming electron (positive
excitation energy with respect to the Fermi level →
analogous to the incoming particle freely falling across
the horizon, mode converted as the collapsing matter in
Hm) and an infalling, electronlike excitation from the
interface (negative excitation energy with respect to the
Fermi level → analogous to the trapped Hawking quantum
in Hi). The coupling via the Cooper pair creation operator
in HI implies that the quantum information traverses via
the condensate—analogous to the quantum information
encoded in incoming particles freely falling across the
horizon as collapsing matter—before getting Andreev
reflected in the outgoing hole (positive excitation energy
with respect to the hole vacuum → analogous to the
outgoing Hawking quantum in Ho). This process where
electrons from the normal metal scatter into the condensate
via Andreev reflections, causing the superconducting
correlations to extend slightly into the normal region at
the interface, is also known as the superconducting prox-
imity effect [9]. The factorizability of Hilbert spaces is also
evident in the Andreev reflection paradigm as the infalling
and outgoing modes are of a different kind of quasiparticle
excitations, electronlike and holelike.
Additionally, the Andreev reflected hole acquires a phase

difference of −ðπ=2þ ϕÞ relative to the incoming electron,
where ϕ is the macroscopic phase of the condensate (see
Appendix B). The description above is also in good
agreement with the final state projection approach
[21,22], accurately predicting the dynamics of quantum
information in Andreev reflections, and the relative phase
acquired upon Andreev reflections: the phase ϕ of the
condensate. Both the predictions are experimentally
observable, the spin state of the Andreev reflected elec-
tron/hole (using quantum spin state tomography) and the
relative phase acquired (possible in an interferometer like
setup using an S-N-S junction).

Finally, note that an effective temperature of the
Bardeen-Cooper-Schrieffer (BCS) superconducting quan-
tum ground state [59] can be derived from entropy
considerations, from the spin-partitioned entanglement
entropy of the BCS state [60]. For Cooper pairs added
to the condensate upon Andreev reflections, the spin
partitioned entanglement entropy accounts for the increase
in entropy of an incoming electron as it enters the super-
fluid due to BCS pairing. This entropy increase is similar to
that experienced by an infalling observer in the final state
proposal, who can only access parts of the black hole
interior Hm ⊗ Hin [28]. The entropy spectrum of the BCS
state is peaked about the Fermi level, where Andreev
reflections dominate. Also note that Andreev reflections
occur as a momentum conserving process in the limit
Δ ≪ EF, as the change in momentum is negligible [11]. In
this limit, the entropy of the BCS ground state also scales as
an area—the area of the Fermi surface [60]. The associated
effective temperature is almost equal to the critical temper-
ature of the superconductor,

Tc ¼
Δ

1.76kB
≈ 1.13

ℏvF
4πrkB

: ð11Þ

Here, Δ is the superconducting gap energy, ℏ is Planck’s
constant, kB is Boltzmann’s constant, and r ¼ λ=2, where λ
is the superconducting coherence length, and vF is the
Fermi velocity.3 The entropy of Andreev reflections can
also be calculated by considering electrons/holes at the
superconductor/normal metal interface, within a favorable
energy range (around the Fermi energy) to participate in
Andreev reflections. The entropy spectrum of electrons/
holes at Tc is almost identical to that of the BCS ground
state discussed before [60] but can now be understood as
the entropy measured by an external observer who is
ignorant about the microscopic dynamics and the spin
quantum state of Andreev reflecting quasiparticles, and
therefore, treats Andreev reflection as a thermionic emis-
sion process from the interface.

A. Comparison to alternate treatments of the black hole
quantum information paradox

We now compare our resolution of the black hole
information problem to some of the recent approaches.
A comprehensive discussion of several notable treatments
of the black hole information problem comparable to the
final state proposal can be found in [61]. On the informa-
tion theoretic frontier, quite a lot of research has been
motivated by the initial work of Page [62,63], followed by
the work of Preskill and Hayden [29], who pioneered the
idea that black holes, rather than destroying quantum

