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The final fate of gravitational collapse of massive stars has been a subject of interest for a long time since
such a collapse may lead to black holes and naked singularities alike. Since, the formation of naked
singularities is forbidden by the cosmic censorship conjecture, exploring their observational differences
from black holes may be a possible avenue to search for these exotic objects. The simplest possible naked
singularity spacetime emerges from the Einstein massless scalar field theory with the advantage that it
smoothly translates to the Schwarzschild solution by the variation of the scalar charge. This background,
known as the Janis-Newman-Winicour spacetime is the subject of interest in this work. We explore
electromagnetic observations around this metric which involves investigating the characteristics of black
hole accretion and shadow. We compute the shadow radius in this spacetime and compare it with the image
of M87*, recently released by the Event Horizon Telescope Collaboration. Similarly, we derive the
expression for the luminosity from the accretion disk and compare it with the observed optical luminosity
of eleven Palomar Green quasars. Our analysis indicates that the shadow of M87* and the quasar optical
data consistently favor the Schwarzschild background over the Janis-Newman-Winicour spacetime. The
implications of this result are discussed.
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I. INTRODUCTION

One of the classic unresolved problems in general
relativity is the ultimate fate of the gravitational collapse
of a massive body, such as a star. It has been conjectured that
the end state of any generic complete gravitational collapse
leads to a Kerr black hole characterized by only its mass and
angular momentum. All other information regarding the
initial conditions of the collapse, the symmetries and the
nature of matter fields that were present in the beginning of
the collapse gets radiated away. It turns out that it is very
difficult to prove this conjecture either analytically or
numerically and therefore one cannot definitively say that
the ultimate fate of a gravitational collapse always leads to
the formation of a black hole. In fact, investigations reveal
that such gravitational collapse with a set of allowed initial
conditions often lead to the formation of naked singularities
[1–11], even though such objects are forbidden by the
cosmic censorship conjecture [12].
While the end products of gravitational collapse continue

to be debatable, it is worth exploring the observational
differences between black holes and naked singularities,
assuming that they have been formed by some mechanism.

Given the surfeit of data available in the electromagnetic
domain, this has intrigued researchers worldwide since such
a study can enhance our understanding regarding the nature
of compact objects at the galactic centers or in the x-ray
binaries. Observations related to accretion disks [13–19] or
gravitational lensing [20–26] have revealed that black holes
and naked singularities often exhibit strikingly different
properties which can be used as a possible probe to differ-
entiate between them. Further, ultra high energy collisions
and fluxes of the escaping collision products can be another
possible tool to discern between the two different entities
[27]. There are however cases when certain wormhole
spacetimes and naked singularities exhibit similar observa-
tional features like that of a black hole which makes the
differentiation quite difficult [28–31]. However, this will be
kept outside the purview of the present discussion.
In the present work we consider the Janis-Newman-

Winicour (JNW) naked singularity which represents an
exact solution of the Einstein’s equations with a massless
scalar field [32]. This solution was originally derived by
Fisher [33] in a different parametrization while Bronnikov
and Khodunov [34] subsequently studied its stability. It was
later rediscovered by Wyman [35] and the equivalence of
the Wyman solution with the Janis-Newman-Winicour
spacetime was established by Virbhadra [36]. It is interest-
ing to note that addition of the massless scalar field in the
action changes the nature of the spherically symmetric and
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asymptotically flat exact metric solution from the
Schwarzschild black hole to the JNW naked singularity.
Consequently, it can be shown that one can recover the
Schwarzschild metric from the JNW spacetime by con-
tinuously adjusting a single metric parameter representative
of the scalar charge of the naked singularity.
There exists several works in the literature which

explored the optical properties of the Janis-Newman-
Winicour spacetime, e.g., gravitational lensing and relativ-
istic images [23–26,37], accretion and shadow [21,22,
37,38]. The aim of this work is to explore the nature of
shadow and the emission from the accretion disk around the
Janis-Newman-Winicour spacetime and compare them
with the available observations. The optical luminosity
of eighty Palomar Green quasars and the recently released
shadow of M87* are used as the observational sample for
comparing the theoretical results.
The paper is organized as follows: In Sec. II we review

the basic properties of the Janis-Newman-Winicour space-
time. We study the structure of the shadow cast by the JNW
spacetime and compare it with the image of M87* in
Sec. III. Section IV serves as a quick overview over the
“thin accretion disk” model proposed by Novikov and
Thorne which helps us to evaluate the accretion disk
luminosity for a sample of eighty Palomar Green quasars.
Subsequently we compare this with the observed luminos-
ity of the quasars to distinguish the JNW spacetime from
the Schwarzschild background. We end with a summary of
our results and the concluding remarks in Sec. V.
We use (-,+,+,+) as the metric convention and will work

with geometrized units taking G ¼ c ¼ 1.

II. JANIS-NEWMAN-WINICOUR SPACETIME:
A QUICK REVIEW

In this work we consider the Einstein massless scalar
(EMS) field theory such that the massless scalar field is
minimally coupled to gravity. The associated action is
given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
∂μϕðrÞ∂μϕðrÞ

�
ð1Þ

where, g and R are respectively, determinant of the metric
tensor and the Ricci scalar, κ2 ¼ 8πG (G is the four-
dimensional gravitational constant) and ϕðrÞ is the
minimally coupled scalar field. In four dimension, the
corresponding Einstein’s gravitational field equations
derived from the above action has an exact static and
spherically symmetric solution [36,39,40] given by,

ds2 ¼ −
�
1 −

b
r

�
γ

dt2 þ
�
1 −

b
r

�
−γ
dr2

þ
�
1 −

b
r

�
1−γ

r2ðdθ2 þ sin2 θdϕ2Þ ð2Þ

which is popularly known as the Janis-Newman-Winicour
(JNW) solution in the literature. In Eq. (2) r represents the
radial coordinate, 0 ≤ γ ≤ 1 and bγ ¼ 2M, such that the
Schwarzschild metric is retrieved when γ ¼ 1. There is a
curvature singularity at r ¼ b which is also the location of
the event horizon. Since the singularity is not cloaked by
the event horizon this metric represents a naked singularity
and hence we confine ourselves in the region r > b. The
solution for the scalar field and the associated energy-
momentum tensor are respectively given by

ϕðrÞ ¼ q
b
ln

�
1 −

b
r

�
and ð3Þ

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμν∂αϕ∂αϕ ð4Þ

where b is related to the scalar charge q by,

b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q
ð5Þ

such that smaller γ corresponds to a larger magnitude of the
scalar field.
In the context of string theory a pseudoscalar field

known as the axion, arises as the dual of the field strength
of the Kalb-Ramond field Bμν minimally coupled to
Einstein gravity in four dimensions. The Kalb-Ramond
field Bμν with the transformation property of a second rank
antisymmetric tensor gauge field has the following action,

SKR ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

12
HμναHμνα

�
ð6Þ

where Hαμν ¼ ∂ ½αBμν� is the field strength tensor which has
the pseudoscalar axion field H as its dual,

