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In the literature on fðTÞ gravity, the status of local Lorentz invariance and the number of physical
degrees of freedom have been controversial issues. Relying on a detailed Hamiltonian analysis, we show
that local Lorentz invariance is completely broken, whereas, generically, the number of physical degrees of
freedom is N� ¼ 5; inD dimensions, this number is N� ¼ DðD − 3Þ=2þ ðD − 1Þ. As expected, the theory
is vulnerable to having problematical propagating modes. We compare our results with those existing in the
literature. As a by-product of our analysis, the diffeomorphism invariance is explicitly confirmed.
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I. INTRODUCTION

The teleparallel theory of gravity (TG) can be understood
as a gauge theory of local translations, with torsion as the
only field strength. In the context of Poincaré gauge theory
(PG) [1,2], a gauge theory of gravity with two field
strengths, the curvature and the torsion, TG is naturally
defined by the condition of vanishing curvature [3]. In
contrast to general relativity (GR), where the geometry of
spacetime is characterized by a Riemannian curvature and
vanishing torsion, TG has a nontrivial torsion but vanishing
curvature. In spite of this geometric difference, there is a
special version of TG which is dynamically equivalent to
GR, known as the teleparallel equivalent of GR (TEGR or
GRk) [4–6]. This fact is of particular importance for the
physical interpretation of TG.
Experimental predictions of general relativity (GR) in the

low energy limit (the Solar System), as well as in some high
energy regimes, such as gravitational waves, have been
extremelywell tested [7]. The situationwith the observational
data on the largest, cosmological scale is rather different. The
standard cosmological model can explain most of these
observations, but at the expense of introducing mysterious
concepts of dark matter and dark energy, “inferred to exist
only through their presumed gravitational effects [2]”.
As a response to this challenging situation, there has

been a lot of activity in developing modified (Riemannian

and non-Riemannian) gravitational models; see, for in-
stance, Refs. [8,9]. One of the well-known models of this
type is fðRÞ gravity, which is defined as an extension
of the GR Lagrangian, LR ¼ −a0R, to a function of R,
LfR ≔ fðRÞ. The existence of GRk was a natural theoreti-
cal motivation to introduce an analogous extension of TG,
known as fðTÞ gravity [10]. Due to the complicated
dynamical structure of fðTÞ gravity, its basic dynamical
properties, such as the status of local Lorentz invariance
and the number of physical degrees of freedom (d.o.f.), are
still controversial; see Li et al. [11] and Ferraro and
Guzmán [12,13]. The objective of the present work is to
find out reliable answers to these controversies by a
detailed analysis of fðTÞ gravity, based on Dirac’s
Hamiltonian approach [14].
This paper is organized as follows. In Sec. II, we give a

short account of TG, including the special case of GRk, and
describe its generalization to fðTÞ gravity. In Sec. III, we
use Dirac’s Hamiltonian approach to examine the canonical
structure of the model. In particular, we found the preser-
vation condition for the Lorentz constraint Cij, which plays
a central role in the canonical analysis of fðTÞ gravity. In
Sec. IV, the Legendre transform technique is used to derive
the Poisson bracket algebra between the Arnowitt-Deser-
Misner (ADM) components of the Hamiltonian. Then, in
Sec. V, we continue by constructing the canonical generator
of local translations, which allows us to prove the first-class
nature of the Hamiltonians. In Sec. VI, the preservation
conditions of the Lorentz primary constraints are shown to
produce a number of conditions on the corresponding

*mb@ipb.ac.rs
†nester@phy.ncu.edu.tw

PHYSICAL REVIEW D 102, 064025 (2020)

2470-0010=2020=102(6)=064025(19) 064025-1 © 2020 American Physical Society

https://orcid.org/0000-0002-7324-188X
https://orcid.org/0000-0002-0630-7623
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.064025&domain=pdf&date_stamp=2020-09-09
https://doi.org/10.1103/PhysRevD.102.064025
https://doi.org/10.1103/PhysRevD.102.064025
https://doi.org/10.1103/PhysRevD.102.064025
https://doi.org/10.1103/PhysRevD.102.064025


multipliers. In the generic case, Lorentz invariance is
completely broken and the number of d.o.f. is found to
be N� ¼ 5. In another interesting scenario, we obtained
N� ¼ 2. In Sec. VII, our analysis is compared to the works
of Li et al. [11] and Ferraro and Guzmán [12,13]. Finally,
we have a number of appendixes, which contain not only
technical details, but also some interesting extensions of the
main text. In particular, a short account of an alternative
Hamiltonian analysis of fðTÞ gravity is given in
Appendix D, and Appendix F generalizes the results of
the main text to higher-dimensional spacetimes.
Our conventions are as follows. The latin indices

ði; j;…Þ are the local Lorentz indices, the greek indices
ðμ; ν;…Þ are the coordinate indices, and both run over
0,1,2,3; the orthonormal frame (tetrad) is ϑi ¼ ϑiμdxμ

(1-form), ϑ ¼ detðϑiμÞ, the dual basis (frame) is ei ¼
eiμ∂μ, the metric components in the local Lorentz and
coordinate basis are gij ¼ ð1;−1;−1;−1Þ and gμν ¼
gijϑiμϑjν, respectively, and εijmn is the totally antisymmet-
ric symbol with ε0123 ¼ 1. The wedge product of forms is
implicitly understood.

II. FROM TELEPARALLEL TO f ðTÞ GRAVITY

Poincaré gauge theory (PG) was developed in the early
1960s by localizing the Poincaré group of rigid symmetries
of matter Lagrangians in Minkowski spacetime [1,2]. The
basic gravitational variables of PG are the tetrad field ϑi and
the Lorenz connection ωij (1-forms); the corresponding
field strengths are the torsion Ti ≔ dϑi þ ωi

jϑ
j and the

curvature Rij ≔ dωij þ ωi
kω

kj (2-forms), and the under-
lying structure of spacetime is described by Riemann-
Cartan geometry. In this framework, TG is defined by the
condition of vanishing curvature, Rij ¼ 0 [3], which means
that the related Lorentz connection is pure gauge. (For a
more general approach based on metric-affine gravity, see
Ref. [15].) As a consequence, the parallel transport is path
independent (under certain topological restrictions on
spacetime), and we have a teleparallel geometry, a geo-
metry with a distant (or absolute) parallelism.
It seems quite natural to define the TG dynamics by a

Lagrangian, which is quadratic in the torsion field strength,
but in that case, one has to keep in mind that the non-
vanishing Lorentz connection is pure gauge. An efficient
way to incorporate this information into the Lagrangian
formalism is by imposing the condition Rij ¼ 0 via a
Lagrange multiplier method; see, for instance, [5,15–17].
Such an approach is Lorentz-covariant and may be very
useful in exploring the general structure of the theory, but it
turns out to be rather complicated in certain practical
calculations, as can be seen in the Hamiltonian formulations
of [5,16]. A significant technical simplification can be
achieved by imposing the relation ωij ¼ 0 as the gauge-
fixing condition. In the resulting dynamical model, usually
called the (pure) tetrad formulation of TG, the tetrad field

remains the only dynamical variable, and the torsion 2-form
takes the simple form Ti ¼ dϑi.
Is the tetrad form of TG equivalent to the Lorentz-

covariant form? A detailed analysis of this issue can be
found in Ref. [17], which also includes the case of fðTÞ
gravity (for the case of GRk, see Ref. [18]). Using the
Lagrange multiplier approach, the authors were able to
show that the related equations of motion contain the same
information on the physical properties of the theory as the
equations of the pure tetrad version. More general argu-
ments supporting these results can be obtained from the
Dirac canonical approach to gauge theories [14]. The
Hamiltonian constraint analysis implies that the gauge-
fixing conditions, by construction, merely remove un-
physical (arbitrary) variables from the theory without
affecting its observable (gauge-invariant) properties.
Thus, one can fix the local Lorentz symmetry by taking
the gauge condition ωij ¼ 0. One is then left with a purely
frame theory which contains all the physics. In particular,
this conclusion justifies using the pure tetrad approach to
count the number of d.o.f. in fðTÞ gravity, or, for instance,
to evaluate the conserved charges or entropy in GRk [19].
In our further analysis of the teleparallel theories, we

rely, as did [11,12], on the pure tetrad formalism, charac-
terized by the vanishing spin connection. The general
(parity even) TG Lagrangian is defined in terms of three
independent quadratic invariants,

LTG ¼ ϑLTG;

LTG ≔ a0Tijkðh1Tijk þ h2Tjik þ h3gijTm
mkÞ; ð2:1Þ

where a0 ¼ 1=16πG. For the special choice of
parameters ðh1; h2; h3Þ ¼ ð1=4; 1=2;−1Þ, one obtains the
GRk Lagrangian [4–6],

LT ¼ϑLT; LT ¼
1

4
a0TijkðTijkþ2Tjik−4gijVkÞ; ð2:2Þ

with Vk ≔ Tm
mk. The corresponding covariant momentum,

Hijk ≔
∂LT

∂Tijk ¼ ϑHijk;

Hijk ¼ a0ðTijk þ 2T ½kj�i − 4gi½jVk�Þ; ð2:3Þ

plays an important (technical) role in the canonical analysis
of GRk. Variation of LT with respect to ϑiν yields the
gravitational field equations, which turn out to coincide
with the GR field equations in vacuum.
In the last two decades, in an attempt to find a physically

acceptable description of the cosmological dynamics, many
alternative gravitational models, based either on suitable
modifications of GR or its non-Riemannian extensions,
have been proposed [8–10]. In particular, the form of
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fðRÞ gravity motivates one to introduce an analogous
Lagrangian for fðTÞ gravity,

LfT ≔ fðTÞ;

T ≔ LT ≡ 1

4
a0TijkðTijk þ 2Tjik − 4gijVkÞ; ð2:4Þ

where T is the teleparallel counterpart of the Riemannian
scalar R.
The Hamiltonian analysis of the covariant teleparallel

gravity worked out in [5,16] shows that TG always has
gauge generators associated with the local Poincaré sym-
metry of the underlying Riemann-Cartan spacetime: the
local translations and the Lorentz symmetry of the frame-
connection pair ðϑi;ωijÞ. In addition, for the one special
case of GRk, there is an additional local Lorentz symmetry
that acts on the frame alone. This pure frame local Lorentz
symmetry is absent for any other choice of the teleparallel
Lagrangian.
After fixing the gauge ωij ¼ 0, the local Lorentz

symmetry of the frame-connection pair is broken. The
gauge symmetries of the generic tetrad form of TG are only
local translations, whereas in the special case of GRk, the
pure frame Lorentz symmetry is not affected, it survives as
a valid gauge symmetry of the theory. However, the
situation in fðTÞ gravity is more complicated. Although
one might expect breaking of the pure frame local Lorentz
symmetry, it is not a priori clear whether the violation is
complete or only partial. As we shall see, the final answer
depends on the complex dynamical structure of fðTÞ
gravity.
In order to simplify the Hamiltonian analysis of fðTÞ

gravity, we find it convenient to represent fðTÞ as the
Legendre transform of a function VðϕÞ [10–13],

