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The natural constraints for the weak-field approximation to composite gravity, which is obtained by
expressing the gauge vector fields of the Yang-Mills theory based on the Lorentz group in terms of tetrad
variables and their derivatives, are analyzed in detail within a canonical Hamiltonian approach. Although this
higher derivative theory involves a large number of fields, only a few degrees of freedom are left, which are
recognized as selected stable solutions of the underlyingYang-Mills theory. The constraint structure suggests
a consistent double coupling ofmatter to bothYang-Mills and tetrad fields,which results in a selection among
the solutions of the Yang-Mills theory in the presence of properly chosen conserved currents. Scalar and
tensorial coupling mechanisms are proposed, where the latter mechanism essentially reproduces linearized
general relativity. In the weak-field approximation, geodesic particle motion in static isotropic gravitational
fields is found for both couplingmechanisms. An important issue is the proper Lorentz covariant criterion for
choosing a background Minkowski system for the composite theory of gravity.
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I. INTRODUCTION

Einstein’s general theory of relativity may not be the
final word on gravity. As beautiful and successful as it is, it
seems to have serious problems both on very small and on
very large length scales. A problem on small length scales
is signaled by 90 years of unwavering resistance of general
relativity to quantization. A problem on the largest length
scales is indicated by the present search for “dark energy”
to explain the accelerated expansion of the universe within
general relativity. These problems provide the main moti-
vation for continued research on alternative theories of
gravity (see, for example, the broad review [1] of extended
theories of gravity).
A composite higher derivative theory of gravity has

recently been proposed in [2]. The general idea of a
composite theory is to specify the variables of a “workhorse
theory” in terms of more fundamental variables and their
time derivatives [3,4]. The occurrence of time derivatives in
the “composition rule” leads to a higher derivative theory,
which is naturally tamed by the constraints resulting from
the composition rule. For the composite theory of gravity
proposed in [2], the underlying workhorse theory is the
Yang-Mills theory [5] based on the Lorentz group, and the

composition rule expresses the corresponding gauge vector
fields in terms of the tetrad or vierbein variables providing
a Cholesky-type decomposition of a metric. As a conse-
quence of the composite structure of the proposed theory,
it differs significantly from contentious previous attempts
[6–8] to turn the Yang-Mills theory based on the Lorentz
group into a theory of gravity.
Whereas the original formulation of composite gravity

in [2] was based on the Lagrangian framework, we here
switch to the Hamiltonian approach. As a Hamiltonian
formulation separates time from space, it certainly cannot
provide the most elegant formulation of relativistic theo-
ries. However, the Hamiltonian framework has clear
advantages by offering a natural formulation of constraints
and a straightforward canonical quantization procedure.
For bringing constraints and quantization together, we here
establish the constraints resulting from the composition rule
as second class constraints that can be treated via Dirac
brackets [9–11], whereas gauge constraints can be handled
separately by BRST quantization (the acronym derives
from the names of the authors of the original papers
[12,13]; see also [14,15]). Moreover, the Hamiltonian
approach provides the natural starting point for a gener-
alization to dissipative systems. In particular, this approach
allows us to formulate quantum master equations [16–19]
and to make gravity accessible to the robust framework of
dissipative quantum field theory [20].
The number of fields involved in the composite theory

of gravity is enormously large. Each Yang-Mills vector
field has four components satisfying second-order differ-
ential equations so that, in the Hamiltonian approach, four

*hco@mat.ethz.ch; www.polyphys.mat.ethz.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 102, 064024 (2020)

2470-0010=2020=102(6)=064024(18) 064024-1 Published by the American Physical Society

https://orcid.org/0000-0003-0096-3176
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.064024&domain=pdf&date_stamp=2020-09-09
https://doi.org/10.1103/PhysRevD.102.064024
https://doi.org/10.1103/PhysRevD.102.064024
https://doi.org/10.1103/PhysRevD.102.064024
https://doi.org/10.1103/PhysRevD.102.064024
www.polyphys.mat.ethz.ch
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


additional conjugate momenta are required. For the Lorentz
group, the six Yang-Mills vector fields associated with six
infinitesimal generators (three rotations, three boosts) thus
result in 6 × 8 ¼ 48 fields. Gauge constraints eventually
reduce this number of degrees of freedom by a factor of 2
(simply speaking, among the four components of a vector
field, only the two transverse components carry physical
information). In addition, we consider 16 tetrad or vierbein
variables, again coming with conjugate momenta, so that
we deal with a total of 48þ 32 ¼ 80 fields in our canonical
Hamiltonian approach. Actually, this is not even the end of
the story as additional ghost fields would be introduced in
the BRSTapproach for handling the gauge constraints. Our
approach differs from the traditional Hamiltonian formu-
lation of general higher derivative theories developed by
Ostrogradsky [21–23]. The Ostrogradsky framework
would involve only 4 × 16 ¼ 64 fields, but would possess
much less structure and fewer natural constraints [3]. A key
task of the present paper is to elaborate in detail in the
context of the linearized theory that the constraints from the
composition rule, together with the gauge constraints,
reduce this enormous number of fields to just a few
degrees of freedom, as expected for a theory of gravity.
Another important task of the present discussion of the
weak-field approximation is to provide guidance for the
discussion of the fully nonlinear composite theory of
gravity. Understanding the structure of the constraints is
helpful also for proper coupling of the gravitational field to
matter. Whereas the coupling of the Yang-Mills fields to
matter was considered previously [2], we here introduce a
properly matched additional coupling of the tetrad fields to
matter.
The structure of the paper is as follows. In a first step, we

introduce the space of 80 fields for our canonical
Hamiltonian formulation of linearized composite gravity,
with special emphasis on gauge transformations and the
implications of the composition rule (Sec. II). For the pure
field theory in the absence of matter, we elaborate all
evolution equations and constraints in detail, and we
readily find the solutions for gravitational waves and static
isotropic systems (Sec. III). We subsequently introduce a
double coupling mechanism for Yang-Mills and tetrad
fields to matter into composite gravity. The modifications
resulting from the inclusion of matter are elaborated to
obtain a complete theory of gravity that can be compared to
linearized general relativity (Sec. IV). We finally summa-
rize our results and draw a number of conclusions (Sec. V).
The relation between the Lagrangian and Hamiltonian
approaches and some intermediate and additional results
are provided in three appendixes.

II. ARENA FOR COMPOSITE THEORY

For developing the composite theory of gravity, we
consider a fixed background Minkowski space where
x0 ¼ ct is the product of the speed of light and time, x1,

x2, x3 are the spatial coordinates, and ημν ¼ ημν denotes the
Minkowski metric [with signature ð−;þ;þ;þÞ]. Greek
indices go from 0 to 3. The Minkowski metric, which is its
own inverse, is always used for raising or lowering
spacetime indices. Throughout this paper we set the speed
of light equal to unity (c ¼ 1). Assuming a background
Minkowski space comes with the advantage of offering a
clear understanding of energy, momentum, and their con-
servation laws.

A. Tetrad variables and gauge vector fields

Standard tetrad or vierbein variables bκμ result from a
Cholesky-type decomposition of a metric gμν,

gμν ¼ ηκλbκμbλν; ð1Þ

which may also be interpreted as a coordinate transforma-
tion associated with a local set of base vectors. The
nonuniqueness of this decomposition is the source of the
gauge transformation behavior discussed in the next sub-
section. In the weak-field approximation, we write

bκμ ¼ δκμ þ ηκλĥλμ; ð2Þ

where ĥλμ is assumed to be small so that we need to keep
only the lowest-order terms. In the rest of this paper, we use
the symbol bκμ for the linearized form (2) of the tetrad
variables rather than for the nonlinear version in Eq. (1)
(with the exception of Appendix C, in which we consider
the nonlinear static isotropic solution). It is convenient to
define the symmetric and antisymmetric parts of ĥμν,

hμν ¼ ĥμν þ ĥνμ; ωμν ¼ ĥμν − ĥνμ: ð3Þ

In the weak-field approximation, we obtain the following
first-order expression for the metric (1):

gμν ¼ ημν þ hμν: ð4Þ

We denote the conjugate momenta associated with bκμ
by pκ

μ. Again, it is useful to introduce the symmetric and
antisymmetric parts,

h̃μν ¼ pμν þ pνμ; ω̃μν ¼ pμν − pνμ: ð5Þ

The 32 fields bκμ and pκ
μ represent the canonical space

associated with the tetrad variables, which in turn character-
ize a metric. The fields h̃μν and ω̃μν may essentially be
regarded as the conjugate momenta associated with hμν and
ωμν, respectively (after properly accounting for normali-
zation and symmetrization effects).
The Hamiltonian description of a Yang-Mills theory is

based on the four-vector fields Aaμ and their conjugates
Eaμ, which are the generalizations of the vector potentials
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and the electric fields of electrodynamics, respectively.
Whereas μ is the usual spacetime index, a labels the base
vectors of the Lie algebra associated with the underlying
Lie group. For the Lorentz group, which consists of the real
4 × 4 matrices that leave the Minkowski metric invariant,
the Lie algebra is six-dimensional. We here choose six
natural base vectors of the Lie algebra, three of which
generate the Lorentz boosts in the coordinate directions and
the other three generate rotations around the coordinate
axes. It is convenient to switch back and forth between the
labels a ¼ 1;…; 6 for all six generators and the pairs (0,1),
(0,2), (0,3) for the boosts in the respective directions
(involving also time) and (2,3), (3,1), (1,2) for the
rotations in the respective planes according to Table I. In
particular, we can now write our base vectors of the Lie
algebra as

Ta
κλ ¼ δκ̃λδ

λ̃
κ − δκ̃κδ

λ̃
λ: ð6Þ

We finally need to specify the composition rule for
expressing the four-vector fields Aaμ in terms of the tetrad
fields bκμ or, in view of Eq. (2) equivalently, the symmetric
and antisymmetric parts hμν and ωμν, respectively, of ĥμν.
For a ¼ ðκ̃; λ̃Þ according to Table I, we postulate the simple
composition rule

Aaμ ¼
1

2

�∂hλ̃μ
∂xκ̃ −

∂hκ̃μ
∂xλ̃

�
þ 1

2g̃
∂ωκ̃ λ̃

∂xμ ; ð7Þ

where g̃ is a dimensionless coupling constant that controls
the relative weight of the symmetric and antisymmetric
contributions to bκμ. Only for g̃ ¼ 1 can the four-vector
variables (7) be interpreted as a connection field [2]. Such
an interpretation would be essential for a closer relation to
general relativity.