Hαμν ¼ ϵαμνβ∂βH ð7Þ

In terms of the axion field the energy-momentum tensor of
the Kalb-Ramond field can be written as

Tμν ¼ ∂μH∂νH −
1

2
gμν∂σH∂σH ð8Þ

which resembles Eq. (4).
Under a different choice of the metric ansatz, the

resultant static, spherically symmetric and asymptotically
flat solution of the Einstein’s equations (associated with
the Kalb-Ramond field) assumes a perturbative solution of
the form [41],

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dΩ2 ð9Þ

such that
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eνðrÞ ¼ 1 −
2M
r

þ hM
r3

þO
�
1

r4

�
ð10aÞ

e−λðrÞ ¼ 1 −
2M
r

þ 3h
r2

þO
�
1

r4

�
ð10bÞ

where h refers to the axion parameter and has dimensions
of M2. For the solution of the Kalb-Ramond field strength
and the axion field one is referred to [41]. Just like the JNW
space time this metric also smoothly translates to the
Schwarzschild solution in the event the axion parameter
h vanishes.
We have already explored the properties of accretion and

shadow in the spacetime with the axionic charge [42,43].
Observational implications of several other alternative
gravity models have been extensively studied in the
literature [44–51]. In this work, we will explore the motion
of both the massless and the massive particles around the
Janis-Newman-Winicour (JNW) spacetime. In the case of
massive particles we will study accretion of matter, while
the properties of the black hole shadow can be investigated
by studying motion of the massless particles. In both cases
we will confront our theoretical findings with the available
observations to provide constrain on the metric parameter γ.
In each case we will compare our findings with the results
obtained previously for the axion metric [Eq. (9),
Eq. (10a), Eq. (10b)].

III. SHADOW CAST BY THE COMPACT
OBJECT GOVERNED BY THE

JANIS-NEWMAN-WINICOUR SPACETIME

With the advent of the Event Horizon Telescope, it has
been possible to obtain the image of the central compact
object in the galaxy M87. This has enabled direct
observations of the near horizon regime of a black hole
and has opened up a new and independent window to test
the nature of strong gravity. The shadow refers to the
gravitationally lensed projection of the photon circular
orbits onto the observer’s sky. When light from a distant
source or the surrounding accretion disk come close to
the photon sphere, a part of it falls into the compact
object while the remaining escapes to infinity [52–56].
Consequently, the observer perceives a dark patch in
the local sky known as the shadow. The boundary of
the shadow testifies strong gravitational lensing near the
photon sphere and hence the shape and size of the shadow
captures useful information regarding the nature of the
background spacetime [20,54,57–61]. In what follows,
we will study the nature of the shadow cast by the JNW
spacetime and confront it with the observed shadow
of M87*. We initiate by first exploring the structure of
the shadow in a most general spherically symmetric
spacetime.

A. Structure of the shadow in a general spherically
symmetric background

In this section, we work out the structure of the black
hole shadow in a general static and spherically symmetric
background given by

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þR2ðrÞr2ðdθ2 þ sin2 θdϕ2Þ:
ð11Þ

This metric ansatz is a more generalized form than the one
usually used in the literature due to its modified volume
factor, i.e., the coefficient of dΩ2 is not just r2 but also has a
function of r multiplied to it. This is important since we are
eventually interested in studying the properties of the
shadow in a metric given by Eq. (2).
Due to the time and zenithal angle independence of the

metric, the energy E and the total angular momentum L of
the photons are conserved. The constants of motion are
given by,

E ¼ −gttut ¼ −pt and ð12aÞ

L ¼ gϕϕuϕ ¼ pϕ ð12bÞ

respectively. The Hamilton-Jacobi equation can therefore
be integrated to obtain the following solution for the action,

S ¼ −Etþ Lϕþ S̄ðr; θÞ ð13Þ

where S̄ðr; θÞ is an arbitrary function of radial and angular
coordinates. Assuming separability of S̄ðr; θÞ as
S̄ðr; θÞ ¼ SrðrÞ þ SθðθÞ, and substituting the Hamilton-
Jacobi equation for r and θ in the Hamiltonian we obtain,

R2r2
�
kþ e−νðrÞE2 − e−λðrÞ

�
dSr

dr

�
2
�

¼
�
dSθ

dθ

�
2

þ L2

sin2 θ
¼ Cþ L2 ð14Þ

where the separation constant C, known as the Carter
constant represents a third constant of motion [62].
Therefore the geodesic equations for r and θ are given by,

eλþν _r2 ¼ −eν
Cþ L2

r2R2
þ E2 ≡ −VeffðrÞ þ E2 ≡RðrÞ and

ð15Þ

ðR2r2 _θÞ2 ¼ C − L2 cot2 θ≡ E2ΘðθÞ ð16Þ

respectively, where

Veff ¼ eν
Cþ L2

r2R2
ð17Þ
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represents the effective potential for radial motion of
photon, while

ΘðθÞ ¼ χ − l2 cot2 θ ð18Þ

such that χ ¼ C=E2 and l ¼ L=E. The radius of the photon
sphere rph is defined such that the radial velocity _r vanishes
and the effective potential VeffðrÞ possesses an extrema.
Generally this turns out to be a maxima, representing an
unstable equilibrium of the photon, resulting in either fall
into the gravitating object or escaping to infinity due to
even slight perturbation. Consequently, photon sphere
plays the important role in determining the boundary of
the shadow.
Therefore, rph is obtained by solving RðrÞ ¼ R0ðrÞ ¼

V 0
effðrÞ ¼ 0, such that the above conditions yield

χ þ l2 ¼ R2ðrphÞr2phe−νðrphÞ and ð19Þ

ν0ðrphÞ ¼ 2

�
1

rph
þR0ðrphÞ

RðrphÞ
�

ð20Þ

respectively. The photon sphere in an arbitrary spherically
symmetric metric is therefore obtained by solving Eq. (20)
for r. In the limit R ¼ 1 we get back the known result
rν0 ¼ 2 [43].
The contour of the black hole shadow in the observer’s

sky is obtained by considering the projection of the photon
sphere in the image plane [63]. Determination of the
shadow outline depends on the largest positive radius
obtained by solving Eq. (20) [52,53]. Two celestial coor-
dinates α and β which are directly related to l and χ
designates the locus of the shadow boundary [53,63].

Following the prescription as given in [43,53], it can be
shown that

α2 þ β2 ¼ χ þ l2 ¼ r2sh: ð21Þ

From the above analysis it can be concluded that for any
general static, spherically symmetric and asymptotically
flat metric the shadow is circular in shape and depends on
the radius of photon sphere which in turn solely depends
only on the gtt component of the metric. We also note that
for an asymptotically flat observer the radius of the shadow
does not depend on the distance r0 and the inclination angle
θ0 of the observer.