Lf ¼ ϑLf; Lf ≔ ϕT − VðϕÞ; ð2:5Þ

where ϕ is an auxiliary scalar field. In classical mechanics,
the Legendre transformation is a well-known technique
used to switch from a Lagrangian Lðx; vÞ to the
HamiltonianHðx; pÞ ¼ pv − Lðx; vÞ. Based on an (incom-
plete) analogy with Brans-Dicke theory, the Lagrangian Lf

is often referred to as the scalar-tensor form of fðTÞ gravity.
The new Lagrangian Lf ¼ Lfðϕ; TÞ is dynamically equiv-
alent to fðTÞ. Indeed, using the relation T ¼ V 0ðϕÞ
obtained from δLf=δϕ ¼ 0, one can express ϕ as a function
of T , ϕ ¼ ϕðTÞ, provided V 0 is invertible. Then, by
substituting ϕðTÞ into Lf, it becomes a function of T only,
which confirms the equivalence with fðTÞ. The function
V 0ðϕÞ is invertible in the domain where V 00ðϕÞ ≠ 0.
In what follows, our analysis of fðTÞ gravity will be

based on the Lagrangian (2.5), with the basic dynamical
variables ðϑiμ;ϕÞ. The convenience of this formalism is
clearly visible in the form of the covariant momentum,

Hf
ijk ≔

∂Lf

∂Tijk ¼ ϕHijk; Hf
ijk ≔ ϕHijk; ð2:6Þ

which is obtained from the GRk expression (2.3) by the
simple rule a0 → a0ϕ.
Variation of Lf with respect to ϑiμ and ϕ yields the field

equations in vacuum,

Ei
ν ≔ −

δLf

δϑiν
¼ ∇μðϕHi

μνÞ þ TmniðϕHmnνÞ − eiνLf

≡ ð∂μϕÞHi
μν þ ϕ½∇μHi

μν þ TmniHmnν − eiνϑT �
þ eiνϑVðϕÞ ¼ 0; ð2:7aÞ

Eϕ ≔ ϑ½T − ∂ϕVðϕÞ� ¼ 0: ð2:7bÞ

In the presence of matter, the right-hand sides contain the
corresponding matter currents.
Using the identities from Appendix A of [5], the first

equation can be transformed into

Eik ¼ ð∂μϕÞHikμ − ϕ

�
2a0ϑ

�
Rikðω̃Þ − 1

2
gikRðω̃Þ

��

þ gikϑVðϕÞ ¼ 0; ð2:8Þ

where ω̃ is the Riemannian connection. Its trace and
antisymmetric part read

Ek
k ¼ 4ϑ½−a0Vμ∂μϕþ a0ϕR̃=2þ VðϕÞ� ¼ 0; ð2:9aÞ

E½ik� ¼ H½ik�μ∂μϕ ¼ 0: ð2:9bÞ

In GRk, the six equations (2.9b) are trivial.
In our further exposition, the superscripts “f” will be

omitted, to simplify the notation.

III. HAMILTONIAN FORM OF f(T) GRAVITY

The Dirac-Hamiltonian formalism for a system with
constraints [14] is a particularly suitable approach to
analyze both local symmetries and the dynamical d.o.f.
in fðTÞ gravity. As we shall see, the analysis closely
follows certain aspects of the GRk structure at an early
stage, but later, differences become more and more serious.
In the present analysis, we rely on the (1þ 3) decom-

position of spacetime, whose basic aspects can be charac-
terized by two simple properties: (p1) at each point of a
spatial hypersurface Σ∶x0 ¼ const, one can define a unit
timelike vector n ¼ ðnkÞ, orthogonal to Σ; (p2) any
spacetime vector V ¼ ðVkÞ can be decomposed into a
component V⊥ ≔ nkVk along n and another component
Vk̄ ≔ Vk − nkV⊥ laying in the tangent space of (“parallel”
to) Σ. As a consequence, nkVk̄ ¼ 0. We will use ε{̄ |̄ k̄ as the
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Euclidean epsilon symbol with ε1̄ 2̄ 3̄ ¼ 1, and δijkmnl is the
generalized Kronecker symbol.

A. Primary constraints

The canonical momenta ðπiμ; πϕÞ associated to the basic
Lagrangian variables ðϑiμ;ϕÞ are

πi
μ ¼ ∂L

∂Ti
0μ

¼ ϕHi
0μ; πϕ ¼ ∂L

∂0ϕ
¼ 0: ð3:1Þ

Note first that these relations define the set of 4þ 1 primary
constraints,

πi
0 ≈ 0; πϕ ≈ 0; ð3:2Þ

the existence of which does not depend on the particular
values of the coupling constants. On the other hand, the
canonical momentum πi

α can be equivalently expressed in
terms of the parallel canonical momentum,

π̂ik̄≔πi
αϑkα¼ϕJHi⊥k̄;

Hi⊥k̄¼a0½Ti⊥k̄þðTk̄⊥i−T⊥k̄iÞ−2ðniVk̄−gik̄V⊥Þ�; ð3:3aÞ

where J ≔ ϑ=N. Then, the constraint content of the first
relation in (3.1) can be clarified by introducing a new
object Pik̄,

Pik̄ ≔ π̂ik̄=J − ϕHi⊥k̄ð0Þ ¼ ϕHi⊥k̄ð1Þ; ð3:3bÞ

where Hi⊥k̄ð0Þ does not depend on the “velocities” Ti⊥k̄,
and Hi⊥k̄ð1Þ is linear in them. The irreducible decom-
position of Pik̄ with respect to the group of three-
dimensional spatial rotations yields [5]

P⊥k̄ ≡ π̂⊥k̄=J þ 2a0ϕTm̄
m̄ k̄ ≈ 0;

AP{̄ k̄ ≡ Aπ̂ {̄ k̄=J − a0ϕT⊥{̄ k̄ ≈ 0; ð3:4aÞ

Pm̄
m̄ ≡ π̂m̄m̄=J ¼ 4a0ϕTm̄

m̄⊥;
TP{̄ k̄ ≡ Tπ̂ {̄ k̄=J ¼ 2a0ϕTT{̄⊥k̄; ð3:4bÞ

where AX{̄ k̄ ¼ X½{̄ k̄�, TX{̄ k̄ ¼ Xð{̄ k̄Þ − g{̄ k̄X
n̄
n̄=3. Now, it is

obvious that the first two relations define six additional
primary constraints. Further calculations are greatly sim-
plified by representing these primary constraints in a
compact form,

Cik ¼ Hik þ a0ϕBik; ð3:5aÞ

where

Hik ≔ π̂ik̄ − π̂k{̄ ¼ 2π½iαϑk�α;

Bik ≔ ∂αB0α
ik ; B0α

ik ≡ ε0αβγikmnϑ
m
βϑ

n
γ; ð3:5bÞ

and we used the notation ε0αβγikmn ≔ ε0αβγεikmn. The above
result follows from the identity Bik ¼ −2JðT⊥

{̄ k̄ −
niTm̄

m̄ k̄ þ nkTm̄
m̄ {̄Þ. The existence of the constraints Cij

is caused by the special values of the coupling constants in
the GRk Lagrangian (2.2). On the other hand, the remaining
two relations (3.4b) are not constraints, they relate the
velocities Ti⊥k̄ to the canonical momenta π̂ik̄.

B. Hamiltonians

Starting with the definition of the canonical Hamiltonian,

Hc ≔ πi
α∂0ϑ

i
α − bL; ð3:6Þ

one can rewrite it in the standard Dirac-Arnowitt-Deser-
Misner form [20],

Hc ¼ NH⊥ þ NβHβ þ ∂αDα; ð3:7aÞ

where

H⊥ ≔ π̂i
m̄Ti⊥m̄ − JL − ni∂απi

α;

Hβ ≔ πi
αTi

βα − ϑiβ∂απi
α;

Dα ≔ πi
αϑi0: ð3:7bÞ

Here, the lapse and shift functions N ¼ nkϑk0 and
Nα ¼ ek̄

αϑk0, respectively, are linear in the unphysical
variables ϑk0. The lapse Hamiltonian H⊥ is the only
dynamical part of Hc as it depends on the Lagrangian.
To eliminate the velocities Ti⊥k̄ from H⊥, we use the
relation,

π̂i
m̄Ti⊥m̄ − JL ¼ 1

2
JPim̄Ti⊥m̄ − JL̄; ð3:8aÞ

where L̄ ≔ Lð0Þ≡ ϕT̄ − VðϕÞ. Then, inserting here the
irreducible decomposition,

Pim̄Ti⊥m̄ ¼ 1

3
Pm̄

m̄Tn̄⊥n̄ þ TP{̄ k̄
TT{̄⊥k̄

þ ½AP{̄ k̄
AT{̄⊥k̄ þ P⊥k̄T

⊥⊥k̄�; ð3:8bÞ

where the last two terms are weakly vanishing as a
consequence of (3.4a), the elimination of velocities with
the help of (3.4b) yields

H⊥≈
1

2a0ϕ
P2−JðϕT̄ −VÞ−ni∂απi

α≕Ȟ⊥;

P2≔
1

2J

�
π̂ðm̄ n̄Þπ̂ðm̄n̄Þ−

1

2
ðπ̂m̄m̄Þ2

�
;

T̄ ≔
1

4
a0ðTim̄n̄Tim̄n̄þ2T{̄m̄n̄Tm̄ {̄ n̄−4Tm̄

m̄k̄Tn̄
n̄ k̄Þ: ð3:9Þ
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An explicit distinction betweenH⊥, defined by (3.7b), and
its on shell version Ȟ⊥ is usually disregarded, but we keep
it for later convenience. Apart from the V term, the rest of
Ȟ⊥ is obtained from the GRk expression by a0 → a0ϕ.
The general Hamiltonian dynamics is described by the

total Hamiltonian,

HT ¼ Ȟc þ ui0πi0 þ uϕπϕ þ
1

2
uijCij; ð3:10Þ

whereu0s are, at this stage, arbitraryHamiltonianmultipliers.
Their dynamical interpretation is given by (Appendix A)

uϕ ¼ ∂0ϕ ¼ N∂⊥ϕþ Nα∂αϕ; ð3:11aÞ

u⊥n̄ ¼ NT⊥⊥n̄; um̄ n̄ ¼ NATm̄⊥n̄: ð3:11bÞ

Keeping the last two terms in (3.8b), the complete
dynamical Hamiltonian H⊥, defined in (3.7b) as the
Legendre transform of L with respect to the velocity
Ti⊥m̄, is given by

H⊥ ¼ Ȟ⊥ þ 1

2
ûmnCmn; ûmn ≔ N−1umn: ð3:12Þ

Simultaneously, the expression for the total Hamiltonian is
simplified,

HT ¼ Hc þ ui0πi0 þ uϕπϕ: ð3:13Þ

C. Preservation of primary constraints

For consistency of the Hamiltonian analysis, every
constraint φ appearing in the theory has to be preserved
during dynamical evolution of the system, determined by
the total Hamiltonian as

χ ≔ ∂0φ ¼ fφ; HTg ≈ 0:

In the expressions (3.10) or (3.12) for HT, an integration
over d3x is implicitly understood. Let us now apply this
condition to the primary constraints φA ¼ ðπi0; πϕ; CijÞ.
Starting with the preservation condition for πi0, one finds

χi ≔ −fπi0; HTg ¼ niH⊥ þ e{̄αHα ≈ 0; ð3:14aÞ

χ⊥ ¼ H⊥ ≈ 0; χα ¼ Hα ≈ 0: ð3:14bÞ

To calculate χϕ ≔ ∂0πϕ, we use the relations

fπϕ; Ȟ⊥g ¼ −∂ϕȞ⊥ ¼ 1

2a0ϕ2
P2 þ JðT̄ − ∂ϕVÞ≕Fϕ;

ð3:15aÞ

fπϕ; Cijg ¼ −∂ϕCij ¼ −Fij; Fij ≔ a0Bij; ð3:15bÞ

where the δ functions on the right-hand sides are omitted,
which imply

χϕ ¼ NFϕ −
1

2
umnFmn ≈ 0: ð3:16Þ

As shown in Appendix B, the Lagrangian counterpart of χϕ
is ϑðT − ∂ϕVÞ.
The key preservation condition at the level of primary

constraints is that of the Lorentz constraint Cij, which is of
particular importance for a proper understanding of the
status of Lorentz invariance in fðTÞ gravity. A direct
calculation shows that the expression χij ≔ fCij; HTg
has the form (Appendix C),

