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We study the quasiperiodic oscillations from the accretion disk around the distorted Schwarzschild black
hole in the framework of the resonant models. We confine ourselves to the case of a quadrupole distortion
which can be caused for example by the accreting matter flow in the vicinity of the compact object. For the
purpose we examine the linear stability of the circular geodesic orbits in the equatorial plane and derive
analytical expressions for the radial and vertical epicyclic frequencies. We investigate their properties in
comparison with the isolated Schwarzschild black hole. Due to the influence of the external matter the
vertical epicyclic frequency is not always positive anymore, and the stability of the circular orbits is
determined by the interplay between both of the frequencies. As a result, the stable circular orbits do not
extend to infinity, but are confined to a finite annular region between an inner and an outer marginally stable
orbit. In addition, the degeneracy between the vertical epicyclic and the orbital frequency, which is
characteristic for the Schwarzschild solution, is broken, and there are regions in the parametric space where
the radial epicyclic frequency is larger than the vertical one. All these properties allow for much more
diverse types of nonlinear resonances to be excited than for the isolated Schwarzschild black hole, which
can provide an explanation for the observed 3∶2 ratio between the twin-peak frequencies of the
quasiperiodic oscillations from the accretion disk.
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I. INTRODUCTION

With the recent development of the experimental resour-
ces, testing general relativity in the strong field regime
became an important line of research. Combining data
from electromagnetic and gravitational wave experiments,
we aim to put more stringent constraints on the viable
gravitational theories and differentiate more precisely
between different compact objects, including more
exotic self-gravitating systems, like wormholes or naked
singularities.
A promising source of information about the gravita-

tional field in the regime of strong interaction is the
electromagnetic radiation emitted by the gas in the accre-
tion disks around the compact objects. The imprints of
different physical phenomena can be extracted from its
x-ray spectrum. Therefore, a number of experimental
missions with constantly improving resolution are being
developed for its measurement, such as the satellites LOFT
[1], eXTP [2] and STROBE-X [3].
One of the most intriguing features of the accretion flow

are the high-frequency quasiperiodic oscillations (QPOs)

observed in the x-ray flux from neutron star binaries,
stellar-mass black holes, and a few supermassive active
galactic nuclei. They represent a couple of peaks in the
x-ray spectrum with frequencies obeying a constant
3∶2 ratio. The twin peak QPOs scale inversely with the
compact object’s mass, and depend very weakly on the
observed x-ray flux. This suggests that they are not caused
by kinematic effects in the accretion disk, but are rather an
intrinsic property of the background spacetime carrying
fundamental information about its nature.
The precise physical mechanism of the formation of the

QPOs is currently unknown. However, the stable 3∶2
scaling between the two frequencies strongly suggests that
they can originate from some resonant process taking place
in the accretion disk’s oscillations. Resonant models
describing the QPOs’ formation were developed within
the thin disk approximation. They suggest that due to the
physical processes in the accretion disk the particles do not
move on perfectly circular orbits in the equatorial plane, but
perform small oscillations in the radial and vertical direc-
tion around the orbit. In the linear approximation the
oscillations are described by two decoupled harmonic
oscillators with frequencies called radial and vertical
epicyclic frequencies. If we consider further nonlinear
corrections, they lead to coupling between the two epicy-
clic frequencies and the excitation of different resonances.
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The observed twin peak frequencies can be identified either
with the epicyclic frequencies or with a linear combination
of them, depending on the type of resonance, which is
realized, in order to achieve the experimental 3∶2 ratio.
Another possibility is that the resonances occur as a result
of the coupling between one of the epicyclic frequencies
and the orbital frequency on the circular orbit.
The possibility of formation of nonlinear resonances due

to coupling between the epicyclic frequencies in black hole
spacetimes was first investigated in [4,5], where the
Kerr(-Newman) black hole was considered, and further
generalized by adding an external magnetic field. Later, the
idea was revisited in the context of modeling the QPOs in
the accretion disks of black holes in the series of works
[6–9] using again the Kerr solution in order to describe the
compact object. Recently, the QPOs were viewed as one of
the suitable phenomena for differentiating observationally
between gravitational theories and testing the Kerr hypoth-
esis [10]. Therefore, the resonant models were applied in
different black hole spacetimes, including braneworld
black holes [11,12], quasi-Kerr metrics describing small
deviations from the Kerr solution [13], the Zipoy-Vorhees
spacetime [14], or the Tomimatsu-Sato solution [15]. Black
holes in the Einstein-dilaton-Gauss-Bonnet theory and
quadratic gravity were considered in [16–20], while [21]
studied the QPOs in the Johansen-Psaltis metric, which
describes a general stationary and axisymmetric spacetime
with a regular black hole horizon, extending the Kerr
solution in the alternative theories of gravity.
The resonant models depend strongly on the properties