B. Shadow of the compact object governed
by the Janis-Newman-Winicour spacetime

In this section we will study the properties of the
shadow given by the metric in Eq. (2). Before we proceed
with the discussion of the shadow, we first plot the
effective potential discussed in the last section in
Fig. 1(a). The figure depicts the behavior of the effective
potential with the variation of the metric parameter γ. As
expected, the effective potential Veff has a maxima
occurring at the photon sphere rph, which depends on
the value of γ. On decreasing the scalar charge q (or
increasing γ), rph becomes smaller along with the height
of the potential.
We can further determine the radius of the photon sphere

and the shadow using Eq. (20) and Eq. (21) for the metric in
Eq. (2). These are given by

rph ¼ b

�
γ þ 1

2

�
and ð22Þ

(a) (b)

FIG. 1. The above figure depicts the dependence of (a) the effective potential (b) the photon sphere rph and the radius of the shadow rsh
on the metric parameter γ. The metric has a curvature singularity at rc ¼ b where b ¼ 2M=γ. The region of unphysical solutions (r < b)
is shaded in blue. We note that at γ ¼ 0.5 both rph ¼ rsh ¼ rc ¼ b. When γ < 0.5, the photon sphere disappears since rph < rc. We
therefore confine ourselves in the region r > rc and 0.5 ≤ γ ≤ 1.
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rsh ¼ b

�
γ þ 1

2

��
2γ − 1

2γ þ 1

�1
2
−γ

ð23Þ

respectively. In Eq. (22) and Eq. (23) the rph and rsh are
expressed in units of M. In what follows we will scale the
radial coordinate by the mass M of the black hole, such
that r≡ r=M. Consequently, b≡ b=M, the scalar charge
q≡ q=M and the axion parameter h≡ h=M2. From Sec. II
we recall that bγ ¼ 2 and 0 ≤ γ ≤ 1. We note that as we
decrease the value of γ from unity, the radius of the photon
sphere rph increases while that of the shadow rsh decreases.
At γ ¼ 0.5 both rph and rsh become equal to rc ¼ b, the
radius where the curvature singularity occurs. When γ<0.5,
rph < rc and therefore we confine ourselves in the region
0.5 ≤ γ ≤ 1. The above discussion is illustrated in Fig. 1(b).
The region of unphysical solutions (r < b) is shaded in blue.
As soon as the field parameter γ approaches the critical value
γ ¼ 0.5, physical solutions for rph and rsh ceases to exist.
At a glance, this atypical behavior of photon sphere and

shadow seems counterintuitive since the radius of the
shadow generally increases with the radius of the photon
sphere. In this respect the behavior of the Winicour solution
is quite unique. But one can understand this scenario with
the analogy of having an optical lens system in a medium
denser than air. Optical system in relatively denser medium
bends light relatively smaller. Similarly, increasing the
scalar charge q is equivalent to putting the optical system
in a relatively denser medium, i.e., a medium with larger
refractive index. Consequently, light bending is maximum
in the Schwarzschild scenario compared to the situation
where there is scalar charge. The diagrammatic realization
has been shown in Fig. 2 which clearly shows that the
presence of scalar field causes lesser deflection of light
compared to the Schwarzschild scenario.
Finally we end our discussion with a few interesting

comments:
(i) We have noted from Sec. II that the scalar field and

the Kalb-Ramond field both minimally coupled to
gravity give rise to identical energy-momentum
tensor. However, in the case of the scalar field the
solution of the gravitational field equations lead to
an exact metric representing a naked singularity
while in the other case the solution leads to a

perturbative metric representing a black hole. We
have explored in an earlier work [43] the depend-
ence of the shadow radius on the axion parameter h
and found that a negative h enhances, while a
positive h diminishes the shadow compared to the
Schwarzschild scenario Fig. 3(a). In the Winicour
solution on the other hand, the shadow decreases
with decrease in γ (or increase with the scalar charge
q) and its radius is always less than the Schwarzs-
child case. This is illustrated in Fig. 3(b).

(ii) We note from Fig. 3(b) that the Schwarzschild
scenario produces larger radius of the shadow
compared to the ones with nontrivial scalar charge.
Further, if we allow the black hole to be rotating in
general relativity (the Kerr black hole), the radius of
the shadow also turns out to be smaller than the
Schwarzschild scenario. It is therefore interesting to
understand if a Kerr black hole can be distinguished
from the ones with scalar charge from shadow
related observations.

In this context it is important to note that the spin
a of the black hole not only affects the size of the
shadow but also its shape. This becomes pronounced
at a high inclination angle as the presence of angular
momentum leads to a dented shadow thereby caus-
ing a deviation from circularity in its shape. At low
inclination angles this effect is less conspicuous. In
particular, it can be shown that if a black hole is
viewed face on (zero inclination angle) then the
shadow is circular although the radius of the shadow
depends on the black hole angular momentum. To
elucidate this point we note that the x and y
coordinates of the shadow for a Kerr black hole
are given by,

x ¼ −
l

sin i
y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ þ a2cos2i − l2cot2i

q
: ð24Þ

In Eq. (24), i refers to the inclination angle, a is the
dimensionless black hole spin parameter, l ¼ L=E
and χ ¼ C=E2 are the two impact parameters, such
that L is the specific angular momentum, E is the
specific energy and C refers to the Carter constant.
The derivation of Eq. (24) can be found in [52,53].
From Eq. (24) it can be shown that when i ¼ 0 the
contour of the shadow is given by,

x2 þ y2 ¼ χ þ a2 ¼ r2sh where ð25Þ

χ ¼ −
r3phðr3ph þ 9rph − 6r2ph − 4a2Þ

a2ðrph − 1Þ2 ð26Þ

depends on a and rph [52,53,64]. The radius of the
photon sphere rph in turn also depends on a and is
given by,FIG. 2. Diagrammatic realisation of gravitational lensing in

Winicour spacetime.
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8<
:

rph ¼ 1þ ffiffiffiffi
A

p hn
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 1

p o1
3 þ

n
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 1

p o
−1
3

i
if jBj > 1

rph ¼ 1þ 2
ffiffiffiffi
A

p
cosð1

3
cos−1BÞ if jBj ≤ 1

ð27Þ

where

A ¼ 3 − a2

3
B ¼ 1 − a2

A
3
2

: ð28Þ

Figure 4 depicts the variation of the shadow radius with
the Kerr parameter a (considering i ¼ 0) and the JNW
metric parameter γ. It is clear from Fig. 4(a) that for i ¼ 0
an increase in Kerr parameter decreases the shadow radius.
Similarly, if we have a spherically symmetric black hole
with scalar charge described by the JNW spacetime, the

radius of the shadow diminishes with an increase in scalar
charge q (or decrease in γ). However, the degree of
reduction in the shadow radius is more due to the presence
of scalar charge than when it is rotating (rsh ∼ 4.0Rg when
γ ¼ 0.5 while rsh ∼ 4.83Rg when jaj ∼ 1 compared to
rsh ∼ 5.196Rg in the Schwarzschild scenario). This directly
affects the angular diameter θ of the shadow, since

tan θ ≈ θ ¼ 2rshGM
Dc2

ð29Þ

(a) (b)

FIG. 3. Radius of the shadow for (a) the perturbative axion metric and (b) the exact Winicour solution for various values of their
respective metric parameters.