B. Gauge transformations

As the Minkowski metric in the decomposition (1) is
invariant under Lorentz transformations, the corresponding
transformation matrices can be applied to the factors bκμ
without changing the metric. For infinitesimal Lorentz
transformations, this implies the lowest-order gauge
transformation

δbκλ ¼ −g̃ΛaTa
κλ; ð8Þ

in terms of six additional fields Λa. As the base vectors Ta
κλ

of the Lie algebra defined in Eq. (6) are antisymmetric,
only the antisymmetric part of bκλ is affected by gauge
transformations, that is,

δhκλ ¼ 0; ð9Þ

whereas

δωκλ ¼ −2g̃ΛaTa
κλ: ð10Þ

The latter equation suggests that the six fields Λa can be
chosen to make the six components of ωκλ equal to zero.
We refer to this particular choice as the symmetric gauge.
From Eqs. (7), (9), and (10), we further obtain

δAaμ ¼
∂Λa

∂xμ ; ð11Þ

which is the proper gauge transformation behavior for the
gauge-vector fields of the linearized theory. This trans-
formation rule implies gauge invariance of the combination

2g̃Aðκ̃ λ̃Þμ −
∂ωκ̃ λ̃

∂xμ ; ð12Þ

which is obvious from the definition (7) and the gauge
invariance of hκλ.
We moreover assume that all conjugate momenta are

gauge invariant [cf. Eq. (49) of [15] ],

δEaμ ¼ 0; ð13Þ

and

δpκλ ¼ 0: ð14Þ

It turns out below that the assumption (13) requires that
∂Aaμ=∂xμ must be a gauge invariant quantity. In view of
Eq. (11), this implies

∂2Λa

∂xμ∂xμ ¼ 0: ð15Þ

In other words, the fields Λa generating gauge trans-
formations must become dynamic players and satisfy free
field equations. This idea is the basis of the BRSTapproach
for handling gauge constraints. Moreover, we conclude

∂2ωκλ

∂xμ∂xμ ¼ 0; ð16Þ

which follows from the symmetric gauge ωκλ ¼ 0 and the
gauge invariance of the left-hand side.

TABLE I. Correspondence between label a for the base vectors
of the six-dimensional Lie algebra soð1; 3Þ and ordered pairs
ðκ̃; λ̃Þ of spacetime indices.

a 1 2 3 4 5 6

ðκ̃; λ̃Þ (0,1) (0,2) (0,3) (2,3) (3,1) (1,2)
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C. Implications of composition rule

The composition rule (7) contains two types of equa-
tions. If κ̃ or μ is equal to zero, it contains time derivatives
and hence implies time evolution equations for the tetrad
variables. Otherwise, the composition rule provides con-
straints that must be satisfied at any time.
The expressions for Að0kÞl þ Að0lÞk and AðklÞ0 lead to the

unambiguous evolution equations (the Latin indices k, l
take the values 1,2,3)

∂hkl
∂t ¼ 1

2

�∂h0l
∂xk þ ∂h0k

∂xl
�

þ Að0kÞl þ Að0lÞk −
1

2g̃

�∂ω0l

∂xk þ ∂ω0k

∂xl
�

ð17Þ

and

∂ωkl

∂t ¼ 2g̃AðklÞ0 − g̃

�∂h0l
∂xk −

∂h0k
∂xl

�
: ð18Þ

The expression for Að0lÞ0 provides only the time derivative
of g̃h0l þ ω0l, and there is no evolution equation for h00
whatsoever. Once we have made a decision about the
evolution of h0μ, all evolution equations are fixed uniquely.
Choosing four conditions for h0μ is superficially remi-

niscent of imposing coordinate conditions for obtaining
unique solutions in general relativity, but the logical status
is entirely different. Whereas the coordinate conditions of
general relativity have no influence on the physical
predictions of general relativity, in the canonical formu-
lation of composite gravity suitable conditions for h0μ are
used to characterize “good” or “valid” Minkowskian
coordinate systems. If these conditions are Lorentz covar-
iant, we have no possibility of switching between different
types of conditions corresponding to different physical
predictions. As obvious as these remarks may be, the
proper appreciation of coordinate conditions in general
relativity was a slow process, in which even Einstein could
not easily detach himself from the idea of physically
preferred coordinate systems [24].
An appealing set of Lorentz covariant conditions is

given by

∂hμν
∂xν ¼ K

∂hνν
∂xμ ; ð19Þ

where K ¼ 1=2 corresponds to particularly convenient
harmonic coordinates (in the linear approximation). We
here adopt the conditions (19) as the tentative criteria for
physically meaningful coordinates. They can be rewritten
as explicit time evolution equations, namely

∂h0l
∂t ¼ ∂hln

∂xn − K
∂hνν
∂xl ð20Þ

and

∂h00
∂t ¼ ∂h0l

∂xl −
K

1 − K

�
2Að0lÞl −

1

g̃
∂ω0l

∂xl
�
: ð21Þ

From the expression for Að0lÞ0, we finally obtain

∂ω0l

∂t ¼ 2g̃Að0lÞ0þ g̃
�
ð1−KÞ∂h00∂xl þK

∂hnn
∂xl −

∂hln
∂xn

�
: ð22Þ

All the above evolution equations are gauge invariant.
These evolution equations suggest that K ¼ 0 could also be
an appealing choice.
We now turn from the evolution equations to the

constraints implied by the composition rule. The obvious
constraints are obtained by choosing only spatial indices in
Eq. (7),

AðklÞ
j ¼ 1

2

�∂hjl
∂xk −

∂hjk
∂xl
�
þ 1

2g̃
∂ωkl

∂xj : ð23Þ

Further constraints are obtained by considering Að0kÞl −
Að0lÞk,

Að0kÞ
l − Að0lÞ

k ¼ 1

2

�∂h0l
∂xk −

∂h0k
∂xl

�
þ 1

2g̃

�∂ω0l

∂xk −
∂ω0k

∂xl
�
:

ð24Þ

In total, we have turned the composition rule for the 24
components of the gauge vector fields and the 4 coordinate
conditions (19) into the 16 evolution equations (17), (18),
and (20)–(22) for the tetrad variables and the 9þ 3 ¼ 12
constraints (23) and (24). We refer to these constraints
resulting directly from the composition rule as the primary
constraints of the composite theory. These primary con-
straints are not affected by coupling the gravitational field
to matter. However, the evolution equations for the tetrad
variables should be expected to be changed by coupling
terms in the Hamiltonian.

III. PURE FIELD THEORY

We are now ready to define the canonical Hamiltonian
version of the composite theory of gravity in the weak-field
approximation on the combined space of Yang-Mills and
tetrad fields, following the general ideas developed in [4].
We first provide the Hamiltonian and then elaborate a
number of its implications.

A. Hamiltonian

The Hamiltonian for the composite theory of pure
gravity,

H ¼ HYM þHYM=t; ð25Þ
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consists of two contributions describing the workhorse
theory and reproducing the evolution equations obtained
from the composition rule, respectively. Our workhorse
theory is the linearized version of the Yang-Mills theory
based on the Lorentz group on the space ðAaμ; EaμÞ. The
proper Hamiltonian is given by (see, e.g., Sec. 15.2 of [25],
Chap. 15 of [26], or [15]; a derivation from the Yang-Mills
Lagrangian is given in Appendix A)

HYM ¼
Z �

1

2

�
EaμEaμ þ

∂Aai

∂xj
∂Aai

∂xj −
∂Aai

∂xj
∂Aaj

∂xi
�

− Ea0 ∂Aaj

∂xj − Eaj ∂Aa0

∂xj
�
d3x: ð26Þ

The Hamiltonian for coupling the Yang-Mills and tetrad
variables,

HYM=t ¼
Z

_bκλpκλd3x

¼ 1

4

Z �∂hκλ
∂t h̃κλ þ ∂ωκλ

∂t ω̃κλ

�
d3x; ð27Þ

is chosen such that the canonical evolution equations

∂bκλ
∂t ¼ δH

δpκλ ;
∂pκλ

∂t ¼ −
δH
δbκλ

ð28Þ

reproduce the evolution equations (17), (18), and (20)–(22)
for the tetrad variables. These evolution equations implied
by the composition rule and the coordinate conditions (19)
are of crucial importance for finding the Hamiltonian
HYM=t, that is, for obtaining the complete canonical
Hamiltonian formulation of the composite theory.
We have introduced the variables pκλ in a purely formal

manner as the conjugate momenta of the tetrad variables.
At this point, we can offer a physical interpretation. Note
that, in view of the evolution equations of the tetrad
variables, the Hamiltonian HYM=t contains a contribution
that is bilinear in the variables pκλ and the gauge vector
fields Aaμ. This contribution can be written in the form
−JaμAaμ with the identifications

−Jð0lÞ0 ¼ g̃ω̃0l; −Jð0lÞj ¼ 1

2
h̃lj −

1

2

K
1−K

h̃00ηlj; ð29Þ

and

−JðklÞ0 ¼ g̃ω̃kl; −JðklÞj ¼ 0: ð30Þ

The symmetric and antisymmetric parts of the variables pκλ

play the role of external Yang-Mills fluxes. By requiring
Lorentz covariant fluxes, Eq. (30) immediately leads to the
conclusion

ω̃kl ¼ 0: ð31Þ

Only the external fluxes Jð0lÞμ can be nonvanishing in our
composite Yang-Mills theory of gravity.