3As has already been pointed out [21], the temperature scales
similar to the temperature of a Schwarzschild black hole, where
vF → c, the speed of light, and r → rs, the Schwarzschild radius.
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information, scramble the quantum information unitarily.
This suggested that the quantum information encoded in
qubits collapsing into a black hole can be retrieved from the
emitted Hawking radiation at later times; in particular, any
information entering a black hole past the “halfway
point”—where half of the black hole’s initial entropy
has been radiated—should reveal itself rapidly in the
emitted Hawking radiation [29]. Subsequently, black holes
were also conjectured to be the fastest information scram-
blers in nature [64,65], and this motivated further proposals
and interesting experiments related to quantum information
scrambling [40,43–45,66].
Despite the rich many-body physics being discussed,

such bottom-up approaches to investigating the black hole
information problem are rather simple to comprehend. For
instance, a more recent implementation of the Hayden and
Preskill protocol was presented in [40]; the proposal
describes the black hole as a subsystem of microscopic
degrees of freedom modeled using d-level quantum sys-
tems (qudits). The internal scrambling dynamics are
described using a random two-body unitary applied
between a randomly chosen pair of internal qudits, with
a probability p1. A randomly chosen internal qudit may
also interact with an environmental qudit, via a unitary
swap operation. The probability of the swap operation is
taken to be p2 ≤ 1 − p1, such that at each step, nothing
happens with the probability 1 − p1 − p2. By adding an
extra quantum dit of information to the subsystem (the
black hole), the authors probe the scrambling time and the
time required to retrieve the information injected to
the subsystem for different degrees of knowledge about
the initial state of the subsystem. For an observer having
access to early Hawking radiation, the authors show that
information can be retrieved rather quickly by performing
measurements on the environmental qudits, in agreement
with the Hayden and Preskill description of a black hole
past the halfway point.
Such a quick retrieval of quantum information in the late

stages of the evaporation process can be understood as
resulting from an entanglement swapping operation [30],
which also resolves an entanglement monogamy issue for
an evaporating black hole—between the early Hawking
radiation, the black hole, and the new Hawking radiation
[30,32]. This aspect of the information problem was
revisited recently in [41] using a unitary circuit model
with additional decoherences implemented as projective
quantum measurements; their results indicate a possible
resolution of the paradox around the halfway point, but the
paradox possibly reappears at much later stages of the
evaporation process where the black hole reduces to a
Planck size remnant [41].
In comparison to the approaches in [29,40,43–45,66],

which also allows us to simulate the early stages of an
evaporating black hole, our analogy is more suitable for a
black hole in its late stages of the evaporation process (the

final state) [28,29,40], where the incoming quantum
information is revealed rapidly in Andreev reflected qua-
siparticles. Our model is also devoid of the entanglement
monogamy issue [30,32,41], and this follows from the
microscopic HamiltonianHI given in Eq. (2), which swaps
entanglement unitarily when initial quantum correlations
are present.
Finally, recall that the black hole final state approach

[28] was an attempt to see what simple modifications in
Hawking’s original calculation for the black hole interior
can resolve the information problem, given inputs from
various proposals including the AdS=CFT correspondence
[50], which definitively suggested that there cannot be any
information loss from the point of view of the boundary
conformal field theory (CFT), which is unitary [66]. The
modification Horowitz and Maldacena suggested was to
impose a final state boundary condition at the singularity; a
maximally entangled choice for the final state ensures that
no information is stuck at the singularity, and subsequently,
there is no information loss. In comparison, recent alternate
approaches to providing a consistent bulk/interior descrip-
tion can be found in [42,66–68] using techniques such as
entanglement wedge reconstruction [68–70]. The similarity
is that their descriptions of the bulk are holographically
dual to the Hayden and Preskill protocol [29], and the latter
permits an account within the final state proposal as a
simple entanglement swapping [30]. This is also an
important connection to make as the original proposal of
Hayden and Preskill describes unitarity from the boundary
CFT point of view [66].
The final state proposal, despite being simple, had

several shortcomings which made it less admirable, but
in the remainder of this article we discuss how our Andreev
reflection analogy resolves some of these important short-
comings of the final state proposal, which also makes our
analysis timely and relevant.