of the epicyclic and orbital frequencies, which on the other
hand are determined by the background spacetime. If we
denote the radial and vertical epicyclic frequencies by νr
and νθ and the orbital frequency by ν0, for the Kerr metric
we always have the ordering ν0 > νθ > νr for any circular
orbit. This restricts the possible resonances that can be
excited. For the Schwarzschild black hole the situation is
even more degenerate, since the vertical epicyclic fre-
quency and the orbital frequency coincide. Black holes
in the modified theories of gravity allow for a greater
variety in the behavior of the characteristic frequencies, and
hence for more diverse physical mechanisms for the
development of nonlinear phenomena.
In this paper we investigate another situation when the

resonance profile of the black holes in general relativity is
modified. Instead of introducing corrections to the gravi-
tational theory, we consider the influence of the surround-
ing matter on the black hole spacetime, such as an accretion
disk or a binary companion. Usually such backreaction is
omitted, since it is considered to be negligibly small
compared to the gravitational field of the compact object.
However, when it comes to physical phenomena connected
with the geodesic motion, even a small correction can be
crucial, since it can change qualitatively the geodesic
structure, and lead to observable effects.

In order to describe the interaction between the black
hole and the surrounding matter we use a class of exact
solutions in general relativity called distorted black holes
[22]. They represent local solutions valid in the vicinity of
the black hole horizon, which reflect the influence of a
general surrounding matter distribution on the compact
object’s spacetime. The distorted black hole solution is
vacuum or electrovacuum, so it does not contain explicitly
the matter sources. It is supposed to be valid up to some
physically relevant hypersurface and includes the interior
multipole moments expansion in the vicinity of this hyper-
surface in the form of an infinite sequence of free
parameters. A global solution, which is valid in the whole
spacetime, is achieved by matching on the boundary
hypersurface the interior distorted black hole solution with
an exterior solution, which contains the matter sources but
no black hole horizon. The particular type of the external
matter distribution is specified in the distorted black hole
metric by constraining its interior multipolar structure. In
the limit when all the interior multipole moments vanish,
the solution reduces to an isolated black hole with the same
symmetries, e.g., the Schwarzschild or the Kerr black hole.
The idea of distorted black holes was first suggested in

the literature in the early work of Doroshkevich et al. [23].
The most general static and axisymmetric distorted black
hole solution in general relativity was considered in the
classical paper of Geroch and Hartle [22], where its
thermodynamics was also analyzed. Rotating and charged
generalizations were further developed and their properties
studied [24–30], including also solutions in higher dimen-
sions [31–33]. Recently, a series of works investigated the
particle and light propagation in the vicinity of distorted
black holes. The qualitative behavior of the equatorial
geodesics for static black holes with quadrupole distortion
was studied in [34], while [35–37] considered the appear-
ance of their local shadow. It was demonstrated that the
photon region of the distorted black holes is qualitatively
different than that of their isolated counterparts even for an
arbitrary small distortion [37,38]. This leads to distinct
observational effects in their shadow silhouettes, which do
not depend on the strength of the interaction with the
external matter field but on its mere presence [37]. When
we take into account the influence of the surrounding
matter, the shadow image is not just a deformed generali-
zation of the shadow of the corresponding isolated black
hole, but we observe in addition the appearance of a series
of secondary images.
The purpose of this work is to study the influence of the

surrounding matter on the stability of the circular geodesics
in the equatorial plane and apply the results for describing
the quasiperiodic oscillations from the accretion disk within
the resonant models. For simplicity we consider the
distorted Schwarzschild solution, since it allows us to
see clearly the impact of the external matter on the
particles’ dynamics without interfering with effects from
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the black hole spin. Since the distorted Schwarzschild black
hole should be a static limit of more general rotating
distorted black hole solutions, the observed effects should
be present also when rotation is added. We further restrict
ourselves to the case when the external matter is charac-
terized only by a quadrupole moment. This is the simplest
multipolar structure describing matter distributions with an
equatorial symmetry, including in particular the case of an
accretion disk surrounding the black hole.
The paper is organized as follows. In the next section we