B. Field equations

For the evolution of the conjugate momenta of the
tetrad variables, we find the following results by means
of Eq. (28):

∂h̃kl
∂t ¼ ∂ðh̃0k − g̃ω̃0kÞ

∂xl þ ∂ðh̃0l − g̃ω̃0lÞ
∂xk

− 2Kδkl
∂ðh̃0n − g̃ω̃0nÞ

∂xn ; ð32Þ

∂h̃00
∂t ¼ 2K

∂h̃0l
∂xl þ 2g̃ð1 − KÞ ∂ω̃

0l

∂xl ; ð33Þ

∂h̃0l
∂t ¼ 1

2

∂h̃ln
∂xn þ 1

2

∂h̃00
∂xl ; ð34Þ

∂ω̃0l

∂t ¼ −
1

2g̃
∂h̃ln
∂xn þ 1

2g̃
K

1 − K
∂h̃00
∂xl ; ð35Þ

and

∂ω̃kl

∂t ¼ 0: ð36Þ

Note that these equations for the conjugate momenta of the
tetrad variables are independent of any other variables. The
last of these evolution equations is consistent with our
previous conclusion (31). According to the definition (29),
Eq. (35) can be rewritten as

∂Jð0lÞμ
∂xμ ¼ 0; ð37Þ

which supports our interpretation of conjugate tetrad
variables in terms of conserved fluxes.
The evolution equations for the Yang-Mills fields are

obtained from (note the sign conventions)

∂Aaμ

∂t ¼ −
δH
δEaμ ;

∂Eaμ

∂t ¼ δH
δAaμ

: ð38Þ

The resulting equations can be written in the following
form:

∂Aa
0

∂t ¼ −Ea
0 þ

∂Aa
n

∂xn ð39Þ

and
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∂Aa
j

∂t ¼ −Ea
j þ

∂Aa
0

∂xj ð40Þ

for the gauge vector fields, whereas their conjugate partners
are governed by

∂Eð0lÞ
0

∂t ¼ −
∂Eð0lÞ

n

∂xn − Jð0lÞ0 ; ð41Þ

∂EðklÞ
0

∂t ¼ −
∂EðklÞ

n

∂xn ; ð42Þ

∂Eð0lÞ
j

∂t ¼ −
∂Eð0lÞ

0

∂xj −
∂2Að0lÞ

j

∂xn∂xn þ
∂2Að0lÞ

n

∂xj∂xn − Jð0lÞj ; ð43Þ

and

∂EðklÞ
j

∂t ¼ −
∂EðklÞ

0

∂xj −
∂2AðklÞ

j

∂xn∂xn þ
∂2AðklÞ

n

∂xj∂xn : ð44Þ

Note that these evolution equations are gauge invariant,
provided that Eq. (15) for Λa holds. These are the
linearized standard field equations for Yang-Mills fields,
which are strongly reminiscent of Maxwell’s equations of
electrodynamics.
Equation (40), together with the representation (7),

implies the useful identity

EðlnÞ
k þ EðnkÞ

l þ EðklÞ
n ¼ 0: ð45Þ

This identity remains valid when we later include matter
[that is, it can more generally be derived from Eq. (B6)].

C. Constraints

The primary constraints (23) and (24) must be valid at all
times. From the time derivative of the primary constraints
we obtain secondary constraints, a further time derivative
yields tertiary constraints, and so on. This iterative process,
in which the required time derivatives are evaluated by
means of the evolution equations, is continued until no
further constraints arise. The crucial question is whether the
iterative process stops before all degrees of freedom are
fixed by constraints. As the introduction revealed that, in
the canonical Hamiltonian formulation of composite gra-
vity, we are dealing with 80 fields, we need around 75
constraints to obtain an appropriate number of degrees of
freedom for a theory of gravity.
The secondary constraints obtained as the time deriva-

tives of the primary constraints can be formulated nicely in
terms of Yang-Mills variables,

EðklÞ
j ¼ ∂Að0jÞ

l

∂xk −
∂Að0jÞ

k

∂xl ; ð46Þ

Eð0lÞ
k ¼ Eð0kÞ

l ; ð47Þ

and the tertiary constraints are subsequently obtained as

∂EðklÞ
0

∂xj −
∂Eð0jÞ

l

∂xk þ ∂Eð0jÞ
k

∂xl ¼ ∂
∂xn

�∂AðklÞ
n

∂xj −
∂AðklÞ

j

∂xn
�
; ð48Þ

∂Eð0lÞ
0

∂xk −
∂Eð0kÞ

0

∂xl ¼ ∂EðklÞ
n

∂xn : ð49Þ

The latter constraint has been simplified by means of the
identity (45). Note that these tertiary constraints can be
used to rewrite the evolution equations (42) and (44) as

∂EðklÞ
0

∂t ¼ ∂Eð0kÞ
0

∂xl −
∂Eð0lÞ

0

∂xk ð50Þ

and

∂EðklÞ
j

∂t ¼ ∂Eð0jÞ
k

∂xl −
∂Eð0jÞ

l

∂xk : ð51Þ

Up to this point, the variables pκλ do not appear in the
constraints. From now on, only the variables pκλ occur in
the constraints. In the next round, we find

∂Jð0lÞj
∂xk −

∂Jð0kÞj
∂xl ¼ 0; ð52Þ

∂Jð0lÞ0
∂xk −

∂Jð0kÞ0
∂xl ¼ 0: ð53Þ

As we assume that, in the absence of matter, the external
fluxes (29) vanish, these last conditions are satisfied
trivially so that the hierarchy of constraints ends at this
point.
We have arrived at a total of 4 × 12 ¼ 48 constraints

resulting from the composition rule, supplemented by the
three constraints (31) so that the total is 51. All these
constraints are gauge invariant. This is a consequence of the
fact that the composition rule is designed such that the four-
vector fields Aaν possess the proper gauge transformation
behavior (11) and all the evolution equations are gauge
invariant. We eventually argue in favor of the 16 constraints
pκλ ¼ 0 (or h̃κλ ¼ ω̃κλ ¼ 0), which would replace the 15
constraints (31), (52), (53) and actually increase the count
by one.
In a Yang-Mills theory, half of the degrees of freedom

can be eliminated by gauge constraints (roughly speaking,
the four-vector potentials have only transverse components,
no longitudinal or temporal ones). In our case, we have 24
gauge constraints, which brings us to a total of 75 (or 76)
constraints for our 80 fields. It is quite remarkable that just
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a few of the 80 degrees of freedom survive, as we would
expect for a theory of gravity.

D. Compact form of theory

The goal of this subsection is to find a closed set of
differential equations for the tetrad variables. To reach this
goal it is important to express all the Yang-Mills variables
in terms of the tetrad variables. For the vector fields Aaμ, the
desired expression is given by the composition rule (7).
Their conjugates Eaμ can then be extracted from the
evolution equations (39) and (40) (see Appendix B for a
summary of the resulting expressions).
As we have already recognized Jð0lÞμ ¼ 0 ¼ ω̃kl,

Eqs. (32)–(36) imply that all conjugate tetrad variables
must be constant and can be assumed to be zero,

pκλ ¼ 0: ð54Þ

This is a very desirable condition for the natural canonical
Hamiltonian approach to composite theories. As the con-
jugate momentapκλ appear linearly in the Hamiltonian (27),
they lead to an unboundedHamiltonian and consequently to
the famous risk of instabilities in higher derivative theories
[21,22]. Avoiding such instabilities is an important topic, in
particular, in alternative theories of gravity [27–34]. The
constraints (54) provide the most obvious way of eliminat-
ing instabilities in the canonical Hamiltonian approach to
composite higher derivative theories, which differs from the
usual Ostrogradsky approach [3,4]. Moreover, this con-
straint implies that we have to solve the original Yang-Mills
equations without any modification. In other words, the
composite theory simply selects solutions of the Yang-Mills
theory based on the Lorentz group to obtain the composite
theory of gravity. This insight provides a more direct
argument for the stability of solutions. Note that the large
number of constraints and the small number of remaining
degrees of freedom indicates that the composite theory is
highly selective.
From Eq. (44) we obtain

∂2hkl
∂xμ∂xμ ¼

∂2f
∂xk∂xl ; ð55Þ

where the unknown function f results from integration, and
similarly Eq. (42) gives

∂2h0l
∂xμ∂xμ ¼

∂f0
∂xl : ð56Þ

Equations (41) and (43) provide further integrability
conditions that can be exploited in a similar manner.
Consolidating all the results, we get the following compact
formula summarizing the linear version of the composite
theory of pure gravity on the level of tetrad variables,

∂2hμν
∂xλ∂xλ ¼

∂2f
∂xμ∂xν ; ð57Þ

possibly after a minor redefinition of f.
An interesting feature of these field equations is that

the function f, which results from integration, needs to be
determined simultaneously with the solutions hμν. We
arrive at a set of second-order differential equations because
higher derivative equations play the role of integrability
conditions. The coupling constant g̃ does not occur in these
equations. Possible antisymmetric contributions to the
tetrad variables are governed by the wave equations (16),
and all conjugate momenta of the tetrad variables must
vanish according to Eq. (54).