χij ¼ Gij
kð∂kϕÞδ ≈ 0; ð3:17aÞ

where

Gij
⊥ ≔ −2a0ϑðT⊥

{̄ |̄ − niV̄|̄ þ njV̄{̄Þ ¼ NFij; ð3:17bÞ

Gij
k̄ ≔ 2a0Jδ⊥k̄ n̄

ijm umn̄

− N½ϕ−1gk̄ m̄ðniπ̂ðm̄ |̄Þ − njπ̂ðm̄ {̄ÞÞ þ a0Jδk̄ m̄ n̄
{̄ |̄ r̄ Tr̄

m̄ n̄�:
ð3:17cÞ

The result is also verified in the Lagrangian approach by
showing that the Hamiltonian transcription of the six
Lagrangian equations (2.9b) coincides with χij.
Based on the analysis presented in Appendix C, one can

explicitly determine the Poisson bracket (PB) of Cij with
itself, relying on the value of the coefficient B3. The result
can be conveniently written in the form,

umnfCij;Cmng¼2umnðgjmCin−gimCjnÞþ4a0Jϕk̄δ
⊥k̄ n̄
ijm umn:

ð3:18Þ

The presence of the nontrivial last term shows that the
Cij are second class constraints, which implies that local
Lorentz invariance is broken.
The preservation of the primary constraints φA leads to

the corresponding secondary constraints,

χA ≔ ðȞ⊥;Hα; χϕ; χijÞ: ð3:19Þ

Since fðTÞ gravity is expected to be invariant under
local translations (diffeomorphisms), the Hamiltonians
ðȞ⊥;HαÞ (or their suitable deformations) are expected
to be first class (FC). On the other hand, the constraints
ðχϕ; χijÞ define seven conditions on the seven multipliers
ðuϕ; umnÞ. These conditions will play a prominent role in
the forthcoming analysis of local Lorentz invariance, as
well as in counting the physical d.o.f.
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For a comparison of the results found in the present
analysis to the canonical structure based on the standard
Lagrangian LfT ¼ fðTÞ, see Appendix D.

IV. PB ALGEBRA BETWEEN HAMILTONIANS

In this section, we wish to examine the PB algebra
between the Hamiltonians ðH⊥;HαÞ, which will allow us
to understand their preservation conditions, as well as the
status of diffeomorphisms invariance in fðTÞ gravity.
In the generic TG, the Hamiltonians satisfy the same PB

algebra as in GR,

fHα;H0
βg ¼ ðHβ∂α −H0

α∂ 0
βÞδ; ð4:1aÞ

fHα;H0⊥g ¼ H⊥∂αδ; ð4:1bÞ

fH⊥;H0⊥g ≈ −ð3gαβHβ þ 3g0αβH0
βÞ∂αδ: ð4:1cÞ

An elegant proof can be found in Mitrić [21]. Instead of
relying on explicit expressions for ðHα;H⊥Þ, he followed a
more effective method introduced by Nikolić [22], based
on treating the dynamical Hamiltonian H⊥ as a Legendre
transform of the Lagrangian; see (3.7b).
In GRk, the existence of parameters with critical values

generates the additional constraints Cij. In [21], the author
used the Legendre transform approach to show that the PB
algebra of the Hamiltonian constraints remains the same as
in (4.1). Note that the explicit expressions for H⊥ in TG
and in GRk are different.
The case of fðTÞ gravity requires further generalizations.

When Hα acts on the phase-space variables ðϑiα; πjβÞ via
the PB operation, it generates spatial diffeomorphisms. The
presence of the additional phase-space variables ðϕ; πϕÞ
suggests to modify Hα by adding the term πϕ∂αϕ.
A consistent realization of this idea requires one to relocate
the term πϕ∂0ϕ from HT to Hc, whereby both Hα and H⊥
are effectively modified as

H̄α ≔ Hα þ πϕ∂αϕ; ð4:2aÞ

H̄⊥ ≔ H⊥ þ πϕ∂⊥ϕ: ð4:2bÞ

Here,H⊥ as understood as the Legendre transform of L,

H⊥ ¼ π̂i
m̄Ti⊥m̄ − JL − ni∂απi

α: ð4:3Þ

With these modifications, the total Hamiltonian can be
written in a more compact form as

HT ¼ Hc þ ui0πi0 þ ∂αDα; ð4:4aÞ

Hc ¼ ϑi0H̄i ¼ NH̄⊥ þ NαH̄α; ð4:4bÞ

where the primary constraints Cij and πϕ are hidden
inside Hc.
Now, we are ready to find the PBs between the modified

Hamiltonians (4.2). In the approach based on explicit
expressions for the Hamiltonians, the most difficult part
of the calculation stems from the fact that H⊥ depends on
the Lagrangian. Studying the more complicated case of PG,
Nikolić [22] used a different strategy, based essentially,
but not entirely, on treating the dynamical Hamiltonian
as a Legendre transform of L with respect to the velocities
Ti⊥k̄, in accordance with (4.3). Applying certain identities
characterizing Legendre transformations, he was able to
derive the PB algebra of the Hamiltonian constraints
without specifying the explicit form of the Lagrangian.
Based on a number of technical details that can be found in
[21], we use here an analogous approach which takes into
account the presence of an extra dynamical variable ϕ in
fðTÞ gravity. As shown in Appendix E, the final result
takes the form,

fH̄α; H̄0
βg ≈ ðH̄β∂α − H̄0

α∂ 0
βÞδ; ð4:5aÞ

fH̄α; H̄0⊥g ≈ H̄0⊥∂αδ; ð4:5bÞ

fH̄⊥; H̄0⊥g ≈ −ð3gαβH̄β þ 3g0αβH̄0
βÞ∂αδ: ð4:5cÞ

Is the result (4.5) sufficient to conclude that H̄α and H̄⊥
are FC? Certainly not, since there are other constraints in
the theory, whose PBs with the Hamiltonians are still not
known. In order to extend the previous considerations, one
can calculate the PBs between the Hamiltonian constraints
and Cmn. Using the form of the term B2 in Appendix C,
Eq. (3.15b), and the relations (4.4), one can show that both
H̄α and H̄⊥ have vanishing PBs with Cmn. However, that is
still not sufficient since the PBs of the Hamiltonian
constraints with χϕ; χij and the related, possibly nontrivial
preservation conditions, are not yet known.
A refined analysis in the next section will allow us to go a

step further.

V. DIFFEOMORPHISM INVARIANCE

In this section, we construct the Hamiltonian gauge
generator for local translations in fðTÞ gravity, based on
Castellani’s algorithm [23], and use it to show that
ðH̄⊥; H̄αÞ are FC.
If the local symmetries of a gauge theory are described

only in terms of the gauge parameters ξiðxÞ and their first
derivatives, the canonical gauge generator has the form
(integration over d3x understood),

G ¼ _ξiG0
i þ ξiG1

i ; ð5:1Þ

where the phase-space functions G0
i and G

1
i are determined

by the conditions,
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G0
i ¼ CPFC; ð5:2aÞ

G1
i þ fG0

i ; HTg ¼ CPFC; ð5:2bÞ

fG1
i ; HTg ¼ CPFC; ð5:2cÞ

and CPFC denotes a primary FC constraint. The construc-
tion starts with any primary FC constraint G0

i , and the
algorithm describes how the corresponding G1

i should be
determined.

A. Gauge generator of the generic TG

The total and canonical Hamiltonians of TG are given by

HT ¼ Hc þ ui0πi0 þ ∂αDα; ð5:3aÞ

Hc ≔ NH⊥ þ NαHα ¼ ϑi0Hi; ð5:3bÞ

where

Hi ≔ niH⊥ þ e{̄αHα: ð5:3cÞ

The PB algebra of the Hamiltonian constraints (4.1),
obtained by the Legendre transform technique [21] can
be transformed to an equivalent form as

fHi;Hjg ¼ Tn
ijHnδ: ð5:4Þ

Since the only primary FC constraints in TG are
φi ¼ πi

0, we start the construction of the gauge generator
by taking

G0
i ¼ −πi0: ð5:5Þ

The condition (5.2b), combined with fG0
i ; HTg ¼ Hi,

implies

G1
i ¼ −Hi þ αi

mπm
0; ð5:6Þ

where the unknown coefficients αi
m are determined by

(5.2c),

fG1
i ; HTg ¼ −ϑk0Tn

ikHnδ − αi
nHnδ ¼ CPFC: ð5:7aÞ

Solving this condition for αin yields

αi
n ¼ −ϑk0Tn

ik; G1
i ¼ −Hi − ϑk0Tn

ikπn
0; ð5:7bÞ

and the final gauge generator takes the form,

G ¼ −_ξiπi0 − ξiðHi þ ϑk0Tn
ikπn

0Þ: ð5:8Þ

It is convenient to introduce the coordinate components
of ξi by ξi ¼ ϑiμξ

μ, so that

G ¼ −_ξμϑiμπi0 − ξμPμ; ð5:9aÞ

Pμ ¼ ϑiμðHi þ ϑk0Tn
ikπn

0Þ þ πi
0∂μϑ

i
0

¼ ϑiμHi þ πi
0∂μϑ

i
0: ð5:9bÞ

Using the on shell relation ∂0ϑ
i
0 ¼ ui0, one obtains

P0 ¼ Hc þ ui0πi0 ¼ HT − ∂αDα; ð5:10aÞ

Pα ¼ Hα þ πi
0∂αϑ

i
0 ¼ πi

μ∂αϑ
i
μ − ∂βðπiβϑiαÞ: ð5:10bÞ

This form ofG correctly reproduces the local translations
as a symmetry of the generic TG [21].

B. Generalization to f(T) gravity

In the formalism of Sec. V, the dynamical Hamiltonian is
defined by the Legendre transform, which means that Cij is
included inH⊥. Then, the total/canonical Hamiltonians can
be written in the form (4.4), representing an isomorphic
image of the TG formulas (5.3). In particular, the structure
functions of the PB algebra (4.5) in fðTÞ gravity are
identical to those of the PB algebra (4.1) in TG. Hence, the
Castellani procedure is practically identical to the one used
in TG. As a result, the gauge generator in fðTÞ gravity is
found to be

Ḡ ≈ −_ξiπi0 − ξiðH̄i þ ϑk0Tn
ikπi

0Þ: ð5:11Þ

Here, the weak equality is a consequence of the weak
equalities appearing in (4.5). However, one can show that
the weak equality can be safely replaced by the strong one,
so that

Ḡ ¼ −_ξμϑiμπi0 − ξμPμ; ð5:12aÞ

P0 ¼ H̄c þ ui0πi0 ¼ HT − ∂αDα; ð5:12bÞ

Pα ¼ H̄α þ πi
0∂αϑ

i
0 ¼ πi

μ∂αϑ
i
μ − ∂βðπiβϑiαÞ þ πϕ∂αϕ:

ð5:12cÞ

Indeed, by comparing this result with the one displayed
in (5.10), one can conclude that the gauge generator Ḡ
produces the correct local translations when acting on the
phase-space variables ðϑiμ; πiμÞ. Moreover, a direct verifi-
cation shows that its action on ðϕ; πϕÞ is also correct.
Hence, Ḡ acts correctly on the whole phase space of fðTÞ
gravity.
The gauge generator Ḡ is constructed by assuming that

πi
0 is FC and using the PB algebra (4.5). The fact that Ḡ is

the true gauge generator of fðTÞ gravity implies that the
Hamiltonian constraints ðH̄⊥; H̄αÞ must be FC, independ-
ently of the properties of other constraints, like πϕ; Cij,
or χϕ; χij.
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VI. DETERMINING THE MULTIPLIERS (uϕ;uij)