present briefly the metric of the distorted Schwarzschild
black hole. In Sec. III we describe the distribution of the
circular geodesics in the equatorial plane, while in Sec. IV
we study their stability with respect to linear perturbations.
We derive analytic expressions for the radial and vertical
epicyclic frequencies, and investigate their properties. The
regions of stability are analyzed for positive and negative
quadrupole distortion, as well as the behavior of the
epicyclic and orbital frequencies as a function of the radial
distance. In Sec. V we apply the obtained results to
examine the possible resonances, which can be excited
as a result of the coupling between some of the character-
istic frequencies, and which can explain the observed 3∶2
ratio in the quasiperiodic oscillations. In the last section we
discuss our results.

II. DISTORTED SCHWARZSCHILD BLACK HOLE

The distorted Schwarzschild black hole is a static
axisymmetric solution to the Einstein equations in vacuum.
It is given by the metric [22,25]

ds2 ¼ −
�
x − 1

xþ 1

�
e2Udt2 þm2ðxþ 1Þ2ð1 − y2Þe−2Udϕ2

þm2ðxþ 1Þ2e2ðV−UÞ
�

dx2

x2 − 1
þ dy2

1 − y2

�
; ð1Þ

where the metric functions U and V depend only
on the prolate spheroidal coordinates x ∈ ½1;þ∞Þ and
y ∈ ½−1; 1�. The coordinate t parametrizes time transla-
tions, and the coordinate ϕ describes rotations around the
axis of symmetry. The solution contains a Killing horizon
located at x ¼ 1, while the symmetry axis corresponds to
y ¼ �1. The real parameter m is equal to the Komar mass
on the horizon. The prolate spheroidal coordinates are
related to the Schwarzschild coordinates r and θ as

x ¼ r
m
− 1; y ¼ cos θ:

The metric functions U and V possess the form

U ¼
X
n≥0

anRnPn; ð2Þ

V ¼
X
n;k≥1

nkanak
ðnþ kÞR

nþkðPnPk − Pn−1Pk−1Þ

þ
X
n≥1

an
Xn−1
l¼0

½ð−1Þn−lþ1ðxþ yÞ − xþ y�RlPl;

Pn ≡ Pnðxy=RÞ; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − 1

q
;

where Pn are the Legendre polynomials, and an are real
constants. Due to their presence the solution is not
asymptotically flat if considered as global solution. If we
consider a local solution, they are interpreted as encoding
the influence of a gravitational source located in the
exterior of the region of validity of (1). In the limit when
all the constants an vanish, we obtain the asymptotically
flat Schwarzschild solution. The function Uðx; yÞ is a
harmonic function defined in a nonphysical 3D flat space.
In analogy with the terminology used in the Newtonian
gravity and electromagnetism, the coefficients an are called
multipole moments, since they should coincide with the
interior multipole moments in the multipole expansion of
the external gravitational field. Constraining the values of
the multipole moments, we impose restrictions on the type
and symmetries of the external gravitational source.
The distorted Schwarzschild solution is free of conical

singularities on the symmetry axis y ¼ �1 provided the
multipole moments satisfy the condition

X
n≥0

a2nþ1 ¼ 0: ð3Þ

In this case the metric can describe balanced configurations
of a black hole and external matter.
For our purposes it is convenient to present the metric in

the form

dS2 ¼ −
�
x − 1

xþ 1

�
e2Udt2 þ ðxþ 1Þ2ð1 − y2Þe−2Udϕ2

þ ðxþ 1Þ2e2ðV−UÞ
�

dx2

x2 − 1
þ dy2

1 − y2

�
; ð4Þ

where we introduce the notations

U ¼ U − u0; u0 ¼
X
n≥0

an:

Thus, the metric is rescaled by a conformal factor, and
the time coordinate is redefined as

ds2 ¼ Ω2dS2; Ω2 ¼ m2e−2u0 ; t →
1

m
e2u0t:

As a result, the new metric is characterized by a unit Komar
mass on the horizon, and the horizon area is equal to 16π as
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for the asymptotically flat Schwarzschild solution with
unit mass.
In the following we will consider a special type of

distortion, in which only the quadrupole moment is non-
zero, while all the others vanish, i.e., fa2 ¼ q ≠ 0;
an ¼ 0; n ≠ 2g. Then, the metric functions obtain the form

U ¼ 1

2
qð3x2y2 − x2 − y2 − 1Þ; ð5Þ

V ¼ 2qxðy2 − 1Þ

þ 1

4
q2½9x4y4 þ ðx2 þ y2 − 1Þðx2 þ y2 − 1 − 10x2y2Þ�:

III. CIRCULAR ORBITS IN THE
EQUATORIAL PLANE

We consider the geodesic equations for the distorted
Schwarzschild solution

ẍα þ Γα
βγ

_xβ _xγ ¼ 0; ð6Þ

where xα ¼ ft; x; y;ϕg are the spacetime coordinates, the
dot denotes differentiation with respect to an affine para-
meter, and Γα

βγ are the Christoffel symbols. We give the
explicit form of the connection coefficients for our solution
in the Appendix. Due to the spacetime symmetries the
geodesic motion is characterized by two conserved quan-
tities E and L

E ¼
�
x − 1

xþ 1

�
e2U _t;

L ¼ ðxþ 1Þ2ð1 − y2Þe−2U _ϕ; ð7Þ

which are associated with the particle’s specific energy and
angular momentum. We further have the constraint equa-
tion gμν _xμ _xν ¼ ϵ, where ϵ takes the value ϵ ¼ −1 for
timelike geodesics, and ϵ ¼ 0 for null geodesics. If we
restrict the motion to the equatorial plane y ¼ 0, the
constraint equation takes the form

e2V _x2 ¼ E2 − Ueff ;

Ueff ¼
�
x − 1

xþ 1

�
e2U

�
−ϵþ L2e2U

ðxþ 1Þ2
�
; ð8Þ

where we introduce the effective potential Ueff . The
properties of the effective potential and the qualitative
behavior of the equatorial geodesic motion were studied in
detail in [34]. The possible positions of the circular orbits
can be obtained by determining the stationary points of the
effective potential. For null geodesics they are located on
the curve

2 − x − 2qxðx2 − 1Þ ¼ 0: ð9Þ

The position of the circular orbits does not depend on the
photon’s angular momentum, and in the limit q ¼ 0 it
reduces to the location of the photon sphere for the
Schwarzschild solution x ¼ 2. For positive quadrupole
moments there is a single circular orbit for every q (see
Fig. 1). For negative quadrupole moments the curve (9) is
bounded and reaches a minimum at qmin ≈ −0.021,
xmin ≈ 2.879. Therefore, there exists a minimum quadru-
pole moment, for which circular orbits can exist. For
q > qmin there are two circular orbits, which deviate from
each other when the quadrupole moment increases. In the
limit q → 0 one of them approaches the location of the
photon sphere for the Schwarzschild solution x ¼ 2, while
the other one tends to infinity.
For timelike geodesics the positions of the circular orbits

are determined by the solutions to the following algebraic
equation [34]

ðxþ 1Þ2½1 − qxðx2 − 1Þ�
½x − 2þ 2qxðx2 − 1Þ� ¼ L2e−qðx2þ1Þ: ð10Þ

They form a region in the ðx; qÞ-plane bounded by the
locus of the circular orbits for the null geodesics

2 − x − 2qxðx2 − 1Þ ¼ 0;

and the curve

1 − qxðx2 − 1Þ ¼ 0; ð11Þ

which is illustrated in Fig. 1. It is convenient to introduce
the notation

FIG. 1. Domain of existence of the circular orbits in the equa-
torial plane. Null orbits are located on the curve 2A − x ¼ 0
represented in red. Timelike orbits belong to the region bounded
by the curves 2A − x ¼ 0 and A ¼ 0 depicted in gray.
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A ¼ 1 − qxðx2 − 1Þ: ð12Þ