E. Comparison to general relativity

Einstein’s field equation for pure gravity in the weak-
field approximation to general relativity is given by a
vanishing curvature tensor [see Eq. (A18)],

∂2hμν
∂xλ∂xλ −

∂2hλμ
∂xλ∂xν −

∂2hλν
∂xμ∂xλ þ

∂2hλλ
∂xμ∂xν ¼ 0: ð58Þ

It is important to note that the coordinates xμ in general
relativity are not associated with an underlying Minkowski
space so that these field equations can be simplified by
suitable general coordinate transformations. If we impose
the same coordinate conditions (19) as used in composite
gravity, the field equations (58) of linearized general
relativity simplify to

∂2hμν
∂xλ∂xλ ¼ ð2K − 1Þ ∂2hλλ

∂xμ∂xν : ð59Þ

This equation coincides with Eq. (57) for composite gravity
for f ¼ ð2K − 1Þhλλ. It becomes particularly simple for
harmonic coordinates with K ¼ 1=2, which may be pic-
tured as nearly Minkowskian (see, e.g., pp. 163 and 254
of [35]).
As in general relativity, the solutions for the deviatoric

metric hμν in harmonic coordinates can assume all kinds of
polarization states, including longitudinal and temporal
components. The actual polarization of gravitational waves
depends on the nature of their source (typically binary
systems of two black holes, two neutron stars, or a black
hole and a neutron star during their in-spiral or merger
phases).

F. Static isotropic solution

To find the static isotropic solution for the weak-field
approximation to composite gravity for the coordinate
conditions (19), we start from the general ansatz
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h00 ¼ β̄ðrÞ; hkl ¼ ᾱðrÞδklþ ξ̄ðrÞxkxl
r2

; h0k ¼ hk0 ¼ 0;

ð60Þ

with r ¼ ðx21 þ x22 þ x23Þ1=2. The coordinate conditions (19)
become

r½ð3K − 1Þᾱ0 − Kβ̄0 þ ðK − 1Þξ̄0� ¼ 2ξ̄: ð61Þ

A prime on a function of r indicates the derivative with
respect to r.
We assume that also f in Eq. (57) is static and isotropic.

With f ¼ fðrÞ, Eq. (57) leads to two equations,

r2β̄00 þ 2rβ̄0 ¼ 0 ð62Þ

and

xkxl
r2

ðr2ξ̄00 þ 2rξ̄0 − 6ξ̄ − r2f00 þ rf0Þ
¼ δklðrf0 − 2ξ̄ − r2ᾱ00 − 2rᾱ0Þ; ð63Þ

where each side of the latter equationmust vanish separately.
All these equations are of the equidimensional type; that

is, in each term there are as many factors of r as there are
derivatives with respect to r, suggesting simple power-law
solutions. Equation (62) implies β̄0 ∝ r−2, and we hence
write

β̄ðrÞ ¼ 2
r0
r
; ð64Þ

where r0 is a constant length scale and a possible
additive constant has been omitted to obtain asymptotic
Minkowskian behavior. Equation (61) suggests that ᾱ has
the same power-law decay, so that the right-hand side of
Eq. (63) implies rf0 ¼ 2ξ̄. Equation (61) provides a relation
among prefactors, so that we can write

ᾱðrÞ ¼ c̄
1−K

r0
r
; ξ̄ðrÞ ¼ c̄− ð3c̄− 2ÞK− 2K2

1−K2

r0
r
: ð65Þ

Consistency with general relativity, which implies a
vanishing curvature tensor, requires c̄ ¼ 1. The condition
c̄ ¼ 1 is not predicted by the weak-field approximation of
pure composite gravity, but it arises naturally in the full,
nonlinear theory or from a suitable coupling to matter (see
Sec. IV E below).

IV. COUPLING OF FIELD TO MATTER

Of course, we cannot really appreciate a theory of the
gravitational field without coupling it to matter. On the one
hand, we want to understand the gravitational field gen-
erated by matter, say for calculating the parameters c̄ and r0
in the solution given in Eq. (65). On the other hand, we

want to understand the motion of matter in a gravita-
tional field.
The most convenient options for describing matter are

given by point particle mechanics or hydrodynamics. We
here consider a single point particle either generating a
gravitational field or moving in a gravitational field.

A. Particle in a gravitational field

As a starting point for discussing particle motion in a
weak gravitational field, we use the first-order expansion of
the standard Hamiltonian,

Hm ¼ γm −
1

2γm
pμpνhμν; ð66Þ

where m is the rest mass of the particle, hμν depends on the
particle position xj, the particle momentum is given by pj,
and we define −p0 ¼ p0 ¼ mγ, where

γ ¼
�
1þ

�
p
m

�
2
�1

2

; ð67Þ

is a function of the spatial components pj of the particle
momentum. When a higher-order definition of p0 is
required, one should use p0 ¼ Hm, where Eq. (66) provides
the first-order result in hμν. The lowest-order energy-
momentum tensor is given by (see, e.g., Eq. (2.8.4) of [35])

Tμν ¼ −2
δHm

δhμν
¼ pμpν

γm
δ3ðx − xðtÞÞ

¼ γm
dxμ
dt

dxν
dt

δ3ðx − xðtÞÞ; ð68Þ

where the lowest-order result pj ¼ mγdxj=dt has been
used. The evolution equation dpj=dt ¼ 0 for a free particle
in the absence of gravity leads to the result

∂Tμν

∂t ¼ −
∂Tμν

∂xj
dxj

dt
¼ pj

p0

∂Tμν

∂xj ; ð69Þ

from which, for ν ¼ 0, we obtain energy-momentum
conservation in the form

∂Tμν

∂xν ¼ 0: ð70Þ

By construction, the Hamiltonian (66) leads to geodesic
motion in a weak field. The potential distortion of geodesic
motion by further couplings between matter and field is
explored in Sec. IVG below.

B. Hamiltonian for coupling field and matter

The occurrence of hμν in the Hamiltonian (66) already
implies a coupling of field and matter. It leads to geodesic

HANS CHRISTIAN ÖTTINGER PHYS. REV. D 102, 064024 (2020)

064024-8



motion in the given field hμν, but it does not provide
meaningful field equations for determining gravitational
fields. For that purpose we need to couple the Yang-Mills
field to the energy-momentum tensor of matter. In
Appendix A, the details of the coupling are discussed in
a Lagrangian setting, and the following Hamiltonian for the
coupling is obtained,

HYM=m ¼
Z

ðFðλnÞ
jn Cj

λ − EðλjÞ
j C0

λ − Eð0lÞ
j Cj

lÞd3x; ð71Þ

with the field tensor of the linearized Yang-Mills theory,

FðκλÞ
μν ¼ ∂AðκλÞ

ν

∂xμ −
∂AðκλÞ

μ

∂xν ; ð72Þ

and the tensor

Cμν ¼ G1T
∘
μν þG2ημνTλ

λ; ð73Þ

where T
∘
μν is the traceless part of the energy-momentum

tensor of matter defined in Eq. (A10) and the coefficients
G1 and G2 must have the same dimensions as Newton’s
constantG (cf. Table II). The concrete values of G1, G2 can
only be chosen once we have elaborated all the equations
for gravitational fields coupled to matter.
The Lagrangian associated with the Hamiltonian (71) for

the coupling of the Yang-Mills field to matter has pre-
viously been proposed in Eqs. (51) and (52) of [2]. We here
introduce an additional coupling of the tetrad field to
matter,

Ht=m ¼
Z

Vκλpκλd3x; ð74Þ

where, for the linearized theory, Vκλ can be assumed to be a
symmetric tensor to be constructed from the energy-
momentum tensor of matter (more precisely, the time
derivative of Vκλ turns out to be a tensor; the defining
equations and more insight into the role of the indices are
provided in Sec. IV D). The idea behind this additional
coupling is as follows. In the absence of matter, the

composite theory selects solutions from a pure Yang-
Mills theory, which is a consequence of the vanishing
conjugate momenta pκλ of the tetrad variables established
in Eq. (54). In the presence of matter, it is more natural to
select solutions of the Yang-Mills theory with suitable
external fluxes, so that the conjugate momenta pκλ should
no longer be expected to vanish. Use of the separate
Hamiltonian (74) in addition to the previously suggested
coupling mechanism (71) allows us to find a consistently
tuned coupling of both Yang-Mills and tetrad fields to
matter. Note that the “general wisdom” about the possibil-
ities of coupling gravity to matter [36–38] is not beyond all
doubt [39] and, in the context of composite theories, this
coupling can be even richer.
For obtaining the composite theory of gravity in the

presence of matter, we would like to add the Hamiltonians
HYM=m,Ht=m, andHm introducing the coupling of field and
matter to the Hamiltonian (25) of pure gravity. However,
there is a problem. With the help of Table II, we realize that
the Hamiltonian (25) has dimension of length−1, and so
does the Hamiltonian HYM=m defined in Eq. (71). The
dimensions of the HamiltonianHt=m defined in Eq. (74) can
still be adjusted by the definition of Vκλ. However, the
Hamiltonian Hm defined in Eq. (66) has dimensions of
mass, which is what we actually expect for a Hamiltonian
when using the speed of light as the unit for veloc-
ities (c ¼ 1).
As the mismatch in dimensions can be regarded as an

action factor, it seems natural to multiply HYM þHYM=t þ
HYM=m by Planck’s constant ℏ. We do that implicitly by
using ℏ as the unit of action (ℏ ¼ 1), thus eliminating the
dimensional mismatch. However, this choice of units
implies that, in HYM þHYM=t, we actually deal with the
energy of gravitational field quanta, which is clearly not the
most appropriate energy scale when we usually consider
problems involving gravity. We hence introduce a very
small dimensionless parameterΛE to scale down the typical
energy associated with gravitationally interacting masses to
the level of graviton energies,

H ¼ HYM þHYM=t þHYM=m þ ΛEðHt=m þHmÞ: ð75Þ

In the Lagrangian formulation in Eq. (52) of [2], it can be
recognized that ΛE plays the role of a dimensionless
cosmological constant in general relativity. We hence write

ΛE ¼
�
lp

D

�
2

; ð76Þ

where lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
¼ ffiffiffiffi

G
p

is the Planck length and D is
the diameter of the observable universe. This parameter ΛE

can be estimated to be of the order of 10−124. It is interesting
to note that even our formulation of classical gravity
requires an action constant. A similar situation arises in

TABLE II. Dimensions of various quantities in terms of length
(L) and mass (M) for c ¼ 1.