Preservation of the primary constraints πϕ and Cmn leads
to the conditions (3.16) and (3.17), respectively, which
either produce new constraints or determine some multi-
pliers (at least generically). These conditions can be written
in the form,

χϕ∶ u⊥|̄F⊥|̄ þ 1

2
u{̄ |̄F{̄ |̄ ≈ NFϕ; ð6:1aÞ

χij∶ Fijūϕ þ 2a0Jϕk̄δ
⊥k̄ n̄
ijm umn ≈ Xij; ð6:1bÞ

where

ūϕ ≔ N∂⊥ϕ ¼ uϕ − Nβ∂βϕ; ϕk̄ ≔ ∂ k̄ϕ; ð6:2aÞ

Xij ≔ Nϕk̄½ϕ−1gk̄ m̄ðniπ̂ðm̄ |̄Þ − njπ̂ðm̄ {̄ÞÞ þ a0Jδk̄ m̄ n̄
{̄ |̄ r̄ Tr̄

m̄ n̄�:
ð6:2bÞ

Making a 1þ 3 decomposition of (6.1b), one finds

F⊥|̄ūϕ − Zk̄u
k̄
|̄ ¼ X⊥|̄;

F{̄ |̄ūϕ þ Zk̄ðδk̄{̄ u⊥ |̄ − δk̄|̄u
⊥
{̄Þ ¼ X{̄ |̄; ð6:3Þ

where Zk̄ ≔ 2a0Jϕk̄. Then, using the notation,

Fk̄ ≔
1

2
εk̄ m̄ n̄F

m̄ n̄; uk̄ ≔
1

2
εk̄ m̄ n̄u

m̄ n̄; ð6:4Þ

the system of seven equations (6.1) for the seven unknown
multipliers ðūϕ; u⊥k̄; uk̄Þ takes the form,

F⊥n̄u⊥n̄ þ Fn̄un̄ ≈ NFϕ; ð6:5aÞ

F⊥m̄ūϕ − Zkε
k̄ m̄ n̄un̄ ¼ X⊥m̄; ð6:5bÞ

Fm̄ūϕ − Zkε
k̄ m̄ n̄u⊥n̄ ¼ Xm̄: ð6:5cÞ

For an extension to D spacetime dimensions, see
Appendix F.
Further analysis is organized by separating two com-

plementary cases, ϕk̄ ≠ 0 and ϕk̄ ¼ 0.

A. ϕk̄ ≠ 0

The contraction of Eqs. (6.5b) and (6.5c) with ϕm̄ yields

ϕm̄F⊥m̄ūϕ ¼ ϕm̄X⊥m̄; ð6:6aÞ

ϕm̄Fm̄ūϕ ¼ ϕm̄Xm̄: ð6:6bÞ

These conditions have two important consequences.
First, they generically determine ūϕ,

½ðϕm̄F⊥m̄Þ2 þ ðϕm̄Fm̄Þ2�ūϕ ¼ ðϕm̄F⊥m̄Þϕn̄X⊥n̄

þ ðϕm̄Fm̄Þϕm̄Xm̄; ð6:7aÞ

as long as1

ðϕm̄F⊥m̄Þ2 þ ðϕm̄Fm̄Þ2 ≠ 0: ð6:7bÞ

This is our main generic assumption, which implies that
at least one of the two terms ϕm̄F⊥m̄ and ϕm̄Fm̄ does
not vanish. And second, they produce a new secondary
constraint,

χ ≔ ϕn̄F⊥n̄ðϕm̄Xm̄Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
A1

− ϕn̄Fn̄ðϕm̄X⊥m̄Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
A2

: ð6:8Þ

A more detailed expression for χ is obtained using the
identities,

F⊥|̄≡2a0JV̄|̄; F{̄|̄≡−2a0JT⊥
{̄ |̄; Fk̄≡−a0Jεk̄m̄n̄T⊥m̄n̄;

X⊥|̄≡Nϕ−1ϕm̄π̂ðm̄|̄Þ; X{̄|̄≡a0bϕk̄δ
k̄m̄n̄
{̄ |̄ r̄ Tr̄

m̄n̄;

X{̄≡a0bϕk̄ε
k̄m̄n̄T{̄

m̄n̄;

where V̄{̄ ≔ Tk̄
k̄ {̄. As a consequence,

A1 ¼ 2a0Jϕr̄V̄ r̄ · a0bϕ{̄ϕk̄ε
k̄ m̄ n̄T{̄

m̄ n̄;

A2 ¼ −a0Jεk̄ m̄ n̄ϕk̄T⊥m̄ n̄ · Nϕ−1ϕr̄ϕ{̄π
ðr̄ {̄Þ;

⇒ χ ¼ a0bεk̄ m̄ n̄ϕk̄ϕ{̄ϕ|̄ϕ
−1ðT⊥m̄ n̄π̂

ð{̄ |̄Þ þ 2a0JϕV̄{̄T|̄
m̄ n̄Þ:
ð6:9Þ

To examine how this result affects the multipliers u⊥k̄
and uk̄, we split them into components parallel to and
orthogonal to ϕk̄,

u⊥k̄ ¼ u⊥ϕk̄ þ û⊥k̄; û⊥k̄ϕ
k̄ ¼ 0;

uk̄ ¼ uϕk̄ þ ûk̄; ûk̄ϕ
k̄ ¼ 0: ð6:10Þ

Returning to the general conditions (6.5), note first that
Eqs. (6.5b) and (6.5c) contain only the orthogonal compo-
nents ûn̄ and û⊥n̄,

F⊥m̄ūϕ − 2a0Jϕk̄ε
k̄ m̄ n̄ûn̄ ¼ X⊥m̄;

Fm̄ūϕ − 2a0Jϕk̄ε
k̄ m̄ n̄û⊥n̄ ¼ Xm̄: ð6:11Þ

1Here one can explicitly see that, as argued qualitatively in
[24,25], the fðTÞ theory is indeed vulnerable to problems with
nonlinear constraints leading to multipliers which can become
unbounded for certain field values. This is an indication of a
tachyonic propagating mode: in this case, when (6.7b) ap-
proaches zero ūϕ becomes unbounded—unless the right-hand
sides of (6.6a) and (6.6b) also vanish.
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Then, substituting the solutions of these equations for ûn̄
and û⊥n̄ into (6.5a) yields one linear equation for the
parallel components u⊥ and u,

u⊥ðF⊥n̄ϕn̄ÞþuðFn̄ϕn̄Þ¼NFϕ−F⊥n̄û⊥n̄−Fn̄ûn̄: ð6:12aÞ

The second equation for u and u⊥ is obtained from the
term fCmn; χ0g in the preservation condition for χ (see
Appendix G),

−∂0χ
0 ¼ fHT; χ0g

¼ 1

2
umnfCmn; χ0g þmultiplier independent terms

¼ u⊥ðϕn̄fC⊥n̄; χ0gÞ þ u

�
1

2
εm̄ n̄ k̄ϕk̄fCmn; χ0g

�

þmultiplier independent terms: ð6:12bÞ

The solutions of the system of linear equations (6.12) for
u⊥ and u depend on the form of the determinant,

Dðx; x0Þ ≔ F⊥n̄ϕn̄

�
1

2
ε{̄ |̄ k̄ϕk̄fC{̄ |̄; χ0g

�

− ðFn̄ϕn̄Þðϕ|̄fC⊥|̄; χ0gÞ: ð6:13Þ

To proceed further in a simple way, suppose that
F⊥n̄ϕn̄ ≠ 0, in accordance with our generic condition
(6.7b). (The alternative case Fn̄ϕn̄ ≠ 0 can be handled in
a similar way.) Then, (6.12a) can be interpreted as an
equation that defines u⊥ in terms of u. Next, introduce the
notation,

u⊥ðϕn̄fC⊥n̄; χ0gÞ þ u

�
1

2
εm̄ n̄ k̄ϕk̄fCmn; χ0g

�
≕ gðx0Þ;

ð6:14aÞ

multiply this relation by F⊥p̄ϕp̄,

u⊥ðF⊥p̄ϕp̄Þðϕn̄fC⊥n̄;χ0gÞþuðF⊥p̄ϕp̄Þ
�
1

2
εm̄n̄k̄ϕk̄fCm̄n̄;χ0g

�

¼F⊥k̄ϕk̄gðx0Þ; ð6:14bÞ

insert the expression for u⊥ determined by (6.12a), and
rearrange to get

u

�
F⊥p̄ϕp̄

�
1

2
εm̄ n̄ k̄ϕk̄fCm̄ n̄; χ0g

�
− Fp̄ϕp̄ðϕn̄fC⊥n̄; χ0gÞ

�

¼ known terms: ð6:15Þ

This equation for the last undetermined multiplier has the
form,

uðxÞDðx; x0Þ ¼ Gðx0Þ; ð6:16Þ

where Dðx; x0Þ is defined in (6.13). In view of the
derivatives of the δ function buried in Dðx; x0Þ, see
Appendix G, it is important to be mindful of the implicit
integration over the variable x. Carrying out the integrations
by parts (and then in the end dropping the prime) will lead
to a relation of the form,2

Aγ∂γuþ αu ¼ G: ð6:17Þ

The explicit functional forms for Aγ and α can be
straightforwardly obtained from the explicit form of
fCij; χg, derived in Appendix G. Several scenarios are
possible.
(s1)Generic scenario. If the differential equation (6.17)

can be solved for u, all the multipliers are determined.
Then the numbers of Lagrangian variables, first and
second class constraints are, respectively, N ¼ 16þ 1,
N1ðπi0;HiÞ¼8, N2ðπϕ; Cij; χÞ ¼ 8, and consequently,
the number of d.o.f. is N� ¼ 16þ 1 − 8 − 8=2 ¼ 5. In
particular, such a scenario could be realized if Aγ

vanishes but α ≠ 0. In that special case, the relation
(6.17) degenerates to a linear algebra relation for the
final multiplier.

(s2) If Aγ and α both vanish (this seems highly unlikely to
us), then G is a new secondary which must be
preserved. That in turn could lead to further constraints
with either the remaining multiplier being eventually
determined or maybe remaining undetermined. We do
not see any easy way in principle to restrict the possible
length of this constraint chain. If it is long enough,
there will be no d.o.f.

(s3)We cannot exclude some other, albeit unlikely, pos-
sibilities. Thus, for instance, if ∂0χ identically vanishes,
there would be only one condition for the multipliers u
and u⊥. Then, there would remain one undetermined
multiplier, one degree of “remnant local Lorentz sym-
metry [25].” As a consequence, one combination of the
components of ðπϕ; CijÞwould be first class and would
lead to the first class secondary χ, and six components
of ðπϕ; CijÞ would be second class. Hence, N1 ¼
8þ 2 ¼ 10, N2 ¼ 6, and N� ¼ 17 − 10 − 6=2 ¼ 4.

It seems likely that there are more than the 3 d.o.f. claimed
by Ferraro and Guzmán [12], and no—or at most two—
“remnant” local Lorentz symmetries, not five.