IV. IMPLICATIONS TO THE BLACK HOLE FINAL
STATE PROPOSAL

We now discuss the implications of our results for the
black hole final state proposal [28,30,31]. First, note that
the present description reproduces major conclusions of the
final state projection approach without having to discuss
various quantum correlations across or within the con-
densate. The condensate is indeed described as a superfluid
of pairs, but the effect of the superfluid state on Andreev
reflections is treated differently in the present approach. We
used an effective Hamiltonian and time evolution of
incoming modes in Eq. (9) to arrive at the transfer of
quantum information in the mode conversion process. Note
that this also allows us to comment on the speed at which
information traverses the condensate. The microscopic
description presented in this article precisely corresponds
to the local interactions that mediate information transfer in
Andreev reflections, as discussed in [21,22]. Therefore, the
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maximum speed at which the information traverses is
roughly limited by the speed of sound in the lattice, as
the superconducting pairing interactions are mediated by
lattice phonons.
It was conjectured in [21,22] that the macroscopic

quantum final state of black hole in the final state projection
models [28,30] can be treated as the superfluid quantum
ground state of fermions and bosons, respectively. For spin-
half fermions, this has the form of the Bardeen-Cooper-
Schrieffer (BCS) state [59],

jΨi ¼
Y
k

ðuk þ vkeiϕd
†
k↑d

†
−k↓Þj0i: ð12Þ

The coefficients uk and vk are determined in BCS theory
via relations,

uk ¼ cos
θk
2

and vk ¼ sin
θk
2
; ð13Þ

where sin θk ¼ Δffiffiffiffiffiffiffiffiffiffi
Δ2þε2k

p , and cos θk ¼ εkffiffiffiffiffiffiffiffiffiffi
Δ2þε2k

p , for the super-

conducting gap energy Δ. The analogy was primarily built
on information considerations, based on how Andreev
reflections preserve the quantum information by trans-
ferring them to the outgoing modes. An additional well-
known quality the BCS wave function possess is its off
diagonal long range ordering, which gives a sense of
rigidity to the macroscopic quantum final state [21,71].
The present microscopic treatment allows us to take a step
forward from the final state proposal, and associate a
microscopic Hamiltonian presented in Eq. (2) to describe
the dynamics of mode conversion processes at the event
horizon. The Hamiltonian HI has a remarkable feature that
it connects the wave bundle operatorsCk on the normal side
to a macroscopic, many-body quantum operator P† of the
condensate that describe exchange of quasiparticles with
the final state.
We emphasize, based on the microscopic analysis

presented in this article, that the analogy to Andreev
reflections appears to resolve two of the noted problems
in the quantum description of a black hole, (1) the trans-
Planckian reservoir problem already discussed by Jacobson
[20] and (2) the black hole information problem. Therefore,
we add that the Hamiltonian in Eq. (2) that describes
quantum fluctuations in a superconductor-normal metal
interface [38,57] has the desired properties to describe the
mode conversion processes occurring at the event horizon
of a black hole causing the black hole to evaporate unitarily.
From the microscopic perspective, the evaporation process
can be understood as caused by Andreev reflections of
incoming holelike quasiparticles (described by the term in
HI proprortional to P) where Cooper pairs are effectively
removed from the condensate.
We now proceed to discuss how the Andreev reflection

analogy helps to address major concerns regarding the

computational enhancements in the final state approach
[32,33]. Subsequently, we revisit a possible scenario of
apparent loss of quantum information in our Andreev
reflection analogy, resulting from the quantum information
traversing across the condensate via crossed Andreev
reflections [21,72].

A. Comment on the computational advantages of the
final state proposal

Some of the computational enhancements the final state
proposal suggest [30,32–36] are a cause of concern, as they
could possibly be unphysical [32,33]; for instance, it has
been shown that small departures from unitarity can allow
superluminal signaling and also may allow computations of
nondeterministic polynomial time hard problems (class of
problems where a given solution can be verified in
polynomial time, while exponentially many solutions are
possible) in polynomial time. This would suggest a boost
over the query complexity lower bound for search algo-
rithms [73] saturated by the Grover’s search protocol
[33,74]. Additionally, it has been pointed out that the final
state projection at the black hole singularity may allow
backward in time signaling even if the scattering matrix is
unitary [30,32]; suggested resolutions to this puzzle relies
on the complexity of performing such a computational task,
which requires fast and efficient decoding of information
from the outgoing Hawking radiation [30,75]. Some
aspects of the origin of these computational advantages
in the Horowitz-Maldacena model can be attributed to the
ability to postselect on certain outcomes in a quantum
measurement process, which can allow a quantum com-
puter to solve a class of problems in polynomial time [37];
this aspect has also been discussed in the context of some
variations of the Horowitz-Maldacena model, proposed to
describe closed timelike curves in quantum mechanics
[34–36].
While the enticing similarities to the final state proposal