Quantities Dimensions

gμν, bκμ, hμν, ωμν, ΛE dimensionless
Aa
ν , H L−1

Ea
ν , Ba

ν , Fa
μν, Rμν L−2

pκλ, h̃κλ, ω̃κλ L−3

Vκλ M
Tμν L−3M
G, G1, G2 LM−1
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formulating the entropy of a classical ideal gas, indicating
that a deeper understanding of an ideal gas requires
quantum theory. The same conclusion may be true for a
deeper understanding of gravity.

C. Modified field equations

In the presence of matter, the dynamic aspects of the
composition rule (7) are affected by the Hamiltonian Ht=m,
but not its static aspects. In other words, the primary
constraints are unchanged, whereas the evolution equations
for the tetrad variables get modified. As Vκλ is assumed to
be symmetric, only the evolution equations (17), (20), and
(21) for hκλ get changed,

∂hkl
∂t ¼ 1

2

�∂h0l
∂xk þ ∂h0k

∂xl
�
þ Að0kÞl þ Að0lÞk

−
1

2g̃

�∂ω0l

∂xk þ ∂ω0k

∂xl
�
þ 2ΛEVkl; ð77Þ

∂h0l
∂t ¼ ∂hln

∂xn − K
∂hνν
∂xl þ 2ΛEV0l; ð78Þ

and

∂h00
∂t ¼ ∂h0l

∂xl −
K

1 − K

�
2Að0lÞl −

1

g̃
∂ω0l

∂xl
�
þ 2ΛEV00: ð79Þ

Equations (78) and (79) imply a tiny modification of the
coordinate conditions (19).
The Hamiltonian HYM=m given in Eq. (71) depends only

on the spatial components of the Yang-Mills fields, so that
the evolution equations (39), (41), and (42) for the temporal
components of the Yang-Mills fields remain unaffected.
Equation (40) gets modified to

∂Að0lÞ
j

∂t ¼ −Eð0lÞ
j þ ∂Að0lÞ

0

∂xj − Cjl þ δjlC00 ð80Þ

and

∂AðklÞ
j

∂t ¼ −EðklÞ
j þ ∂AðklÞ

0

∂xj þ δjkC0l − δjlC0k; ð81Þ

whereas Eqs. (43) and (44) become

∂Eð0lÞ
j

∂t ¼ −
∂Eð0lÞ

0

∂xj −
∂2Að0lÞ

j

∂xn∂xn þ
∂2Að0lÞ

n

∂xj∂xn − Jð0lÞj

−
∂Cj0

∂xl þ δjl
∂Cn0

∂xn ð82Þ

and

∂EðklÞ
j

∂t ¼ −
∂EðklÞ

0

∂xj −
∂2AðklÞ

j

∂xn∂xn þ
∂2AðklÞ

n

∂xj∂xn
þ ∂Cjk

∂xl −
∂Cjl

∂xk þ δjk
∂Cnl

∂xn − δjl
∂Cnk

∂xn : ð83Þ

The fact that Cμν occurs in Eqs. (80) and (81) for the gauge
vector fields underlines that the coupling of the stress tensor
to the workhorse theory of composite gravity does not
happen via the usual flux mechanism for Yang-Mills
theories.
The occurrence of hμν in Eq. (66) implies that the

evolution equations (32)–(34) for the symmetrized con-
jugate momenta h̃κλ get modified, too. We find

∂h̃kl
∂t ¼ ∂ðh̃0k − g̃ω̃0kÞ

∂xl þ ∂ðh̃0l − g̃ω̃0lÞ
∂xk

− 2Kδkl
∂ðh̃0n − g̃ω̃0nÞ

∂xn þ 2ΛETkl; ð84Þ

∂h̃00
∂t ¼ 2K

∂h̃0l
∂xl þ 2g̃ð1 − KÞ ∂ω̃

0l

∂xl þ 2ΛET00; ð85Þ

and

∂h̃0l
∂t ¼ 1

2

∂h̃ln
∂xn þ 1

2

∂h̃00
∂xl þ 2ΛET0l: ð86Þ

The occurrence of the energy-momentum tensor in
Eqs. (84) and (85) is a very important qualitative modifi-
cation. As anticipated, the conjugate momenta of the
tetrad variables do not vanish in the presence of matter.
Remember, however, that the dimensionless parameter ΛE
is extremely small.

D. Modified constraints

In the presence of matter, the primary constraints (23)
and (24) remain unchanged. The secondary constraints (46)
change to

EðklÞ
j ¼ ∂Að0jÞ

l

∂xk −
∂Að0jÞ

k

∂xl − ΛE

�∂Vjl

∂xk −
∂Vjk

∂xl
�

þ δjkC0l − δjlC0k; ð87Þ

whereas Eq. (47) becomes

Eð0lÞ
k − Eð0kÞ

l ¼ ΛE

�∂V0l

∂xk −
∂V0k

∂xl
�
: ð88Þ

The tertiary constraints (48) become
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∂EðklÞ
0

∂xj −
∂Eð0jÞ

l

∂xk þ ∂Eð0jÞ
k

∂xl

¼ ∂
∂xn

�∂AðklÞ
n

∂xj −
∂AðklÞ

j

∂xn
�
þ ΛE

∂
∂t
�∂Vjl

∂xk −
∂Vjk

∂xl
�

þ δjkG1

∂T00

∂xl − δjlG1

∂T00

∂xk ; ð89Þ

and Eq. (49) changes to

∂Eð0lÞ
0

∂xk −
∂Eð0kÞ

0

∂xl ¼ ∂EðklÞ
n

∂xn þ ΛE
∂
∂xμ

�∂Vμl

∂xk −
∂Vμk

∂xl
�
: ð90Þ

Finally, the quaternary constraints (52) and (53) become

∂Jð0lÞj
∂xk −

∂Jð0kÞj
∂xl ¼ −ΛE

∂2

∂xμ∂xμ
�∂Vjl

∂xk −
∂Vjk

∂xl
�

ð91Þ

and

∂Jð0lÞ0
∂xk −

∂Jð0kÞ0
∂xl ¼ −ΛE

∂2

∂xμ∂xμ
�∂V0l

∂xk −
∂V0k

∂xl
�
: ð92Þ

At this stage we have to make a proper choice of the
functions Vκλ in the Hamiltonian in order to avoid further
constraints thatwould quicklymake it impossible to find any
solutions to the entire set of constraints. For this purpose we
added a coupling of matter to the tetrad variables in addition
to the more obvious coupling to the Yang-Mills variables.
As a first step, we want to identify further vanishing
conjugate tetrad variables because, according to Eq. (29),
only the variables ω̃0l and h̃kl carry essential information.
Careful inspection of the structure of the evolution equations
suggests the following choices of vanishing variables in
addition to those given in Eq. (31),

h̃00 ¼ 0; h̃0l − g̃ω̃0l ¼ 0: ð93Þ

The evolution equations for the conjugate tetrad variables
then reduce to the much simpler form

∂h̃kl
∂t ¼ 2ΛETkl;

∂h̃kl
∂xl ¼ −2ΛETk0; ð94Þ

and

g̃
∂ω̃0l

∂t ¼ ΛET0l; g̃
∂ω̃0l

∂xl ¼ −ΛET00: ð95Þ

Note that the consistency between the two members
of each equation is guaranteed by energy-momentum
conservation.
The quaternary constraints can now be satisfied if we

construct Vκλ by solving the Poisson equations

Jð0lÞν ¼ −ΛE
∂2Vlν

∂xμ∂xμ ; ð96Þ

where suitable initial and boundary conditions need to be
imposed to find Vlν. There is no need to choose any
particular form of V00 because, according to Eq. (96), there
is no flux component associated with it. We hence assume
V00 ¼ 0, unless there is any particular need to modify
Eq. (79). Note that ν is a four-vector index, whereas l is
related to the labels of the Lie algebra (more precisely, l is
the label for the Lorentz boosts). Equations (94) and (95)
can now be written as

∂
∂t

∂2Vlν

∂xμ∂xμ ¼ Tlν;
∂
∂xl

∂2Vlν

∂xμ∂xμ ¼ −T0ν; ð97Þ

implying that Vlν and Ht=m have dimensions of mass or
energy (c ¼ 1). As announced, Vlν is determined by the
energy-momentum tensor and vanishes in the absence of
matter.
Note that the three derivatives in Eq. (97) are required to

go from the level of lowest derivatives (tetrad variables) to
the level of highest derivatives (conjugate tetrad variables),
with the gauge vector fields and their conjugates in between
[compare, for example, Eqs. (77) and (84)]. Note that the
different numbers of derivatives occurring in the various
fields are also reflected in the different powers of L−1 in
Table II.
In the presence of matter, the procedure for selecting

among the solutions of the Yang-Mills theory with external
fluxes extends the idea of composite theories. This selec-
tion criterion should provide stability instead of the
vanishing conjugate momenta associated with the tetrad
variables for the composite theory of pure gravity. Again,
the selection is very restrictive so that the composite theory
of gravity possesses only a few degrees of freedom.