Then the domain of existence of the circular timelike
geodesics is determined by the inequalities A > 0 ∩ 2A−
x < 0. For every quadrupole moment q > qmin the radial
positions of the circular orbits belong to a certain interval
ðx−; xþÞ. The lower limit x− corresponds to the position of
the circular photon orbit for the particular quadrupole
moment, which lies closer to the horizon. When the
absolute value of q decreases, the upper limit xþ increases,
and in the limit q → 0 it tends to infinity. Thus, the
Schwarzschild limit is reproduced with circular timelike
orbits existing in the interval x ∈ ð2;þ∞Þ.
While for q < 0 circular orbits are possible only above

the quadrupole moment qmin ≈ −0.021, they can exist for
any positive value of the quadrupole moment. When q > 0
increases, the interval ðx−; xþÞ decreases, and its lower
limit approaches the horizon x ¼ 1. In the limit q → þ∞
both curves A ¼ 0 and 2A − x ¼ 0 tend to the location of
the horizon.
Each circular orbit is characterized by the orbital

frequency ω0 of the particles moving on it, and their
specific energy E and angular momentum L. They can be
calculated using the formula

E ¼ −
gttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − gϕϕω2
0

q ; ð13Þ

L ¼ gϕϕω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − gϕϕω2

0

q ; ð14Þ

ω2
0 ¼

�
dϕ
dt

�
2

¼ −
gtt;x
gϕϕ;x

; ð15Þ

where gtt and gϕϕ are the metric functions of the distorted
Schwarzschild solution given by

gtt ¼ −
�
x − 1

xþ 1

�
e2U ;

gϕϕ ¼ ðxþ 1Þ2ð1 − y2Þe−2U ;

and the function U is defined in Eq. (5). Then, the kinematic
quantities take the explicit form

ω2
0 ¼

e4U

ðxþ 1Þ3
1 − qxðx2 − 1Þ
1þ qxðxþ 1Þ

¼ e4U

ðxþ 1Þ3
Aðx − 1Þ
x − A

; ð16Þ

E ¼ eU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 1ÞðA − xÞ
ðxþ 1Þð2A − xÞ

s
;

L ¼ ðxþ 1Þe−U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A
ðx − 2AÞ

s
:

IV. STABILITY OF THE CIRCULAR ORBITS

In order to investigate the stability of the circular orbits
in the equatorial plane in the linear approximation we
consider a small deviation from the circular motion
x̃μðsÞ ¼ xμðsÞ þ ξμðsÞ, where xμðsÞ describes the circular
orbit, and s is an affine parameter on the particle trajectory.
We substitute this expression in the geodesic equations (6)
and considering terms up to linear order in ξμðsÞ, we obtain
the following system [4,5]

d2ξμ

dt2
þ 2γμα

dξα

dt
þ ξb∂bVμ ¼ 0; b ¼ x; y

γμα ¼ ½Γμ
αβu

βðu0Þ−1�
y¼0

;

Vμ ¼ ½γμαuαðu0Þ−1�y¼0; ð17Þ

which describes the dynamics of the small perturbation. In
these equations we express the 4-velocity vector for the
circular orbits in the equatorial plane as uμ ¼ _xμ ¼
u0ð1; 0; 0;ω0Þ, where u0 ¼ dt=ds and ω0 is the orbital
frequency (16). We further introduce the convention that
Greek indices run over all the spacetime coordinates,
capital Latin indices refer to the cyclic coordinates t and
ϕ, while small Latin indices denote the prolate spheroidal
coordinates x and y. The equations for the t and ϕ
components in (17) can be integrated leading to

dξA

dt
þ 2γAαξ

α ¼ 0; A ¼ t;ϕ: ð18Þ
Substituting these relations in the remaining part of the

system, we can show that for any static and axisymmetric
solution the equations for the radial and vertical perturba-
tions decouple and reduce to the form

d2ξx

dt2
þ ω2

xξ
x ¼ 0; ð19Þ

d2ξy

dt2
þ ω2

yξ
y ¼ 0; ð20Þ

where we introduce the quantities

ω2
x ¼ ∂xVx − 4γxAγ

A
x ;

ω2
y ¼ ∂yVy: ð21Þ

The dynamics of the perturbations in the radial and the
vertical direction is determined by the sign of ω2

x and ω2
y.