(a) (b)

FIG. 4. The figure illustrates the variation of the shadow radius with (a) the Kerr parameter a (the black hole viewed at i ¼ 0) and
(b) the metric parameter γ of the Janis Newman Winicour spacetime.
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such that M is the mass and D is the distance of the black
hole from the observer. This result has important implica-
tions with respect to the observed shadow of M87* which
we shall discuss in the next section.
(iii) We could have considered the metric ansatz in

Eq. (2) by removing the constraint bγ ¼ 2M and
kept γ and b independent. Such a metric ansatz is
compatible with the Einstein’s equations with the
minimally coupled scalar field. We refer to such a
metric as the generalized Janis-Newman-Winicour
solution. The interesting characteristic of this gen-
eralized solution is that we do not get physical
solutions for the photon sphere and the shadow for
all values of the metric parameters γ and b.
In Fig. 5, the regions b > 0, γ < 0 and b < 0,

γ > 0.5, produces negative radii for the photon
sphere and the shadow and hence are not physically
important. As discussed in Sec. III B real positive
solution of the shadow is achievable only if
jγj > 0.5. In fact for the region jγj < 0.5, no physi-
cally realizable solution of photon sphere and
shadow can be found [Fig. 1(b)]. Hence the obser-
vation of shadow may be possible if b > 0, γ > 1=2
or b < 0, γ < −1=2. The second scenario where b
and γ are negative is not much discussed in the
literature. However when we are in the region b > 0
we must have γb ¼ 2, so that we can reproduce the
Schwarzschild limit for the gravitating object. This
particular case when b > 0 is widely known as
Janis-Newman-Winicour solution. Hence in this
region, our two parameter solution reduces to one
parameter solution discussed earlier. For the par-
ticular case when γ ¼ 1, the solution in Eq. (2)
represents the Schwarzschild solution.

C. Comparison with the observed shadow of M87*

We have noted in the last section that a Kerr black hole
casts a noncircular shadow only if it is viewed at a high
inclination angle. On the other hand, if a black hole casts a
circular shadow despite being viewed at high inclination
angle, then it implies that the background spacetime is
spherically symmetric. Further, if the black hole has precise
and independent measurements of mass and distance, then
the size of the observed angular diameter can be used to
compare between various background spacetimes. Since
the angular diameter directly depends on the shadow radius
[Eq. (29)], an observed angular diameter smaller than the
Schwarzschild scenario might favor the JNW spacetime.
Therefore in a future observation, if a black hole is viewed
at high inclination angle and has precise and independent
measurements of its mass and distance, then the shape and
size of the shadow can be a useful tool to probe the
background spacetime. In this way the degeneracy between
the effect of spin and γ can be broken, although we need to
wait for future observations for this.
At present, only the angular diameter of M87*, the

supermassive black hole at the center of the galaxy M87,
has been measured which corresponds to 42� 3 μas. The
object exhibits a strong jet and the angle of inclination is
taken to be 17° which the jet axis makes to the line of sight.
This is in agreement with the nearly circular shadow
observed in M87* with deviation from circularity ΔC ≤
10% [65]. Based on stellar population measurements, the
distance of M87* is reported to be D ¼ ð16.8� 0.8Þ Mpc
[66–68]. The mass of the source is constrained to be
M ∼ 6.2þ1.1

−0.5 × 109 M⊙ [69] from stellar dynamics obser-
vations while M ∼ 3.5þ0.9

−0.3 × 109 M⊙ [70] from gas
dynamics studies. Note that these are independent mass

(a) (b)

FIG. 5. The above figure represents the constant contours of the radius of the (a) photon sphere and (b) the shadow as functions of the
metric parameters γ and b. The shadow and the photon sphere are expressed in units of GM=c2.

IMPRINTS OF THE JANIS-NEWMAN-WINICOUR SPACETIME … PHYS. REV. D 102, 064027 (2020)

064027-7



estimations of the object which does not depend on
observations related to its shadow. From the measured
angular diameter of the shadow of M87* and assuming
general relativity, the EHT Collaboration has reported the
mass of the object to be M ¼ ð6.5� 0.7Þ × 109 M⊙
[65,71,72]. Therefore, this mass measurement should not
be used to constrain the background metric from shadow
related observations.
The above discussion reveals that the independent mass

measurements of M87* (based on stellar and gas dynamics
studies) differ quite substantially. Further, from Eq. (29) it
is clear that the angular diameter is highly sensitive to the
estimated magnitude of M. In Table I the angular diameter
of M87* is estimated in both the Kerr and the JNW
background assuming the different mass measurements
of the object (the mass reported by the EHT Collaboration
is also given for completeness), while the distance is taken
to be D ¼ 16.8 Mpc. From the table it is clear that the
variation in mass affects the angular diameter much more
than a change in the background spacetime (Table I).
Moreover, for higher masses, a change in γ affects the
angular diameter much more than a modification in the
Kerr parameter. If independent mass estimations are not
available then the angular diameter of the shadow can be
used to determine the mass assuming a given background
metric (as done by the EHT collaboration). In such a
scenario, however, one cannot constrain the background
from the angular diameter. Alternatively, without indepen-
dent mass measurements the degeneracy between the mass
and the background spacetime cannot be broken from the
observed angular diameter of the shadow.
Although a black hole viewed at a high inclination angle

can probe the background spacetime better, the present
observation of M87* (viewed at i ¼ 17°) can be used to
throw some light on the mass of M87* and the viability of
the JNW background. This is due to the greater reduction in
the shadow radius in the JNW background compared to

general relativity (Fig. 4 and Table I). In Fig. 6(a) we plot
the variation in the angular diameter of the shadow with the
JNW metric parameter γ assuming M ∼ 6.2þ1.1

−0.5 × 109 M⊙
(the red curves) and M ∼ 3.5þ0.9

−0.3 × 109 M⊙ (the blue
curves), which are the two independent mass measurements
of the object. For comparison with general relativity, the
angular diameter of the shadow is also plotted against the
Kerr parameter using the aforesaid masses in Fig. 6(b). In
both the cases the distance is taken to be D ¼ 16.8 Mpc.
The angular diameter in Fig. 6 when plotted with the central
value of the mass is denoted by the solid curves while the
dashed curves represent the theoretical angular diameter
plotted with the error bars in the masses. The pink shaded
region in Fig. 6 denotes the observed angular diameter of
42� 3 μas. It is important to note that since i ¼ 17° for
M87*, the shadow is not exactly circular for the Kerr black
hole but elongated along the y-axis. We consider the major
axis (the maximum distance between two points on the
circumference of the shadow [60,73]) as the shadow
diameter while computing the angular diameter of the
shadow.
From Fig. 6 it is clear that if M ∼ 3.5þ0.9

−0.3 × 109 M⊙ is
considered, then the observed angular diameter cannot be
reproduced by merely changing the metric parameters. This
mass estimation is therefore not favored by the observed
shadow of M87*. In fact, even M as high as 6.2 × 109 M⊙
cannot explain the observed angular diameter either in
general relativity or in the JNW background. This may be a
plausible reason why the mass of M87* estimated by the
EHT Collaboration (which is based on general relativity) is
greater than both the previous estimates. Also a background
metric which inherently enhances the shadow radius
compared to the Kerr scenario explains the observed
angular diameter of M87* better than general relativity
(e.g., the braneworld scenario [60]). In the present situation,
it is difficult to break the degeneracy between the presence
of the black hole spin and the scalar charge if a slightly

TABLE I. Variation of angular diameter of M87* with Kerr parameter a, JNWmetric parameter γ and black hole massM. The distance
of the source is assumed to be D ¼ 16.8 Mpc while computing the angular diameter.