B. Sector ϕk̄ = 0

The phase space for field theories has in general
various sectors with distinct dynamics. One way this can
happen is if one considers just the subset of initial data with
some special symmetry (e.g., spherical, axisymmetry,

2This is the first time that we have encountered a differential
equation for a multiplier. It seems strange to us. How does this
affect locality?
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homogeneous). Another way is by restricting to the subset
of fields where some quantities vanish.
The objective of the following discussion is to take a

broader view on the phase-space constraint/multiplier story
in the fðTÞ theory. We focus on the ϕ-Lorentz sector with
the primary constraints πϕ and Cij. Preserving these
constraints leads to the conditions (6.5). Clearly, there is
a special sector Γ̄ of the whole phase space Γ, defined by3

ϕk̄ ¼ 0: ð6:18Þ
This is a very important sector; it includes the homo-
geneous cosmologies where ϕ ¼ ϕðtÞ.4
The content of (6.18) is clarified by the following

observations.
The differential conditions ∂ k̄ϕ ¼ 0 that define Γ̄ do not

eliminate ϕ as a degree of freedom, they only restrict the
coordinate dependence of ϕ (invariance under spatial
translations). Hence, they do not change the dimension
of the phase space.
Additional information on the restriction (6.18) comes

from its dynamical preservation,

∂0ϕk̄ ≔ fϕk̄; HTg ¼ fϕk̄; u
0
ϕπ

0
ϕ þ C0

ijðuijÞ0=2g
¼ u0ϕ∂ k̄δ − u0̄

k
|̄ϕ|̄ ≈ 0; ð6:19aÞ

where we used the relations (H1)6. By partial integration,
one finds

∂ k̄uϕ ¼ 0; ð6:19bÞ
which is just a consistent extension of the condition (6.18)
on ϕ to an analogous condition on uϕ ¼ ∂0ϕ.
In the sector Γ̄, the relation (6.2a) simplifies into

ūϕ ¼ uϕ; ð6:20Þ

and the relations (6.5) reduce to

F⊥n̄u⊥n̄ þ Fn̄un̄ ≈ NFϕ; ð6:21aÞ

F⊥m̄uϕ ¼ 0; ð6:21bÞ

Fm̄uϕ ¼ 0: ð6:21cÞ

In contrast to (6.5), the conditions (6.21) do not produce
any additional constraint χ. The physical content of (6.21)
is strongly influenced by the following theorem.
(T1.) If at least one of F⊥m̄; Fm̄ is nonvanishing, then

uϕ ¼ 0 and, as a consequence, ∂0ϕ¼fϕ;HTg¼
fϕ;u0ϕπ0ϕg¼0. Combining this result with ϕk̄ ¼ 0,
one finds that ϕ must be a true constant, ϕ ¼ ϕ̄.
Hence, the dynamical content of the Lagrangian
field equation (2.9b) becomes trivial, and more-
over, the Lagrangian field equation (2.8) takes
the GRk form, up to a cosmological constant
term Vðϕ̄Þ.

To complete the analysis, let us now examine the
corresponding number of d.o.f. Theorem T1 implies that
the conditions (6.21) have just one physically relevant
realization,

F⊥k̄ ≡ 2a0JV̄k̄ ¼ 0; ð6:22aÞ

Fk̄ ≡ −a0Jεk̄ m̄ n̄T⊥m̄ n̄ ¼ 0; ð6:22bÞ

⇒ Fϕ ≡ 1

2a0ϕ2
P2 þ JðT̄ − ∂ϕVÞ ¼ 0: ð6:22cÞ

Since these conditions restrict the dimension of the phase
space, one should impose their dynamical preservation.
Taking into account the relation fJ;H0

mng ¼ 0, see
(H1)3, the preservation of F⊥n̄ becomes equivalent to
(integration over x0 implicit)

∂0V̄n̄ ¼ fV̄n̄; HTg

¼ fV̄n̄;H0
ijg

1

2
ðuijÞ0 þ fV̄n̄; Ȟcg ≈ 0; ð6:23Þ

where we used the expression (3.10) for HT. A direct
inspection of the second term shows that it does not depend
on the canonical multipliers. When the above relation, with
interchanged x and x0, is combined with (H3)4, it yields

∂0V̄ 0̄
n ¼ −

1

2
uijfHij; V̄ 0

ng þ β0̄n

≈ −ðu{̄ |̄T|̄ {̄ n̄δþ u{̄nV̄{̄ − u⊥|̄T⊥|̄ n̄Þδ
− ðe{̄βen̄γÞ0½∂ 0

βðuiγδÞ − ∂ 0
γðuiβδ� þ β0̄n;

where β0n ≔ −fȞc; V̄ 0̄
ng. Integrating over x, and replacing

x0 by x in the final result, one obtains three differential
conditions on the six multipliers uij,

− ðu{̄ |̄T|̄ {̄ n̄ þ u{̄nV̄{̄ − u⊥|̄T⊥|̄ n̄Þ þ ðe{̄βen̄γÞð∂βuiγ − ∂γuiβÞ
þ βn̄ ≈ 0: ð6:24aÞ

3There are different types of vanishing. One case is instanta-
neous, that is a quantity vanishes at t ¼ t0, but not at earlier or
later instants. Such a case need not be pursued, as one can just
adjust the initial time a little to avoid the vanishing. (However,
one should then be concerned that the evolution stays regular as
one approaches the critical time [24].) One should instead focus
on the cases where the system evolution stays on the subset where
some quantity vanishes. Another complication that could happen
but cannot be treated generally is where a quantity vanishes on a
subset of the spatial hypersurface.

4Note: interest in the fðTÞ theory is mainly as a potential
solution to the dark matter/dark energy cosmological puzzles.
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Similarly, the preservation of Fn̄ is equivalent to

∂0T⊥m̄ n̄ ≈ fT⊥m̄ n̄;H0
ijg

1

2
ðuijÞ0 þ β⊥m̄ n̄ ≈ 0:

Then, relation (H3)2 implies

∂0T 0⊥m̄ n̄ ¼ −½ðu⊥|̄T|̄ m̄ n̄ þ u{̄mT⊥{̄ n̄ − u{̄nT⊥{̄ m̄Þδ
− n0iðem̄βen̄γÞ0½∂ 0

βðuiγδÞ − ∂ 0
γðuiβδÞ�� þ β0⊥m̄ n̄;

and consequently,

− u⊥|̄T|̄ m̄ n̄ − u{̄mT⊥{̄ n̄ þ u{̄nT⊥{̄ m̄

þ niðem̄βen̄γÞð∂βuiγ − ∂γuiβÞ þ β⊥m̄ n̄ ≈ 0: ð6:24bÞ

Here, we have a set of three conditions on the six multi-
pliers ðu{̄ |̄; u⊥|̄Þ.
Finally, the preservation of Fϕ takes the form,

∂0Fϕ ¼ fFϕ; HTg ¼ fFϕ; u0ϕπ
0
ϕg þmore

¼ uϕð∂ϕFϕÞ þmore ≈ 0: ð6:24cÞ

Relations (6.24a) and (6.24b) are differential equations
for the canonical multipliers uij, whereas the condition
(6.24c) determines uϕ, provided ∂ϕFϕ ≠ 0.
(s4) In the generic scenario, relations (6.24) determine the

multipliers ðuϕ; uijÞ. Then, in the phase space Γ̄ with
17 Lagrangian variables ðϑiμ;ϕÞ, we have 3þ3þ1¼7

new constraints (6.22), seven preservation conditions
(6.24), and seven determined multipliers ðuij; uϕÞ.
Since the seven primary constraints ðπϕ; CijÞ and
the seven new constraints (6.22) are second class,
and N1 ¼ 8, the number of physical d.o.f. is
N� ¼ 17 − 8 − 7 ¼ 2, the same as in GRk.

This result was to be expected, since, as we noted at the end
of T1, in this case, the Lagrangian equations reduce to
those of GR with a cosmological constant. However, we
find it instructive, and a good consistency check, to obtain
this result within the Hamiltonian analysis.

VII. SUMMARY AND DISCUSSION

In the present paper, we performed a detailed
Hamiltonian analysis of fðTÞ gravity, with a focus on
the local Lorentz invariance, the number of the physical
d.o.f., and the issue of nonlinear constraint effects. Our
main results can be summarized as follows.
The central role of the Lorentz constraint Cij with respect

to the status of local Lorentz invariance can be seen already at
an early stage of the canonical analysis. Namely, by showing
that fCij; Cklg does not vanish weakly, which means thatCij

is not first class, one can directly conclude that local Lorentz
invariance is broken.

To determine the classification of all the constraints and
calculate the number of physical d.o.f., we found it
convenient to first prove the first-class nature of the
ADM components of the canonical Hamiltonian. This
significantly simplifies further analysis and, as an “aside”
but expected result, it implies the diffeomorphism invari-
ance of fðTÞ gravity.
The classification of the remaining constraints is based

on the preservation conditions of the primary constraints
ðπϕ; CijÞ, interpreted as seven conditions on the seven
multipliers ðuϕ; uijÞ. Then, in a somewhat parallel process-
ing procedure, we analyzed which of these multipliers are
determined (that is, associated to second-class constraints)
and what happens with secondary constraints, if they exist.
Following such an approach, we found that generically, the
number of physical d.o.f. is N� ¼ 5. Note also that in the
special case ∂ k̄ϕ ¼ 0, fðTÞ gravity reduces to GR with a
cosmological constant, with N� ¼ 2.
We confirmed that fðTÞ gravity is indeed vulnerable to

the effects associated with nonlinear second class con-
straints [24,25]. When the dynamical variables evolve
toward values such that certain quantities approach zero,
certain canonical multipliers can diverge—signaling an
associated anomalous propagation. Such behavior can be
an indication of a fatal problem.
To gain a deeper insight into our results, we compare

them to those of Li et al. [11] and Ferraro and Guzmán [12].
The basic results of Li et al. in D ¼ 4 are presented in

Sec. IV of Ref. [11]. Their Eqs. (25)–(28), representing
the PB algebra involving the set of the ϕ-Lorentz primary
constraints ðπϕ; CijÞ and the canonical Hamiltonian H0,
are in complete agreement with our findings. In particu-
lar, their PB (25), with Gab given in the first line of the
next page, is identical to our result for fCij; Cmng in
(3.18). On the other hand, it should be contrasted with
the Lorentz PB algebra closure found in Eq. ð70Þ1 of
Ref. [12]. We did not find any comment by Ferraro and
Guzmán on this disagreement, although it is of essential
importance for the Lorentz invariance and the counting
of d.o.f.
Next, Li et al. continue with the analysis of

the three equations (29) by interpreting them as
1þ 6þ 1 ¼ 8 conditions for the seven multipliers. In
addition to the last two equations that we considered
(seven conditions for the seven multipliers), they included
here also the preservation condition for the canonical
Hamiltonian H0, equal to our Ȟc. In our approach,
we gave a completely separate discussion of the preser-
vation of Ȟc. Namely, in Secs. IV and V, we showed
that a suitably modified canonical Hamiltonian H̄c¼
Ȟþð1=2ÞumnCmnþuϕπϕ is first class, which implies its
preservation. Hence, Eq. ð29Þ1 is not really needed, it is
just a consequence of the last two equations.
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Without knowing that, the authors continue by writing
the eight conditions (29) in the form of a homogeneous
matrix equation with an 8 × 8 antisymmetric matrix M
having a vanishing determinant and rank 6. The condition
detM ¼ 0 is written in the form of a new constraint
π1 ≔

ffiffiffiffiffiffiffiffiffiffiffi
detM

p
≈ 0, whose preservation ∂0π1 ≈ 0 yields a

new condition on the multipliers. Alternatively, by dis-
regarding the redundant Eq. ð29Þ1, one is left with 6þ 1 ¼
7 conditions for seven multipliers. As we showed in
Sec. VI. A, the second equation gives (generically) five
conditions on multipliers plus a secondary constraint χ, the
preservation of which produces one more condition on the
multipliers, ∂0χ ≈ 0. Thus, the seven equations ð29Þ2 and
ð29Þ3 could be written as a homogeneous matrix equation,
with a 7 × 7 matrix of rank 6. This confirms that Eq. ð29Þ1
is indeed superfluous. Using it does not do any serious
harm, but it does complicate the analysis. Although both
approaches in the generic scenario predict the same number
of d.o.f., N� ¼ 5, our formalism is more explicit and
practical.
At the end of Sec. V, Li et al. discuss the d.o.f. for a