E. Compact form of theory

As in Sec. III D, we would like to find a closed set of
differential equations for the tetrad variables, but now in the
presence of matter. Again we need to express all the Yang-
Mills variables in terms of the tetrad variables. Expressions
for the vector fields Aaμ can be obtained from the evolution
equations (18), (22), (77) and the primary constraints (23).
Their conjugates Eaμ can then be extracted from the
original evolution equation (39) for the temporal compo-
nents and the modified Eqs. (80) and (81) for the spatial
components of the gauge vector fields. For the convenience
of the reader, the explicit representations are listed in
Appendix B. By construction, these expressions satisfy
the primary constraints identically.
We only need to consider the evolution equations for the

conjugate Yang-Mills fields Ea
μ (the higher constraints can
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be verified in a straightforward manner). From Eq. (83) we
obtain

∂
∂xl
�
1

2

∂2hjk
∂xμ∂xμ þ Cjk

�
þ δjk

∂Clμ

∂xμ
¼ ∂

∂xk
�
1

2

∂2hjl
∂xμ∂xμ þ Cjl

�
þ δjl

∂Ckμ

∂xμ : ð98Þ

By using that the tensor Tμν in Eq. (73) satisfies the energy-
momentum conservation (70), we obtain the following
generalization of Eq. (55):

1

2

∂2hkl
∂xμ∂xμ þG1

�
Tkl −

1

2
Tλ

ληkl

�
þ 2G2Tλ

ληkl

¼ 1

2

∂2f
∂xk∂xl ; ð99Þ

where the function f results from integration of the third-
order equations. From Eq. (42) we obtain another integra-
bility condition,

∂
∂xl
�
1

2

∂2h0k
∂xμ∂xμ þG1T0k

�
¼ ∂

∂xk
�
1

2

∂2h0l
∂xμ∂xμ þ G1T0l

�
:

ð100Þ

From Eqs. (41) and (82) we obtain after using Eqs. (70)
and (96)

∂
∂xl
�
1

2

∂2h00
∂xμ∂xμ þ G1

�
T00 −

1

2
Tλ

λη00

�
þ 2G2Tλ

λη00

�

¼ ∂
∂t
�
1

2

∂2h0l
∂xμ∂xμ þ G1T0l

�
ð101Þ

and

∂
∂t
�
1

2

∂2hjl
∂xμ∂xμ þG1

�
Tjl −

1

2
Tλ

ληjl

�
þ 2G2Tλ

ληjl

�

¼ ∂
∂xl
�
1

2

∂2h0j
∂xμ∂xμ þ G1T0j

�
; ð102Þ

respectively. Again, the choice (96) of Vlν is of crucial
importance because it leads to further integrability con-
ditions. Equations (100)–(102) allow us to extend the
differential equation (99) to all components,

1

2

∂2hμν
∂xλ∂xλ þ G1

�
Tμν −

1

2
Tλ

λημν

�
þ 2G2Tλ

λημν

¼ 1

2

∂2f
∂xμ∂xν ; ð103Þ

possibly after a minor modification of f.

The compact equation (103) has a remarkable similarity
with the linearized version of Einstein’s field equation (A6)
with the curvature tensor (A18) in a harmonic coordinate
system, provided that we choose

G1 ¼ 8πG; G2 ¼ 0; ð104Þ

and f ¼ 0. The freedom of choosing the function f is the
only leftover from the higher derivative nature of the theory.
It gives us the remarkable possibility to mimic the local
gauge degree of freedom associated with the general
coordinate transformations employed to achieve the one-
parameter family of coordinate conditions (19), although
the composite theory is defined in Minkowski space.

F. Isotropic solution revisited

As an application of our compact equations, we consider
a mass M resting at the origin, which is represented by an
energy-momentum tensor Tμν with only one nonvanishing
component, T00 ¼ Mδ3ðxÞ. Equation (97) requires nonzero
components Vl0. A simple solution of this equation is found
to be

Vl0 ¼ M
8π

xl

r
; ð105Þ

which describes a purely orientational effect. The complete
list of conjugate tetrad variables is given by

h̃0l ¼ g̃ω̃0l¼−
ΛEM
4π

xl

r3
; ω̃kl¼ h̃kl ¼ h̃00¼ 0: ð106Þ

Note that the modification of the coordinate condition (78)
is extremely tiny, but independent of the distance from the
central mass.
We now focus on the field equations (103) with the

parameter choices (104). Away from the origin, these
equations have already been solved in Sec. III F. By
integrating the simplified field equations

∂2h00
∂xn∂xnþG1T00¼ 0;

∂2ðhll−fÞ
∂xn∂xn þ3G1T00¼ 0; ð107Þ

over a sphere around the origin and using hll − f ¼
3ðᾱþ ξ̄Þ, we find r0 ¼ MG and c̄ ¼ 1 for the coefficients
in the solutions (64) and (65). More details about isotropic
solutions can be found in Appendix C.

G. Modified particle motion

For obtaining the motion of a particle with mass m
in a gravitational field, it is convenient to divide the
Hamiltonian (75) by ΛE because the resulting equations
then look more familiar. Whereas the variational problem
of the Lagrangian approach is clearly unaffected by such a
constant factor, it corresponds to a rescaling of the particle
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momentum variables in the Hamiltonian formulation.
However, the particle trajectories remain unchanged.
We assume that the influence of the Hamiltonian Ht=m is

negligibly small and only Hm and HYM=m contribute to the
particlemotion. This assumption is justified by the extremely
small factor ΛE in h̃κλ [see, for example, Eq. (106) for static
isotropic fields]. The Hamiltonian Ht=m might have an
influence of the motion of mass only on cosmological length
and time scales.
The resulting evolution equation for the particle momen-

tum is given by

dpj

dt
¼ pμpν

2γm
∂
∂xj

�
hμν −

2

ΛE
ðG1R

∘ μν þ G2η
μνRλ

λÞ
�
; ð108Þ

where we have used the expression (A21) for HYM=m, and
the evolution of the particle position is governed by

�
1þ 1

2
h00 −

pkplhkl

2γ2m2

�
dxj

dt

¼
�
δjμ − hjμ þ 2G1

ΛE
R
∘ jμ
�
pμ

γm

þ 1

ΛE

�
G1

�
R
∘ 00

−
pkplR

∘ kl

γ2m2

�
þG2

Rλ
λ

γ2

�
pj

γm
: ð109Þ

The factor in parentheses on the left-hand side of Eq. (109)
simply changes dxj=dt into dxj=dτ, where τ is the proper
time of the particle moving in a gravitational field.
For the static isotropic solution in the weak-field approxi-

mation, the curvature tensor vanishes. Equations (108) and
(109) then describe geodesic motion. However, this should
not be taken for granted. For the fully nonlinear composite
theory of gravity, it has been shown inAppendixAof [2] that
onlyRλ

λ andR00 vanish [however, that result was found in a
standard quasi-Minkowskian coordinate system that does
not satisfy the coordinate conditions (19)]. If one still wants
to achieve geodesic motion, then one would have to choose
the scalar coupling of fields and matter through G2 rather
than the tensorial coupling through G1. A more appealing
option is to search for coordinate conditions characterizing a
background Minkowski system that leads to a vanishing
curvature tensor in matter-free space.

V. SUMMARY AND CONCLUSIONS

The main insight from this paper is this: A lot of things
could go wrong with composite gravity, but they do not.
The canonical Hamiltonian formulation of the composite

theory of gravity obtained by expressing the gauge vector
fields of the Yang-Mills theory based on the Lorentz group
in terms of tetrad or vierbein variables requires 80 fields,
not counting any ghost fields for handling gauge condi-
tions. A large number of constraints should arise, so that
gravity has only a few degrees of freedom, but not so many

that the theory would not admit any solutions. In addition to
constraints associated with gauge degrees of freedom, there
are constraints resulting from the composition rule. Quite
miraculously, we obtain exactly the right total number of
constraints. In the presence of matter, securing solutions by
avoiding too many constraints requires a consistently
matched double coupling of matter to both Yang-Mills
and tetrad fields. The possibility of finding a proper number
of natural constraints relieves the pressure to use smaller
Lie groups like SU(2), which is behind the Ashtekar
variables proposed for a canonical approach to gravity in
the context of dreibein variables [40,41].
Composite theories involve higher derivatives and

are hence prone to instability. For composite gravity, one
would expect fourth-order differential equations. However,
the constraints lead to a very special feature of composite
higher derivative theories: they select solutions from a
workhorse theory. For composite gravity this means that we
deal with selected solutions of the Yang-Mills theory based
on the Lorentz group. In the presence of matter, the Yang-
Mills theory includes suitable external fluxes. This selec-
tion effect guarantees the elimination of instabilities. As the
selection is very restrictive, we hope that it also helps to
eliminate potential problems associated with the noncom-
pact nature of the Lorentz group (Yang-Mills theories are
usually based for good reasons on compact Lie groups). As
composite gravity provides selected solutions of a Yang-
Mills theory, it is much closer to the standard treatment of
electroweak and strong interactions than general relativity.
As a consequence of the equivalence principle, gravity is