Angular diameter (in μas)

Kerr metric (i ¼ 0) JNW metric

Serial No. Mass (In units of 109 M⊙) a ¼ 1.0 a ¼ 0.5 a ¼ 0.0 γ ¼ 0.5 γ ¼ 0.9 γ ¼ 1.0

1 3.5þ 0.9 25.061 26.579 26.972 20.763 26.655 26.972
3.5 19.935 21.143 21.455 16.516 21.203 21.455

3.5-0.3 18.227 19.331 19.616 15.101 19.385 19.616

2 6.2þ 1.1 41.579 44.098 44.748 34.448 44.223 44.748
6.2 35.314 37.453 38.006 29.258 37.559 38.006

6.2-0.5 32.466 34.432 34.941 26.898 34.53 34.941

3 6.5þ 0.7 41.009 43.494 44.135 33.977 43.617 44.135
6.5 37.023 39.266 39.845 30.673 39.377 39.845

6.5-0.7 33.035 35.037 35.554 27.37 35.136 35.554
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higher mass is considered within the allowed range. For
example, if M ∼ 6.5 × 109 M⊙ is used to evaluate the
theoretical angular diameter then γ ≥ 0.85 and jaj ≤ 0.6
can both reproduce the observed angular diameter of M87*
within the error bars. In such a scenario it is difficult to
distinguish between the JNW scalar charge and the spin of
the black hole from the image of M87*.
However, it is clear from Fig. 6(a) that γ ¼ 1 (the

Schwarzschild scenario) explains the observed shadow
for most of the allowed values of M. In this sense the
Schawarzschild scenario is more favored than the JNW
spacetime and if γ < 0.57 then even M ∼ 7.3 × 109 M⊙
cannot address the observation. Therefore such extreme
values of γ are ruled out by the present observation of the
EHT collaboration. Similarly, a ¼ 0 covers the maximum
range of observed angular diameter in Fig. 6(b) given the
allowed values of the estimated mass of the black hole.
However, M87* also exhibits a powerful jet with the

jet power Pjet ≥ 1042 erg s−1 and if one is confined to
general relativity then at least jaj ∼ 0.5 is required to
explain the jet power [71]. This estimate of a is also
consistent with the shadow related observations if
6.5 × 109 M⊙ ≤ M ≤ 7.3 × 109 M⊙ is taken to compute
the theoretical angular diameter [Fig. 6(b)]. Since spin
plays a significant role in powering the jet, the Kerr
scenario is more favored compared to the JNW spacetime
if one has to also explain the observed jet power of M87*.
The above discussion therefore elucidates that general
relativity explains the observed angular diameter and the
jet power of M87* better than the JNW background.
However, it is important to note that while deriving the
shadow radius we had implicitly assumed that the sur-
rounding medium is optically thin such that the effect of the
metric dominates the observed image. This may not be true

and if the surrounding medium is optically thick then from
the image of the surrounding accretion disk it is difficult to
distinguish the JNW spacetime from the Schwarzschild
metric [37].

IV. ACCRETION AROUND THE
JANIS-NEWMAN-WINICOUR SPACETIME

In this section we investigate the properties of the
electromagnetic emission from the accretion disk in the
Janis-Newman-Winicour spacetime. The continuum spec-
trum emitted by the accretion disk depends not only on the
nature of the background metric but also on the properties
of the accretion flow. We assume the Novikov-Thorne
model [74,75] for the accretion disk where the disk is
considered to be geometrically thin and optically thick.
Accretion takes place chiefly along the equatorial plane
such that the accreting particles have large azimuthal
velocity vϕ with negligible radial velocity vr and even
smaller vertical velocity vz. The presence of viscosity in the
system endows the accreting matter a small radial velocity
which enables it to inspiral and fall into the central compact
object. Within the domain of the Novikov-Thorne model
the accreting matter has practically negligible vz and hence
the Novikov-Thorne accretion disk harbors “no outflows.”
As the accreting matter inspirals, they lose gravitational
potential energy which gets converted into electromagnetic
radiation. This radiation interacts very effectively with the
accreting matter and almost all of it is radiated out from the
system and no heat is trapped with the accretion flow.
A temperature gradient exists within the disk such that the
inner disk is much hotter compared to the outer disk. Since
matter and radiation interact very efficiently, every annulus
of the disk emits a black body commensurate with the
temperature of the disk. The integrated emission from the

(a) (b)

FIG. 6. The figure illustrates the variation of the angular diameter with (a) the JNWmetric parameter γ and (b) the Kerr parameter a. In
each of the figures, the red curves represent the angular diameter calculated with M ∼ 6.2þ1.1

−0.5 × 109 M⊙, while the blue curves are
plotted assuming M ∼ 3.5þ0.9

−0.3 × 109 M⊙. The dashed curves in both the figues are plotted assuming the error bars in the masses about
the central value. The pink shaded region represents the observed angular diameter of 42� 3 μas.
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disk is therefore a multitemperature black body radiation.
With these assumptions of the Novikov-Thorne model the
flux from the accretion disk assumes an analytic form,

F ¼
_M0

4π
ffiffiffiffiffiffi−gp f̃ ð30Þ

where,

f̃ ¼ −
Ω;r

ðE −ΩLÞ2
�
EL − EmsLms − 2

Z
r

rms

LE;r0dr0
�

ð31Þ

where, Ω, E and L are the angular velocity, specific energy
and specific angular momentum of the accreting particle
at the radial distance r. For a spherical symmetric metric,
these can be expressed in terms of the metric parameters as,

Ω ¼ dϕ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fgϕϕ;rgfgtt;rg

p
gϕϕ;r

ð32Þ

E ¼ −ut ¼
−gttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt −Ω2gϕϕ
q ð33Þ

and

L ¼ uϕ ¼ Ωgϕϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − Ω2gϕϕ

q : ð34Þ

Ems and Lms refer to the energy and angular momentum
of the test particle at the marginally stable circular orbit.
For a detailed discussion on the Novikov-Thorne model
and a derivation of the expression for flux one is referred
to [74–76].
Since the photon emits a Planck spectrum at every radius,

the peak temperature is given by TðrÞ¼ðF̃ðrÞ=σÞ1=4 where
F̃ðrÞ ¼ FðrÞc6=ðG2M2Þ is the flux given in Eq. (30)
obtained after bringing back the fundamental constants
and σ is the Stefan Boltzmann constant.
The luminosity from the thin accretion disk is obtained

by integrating the Planck function BνðTðrÞÞ over the disk
surface at the observed frequency ν, such that,