D-dimensional spacetime. The result of our analysis in
Appendix F, (D − 1) d.o.f., agrees with their finding in
the Lorentz ϕ sector. As a final remark, in discussing
the results obtained from the second equation in D
dimensions, the authors write “One can check that in
four dimensions the constraint derived from the second
equation of Eq. (29) and square root of the determinant
of M Eq. (36) are exactly the same.” This means that
our χ coincides with their π1. If we trust this assertion,
then our secondary constraint result is “exactly the
same” as theirs.
We also note that, in their Appendix, Li et al. find, just as

we did, a first order differential equation for the last
canonical multiplier.
As we mentioned above, one of the main errors in

Ferraro and Guzmán [12] is their claim that the PB
algebra of the constraints Gð1Þ

ab in Eq. ð70Þ1 closes just
like the ordinary Lorentz algebra, which is in contra-
diction to our result (3.18) [and Li et al. Eq. (25)]. This
error seriously affects their analysis, leading them to

claim that five of the six constraints Gð1Þ
ab are first class,

not second class.
There are, however, a number of other errors, but we

choose to comment here on only two of them. We begin by
noting that the last equality in their (65) implies Fϕ ¼ 0.
Indeed, as shown in our Appendix B, the Hamiltonian
transcript of EðT − ∂ϕVÞ weakly vanishes. Then, since Fϕ

introduced in their Eq. (64) does not vanish, the last
equality in (65) cannot be correct.
Moreover, Ferraro and Guzmán calculated the preser-

vation condition for Gð1Þ
ab in their Eq. ð81Þ2. By comparison

to our Appendix C, their result is recognized just as a
fraction of the complete result, associated to our coeffi-
cient B4.

Ferraro and Guzmán have published several
follow-up works [13], which have already attracted consi-
derable attention. As they were based on the unsound
foundation [12], they are not reliable guides.
In this paper, we presented a detailed analysis

of the puzzling fðTÞ Hamiltonian/constraint/d.o.f. issues.
This could be used as a solid foundation for certain future
investigations into the nature of this curious theory.
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APPENDIX A: DYNAMICAL INTERPRETATION
OF THE MULTIPLIERS

Using the relations,

fϑkγ; Ȟ0⊥g ¼ 1

2a0Jϕ

�
π̂ðk̄ n̄Þ −

1

2
gk̄ n̄π̂

�
ϑnγδ − ðnk∂γÞ0δ;

ðA1aÞ

fϑkγ;Hβg ¼ Tk
βγδ − ðϑkβ∂γÞ0δ; ðA1bÞ

fϑkγ; Cijg ¼ 2δk½iϑj�γδ; ðA1cÞ

where π̂ ≔ π̂k̄k̄, one finds that the dynamical equation for
ϑkγ takes the form,

∂0ϑ
k
γ ¼ fϑkγ; HTg

¼ N
1

2a0Jϕ

�
π̂ðk̄ n̄Þ −

1

2
gk̄ n̄π̂

�
ϑnγ þ NβTk

βγ

þ ∂γϑ
k
0 þ uknϑnγ; ðA2Þ

where the integration over d3x0 is understood, and we used
NnkþNβϑkβ¼ϑk0. Based on the identity, ∂0ϑ

k
γ − ∂γϑ

k
0≡

NTk⊥γ þ NβTk
βγ, this equation leads to the interpretation

of the multipliers umn as displayed in (3.11b). Moreover, it
implies

π̂ðm̄ n̄Þ −
1

2
gm̄ n̄π̂ ¼ 2a0JϕTðm⊥n̄Þ ⇔ Tπ̂m̄ n̄ ¼ 2a0JϕTTm̄⊥n̄:

ðA3Þ
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APPENDIX B: LAGRANGIAN EXPRESSION
FOR χϕ

By rewriting the identity (3.8a) in the form,

JL − JL̄ ¼ −
1

2a0ϕ
P2 þ π̂im̄Ti⊥m; ðB1aÞ

and adding JϕðT̄ − ∂ϕVÞ to both sides, one obtains

JϕðT − ∂ϕVÞ ¼ −
1

2a0ϕ
P2 þ JϕðT̄ − ∂ϕVÞ þ π̂im̄Ti⊥m̄:

ðB1bÞ

Then, transforming the last term as

π̂im̄Ti⊥m ≈
1

a0ϕ
P2 þ 1

N
π̂in̄uin̄; ðB2Þ

and using Hmn ≈ −ϕFmn, one obtains

ϑϕðT − ∂ϕVÞ ≈ ϕNFϕ þ
1

2
umnHmn ≈ ϕχϕ: ðB3Þ

As a by-product of the above analysis, one can combine
the identity (B1) with the relation (B2) to obtain

ϑL ≈
N

2a0ϕ
P2 þ ϑL̄þ 1

2
ATm⊥nHmn: ðB4Þ

APPENDIX C: THE PRESERVATION OF Cij

To calculate the preservation condition ∂0Cij ≈ 0, we
start from the relation,

χij ≔ fCij;HTg
¼ fCij; NH⊥g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

B1

þ fCij; NβHβg|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
B2

þ fCij; ð1=2ÞumnCmng|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B3

þ fCij; uϕπϕg|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
B4

; ðC1Þ

where we used fCij; πi0g ≈ 0. The Bn terms are
given by

B1 ¼ −
1

2
∂α½NðniCjk − njCikÞek̄αδ�

−
∂αϕ

ϕ
Nðniπ̂ðjk̄Þ − njπ̂ðik̄ÞÞek̄αδ

− a0ð∂αϕÞε0αβγijmkT
m
βγNnkδ;

B2 ¼ ∂βðNβCijδÞ − ðNβ∂βϕÞa0Bijδ;

B3 ¼ umnðgjmCin − gimCjnÞδ
þ a0umn∂αϕðgjn̄B0α

im − gin̄B0α
jmÞδ;

B4 ¼ a0Bijuϕδ ¼ a0BijðN∂⊥ϕþ Nβ∂βϕÞ: ðC2Þ

Then, transition to the weak equality yields

B1 ≈ −
∂αϕ

ϕ
Nðniπ̂ðjk̄Þ − njπ̂ðik̄ÞÞek̄αδ

− a0ð∂αϕÞε0αβγijmkT
m
βγNnkδ

B3 ≈ a0umn∂αϕðgjn̄B0α
im − gin̄B0α

jmÞδ;
B4 þ B2 ≈ a0BijN∂⊥ϕ: ðC3Þ

After transforming the second term in B1 and the whole of
B3 with the help of the identities,

ϑkαε
α0βγ
ijmrT

m
βγNnr ¼ −2bðTk̄

{̄ |̄ − δk̄{̄ V̄ |̄ þ δk̄{̄ V̄ {̄Þ
¼ −bδk̄ m̄ n̄

r̄ {̄ |̄ Tr̄
m̄ n̄;

ϑkαumnðgjn̄B0α
im − gin̄B0α

jmÞ ¼ −2Jumnðg|̄nδ⊥k̄
im − g{̄nδ⊥k̄

jmÞ
¼ −2Jδ⊥kn

imj u
m
n; ðC4Þ

the expression for χij can be transformed exactly to the
form (3.17).

APPENDIX D: DIRECT-HAMILTONIAN
ANALYSIS FOR f(T)

In this appendix, we examine what one gets if one tries to
directly construct the fðTÞ theory Hamiltonian. The fðTÞ
theory has the Lagrangian,

L̃fT ¼ ϑLfT ¼ ϑfðTÞ; ðD1Þ
where T is the GRk expression, displayed in (2.4).
The conjugate momenta come from

πi
μ ≔

∂½ϑfðTÞ�
∂ _ϑiμ

¼ f0ðTÞϑHi
0μ: ðD2Þ

Once again, one finds the sure primary constraints,

πi
0 ≈ 0: ðD3Þ

We find it convenient to represent the parallel momenta in a
suggestive form,
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π̂ik̄ ¼ ΦJHi⊥k̄; Φ ≔ f0ðTÞ: ðD4Þ

The momenta πi
k̄ can again be split into irreducible

components to give

p⊥k̄ ≔ π̂⊥k̄=J ¼ −2ΦTm̄
m̄ k̄;

Ap{̄ k̄ ≔ Aπ̂ ī k̄=J ¼ ΦT⊥ī k̄; ðD5Þ

pm̄
m̄ ≔ π̂m̄m̄=J ¼ −4ΦTm̄⊥m̄;

TP{̄ k̄ ≔ Tπ̂ ī k̄=J ¼ 2ΦTTī⊥k̄: ðD6Þ
Let us now combine the first two relations in the form,

pik ≔
1

2J
ðπik̄ − πkīÞ ¼ ΦF̂ik; ðD7aÞ

F̂ik ≔ ðT⊥
{̄ k̄ − niTm̄

m̄ k̄ þ nkTm̄
m̄ {̄Þ; ðD7bÞ

where both pik and F̂ik are antisymmetric objects. From
this, it follows that

F̂ · p ≔ F̂ikpik ¼ ΦF̂2; F̂2 ≔ F̂ · F̂ ≔ F̂ikF̂ik: ðD8Þ

Clearly, vanishing F̂2 is a special case. Let us put this case
aside for separate investigation and consider the generic
case, where F̂2 does not vanish anywhere. (One could also
make a more complicated, “less covariant,” analysis by
considering the vanishing of F̂⊥k̄ and F̂ī k̄ separately.) Then,
we find from (D8) the component of (D7a) along F̂ik,

Φ≡ f0ðTÞ ¼ F̂ · p

F̂2
: ðD9Þ

Using (D9), one can invert the relations (D6) for some of
the “velocities,”

Tm̄⊥m̄ ¼ −
pm̄

m̄

4Φ
; TTī⊥k̄ ¼

Tpī k̄

2Φ
: ðD10Þ

Furthermore, assuming f00ðTÞ ≠ 0, by the implicit function
theorem, the relation (D9) can be inverted to give

T ¼ ðf0Þ−1ðΦÞ: ðD11Þ

With this relation, one can find the “missing” “antisym-
metric velocity”—momentum relation for the one velocity
component along Fik from

T ≃
1

2
velocity2 þ ðanti-sym velocity compÞ1 þ T̄

¼ 1

2Φ2
P2 þ F̂ikATi⊥k þ T̄ ; ðD12Þ

where T̄ andP2 are defined as in (3.9). No other components
of the “antisymmetric velocity” can be inverted for

momenta; instead, the other five components of (D7a) are
new primary constraints, which can be written as5

Ĉik ≔ pik −ΦF̂ik ≈ 0; ĈikF̂
ik ¼ 0: ðD13Þ

It is interesting to point out certain structural similarities
of the above results to those obtained in the ϕT formalism
of Sec. III: first, the expression (D13) is an analogue of the
extra primary constraint (3.5), and second, the relation
(D12) is a counterpart of (B4).
Now, one can construct the Hamiltonian. The total

Hamiltonian has the form,

HT ¼ Hc þ ui0πi0 þ
1

2
ûikĈik; ðD14Þ

including 4þ 5 primary constraints with the canonical
multipliers. The explicit form of Hc can be found by
following a close analogy to the procedure described in the
main text, but the alternative ϕT formalism seems to be
much more practical. Nevertheless, we want to stress that
one could develop a complete Hamiltonian analysis based
on (D14). Unlike the case of the six Lorentz generators of
GRk, one will now find that the Poisson brackets algebra

among the five primary constraints Ĉik does not close,
which is related to the fact that the Lorentz Lie algebra does
not have a five-dimensional Lie subalgebra. From the
analysis of the ϕT formulation discussed in detail in the
text, we can infer that the five constraints (D13) will be
second class. If one goes further, one will find that the
preservation of these five constraints will generically lead
to four conditions on the five multipliers ûik plus one
secondary constraint χ. The preservation of the latter will,
generically, yield a first order differential equation for the
last multiplier. Generically, the number of physical d.o.f. is
then