all about geometry. However, this remark does not imply
that gravity must necessarily be interpreted as curvature in
spacetime [42]. The composite theory of gravity expresses
the Yang-Mills fields associated with the Lorentz group in
terms of the tetrad fields associated with a spacetime
metric. This metric is only used for expressing momenta
in terms of velocities and may hence be interpreted as an
anisotropy of mass. The metric has no effect on the measure
used for the integrations in the Hamiltonian or Lagrangian,
which are performed in an underlying Minkowski space.
Nevertheless, the particle motion in the field around a
central mass turns out to be geodesic. And nevertheless, the
field equations for a tensorial coupling of the gravitational
field to matter are remarkably similar to general relativity in
the weak-field approximation. In the nonlinear regime,
however, it might turn out to be necessary to use the scalar
coupling to guarantee the geodesic motion of particles.
The canonical Hamiltonian formulation of the evolution

equations of composite gravity in a large space is clearly
advantageous for quantization. The constraints resulting
from the composition rule are found to be gauge invariant,
second class constraints. This suggests that, in the quan-
tization process, they can be treated via Dirac brackets, and
the gauge constraints can be treated independently with the
BRST procedure. Therefore, quantization of linearized
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composite gravity in the context of dissipative quantum
field theory [20] seems to be straightforward. A compact
formulation of the equations for the metric is advantageous
for solving practical problems, even though these second-
order differential equations have some special features: a
free function appears as a result of eliminating higher
derivatives by integration; this function is reminiscent of
gauge degrees of freedom in general relativity.
The steps carried out here in great detail for the weak-

field approximation should provide guidance for the proper
canonical treatment of the fully nonlinear composite theory
of gravity proposed in [2]. Whereas many of the steps are
straightforward and may actually be more transparent in the
nonlinear setting (for example, true vector indices can be
recognized more easily), special attention must be paid to
the coordinate conditions that we want to use for character-
izing appropriate Minkowskian coordinate systems (see
Appendix C). It would be desirable to find coordinate
conditions for which a suitably defined curvature tensor
vanishes in empty space. Moreover, one needs to make a
choice between coordinate conditions that are more in the
spirit of general relativity or better matched to the
assumption of a background Minkowski metric.

APPENDIX A: FROM LAGRANGIAN TO
HAMILTONIAN FOR COUPLING OF

FIELD TO MATTER

The goal of this Appendix is to derive the contribution to
the Hamiltonian that expresses the coupling of the Yang-
Mills field for the Lorentz group to matter. We emanate
from the following Lagrangian for a pure Yang-Mills
theory,

L ¼ −
Z �

1

4
Fa
μνF

μν
a þ 1

2

∂Aa
μ

∂xμ
∂Aν

a

∂xν
�
d3x; ðA1Þ

where, in the weak-field approximation, the field tensor is
given by

Fa
μν ¼

∂Aa
ν

∂xμ −
∂Aa

μ

∂xν : ðA2Þ

The second contribution in Eq. (A1) represents a covariant
gauge breaking term for removing degeneracies associated
with gauge invariance (the particular form corresponds to
the convenient Feynman gauge).
For the Yang-Mills theory based on the Lorentz group

we can replace summations over a by summations over κ̃, λ̃
according to Table I. If we sum over all pairs ðκ̃; λ̃Þ and
assume antisymmetry in κ̃, λ̃ [cf. Eq. (7)], each term occurs
twice. We include the coupling of the Yang-Mills field to
matter by generalizing Eq. (A1) to

L¼ −
Z �

1

8
ðFðκ̃ λ̃Þ

μν þHκ̃ λ̃
μνÞðFμν

ðκ̃ λ̃Þ þHμν
κ̃ λ̃
Þ þ 1

2

∂Aa
μ

∂xμ
∂Aν

a

∂xν
�
d3x;

ðA3Þ

where the fourth-rank tensor Hκ̃ λ̃
μν is assumed to have the

same antisymmetries in κ̃, λ̃ and μ, ν as Fðκ̃ λ̃Þ
μν . We now

assume that Hκ̃ λ̃
μν is a linear function of the energy-

momentum tensor of matter. The natural way of building
a fourth-rank tensor with the required antisymmetries from
a symmetric second-rank tensor Cμν is

Hκ̃ λ̃
μν ¼ Cκ̃

μδ
λ̃
ν − Cλ̃

μδ
κ̃
ν − Cκ̃

νδ
λ̃
μ þ Cλ̃

νδ
κ̃
μ; ðA4Þ

where we assume that the matter tensor Cμν is a linear
combination of the trace-free and trace parts of the energy-
momentum tensor Tμν. This assumption is motivated by the
equations of general relativity.
Einstein’s (linearized) field equation is usually written in

the form

Rμν −
1

2
Rλ

λημν ¼ −8πGTμν; ðA5Þ

or in the alternative form

Rμν ¼ −8πG
�
Tμν −

1

2
Tλ

λημν

�
: ðA6Þ

In Eq. (A5), the energy-momentum tensor Tμν on the
right-hand side is divergence-free (conservation of energy
and momentum), so that it has to be matched with the
divergence-free version of the curvature tensor Rμν on the
left-hand side (Bianchi identity). Equation (A6) is obtained
by means of the trace equation,

Rλ
λ ¼ 8πGTλ

λ; ðA7Þ

which follows by taking the trace of either version of
Einstein’s field equation. A particularly useful form of
Einstein’s field equation for our purposes is obtained by
equating trace-free tensors rather than divergence-free
tensors,

R
∘
μν ¼ −8πGT

∘
μν; ðA8Þ

with the trace-free tensors

R
∘
μν ¼ Rμν −

1

4
Rλ

λημν ðA9Þ

and

T
∘
μν ¼ Tμν −

1

4
Tλ

λημν: ðA10Þ
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Of course, Eq. (A8) now needs to be supplemented by
Eq. (A7) to reproduce the full content of Einstein’s field
equations. The clear separation between trace-free and trace
parts motivates our choice

Cμν ¼ G1T
∘
μν þG2ημνTλ

λ; ðA11Þ

in Eq. (A4), where the coefficientsG1 andG2 must have the
same dimensions as Newton’s constant G (cf. Table II).
From the Lagrangian (A3), we obtain the conjugate

momenta

Ea
ν ¼ −

δL

δ _Aν
a

¼ −
∂Aa

ν

∂t þ ∂Aa
0

∂xν þ δ0ν
∂Aa

μ

∂xμ −Hκ̃ λ̃
0ν : ðA12Þ

These equations can also be regarded as evolution equa-
tions for Aa

ν (due to the gauge breaking term, even for
ν ¼ 0). The evolution equations for Ea

ν are given by

∂Ea
ν

∂t ¼ −
δL
δAν

a

¼ −
∂ðFa

nν þHκ̃ λ̃
nνÞ

∂xn −
∂
∂xμ

�∂Aa
μ

∂xν − δ0ν
∂Aa

μ

∂t
�
: ðA13Þ

We can now evaluate the HamiltonianH as the Legendre
transform of L,

H ¼ HYM

þ
Z �

1

4
Fðκ̃ λ̃Þ
mn Hmn

κ̃ λ̃
−
1

2
Eðκ̃ λ̃Þ
n H0n

κ̃ λ̃
þ 1

8
Hκ̃ λ̃

mnHmn
κ̃ λ̃

�
d3x;

ðA14Þ

where HYM is given in Eq. (26). The contribution from

1

8
Hκ̃ λ̃

mnHmn
κ̃ λ̃

¼ 1

2
ðCλ

νCν
λ þ Cl

lCn
n − C0

0C0
0Þ ðA15Þ

describes a direct local self-interaction of matter. Such self-
interactions are a well-known problem and should be
analyzed within a careful renormalization procedure. We
here simply add the corresponding contribution to the
Lagrangian and thus eliminate it from the Hamiltonian. The
remaining contribution characterizes the coupling between
field and matter,

HYM=m ¼
Z �

1

4
Fðκ̃ λ̃Þ
mn Hmn

κ̃ λ̃
−
1

2
Eðκ̃ λ̃Þ
n H0n

κ̃ λ̃

�
d3x

¼
Z

ðFðλnÞ
jn Cj

λ − EðλjÞ
j C0

λ − Eð0lÞ
j Cj

lÞd3x: ðA16Þ

Note that the fields FðλnÞ
jn contain only spatial derivatives of

the spatial components of Aa
μ, and no time derivatives.