Lν ¼ 8π2r2g cos i
Z

rout

rms

ffiffiffiffiffiffi
−g

p
BνðTðrÞÞdr and ð35Þ

BνðTÞ ¼
2hν3=c2

expð hν
zgkT

Þ − 1
ð36Þ

In Eq. (35), i refers to the inclination angle of the disk to the
line of sight, rg ¼ GM=c2 denotes the gravitational radius,
and zg denotes the gravitational redshift factor given by,

zg ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt −Ω2gϕϕ

q
E −ΩL

: ð37Þ

The redshift factor takes care of the modification induced in
the photon frequency while traveling from the emitting
material to the observer [77].
Note that the theoretical spectrum depends chiefly on the

gtt component of the metric while the grr component and
the volume factor is required only through the determinant
of the metric [see Eq. (30), Eq. (35)] [42].
The dependence of the theoretical spectrum from the

accretion disk on the metric parameter γ is illustrated in
Fig. 7. We note that the presence of the scalar charge
enhances the luminosity from the accretion disk for both
the black hole masses (The Schwarzschild scenario is
represented by the black solid line) [37]. Since the accretion
rate in Eq. (30) is expressed in Eddington units, the peak
temperature TðrÞ ∝ M−1=4 [76,78,79]. Therefore, the maxi-
mum luminosity from the accretion disk around a higher
mass black hole peaks at a lower frequency.
In the next section we will estimate the observationally

favored value of γ by comparing the theoretically calculated
luminosity with the observed luminosity of Palomar Green
quasars.

A. Observational sample

In this section, we compute the theoretical estimates of
optical luminosity of a sample of Palomar Green quasars
considered in [79,80] and compare these with the corre-
sponding observed values. The masses of these quasars
have been independently estimated using the method of

FIG. 7. The above figure illustrates variation of the theoretically
derived luminosity from the accretion disk with frequency for
various values of γ. The background is given by Eq. (2). The
luminosity decreases with increasing γ and is minimum in the
general relativistic scenario where γ ¼ 1 (the Schwarzschild
scenario). The representative masses of the black hole are taken
to be M ¼ 109 M⊙ and M ¼ 107 M⊙. The accretion rate
assumed is 1 M⊙ yr−1 and cos i is taken to be 0.8.
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reverberation mapping [81–84]. For a subsample of thirteen
quasars [79], the masses are also reported byM − σ method
[85–87]. Using observed data in the optical [88], UV [89],
far-UV [90], and soft x-ray [91], the bolometric luminos-
ities of these quasars have been estimated [79].
We calculate optical luminosity Lopt ≡ νLν at the wave-

length 4861 Å [79] for comparison with observations. For
quasars the theoretical emission from the accretion disk
peaks in the far-UV/extreme UV (FUV/EUV) part of the
spectrum, if the Novikov-Thorne thin disk model is
considered. In the observational front on the other hand,
the UV region of the spectral energy distribution (SED) is
not entirely contributed by the accretion disk but some
physical mechanism (e.g., advection, a Comptonizing
coronae, etc.) redistributes the UV flux to the x-ray
frequencies [79]. Therefore, although the effect of the
background metric becomes most pronounced in the UV
domain for quasars, extracting the effect of the metric from
UVobservations become difficult due to the contamination
in the UV emission from components other than the
accretion disk. Moreover, the error in bolometric luminos-
ity receives maximum contribution from the far-UV
extrapolation since the uncertainty in the UV luminosity
far exceeds other sources of error (e.g., optical or x-ray
variability) [79]. Therefore, a comparison of the theoreti-
cally derived UV luminosities (where the spectrum peaks)
with the observed UV luminosities, might lead to erroneous
conclusions regarding the background spacetime, and
hence we dwell in the optical domain.
We have already discussed in the previous section that

the maximum disk luminosity of a lower mass black hole
peaks at a higher frequency. Therefore, the peak emission
from the accretion disk of a 109 M⊙ black hole is closer to
4861 Å, the wavelength at which the analysis is done. Since
the peak of the disk emission occurs very close to the
marginally stable circular orbit (msco), the emission at
4861 Å comes from an inner part of the disk (closer to the
msco) for a 109 M⊙ black hole compared to a 107 M⊙
black hole. The wavelength 4861 Å corresponds to a
frequency ∼6 × 1014 Hz and is depicted with the dashed
black vertical line in Fig. 7. Therefore, for black holes with
M ∼ 109 M⊙ the effect of the metric on the emission at
4861 Å will be more pronounced. This motivates us to
consider only the quasars with M ≥ 109 M⊙ of the sample
reported in [79]. It turns out that out of eighty quasars
discussed in [79], eleven quasars have a mass greater than a
billion solar masses. We will consider only these quasars in
this work.
Since quasars are not expected to be edge-on systems the

inclination angle i is generally believed to lie between
cos i ∈ ð0.5; 1Þ. In this work we adopt a typical value of
cos i ∼ 0.8 in our analysis [79,92]. It turns out that for
nonrotating black holes the error (e.g., reduced χ2, Nash-
Sutcliffe efficiency, index of agreement etc.) between the
theoretical and observed luminosities get minimized when

cosi lies between 0.77–0.82 [93]. Moreover, Piotrovich
et al. [94] estimated the inclination angles of some of the
quasars in our sample which turns out to be consistent with
our choice.
The accretion rates of the quasars are reported in [79].

The accretion rates in [79] are estimated based on a stellar-
atmosphere-like model (referred to as TLUSTY models)
with black hole spin a=M ¼ 0.9. However, if a blackbody
model with spin a=M ¼ 0 is used, then for larger M the
accretion rates are expected to exhibit a maximum increase
by 40% while for smaller M the accretion rates tend to be
smaller by 20% compared to the accretion rates reported
in [79]. In order to take this factor into account we vary the
accretion rates between 80% to 140% of the reported
accretion rates [79] for each quasar in the subsample (with
M ≥ 109 M⊙), while performing the error estimations.

B. Numerical analysis and error estimators

In this section we compute several error estimators
which will enable us to deduce the observationally favored
model of γ.

(i) Chi-square χ2: Consider a set of observed data fOig
with possible errors fσig. The corresponding model
estimates of the observed quantity is denoted by
ΩiðγÞ, where γ is related to the scalar charge
associated with each of the quasars. The χ2 of the
distribution is then given by,

χ2ðγÞ ¼
X
i

fOi − ΩiðγÞg2
σ2i

ð38Þ

In Eq. (38), σi refers to the error associated with the
observed optical luminosity for each of the quasars.
It turns out that the error in optical luminosity is
negligible compared to the error in bolometric lumi-
nosity which receives maximum contribution from
the far-UVextrapolation as the uncertainty in the UV
luminosity far exceeds other sources of error (e.g.,

TABLE II. The mass, accretion rate, optical, and bolometric
luminosity of the eleven quasars considered are reported. These
are taken from [79].