are crucial to the analogy we discussed, the important
progress we make—also relevant to the quantum computa-
tional aspects of the final state proposal—is that Andreev
reflections suggest a possible microscopic treatment from
which the final state proposal can emerge, devoid of the
computational enhancements resulting from a final state
projection. In our microscopic approach, the unitarity of
evolution follows from a microscopic interaction
Hamiltonian at the event horizon of the type HI and
Eq. (9), unlike the final state projection approach where
unitarity can only be discussed at the level of a scattering
matrix [28,30]. As a consequence, in the Andreev reflection
setting, we do not expect any computational enhancements
beyond the limits set by a standard quantum computer with
linear and unitary operations.
In spite of that, our analogy suggests some practical

advantages with possible quantum device applications,
inspired from the black hole final state proposal.
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Superconductors used as “quantum information mirrors”
can indeed enhance quantum information processing and
quantum computing tasks within the limitations of a
standard quantum computer, in the presence of additional
decoherences. Clever device architectures can be con-
structed using sandwiches of normal metallic electrodes
and superconductors, which can significantly increase the
life time of spin qubits using multiple Andreev reflections.
This could lead to remarkable advances for matter-based
spin qubit platforms, where the short lifetime of a qubit
[76–81] is a critical problem to be addressed.

B. Apparent loss of quantum information

Before we conclude, we discuss a possible generalization
of our Andreev reflection analogy, which features an
apparent loss of quantum information locally, although
the quantum information is globally preserved. To this
effect, we consider a superconductor of width comparable
to the coherence length of a superconductor, λ, sandwiched
between two normal metals. Assuming both interfaces to be
ideal (reflectively zero), we can write the following
Hamiltonian for incoming modes having energies below
the superconducting gap Δ:

Hij
I ¼ ½Aij

κ;qðCNi
κ↑P

†C
Nj

q↓ þ C
Nj

q↑P
†CNi

κ↓Þ þ H:c:�: ð14Þ

Here, combinations of i, j ¼ 1, 2 represent the different
combinations of possible Andreev reflections possible, all
preserving the spin quantum information ψ†

κ;e ↔ ψ†
−q;h;

direct Andreev reflections are described by i ¼ j, where
Andreev reflected mode is produced on the same side as the
incoming mode, while i ≠ j describes Andreev reflections
across the superconductor (crossed Andreev reflections
[72]) where spin quantum information is apparently lost on
one side of the superconductor, but reappears on the

quasiparticle mode Andreev reflected on the other side.
See Fig. 2.
As a naive extension of our analogy, we note that such a

process describes information transfer possible in an
Einstein-Rosen bridge (a wormhole) [39], where the
quantum information is apparently lost in one horizon as
a result of traversing the wormhole [21]. A similar con-
struction, where the microstates of an Einstein-Rosen
bridge is built by pairing microstates of two black holes,
has also been discussed by Maldacena and Susskind
in [82].

V. CONCLUSIONS

We presented a microscopic description of Hawking
radiation as Andreev reflections where the unitarity of
information transfer is evident, without having to rely on
the assumptions of the final state projection approach. We
find good agreement with the predictions of the final state
projection approach, substantiating that the latter is indeed
a good description when the physics of Hawking radiation
is treated as a scattering problem, where the microscopic
details of the scattering center are irrelevant. Nevertheless,
we note that the alternate description fully relying on
microscopic dynamical laws describing the superfluid state
allowed us to resolve important shortcomings of the final
state projection approach, pertaining to departure from
unitarity, and possibly unphysical quantum computational
enhancements resulting from final state projection [30–37].
Therefore, the present analysis further strengthens the

conjecture that the black hole final state could be a
superfluid. Naively, it is tempting to associate a simple
many body quantum final state to a black hole as we know
that classically, its mass, charge, and angular momentum
completely describe a black hole. Superfluid condensates
have additional benefits. Apart from the fact that they are
described by very few parameters, such as the average
particle density and a macroscopic phase, the necessary
microscopic details provided here reenforce our previous
proposal that they also resolve the famous black hole
information paradox by acting like a mirror to quantum
information. This, together with an earlier observation by
Jacobson that Andreev reflections can also resolve the
trans-Planckian problem at the event horizon [20], makes it
a strong candidate description of the quantum physics at
black hole horizons.
Yet another important progress we make is that we

conjecture a Hamiltonian HI presented in Eq. (2) to
describe mode conversion processes at the event horizon,
treated as Andreev reflections. The Hamitonian HI has
terms describing interactions between a macroscopic many-
body quantum operator of the condensate and microscopic
quasiparticle modes at the interface, describing how the
final state projection model can emerge as an effective
description from interactions between the infalling modes
and the macroscopic condensate. We also generalized the