N� ¼N−N1−N2=2¼ 16−8−6=2¼ 5¼ 2þ3: ðD15Þ

APPENDIX E: DERIVATION OF THE
ALGEBRA (4.5)

Let us start from the observation that the PB algebra of
the Hamiltonians ðHα;H⊥Þ in GRk has the form (4.1), as
shown in [21]. Then, since the result was derived with the
Legendre transform representation for H⊥, which does not
depend on the explicit form of the Lagrangian, one can
conclude that (4.1) holds also in fðTÞ gravity. Indeed, the
presence of the variable ϕ in the Lagrangian has no effect
on this algebra since none of the Hamiltonians ðHα;H⊥Þ

5An alternative form is

Čik ≔ F̂2pik − ðF̂ · pÞF̂ik ≈ 0:
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depends on πϕ. Knowing that, we will now show that the
PB algebra (4.5) for the ϕ-modified Hamiltonians (4.2)
follows from (4.1). The proof is presented in three steps.
a1) Since Hα does not depend on ϕ, the relation (4.5a)

follows directly from (4.1a) and the definition of H̄α.
a2) The dynamical Hamiltonian H⊥ does not depend on

πϕ, whereas its ϕ dependence, combined with relations
(3.15) and (3.12), implies

fπϕ;H⊥g ¼ −∂ϕH⊥ ¼ χϕδ: ðE1Þ
As a consequence,

fH̄α; H̄0⊥g ≈ fHα; H̄0⊥g ≈ fHα;H0⊥g; ðE2Þ
which proves (4.5b).

a3) Relying on Eq. (E1), one finds

fH̄⊥; H̄0⊥g ¼ fH⊥;H0⊥g þ fH⊥; π0ϕ∂ 0⊥ϕ0g
þ fπϕ∂⊥ϕ;H0⊥g þ fπϕ∂⊥ϕ; π0ϕ∂ 0⊥ϕ0g

≈ fH⊥;H0⊥g; ðE3Þ
which confirms (4.5c).

APPENDIX F: SOLVING FOR MULTIPLIERS
IN DIMENSION D

This is an alternative analysis to the one in Sec. VI; it is
hardly more complicated and extends the result to D
spacetime dimensions.
The equations to be solved are displayed in (6.1a)

and (6.3),

F⊥|̄u⊥|̄ −
1

2
F{̄ |̄u{̄ |̄ þ NFϕ ≈ 0; ðF1Þ

F⊥|̄ūϕ − Zk̄δ
k̄ |̄
l̄ m̄

1

2
ul̄ m̄ ≈ X⊥|̄; ðF2Þ

F{̄ |̄ūϕ þ Zk̄δ
k̄ l̄
{̄ |̄ u⊥l̄ ≈ X{̄ |̄: ðF3Þ

These equations have, respectively, 1,D−1, ðD−1ÞðD−2Þ=2
components.
The first relation gives one restriction on uij; let us set it

aside for now. The component of the second relation
projected along ϕ|̄ is

ðϕ|̄F⊥|̄Þūϕ ≈ ϕ|̄X⊥|̄: ðF4Þ

Generically (i.e., when ϕ|̄F⊥|̄ ≠ 0),6 it determines ūϕ.
The unknown “velocity” multipliers uij can be split into

components along and orthogonal to ϕk̄,

u⊥l̄ ¼ u⊥ϕl̄ þ û⊥l̄; û⊥l̄ϕ
l̄ ¼ 0; ðF5Þ

um̄ n̄ ¼ ðum̄ϕn̄ − un̄ϕm̄Þ þ ûm̄ n̄;

um̄ϕm̄ ¼ 0; ûm̄ n̄ϕn̄ ¼ 0; ðF6Þ

having, respectively, 1þ ðD − 2Þ ¼ D − 1 and ðD−2Þþ
ðD−2ÞðD−3Þ=2¼ðD−1ÞðD−2Þ=2 components. Using
this splitting and (F4), the remaining part of (F2) and (F3)
can be, respectively, rearranged into

ðϕm̄F⊥m̄Zk̄ϕ
k̄Þu|̄ ≡ −ðϕl̄F

⊥l̄ÞZk̄u
k̄ |̄

≈ ϕm̄½F⊥m̄X⊥|̄ − F⊥|̄X⊥m̄�; ðF7Þ

ðϕm̄F⊥m̄ÞZk̄δ
k̄ l̄
{̄ |̄ û⊥l̄ ≈ ϕm̄½F⊥m̄X{̄ |̄ − F{̄ |̄X⊥m̄�: ðF8Þ

Generically, (F7) is D − 2 equations, which can be solved
for the D − 2 components of u|̄. Contracting (F8) with ϕ{̄

yields

ðϕm̄F⊥m̄Þðϕ{̄Z{̄Þû⊥|̄ ≈ ϕm̄ϕ
{̄½F⊥m̄X{̄ |̄ − F{̄ |̄X⊥m̄�; ðF9Þ

which (generically) can be solved for the D − 2 compo-
nents of û⊥|̄. The remaining components of (F8) orthogonal
to ϕk̄ are ðD−1ÞðD−2Þ=2− ðD−2Þ¼ ðD−2ÞðD−3Þ=2
secondary constraints,

χ̄ r̄ s̄ ≔ δk̄ {̄ |̄
r̄ s̄ l̄

ϕl̄ϕk̄ϕm̄½F⊥m̄X{̄ |̄ − F{̄ |̄X⊥m̄�: ðF10Þ

Note the appearance of the projection operator,

P{̄ |̄
r̄ s̄ ≔ δk̄ {̄ |̄

r̄ s̄ l̄
ϕl̄ϕk̄; ðF11Þ

which projects antisymmetric quantities (multiplied by a
factor of ϕk̄ϕ

k̄) onto the subspace orthogonal to ϕk̄.
The preservation of the secondary constraint (F10)

will, upon introducing the values of the known quantities,
yield a relation linear in the as-yet-undetermined
u⊥, ûū v̄,

0 ¼ −∂0χ
0̄
r s̄ ¼ fHT; χ 0̄r s̄g ≈

1

2
uijfCij; χ 0̄r s̄g þ known terms

¼ u⊥|̄fC⊥|̄; χ 0̄r s̄g þ
1

2
u{̄ |̄fC{̄ |̄; χ 0̄r s̄g þ known terms

¼ u⊥ϕ|̄fC⊥|̄; χ 0̄r s̄g þ
1

4
ðϕk̄ϕ

k̄Þ−1P{̄ |̄
ū v̄û

ū v̄fC{̄ |̄; χ 0̄r s̄g
þ known terms; ðF12Þ

where r, s, u, v effectively range over the directions
orthogonal to ϕk̄.

6In the D ¼ 4 case in the main text, we considered the special
cases ϕk̄F

⊥k̄ ¼ 0 and ϕk̄ ¼ 0. We have not pursued these cases
for D > 4, they are left for future work.
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A similar splitting of (F1) gives

0≈ ðϕk̄ϕ
k̄Þ
�
F⊥|̄u⊥|̄−

1

2
F{̄|̄u{̄ |̄þNFϕ

�

¼ðϕk̄ϕ
k̄ÞF⊥|̄u⊥ϕ|̄−

1

4
F{̄|̄P

{̄ |̄
ū v̄û

ū v̄þknown terms: ðF13Þ

Rearranging, this gives u⊥ from

ϕ|̄F⊥|̄u⊥¼ðϕk̄ϕ
k̄Þ−11

4
F{̄|̄P

{̄|̄
ūv̄û

ūv̄þknown terms: ðF14Þ

Inserting this into (F14) leads to ðD − 2ÞðD − 3Þ=2
linear relations for the remaining ðD − 2ÞðD − 3Þ=2
unknowns ûū v̄,

ûū v̄P{̄ |̄
ū v̄½F⊥

k̄ϕ
k̄fC{̄ |̄; χ 0̄r s̄g − F{̄ |̄ϕ

k̄fC⊥k̄; χ
0̄
r s̄g�

¼ known terms: ðF15Þ

This equation for the remaining undetermined multi-
pliers has the form,

ûū v̄ðxÞDū v̄ r̄ s̄ðx; x0Þ ¼ Gr̄ s̄ðx0Þ: ðF16Þ

When one calculates the Poisson brackets fCij; χ 0̄r s̄g, one
will get, in general, both terms proportional to the δ
function and to its derivative. In view of the derivatives
of the δ function buried in Dðx; x0Þ, it is important to be
mindful of the implicit integration over the variable x.
Carrying out the integrations by parts (and then, in the end,
dropping the prime) will lead to a relation of the form,

Aγ
ū v̄ r̄ s̄∂γûū v̄ þ αū v̄ r̄ s̄ûū v̄ ¼ Gr̄ s̄: ðF17Þ

Thus, we get generically a system of first-order linear
differential equations for the multipliers ûū v̄; the solutions
to such a system will thus have a certain degree of
nonlocality, in comparison with the solutions of algebraic
equations. The explicit functional forms for Aγ

ū v̄ r̄ s̄ and
αū v̄ r̄ s̄ in (F18) can be straightforwardly obtained from the
explicit form of fCij; χ 0̄r s̄g.
Several scenarios are possible. One can determine all the

“missing” multipliers if this linear relation determines the
ûū v̄. Otherwise, some components of this relation may give
some additional constraints, which should then be pre-
served. The chain of constraints could, in principle, go on
for several steps before terminating. We cannot exclude the
possibility that, in the end, some components of ûū v̄ may
remain undetermined, so that the solutions have some
gauge freedom. However, we think that these possibilities
are quite unlikely.
Generically, the constraints πϕ, Cij, χ̄ r̄ s̄ are 1þDðD−1Þ=

2þðD−2ÞðD−3Þ=2¼ðD−1ÞðD−2Þþ2 second class con-
straints, and the number of d.o.f. in the ϕ-Lorentz
sector is

DðD−1Þ=2þ1−
1

2
½ðD−1ÞðD−2Þþ2� ¼D−1: ðF18Þ

For D ¼ 4, this gives 3 d.o.f. beyond the metric. This is
what we found in the main text and exactly agrees with the
claim of [11]. For D > 4 also, the analysis presented here
leads to the same number of constraints as presented in that
work; however, the formulas and the analysis appearing
here are more detailed and simpler.
Although the relations presented here seem much more

tractable than those in [11], explicitly verifying that the χ r̄ s̄
are truly second class and their preservation leads to all
the missing multipliers is not so easy. So we cannot yet
exclude other possibilities, including the unlikely extreme
case that the χ r̄ s̄ are identically preserved. Then, they
would be first class and ðD − 2ÞðD − 3Þ=2 of the Cij would
also be first class. In this case, the Lorentz sector would
have ðD − 2ÞðD − 3Þ first class constraints and 1þ 1þ
2ðD − 2Þ ¼ 2ðD − 1Þ second class constraints. There are
other unlikely possibilities. In any case, we can be sure that
there are at least 2ðD − 1Þ second class constraints and not
DðD − 1Þ=2 − 1 first class, unlike the claims of [12].
Furthermore, there are indeed (as we had conjectured

[24]) some possibilities for problematical nonlinear con-
straint effects. Fixing the multipliers in the second class
case requires ϕk̄F

⊥k̄ ≠ 0 and a nondegeneracy of Dū v̄ r̄ s̄.
The dynamics is prone to catastrophic behavior if these
quantities degenerate somewhere. However, if ϕ is non-
constant and yet vanishes asymptotically at infinity, it must
have critical points somewhere, so ϕk̄ can be expected to
vanish at some points. Thus, indeed, there is good reason to
be concerned about the effects of the changing of the rank
of the constraint Poisson bracket matrix.