Object M0 logM0 log Lopt log Lbol

0003þ 158 9.16 0.79 45.87 46.92� 0.25
1048 − 090 9.01 0.30 45.45 46.57� 0.32
1100þ 772 9.13 0.29 45.51 46.61� 0.25
1103 − 006 9.08 0.21 45.43 46.19� 0.10
1216þ 069 9.06 0.51 45.62 46.61� 0.28
1226þ 023 9.01 1.18 46.03 47.09� 0.24
1425þ 267 9.53 0.07 45.55 46.35� 0.20
1512þ 370 9.20 0.20 45.48 47.11� 0.50
1545þ 210 9.10 0.01 45.29 46.14� 0.13
1704þ 608 9.29 0.38 45.65 46.67� 0.21
2308þ 098 9.43 0.22 45.62 46.61� 0.22
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optical or x-ray variability) [79]. Since the errors in
optical luminosity of the quasars are not explicitly
reported we consider the errors in the bolometric
luminosity (reported in [79] and Table II) as the
maximum error possible in the estimation of the
optical luminosity.
In order to compute the χ2, the theoretical estimate

of optical luminosity Ωi is required, which depends

on the mass of the quasars, their accretion rates and
the metric parameter γ (which is related to the scalar
charge associated with the black hole). As discussed
in the last section we consider eleven quasars with
mass M ≥ 109 M⊙ [79] in our analysis. For each of
these quasars, the masses based on reverberation
mapping are reported in [79] (also mentioned in
Table II) which are subject to systematic errors that

FIG. 8. The above figure depicts variation of χ2 as a function of the metric parameter γ for individual quasars with M ≥ 109 M⊙.
For every quasar an uncertainty of 0.4dex is considered in the mass while accretion rates are varied between 80% to 140% of the
value reported in [79], to compute the theoretical luminosity. It is evident from the plot that χ2 minimizes for γ ∼ 1. For more
discussion see text.
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override the statistical uncertainty in the input data.
The systematic errors are difficult to quantify and a
factor of ∼3 (0.4 dex) error is considered as the
characteristic uncertainty in the mass estimates [79].
For example, the mass of the quasar PG 1545þ 210
is taken to be logM ¼ 9.10� 0.4 M⊙. We denote
the central value of the logarithm of the mass byM0

(reported in Table II). Then in the logarithmic scale

the mass M of the quasars can vary between
M0 − 0.4≲ logM≲M0 þ 0.4. For example, for
PG 1545þ 210, M0 ¼ 9.10. The accretion rates
of these quasars can at most vary between 80% to
140% of the accretion rate reported in Table II (see
discussion in the last section), which can be used to
compute the theoretical luminosity. For easier refer-
ence, the mass, accretion rate, optical, and bolometric

FIG. 9. The above figure depicts variation of χ2 as a function of the metric parameter γ for individual quasars with M ≥ 109 M⊙.
While computing the χ2 for a given value of γ an uncertainty of 0.4dex is considered in the mass estimates for all quasars while accretion
rates are varied between 80% to 140% of the value reported in [79], to compute the theoretical luminosity. The figure illustrates that for
most quasars χ2 minimizes for γ ∼ 1, the exceptions being PG 1425þ 267 and PG 2308þ 098.
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luminosities of the eleven PG quasars are reported
in Table II.
In order to compute the χ2 for a given source with

central value of the logarithm of its massM0, we first
fix a value of γ in the range 0.5 to 1. Then we fix the
value of mass in the range M0 − 0.4≲ logM≲
M0 þ 0.4 and allow the accretion rate to vary
between 0.8 to 1.4 times the accretion rate _M0

reported in Table II in steps of 0.1. For each different
accretion rate, but fixed logM and γ, we compute the
theoretical optical luminosity and subsequently the χ2

as in Eq. (38) and simply sum them up. While
computing the χ2 the error in the observed optical
luminosity σi is required. As mentioned earlier in this
section, σi is taken to be the error in the bolometric
luminosity (reported in Table II) as the maximum
error possible in the estimation of the optical lumi-
nosity. This method therefore considers the effect of
variation in the accretion rate.
Next we consider a different value of log M for

the same quasar in the allowed range mentioned
above, keep the γ fixed, but vary the accretion rate
as before, compute the resultant χ2 and again add
them up to the previous sum of χ2. We repeat this
procedure for all values of log M in the aforesaid
range, where the stepsize of varying log M is also
taken to be 0.1. In this way χ2 for a particular
magnitude of γ is calculated which is essentially
the sum of the χ2 obtained by varying the mass and
the accretion rate.
Now the last two steps are repeated for all

γ ∈ ð0.5; 1Þ to obtain the variation of χ2 with γ for
the given source. Subsequently, the above process is
reiterated for all the eleven quasars which gives the
dependence of the χ2 on γ for the individual quasars.
In Figs. 8 and 9 we plot the variation of χ2 with γ for
each of the eleven quasars. We note that for most of
the quasars the χ2 minimizes for γ ≈ 1 except for PG
1425þ 267 and PG 2308þ 098. This indicates that
the Schwarzschild scenario is mostly favored by
optical observations of quasars compared to the Janis
Newman Winicour spacetime.
We next compute the joint chi-square by summing

the χ2 of all the quasars for a given value of γ, and
repeating this process for all γ in the physically
allowed range γ ∈ ð0.5; 1Þ. This is depicted in Fig. 10
which illustrates that the total χ2 minimizes for γ ≈ 1,
thereby favoring the Schwarzschild scenario. In order
to strengthen our conclusions we consider a few more
error estimators. In the remaining error estimators, the
theoretical luminosity is computed with masses of the
quasars from Table II while accretion rates considered
are 1.4 times the accretion rate reported in Table II.
This is because we are considering the quasars in the

high mass end (M ≥ 109 M⊙) [79] (discussion in
Sec. IVA).

(ii) Nash-Sutcliffe efficiency and its modified form:
Nash-Sutcliffe Efficiency E [95–97] is related to
the sum of the squared differences between the
observed and the predicted values normalized by the
variance of the observed values. This error estimator
assumes the form,

EðγÞ ¼ 1 −
P

ifOi −ΩiðγÞg2P
ifOi −Oavg2

ð39Þ

whereOav denotes average of the observed values of
the optical luminosities of the quasars. Unlike χ2, the
model which best describes the observation max-
imizes the Nash-Sutcliffe efficiency. A model with
E ∼ 1 is considered to be an ideal model that
accurately predicts the observations. While calculat-
ing the theoretical optical luminosity for a given γ in
Eq. (39), the masses of the quasars are considered
from Table 1 of [79] while the accretion rates are
multiplied by a factor of 1.4 since we are considering
the quasars in the high mass end (M ≥ 109 M⊙)
[79]. This choice of mass and accretion rate is taken
for every quasar in the remaining error estimators we
discuss further.

As depicted in Fig. 11(a) in our case, Emaximizes
for γ ∼ 1, indicating that the Schwarzschild scenario
predicts the observation better than the Janis New-
man Winicour background.