FIG. 2. Crossed Andreev reflections: When a superconductor
(S) having width comparable to the superconducting coherence
length λ is sandwiched between two normal metals (N1 and N2),
Andreev reflection can happen across a superconducting con-
densate, where an incoming electron inN1 is Andreev reflected as
a hole inN2. The spin quantum information (encoded in ψ ) which
is apparently lost in N1 reappears in N2 [21].
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Hamiltonian HI to describe mode conversion processes
involving an Einstein-Rosen bridge (wormhole) that allows
us to provide a unitary description of apparent loss of
information in an Einstein-Rosen bridge as a result of
traversing the wormhole via crossed Andreev reflections.
Finally, we address how small deviations in our model

may affect the quantum information dynamics in Andreev
reflections. First, note that the approach developed by
Nakano and Takayanagi to describe Andreev reflections
accounts for small fluctuations in energy/momentum by
considering wave bundles instead of traveling waves.
Therefore, the model is immune to small fluctuations in
energy/momentum of incoming modes, especially in the
limit Δ ≪ EF, where the change in momentum upon
Andreev reflections is negligible, such that HI in Eq. (2)
tends to be exact. Secondly, an incoming mode could be in
a superposition of different wave bundle states in the
momentum space, labeled by κ, and in this case, our model
predicts that the outgoing hole may be in a superposition of
different outgoing wave bundle states, determined by
coefficients Aκ;q, but still preserving unitarity. Since the
momentum of the Cooper pair generated is indeterminate in
HI, it ensures that the condensate does not retain any
information about the infalling mode and that the quantum
information is fully Andreev reflected.
We emphasize that, albeit the similarities we discussed,

our analysis does not qualify as an exact correspondence
between the two fields; there are obvious differences between
a superconductor and a black hole. Nevertheless, the analogy
we developed points at an exciting opportunity that certain
quantum theories of gravity can be experimentally tested
using superconductor/normal metal interfaces. Conversely,
superconductors, used as “quantum informationmirrors” are
also promising paradigms for quantum information process-
ing and quantum computing tasks.
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APPENDIX A: QUANTUM SPIN STATE OF THE
ANDREEV REFLECTED HOLE

Here, we use particle-hole symmetry arguments to
determine the quantum spin state of Andreev reflected
hole. We define the filled Fermi sea as

jGi ¼
Y

jkj<kF
C†
k↓C

†
k↑j0i ¼ j1q↓1q↑…i; ðA1Þ

and implement the following transformation into the hole
picture:

ðαCq↓ − βCq↑ÞjGi ¼ αj0q↓1q↑…i þ βj1q↓0q↑…i
¼ ðαh†−q↑ þ βh†−q↓Þj00i ¼ ψ†

−q;hj00i:
ðA2Þ

We have defined the hole creation operators via the
relations,

j0q↓1q↑…i ¼ h†−q↑j00i and j1q↓0q↑…i ¼ h†−q↓j00i;
ðA3Þ

where j00i denotes the quasiparticle vacuum in the hole
picture. Note that, therefore, ψ†

−q;h creates an outgoing
holelike quasiparticle encoding quantum information about
the amplitudes α and β of the spin state jψi ¼ αj↑i þ βj↓i.

APPENDIX B: IDEAL INTERFACE

We now consider the case of an ideal interface where the
coefficient of ordinary reflection is assumed to be zero
(note that other scattering coefficients would change as
appropriate to preserve unitarity). Andreev reflections in
this case can be described by combining the time evolution
of modes ψ†

κ;e and ψ†
−q;h,

iℏ
dψ†

κ;e

dt
¼ Ω†ψ†

−q;h; ðB1Þ

and

iℏ
dψ†

−q;h

dt
¼ Ωψ†

κ;e: ðB2Þ

We have defined Ω† ¼ λ2Aκ;qP† ¼ λ2Ak;qe−iϕ̂, where we

have approximated the operator P† as P† ≈ e−iϕ̂ [38].
In order to make comparison with the standard treat-

ments [1–10], we also make the assumption that the
condensate has definite phase, and therefore, ϕ̂ is replaced
by ϕ. We therefore obtain the following second order
differential equation:

d2ψ†
κ;eðtÞ
dt2

¼ −
1

ℏ2
ω2ψ†

κ;eðtÞ; ðB3Þ

where we have defined ω ¼ λ2Aκ;q. Additionally,

iℏ
dψ†

κ;e

dt
¼ ωe−iϕψ†

−q;h; ðB4Þ

determines the time derivative at t ¼ 0. The Eq. (B3) can
now be solved, which gives the following solution:

ψ†
κ;eðtÞ¼ cos

�
ωt
ℏ

�
ψ†
κ;eð0Þ− ie−iϕ sin

�
ωt
ℏ

�
ψ†
−q;hð0Þ: ðB5Þ
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Note that Eq. (B5) correctly describes two relative phases
picked upon Andreev reflection, the phase change −π=2
and the additional phase difference between electrons and
holes, which is the macroscopic phase ϕ of the condensate.
The quantum spin dynamics in Andreev reflections can

also be summarized in terms of an effective Hamiltonian for
the interface which maps

Hωjψκ;ei¼ωP†jψ−q;hi; Hωjψ−q;hi¼ωPjψκ;ei: ðB6Þ

We retain the Cooper pair creation operator P† ≈ e−iϕ̂ in the
expressions to emphasize that it is not necessary to assume
the phase operator ϕ̂ takes definite value. We suppress the
superconducting state space for simplicity; it is implied that

P† is an operator acting on the state space of the super-
conductor (creating a Cooper pair), where P†P ≈ PP† ≈ I.
The states jψκ;ei; jψ−q;hi can be treated orthogonal on the
normal side, as they represent electronlike and holelike
excitation encoded in different modes. In their basis, we can
represent Hω as

Hω ¼ ω

�
0 P

P† 0

�
; where H2

ω ≈ ω2

�
I 0

0 I

�
: ðB7Þ

With this, we find the time evolution of the initial state
jψκ;ei is

e−
i
ℏHωtjψκ;ei ¼

�
1 −

i
ℏ
Hωt −

H2
ωt2

2!ℏ2
þ i

H3
ωt3

3!ℏ3
…

�
jψκ;ei ≈ jψκ;ei −

iωtP†

ℏ
jψ−q;hi −

ω2t2

2!ℏ2
jψκ;ei þ

iω3t3P†

3!ℏ3
jψ−q;hi þ � � �

¼
�
1 −

ω2t2

2!ℏ2
þ � � �

�
jψκ;ei − iP†

�
ωt
ℏ

−
ω3t3

3!ℏ3
þ � � �

�
jψ−q;hi

¼ cos

�
ωt
ℏ

�
jψκ;ei − iP† sin

�
ωt
ℏ

�
jψ−q;hi ≈ cos

�
ωt
ℏ

�
jψκ;ei − ie−iϕ̂ sin

�
ωt
ℏ

�
jψ−q;hi; ðB8Þ

similar to Eq. (B5). Note that for an interaction time
t ¼ τ ∼ πℏ

2ω—which also satisfies the energy time uncer-
tainty principle for the interface, ωτ > ℏ

2
—we have the

incoming electronlike mode fully converted into the out-
going holelike mode, while adding a Cooper pair into the
condensate. The hole propagates in the normal region,
encoding the spin quantum information jψi of the incoming
electron.
The final state projection approach presented in [21] also

predicts that the quantum spin state of the outgoing hole is
jψi. The phase that gets accumulated in the final state
approach include a phase factor of signðjÞe−iπ2 from the
tunneling of incoming electron into the condensate, treated
as a resonant interaction [21],

H0
Cjψei ¼ jjψdi; and H0

Cjψdi ¼ jjψei: ðB9Þ

The time evolved state becomes

e−
iH0

C
τ

ℏ jψei ¼ −i sin
�
jτ
ℏ

�
jψdi þ cos

�
jτ
ℏ

�
jψei: ðB10Þ

The relative phase π
2
was missed out in [21]. Assuming

availability of a singlet electron-hole pair, the projection
onto the BCS state for infalling modes adds a phase factor
of −e−iϕ, where ϕ is the phase of the condensate [21]. By
choosing signðjÞ ¼ −signðωÞ, we find that total phase
changes that occur in final state approach presented in
[21] is equal to −ðπ

2
þ ϕÞ.
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