APPENDIX G: CALCULATION OF fCij;χ 0g
We shall focus here on the part fCij; χ0g of the complete

expression −∂0χ. The calculation will be organized in
several simple tasks. Start by rewriting Cij in the form,

Cij¼Hijþa0ϕBij; Hij¼πi|̄−πj{̄; Bij¼∂αB0α
ij : ðG1Þ

In order to explore the dynamical content of χ, it is
suitable to rewrite it in the form,

χ ¼ a0bϕ−1w1ðw2 þ 2a0Jϕw3Þ;
w1 ¼ εk̄ m̄ n̄ϕk̄ϕr̄ϕs̄;

w2 ≔ T⊥m̄ n̄π̂
ðr̄ s̄Þ;

w3 ≔ V̄r̄Ts̄
m̄ n̄; ðG2Þ

see Sec. VI. The factors f ¼ ðb;ϕ; JÞ are singled out since
fCij; fg ¼ 0; see (H1). The indices of wn can be recon-
structed by w1 → w1

m̄ n̄
r̄ s̄ , w2 → w2

r̄ s̄
m̄ n̄, and similarly for w3.
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Step 1. We begin by calculating the terms Wn ≔
fCij; w0

ng, using the formulas,

W1 ¼ fHij; ðϕk̄ε
k̄ m̄ n̄Þ0gðϕr̄ϕs̄Þ0

þ fHij; ðϕr̄ϕs̄Þ0gðϕk̄ε
k̄ m̄ n̄Þ0;

W2 ¼ fHij; T 0⊥m̄ n̄gðπ̂ðr̄ s̄ÞÞ0 þ fHij; ðπ̂ðr̄ s̄ÞÞ0gT 0⊥m̄ n̄

þ a0ϕfBij; ðπ̂ðr̄ s̄ÞÞ0gT 0⊥m̄ n̄;

W3 ¼ fHij; ðV̄r̄Þ0gðTs̄
m̄ n̄Þ0 þ fHij; ðTs̄

m̄ n̄Þ0gðV̄r̄Þ0: ðG3Þ

Explicit results are obtained with the help of Appendix H,

W1 ¼ ϕk̄ðδnjε{̄ k̄ m̄ − δmj ε{̄
k̄ n̄Þδ · ϕr̄ϕs̄

þ ϕ{̄ðgjrϕs̄ þ gjsϕr̄Þδ · ϕk̄ε
k̄ m̄ n̄ − ði ↔ jÞ; ðG4aÞ

W2 ¼ W21 þW22 þW23; ðG4bÞ

W21 ¼ fHij; T 0⊥m̄ n̄gðπ̂ðr̄ s̄ÞÞ0
¼ ðniTjm̄ n̄ þ gjmT⊥{̄ n̄ − gjnT⊥{̄ m̄Þπ̂ðr̄ s̄Þδ
− ðϑjγ∂ 0

βδ − ϑjβ∂ 0
γδÞðniem̄βen̄γπ̂ðr̄ s̄ÞÞ0 − ði ↔ jÞ;

W22 ¼ fHij; ðπ̂ðr̄ s̄ÞÞ0gT 0⊥m̄ n̄

¼ ðδðrj π̂ {̄ s̄Þ þ δðsj π̂
r̄Þ
{̄ÞT⊥m̄ n̄δ − ði ↔ jÞ;

W23 ¼ a0ϕfBij; ðπ̂ðr̄ s̄ÞÞ0gT 0⊥m̄ n̄

¼ a0ϕ∂α½ðB0α
ij g

rs̄ þ gr̄kB0α
ki δ

s̄
j þ gr̄kB0α

jk δ
s̄
i Þδ�T 0⊥m̄ n̄;

W3 ¼ W31 þW32; ðG4cÞ

W31 ¼ fHij; ðV̄r̄Þ0gðTs̄
m̄ n̄Þ0

¼ ðTj{̄
r̄ þ δrjV̄ {̄ÞTs̄

m̄ n̄δ − niT⊥|̄
r̄ðTs̄

m̄ n̄Þδ
− ðϑjγ∂ 0

βδ − ϑjβ∂ 0
γδÞðe{̄βer̄γTs̄

m̄ n̄Þ0 − ði ↔ jÞ;
W32 ¼ fHij; ðTs̄

m̄ n̄Þ0gðV̄r̄Þ0
¼ ½ðgjmTs̄

{̄ n̄ − gjnTs̄
{̄ m̄Þ − niðδpj ns þ δsjn

pÞTpm̄ n̄�V̄r̄δ

− δs̄{̄ ðϑjγ∂ 0
βδ − ϑjβ∂ 0

γδÞðem̄βen̄γV̄r̄Þ0
− ði ↔ jÞ: ðG4dÞ

Step 2. The PB that we are looking for,

fCij; χ0g ¼ a0ðbϕ−1Þ0W1ðw0
2 þ 2a0J0ϕ0w0

3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Z1

þ a0ðbϕ−1Þ0w0
1ðW2 þ 2a0J0ϕ0W3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Z2¼Z21þZ22

; ðG5Þ

can be calculated directly from (G4). The term W1 is
proportional to the δ function, whereas W2 and W3 contain
both δ and ∂δ. Terms with ∂δ can be transformed using the
δ-function identity (H1)1.

The first term in (G5) is given by

Z1ij ¼ 2a0ðbϕ−1Þϕk̄½δnj ε{̄ k̄ m̄ϕr̄ϕs̄ þ ϕ{̄gjðr̄ϕs̄Þεk̄ m̄ n̄�
× ðT⊥m̄ n̄π̂

ðr̄ s̄Þ þ 2a0JϕVr̄Ts̄
m̄ n̄Þδ − ði ↔ jÞ: ðG6Þ

The structure of the second term is more complicated,
as it contains both δ and ∂δ terms. The contributions
to Z2ð∂δÞ are determined by isolating ∂δ terms in
W2 and W3,

W2ð∂δÞ ¼−½ðϑjγ∂ 0
βδ−ϑjβ∂ 0

γδÞðniem̄βen̄γπ̂ðr̄ s̄ÞÞ0− ði↔ jÞ�
þa0ϕ½ðB0α

ij g
rs̄þ gr̄kB0α

ki δ
s̄
j þ gr̄kB0α

jk δ
s̄
i Þ∂αδ�T 0⊥m̄ n̄;

W3ð∂δÞ ¼−ðϑjγ∂ 0
βδ−ϑjβ∂ 0

γδÞðe{̄βer̄γTs̄
m̄ n̄þ δs̄{̄ em̄

βen̄γV̄r̄Þ0
− ði↔ jÞ: ðG7Þ

Now, one can insert these terms in (G5), substitute the
resulting expression Z2ð∂δ; x; x0Þ into Eq. (6.13) for
the determinant, rearrange the result with the help of the
δ-function identity (H1)1, and integrate over d3x (applying
the partial integration where needed). Then, replacing x0 by
x, one obtains the first term in the differential equa-
tion (6.17). The second term in (6.17) is produced by
the δ function contributions from both Z1 and Z2.

APPENDIX H: TECHNICAL APPENDIX

The formulas presented in this appendix greatly facilitate
the work in the ADM basis; see [21]. For any variable U,
we use the notation U0 ≔ Uðx0Þ.

fg0∂ 0δ¼−f∂ðgδÞ;
ek̄

0¼ 0; Ne⊥0¼ 1; ϑk̄α¼ ϑkα;

ek̄
αϑkβ ¼ δαβ; em̄αϑkα ¼ δkm−nmnk≕δkm̄;

fπiα;N0g¼Nαniδ; fπiα;J0g¼−Je{̄αδ;

fπiα;ϑ0g¼−ϑeiαδ; fHij;ϑ0g¼ fHij;J0g¼ 0;

fHij;U0̄
k
g¼ ðgjkUi−gikUjÞδ for Uk̄ ¼ðnk;ϑkβ;ek̄β;ϕk̄Þ;

fHij;ðδkr̄Þ0g¼−ðδkjnrþgjrnkÞniδ− ði↔ jÞ: ðH1Þ

fHij; π̂0mn̄g ¼ ðgjmπ̂in̄ − ginπ̂m|̄Þδ − ði ↔ jÞ;
fHij; π̂ 0̄m n̄g ¼ ðgjmπ̂ {̄ n̄ − ginπ̂m̄ |̄Þ − ði ↔ jÞ;
fB0α

ij ; π
0
k
βg ¼ 2ε0αβγijkn ϑ

n
γδ ¼ ðB0α

ij ek
β þ B0α

ki ej
β þ B0α

jk ei
βÞδ;

fBij; π̂0kn̄g ¼ ∂α½ðB0α
ij gkn̄ þ B0α

ki gjn̄ þ B0α
jk gin̄Þδ�: ðH2Þ
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fHij; T 0
km̄ n̄g ¼ ½ðgjmTk{̄ n̄ − gjnTk{̄ m̄Þδ− gikðϑjγ∂ 0

βδ− ϑjβ∂ 0
γδÞðem̄βen̄γÞ0�− ði↔ jÞ;

fHij; T 0⊥m̄ n̄g ¼ fHij; nkTkm̄ n̄g
¼ ðδkjni − δki njÞTkm̄ n̄δþ ðnkÞ0fHij; T 0

km̄ n̄g
¼ ½niTjm̄ n̄δþ ðgjmT⊥{̄ n̄ − gjnT⊥{̄ m̄Þδ− n0iðϑjγ∂ 0

βδ− ϑjβ∂ 0
γδÞðem̄βen̄γÞ0�− ði↔ jÞ;

fHij; T 0̄
r m̄ n̄g ¼ fHij; T 0

km̄ n̄δ
k
r̄g

¼ ½ðgjmTr̄ {̄ n̄ − gjnTr̄ {̄ m̄Þδ− g0ir̄ðϑjγ∂ 0
βδ− ϑjβ∂ 0

γδÞðem̄βen̄γÞ0�− niðδkjnr þ gjrnkÞTkm̄ n̄δ− ði↔ jÞ;
fHij; V̄ 0̄

ng ¼ fHij; Tk̄ m̄ n̄ggkm
¼ ðT|̄ {̄ n̄ þ gjnV̄{̄ − niT⊥|̄ n̄Þδ− ðϑjγ∂ 0

βδ− ϑjβ∂ 0
γδÞðe{̄βen̄γÞ0 − ði↔ jÞ: ðH3Þ

Additional formulas are used in Appendix G to calculate W1 and W2.

εαβγϑkαϑ
m
βϑ

n
γ ¼ Jεk̄ m̄ n̄;

fHij; ðεk̄ m̄ n̄Þ0g ¼ ½δkjðε{̄m̄ n̄Þ0 þ δmj ðεk̄ {̄n̄Þ0 þ δnj ðεk̄ m̄{̄Þ0�δ − ði ↔ jÞ;
fHij; ðϕk̄ε

k̄ m̄ n̄Þ0g ¼ ϕ0̄
k
½δnj ðε{̄ k̄ m̄Þ0 þ δmj ðε{̄ n̄ k̄Þ0�δ − ði ↔ jÞ;

fHij; ðϕr̄ϕs̄Þ0g ¼ ϕ0̄
{ðgjrϕs̄ þ gjsϕr̄Þ0δ − ði ↔ jÞ: ðH4Þ
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