Nash-Sutcliffe efficiencyE tends to beoversensitive
to higher values of the luminosity for taking square of
the error in the numerator [see, e.g., Eq. (39)]. There-
fore, a modified version of the Nash-Sutcliffe effi-
ciency denoted by E1 [96] is used, where,

FIG. 10. The above figure depicts the joint χ2 (by summing the
χ2 for all the quasars) as a function of the metric parameter γ. It is
evident from the plot that χ2 minimizes for γ ∼ 1.0.
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E1ðγÞ ¼ 1 −
P

ijOi −ΩiðγÞjP
ijOi −Oavj

: ð40Þ

Similar to E, a model which maximizes E1 is
considered to be a better description of the data.
Figure 11(b) illustrates that E1 maximizes for γ ∼ 1.
Theconclusions drawn from these twoerror estimators
corroborate our previous findings.

(iii) Index of agreement and its modified form: The index
of agreement was proposed [97–99] to overcome
the insensitivity of the Nash-Sutcliffe efficiency and
its modified form toward the differences between
the observed and predicted means and variances.
Denoted by d, it assumes the form,

dðγÞ¼1−
P

ifOi−ΩiðγÞg2P
ifjOi−OavjþjΩiðγÞ−Oavjg2

ð41Þ

The denominator, which denotes the maximum
deviation of each pair of observed and predicted
luminosities from the average luminosity is known
as the potential error.

Similar to Nash-Sutcliffe efficiency, the index of
agreement suffers from oversensitivity to higher
values of optical luminosity due to the presence of
the squared luminosities in the numerator of Eq. (41)
and hence its modified version d1 is proposed, where,

d1ðγÞ¼1−
P

ijOi−ΩiðγÞjP
ifjOi−OavjþjΩiðγÞ−Oavjg

ð42Þ

Similar to the previous error estimators, we note from
Fig. 12(a) and Fig. 12(b) that the model which best
describes the observation maximizes d and d1 and
hence corresponds to γ ∼ 1. Therefore, the conclu-
sions drawn previously remain unaltered, i.e., the

(a) (b)

FIG. 12. The above figure depicts variation of (a) index of agreement d and (b) the modified index of agreement d1 with the metric
parameter γ. Both the error estimators maximize for γ ∼ 1 favoring the Schwarzschild scenario.

(a) (b)

FIG. 11. The above figure depicts variation of (a) the Nash-Sutcliffe efficiency E and (b) the modified form of the Nash-Sutcliffe
efficiency E1 with the metric parameter γ. Both the error estimators maximize for γ ∼ 1.
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Schwarzschild scenario seems to be favored by
optical observations of quasars compared to the
Janis-Newman-Winicour spacetime.

V. CONCLUSION

The main goal of this work is to explore the character-
istics of electromagnetic observations in the Janis-
Newman-Winicour spacetime and confront them with
the available observational data. This naturally involves
investigating the nature of the black hole shadow and
accretion in this background. Below we enlist the important
results of this work:

(i) While investigating the properties of the shadow, we
note that the presence of the scalar charge decreases
the effects of the gravitational lensing and diminishes
the shadow radius compared to the Schwarzschild
scenario. With the increase in scalar charge or
decrease in γ the radius of the photon sphere increases
while that of the shadow decreases which is one of the
unique properties of the Janis-Newman-Winicour
spacetime. A spinning black hole also casts a smaller
shadow compared to a Schwarzschild black hole,
although the scalar charge causes a greater reduction
in the shadow radius compared to the Kerr scenario.
This feature can partially remove the degeneracy
between the JNW metric parameter γ and the spin,
from the recently observed image of M87*. Given the
uncertainty in the mass estimates of the object, the
observed angular diameter of M87* can be repro-
duced within the error bars, both by γ ≥ 0.57 and any
magnitude of the Kerr parameter (Fig. 6). However,
the Schwarzschild scenario explains the observed
shadow for most of the allowed values of M and
in this way the Schwarzschild scenario is more
favored by the observed shadow of M87*. Also
extreme values of γ (γ < 0.57) are completely ruled
out by the first image of the black hole, purely based
on its small angular diameter. Moreover, M87* also
exhibits a powerful jet with Pjet ≥ 1042 erg s−1 and
jaj ≥ 0.5 is required to explain the requisite jet power
[71]. This estimate of jaj is also consistent with the
shadow related observation, given the uncertainties in
its mass estimate. Therefore, the observed jet further
corroborates general relativity over the JNW space-
time. A future observation of a black hole viewed at a
high inclination angle and having precise and inde-
pendent estimations of its mass and distance can be
further used to establish/falsify the viability of the
JNW spacetime.

(ii) In the Winicour solution when the metric parameters
γ and b are treated as independent, a new regime
emerges where b is negative and γ ≤ −0.5. This
represents a horizonless compact object with real
positive solutions for photon sphere and shadow.
This is an interesting generalization in the parameter

space of the Janis-Newman-Winicour spacetime
which has not been discussed much in the literature.

(iii) Apart from studying the nature of the shadow in the
Janis-Newman-Winicour spacetime, we also explore
the effects of this background on the accretion onto
the compact object. We compute the theoretical
estimates of optical luminosity from the accretion
disk for a sample of Palomar Green quasars withM ≥
109 M⊙ [79] and compare them with the correspond-
ing observations. The uncertainties associated with
the mass and the accretion rates are taken into account
while computing the theoretical luminosity from the
accretion disk which are subsequently used to evalu-
ate the error estimators. For every allowed magnitude
of mass and accretion rate, the variation of χ2 with γ is
computed for all the quasars. It turns out that the χ2

minimizes in the Schwarzschild scenario for most of
the quasars, thereby favoring general relativity over
the JNW background. This is eventually followed by
evaluating the joint-χ2 and other error estimators like
the Nash-Sutcliffe efficiency, the index of agreement
etc., which in turn supports our earlier findings. This
result is also in agreement with the first observed
shadow of a black hole which is another independent
window to test the nature of strong gravity in the
electromagnetic domain.

It is however important to mention that the quasars
are multicomponent systems containing the accretion
disk, the corona, the jet, and the dusty torus emitting
in all bands of the electromagnetic spectrum and we
have not explicitly fitted the observed SED with the
Novikov-Thorne model which mimics the emission
only from the accretion disk. We are interested in
disentangling the effect of the background metric
from the SED and only emissions from regions very
close to the black hole gets modified by the back-
ground spacetime. This is one of the primary reasons
we choose to model the accretion disk since the effect
of the metric on the other components is not so
important. Second, modeling the entire spectral en-
ergy distribution (SED) theoretically is extremely
challenging since it depends not only on the back-
ground spacetime but also on the properties of the
accretion flow and one often resorts to phenomeno-
logical models to address this issue. Discerning the
effect of the metric from the SED therefore becomes
quite nontrivial. Our goal in this work is not to model
the entire SED but to constrain the value of γ from the
accretion observations using a theoretical model for
the disk. Among the available theoretical models the
Novikov-Thorne model is very successful in explain-
ing the emission from the accretion disk and our work
is simply a first attempt to identify the observationally
favored value of the scalar charge of the JNW
spacetime from the accretion data.
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