This expression for HYM=m suggests that

Rμ
ν ¼ FðμλÞ

νλ ðA17Þ

is an interesting tensor to look at. By using Eqs. (7) and
(A2), we arrive at the following explicit representation in
terms of the metric,

Rμ
ν¼

1

2

� ∂2hμν
∂xλ∂xλ−

∂2hμλ
∂xλ∂xν−

∂2hλν
∂xμ∂xλþ

∂2hλλ
∂xμ∂xν

�
; ðA18Þ

which can be recognized as the Ricci curvature tensor in the
weak-field approximation [see, e.g., Eq. (7.6.2) of [35] or
Eq. (B5) of [2]; cf. also Eq. (58)]. By means of Eqs. (A17)
and (A12), we can evaluate

Rμ
νCν

μ ¼ FðλnÞ
jn Cj

λ − EðλjÞ
j C0

λ − Eð0lÞ
j Cj

l

− ðH0μ
0ν þHμj

0jδ
0
νÞCν

μ: ðA19Þ

If we define

Rμ
ν ¼ Rμ

ν þH0μ
0ν þHμj

0jδ
0
ν; ðA20Þ

the Hamiltonian (A16) can be rewritten as

HYM=m ¼
Z

Rμ
νCν

μd3x: ðA21Þ

For pure gravity, that is, in the absence of matter or for
Hκ̃ λ̃

μν ¼ 0, the tensorRμ
ν coincides with the curvature tensor

Rμ
ν. This simple direct coupling of curvature tensor and

energy-momentum tensor suggests that the developments
of this Appendix are very natural and appealing.
Note that the arguments given in this Appendix are

not restricted to the weak-field approximation (A2).
Generalization to the full theory is straightforward. Even
the formula (A17) can be generalized (for g̃ ¼ 1).

APPENDIX B: REPRESENTATION OF
YANG-MILLS FIELDS IN TERMS OF

TETRAD VARIABLES

In addition to the modified composition rule for the
gauge vector fields resulting from the presence of matter,

Að0lÞμ ¼
1

2

�∂hlμ
∂t −

∂h0μ
∂xl

�
þ 1

2g̃
∂ω0l

∂xμ − ΛEVlμ; ðB1Þ

AðklÞμ ¼
1

2

�∂hlμ
∂xk −

∂hkμ
∂xl

�
þ 1

2g̃
∂ωkl

∂xμ ; ðB2Þ

we have the representation of their conjugate momenta
obtained from the evolution equations (39), (80), and (81):
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Eð0lÞ0 ¼
1

2

∂
∂xμ

�∂hlμ
∂t −

∂h0μ
∂xl

�
− ΛE

∂Vlμ

∂xμ ; ðB3Þ

EðklÞ0 ¼
1

2

∂
∂xμ

�∂hlμ
∂xk −

∂hkμ
∂xl

�
; ðB4Þ

Eð0lÞj ¼
1

2

�∂2h0j
∂xl∂t −

∂2hlj
∂t2 −

∂2h00
∂xj∂xl þ

∂2h0l
∂xj∂t

�

þ Cjl − δjlC00 þ ΛE

�∂Vlj

∂t −
∂Vl0

∂xj
�
; ðB5Þ

and

EðklÞj ¼
1

2

�∂2hkj
∂xl∂t −

∂2hlj
∂xk∂t −

∂2h0k
∂xj∂xl þ

∂2h0l
∂xj∂xk

�
þ δjkC0l − δjlC0k: ðB6Þ

APPENDIX C: STATIC ISOTROPIC SOLUTION
IN HARMONIC COORDINATES

Static isotropic solutions play an important role in the
theory of gravity. They are the starting point (i) for many of
the predictions that have been tested with high precision
and (ii) for the theory of black holes. We here offer a few
remarks on the role of coordinate conditions in the fully
nonlinear composite theory of gravity for static isotropic
solutions.
We start with the static isotropic solutions of the Yang-

Mills theory, from which the solutions of the composite
theory are then selected. We assume that these solutions are
of the form

Aa
ν ¼ YðrÞTa

lνx
l; ðC1Þ

with r ¼ ðx21 þ x22 þ x23Þ1=2. More explicitly, by means of
the definition (6), the 24 components of Aa

ν can be listed in
matrix form,

Aa
ν ¼ Y

0
BBB@

x1 x2 x3 0 0 0

0 0 0 0 −x3 x2
0 0 0 x3 0 −x1
0 0 0 −x2 x1 0

1
CCCA; ðC2Þ

where the index a of the Lie algebra (see Table I) labels the
columns and the spacetime index ν labels the rows. The
function Y has to be determined from the Yang-Mills
equations for the gauge vector field (C1). The field
equations for gauge vector fields of this form and their
solutions have been discussed in Sec. V of [2]. Most
remarkable is the closed-form solution of the fully non-
linear equations,

Y ¼ 1

r2ðg̃þ r=r0Þ
; ðC3Þ

with a free parameter r0, which is closely related to the
Schwarzschild radius.
As a next step, one should choose the form of the static

isotropic metric to be used in the composition rule for the
gauge vector field (C1). It is well known from general
relativity that the proper form of the isotropic metric depends
on the choice of coordinates [see, e.g., Eq. (8.1.3) of [35] ].
The choice of coordinates does not matter in general
relativity, where general coordinate transformations are
possible, but it does matter in the composite theory of
gravity, where only Lorentz transformations in the back-
ground Minkowski space are allowed. We here compare
standard quasi-Minkowskian coordinates (see Sec. 8.1 of
[35]) and harmonic coordinates.
In the previous work [2], we used standard quasi-

Minkowskian coordinates for associating a metric with
the Yang-Mills solution (C2), (C3). An important con-
clusion was that g̃ should approach 0 to reproduce the high-
precision predictions of general relativity and that particu-
larly nice black hole solutions result when 0 is approached
from below. However, these conclusions depend on the
assumption that composite gravity can be applied mean-
ingfully in standard quasi-Minkowskian coordinates (as
their name might suggest).
For comparison, we here consider harmonic coordinates,

which can be defined in more general situations and may be
regarded as nearly Minkowskian (see, e.g., pp. 163 and 254
of [35]). We assume the following form of a static isotropic
metric [see, e.g., Eq. (8.1.3) of [35] ], which is sufficiently
general for imposing harmonic coordinate conditions:

gμν ¼
�−β 0

0 αδmn þ ξ xmxn
r2

�
; ðC4Þ

with inverse

ḡμν ¼
�− 1

β 0

0 δmn
α − ξ

αðαþξÞ
xmxn
r2

�
: ðC5Þ

In our previous work based on standard quasi-
Minkowskian coordinates, we assumed α ¼ 1, β ¼ B,
and ξ ¼ A − 1 [2]. We are now interested in solutions
gμν of the nonlinear theory that satisfy the harmonic
coordinate conditions

ḡμν
∂gρν
∂xμ ¼ 1

2
ḡμν

∂gμν
∂xρ : ðC6Þ

According to these conditions, the functions in Eq. (C4) are
related by the differential equation
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ξ0

αþ ξ
−
αþ 2ξ

αþ ξ

α0

α
þ 4ξ

rα
¼ β0

β
; ðC7Þ

where a prime on a function of r indicates the derivative
with respect to r.
The Schwarzschild solution of general relativity in

harmonic coordinates is given by [see, e.g., Eq. (8.2.15)
of [35] ]

α¼
�
1þ r0

r

�
2

; β ¼ r− r0
rþ r0

; ξ¼ rþ r0
r− r0

r20
r2
: ðC8Þ

One can easily verify that the functions given in Eq. (C8)
indeed satisfy Eq. (C7). For the Schwarzschild solution, we
moreover have ðαþ ξÞβ ¼ 1.
Note that the harmonic coordinate conditions (C6) are

Lorentz covariant. The same would be true for the follow-
ing class of simpler coordinate conditions:

ημν
∂gρν
∂xμ ¼ Kημν

∂gμν
∂xρ ; ðC9Þ

which leads to

ð3K − 1Þα0 þ Kβ0 þ ðK − 1Þξ0 ¼ 2ξ

r
: ðC10Þ

As pointed out before, in composite gravity, solutions for
different coordinate conditions are not equivalent. The
condition (C6) is very much inspired by the thinking of
general relativity. Once the decision in favor of a back-
ground Minkowski space has been made, Eq. (C9) may
actually be the more appropriate choice.
Our construction of Yang-Mills fields is based on the

symmetric tetrad variables obtained by factorizing the
metric (C4),

bκμ ¼
� ffiffiffi

β
p

0

0
ffiffiffi
α

p
δkm þ ð ffiffiffiffiffiffiffiffiffiffiffi

αþ ξ
p

−
ffiffiffi
α

p Þ xkxmr2

�
; ðC11Þ

with inverse

b̄μκ ¼

0
B@

1ffiffi
β

p 0

0 δmkffiffi
α

p þ
�

1ffiffiffiffiffiffi
αþξ

p − 1ffiffi
α

p
�

xmxk
r2

1
CA: ðC12Þ

The nonlinear decomposition rule

AaνTa
κλ ¼

1

2
b̄μκ

�∂gμν
∂xμ0 −

∂gμ0ν
∂xμ

�
b̄μ

0
λ

þ 1

2g̃

∂bκ0μ
∂xν ðb̄μκηκ0λ − b̄μληκ0κÞ ðC13Þ

leads to two equivalent representations of Y,

Y ¼ 1

2r2
ξ − rα0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðαþ ξÞαp þ 1

g̃r2

 
1 −

1

2

ffiffiffiffiffiffiffiffiffiffiffi
α

αþ ξ

r
−
1

2

ffiffiffiffiffiffiffiffiffiffiffi
αþ ξ

α

r !

ðC14Þ

and

Y ¼ 1

2r
β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðαþ ξÞβp : ðC15Þ

For harmonic coordinates, we find the second-order
Robertson expansions

α ¼ 1þ 2r0
r

− g̃
r20
r2
; β ¼ 1 −

2r0
r

þ g̃
r20
r2
; ξ ¼ 4r20

r2
:

ðC16Þ

Similar expansions can be obtained for the coordinate
conditions (C9), provided that K ¼ 1=2. By matching the
terms that contribute to the high-precision predictions of
general relativity with the expansions of the Schwarzschild
solution (C8), we find g̃ ¼ 2 from the second-order
expansion of β.
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