For positive values Eqs. (19)–(20) describe a couple of
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harmonic oscillators, i.e., small deviations from the circular
orbits will oscillate in their vicinity with frequencies ωx and
ωy in the radial and vertical direction, respectively. In this
case the circular orbit is stable in the linear approximation,
and the quantities ωx and ωy are called epicyclic frequen-
cies. If one of the quantities ω2

x and ω2
y is negative, the

circular orbit is unstable, since small perturbations in the
corresponding direction will deviate exponentially from it.
Performing the calculations for the distortedSchwarzschild

solution, we obtain the following expressions for the
epicyclic frequencies

ω2
y ¼

ω2
0e

−2V

A
ð1þ 2qx3Þ; ð22Þ

ω2
x ¼

ω2
0e

−2V

x2 − 1

�
2ð2A − xÞðA − xÞ − ðx2 − 1Þ

A
ð1þ 2qx3Þ

�
;

A ¼ 1 − qxðx2 − 1Þ;

by means of the orbital frequency ω0 given by Eq. (16). We
should note that the epicyclic frequencies, as well as all the
kinematic properties of the circular orbits, are well defined
only in the region of existence of the circular orbits defined
by the conditionsA > 0 ∩ 2A − x < 0. We can further write
the relation

ω2
x þ ω2

y ¼
2ω2

0e
−2V

x2 − 1
ð2A − xÞðA − xÞ; ð23Þ

which shows that in the region of existence of the circular
orbits the sum ω2

x þ ω2
y is always non-negative.

The stability condition for the circular orbits with respect
to perturbations in the radial direction also coincides with
the requirement that they are located at the minima of the
effective potential Ueff . The derivative ∂2

xxUeff evaluated at
the stationary points of the effective potential is given by
the expression

∂2
xxUeff ¼

2e2UA
ðx2 − 1Þðxþ 1Þ2ðx − 2AÞ

�
2ð2A − xÞðA − xÞ

−
ðx2 − 1Þ

A
ð1þ 2qx3Þ

�
; ð24Þ

which is positive for positive values of ω2
x.

In Fig. 2 we present the analysis of the stability of the
timelike circular orbits with respect to linear perturbations.
The domain of existence is illustrated by the dark gray area
bounded between the curves A ¼ 0 and 2A − x ¼ 0. We
further plot the curves ω2

x ¼ 0 and ω2
y ¼ 0, which are

depicted in blue and purple, respectively. The circular orbits
are stable with respect to radial perturbations in the region
below the blue curve, where ω2

x > 0 is satisfied. On the
contrary, stability with respect to vertical perturbations is
achieved above the purple curve, where we have ω2

y > 0.
Thus, both the stability conditions are fulfilled in the region
bounded between the two curves, where ω2

x > 0 and
ω2
y > 0 are satisfied. Consequently, for values of the para-

meters q and x belonging to this region, the circular orbits
are stable with respect to both radial and vertical perturba-
tions, and ωx and ωy can be interpreted as epicyclic freque-
ncies of oscillation around the circular equatorial motion.

FIG. 2. Stability of the timelike (left) and null (right) circular orbits for the distorted Schwarzschild black hole. Timelike circular orbits
are stable in the light gray region bounded between the blue and the purple curves, which represent the relations ω2

x ¼ 0 and ω2
y ¼ 0,

respectively. For null circular orbits we plot only the curve ω2
y ¼ 0, since we have ω2

x ¼ −ω2
y. In the region above the purple curve the

orbits are stable with respect to vertical perturbations and unstable with respect to radial perturbations, while in the region below the
curve the opposite is satisfied.
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The curves ω2
x ¼ 0 and ω2

y ¼ 0 intersect at a single point
P ¼ fxmin ≈ 2.879; qmin ≈ −0.021g, which corresponds to
the minimal quadrupole moment for which circular photon
orbits can exist. Thus, this point represents also the lower
limit for the location of the stable timelike orbits. The curve
ω2
x ¼ 0 crosses the axis q ¼ 0 at the location of the ISCO

for the Schwarzschild solution x ¼ 5, while ω2
y ¼ 0 has no

intersection points. Instead, it approaches the axis q ¼ 0
asymptotically in the limit x → ∞. Consequently, for
positive quadrupole moments ω2

y is always positive, and
the stability of the orbit is determined only by its stability
with respect to radial perturbations. The curve ω2

x ¼ 0 has a
maximum located at Q ¼ fxmax ≈ 6.47; qmax ≈ 0.00027g,
which determines the maximal value of the quadrupole
moment for which stable circular orbits can exist. For large
x it tends asymptotically to the axis q ¼ 0.
A significant difference from the isolated Schwarzschild

black hole is that the region of stability is bounded in the
radial direction. For the Schwarzschild solution the vertical
epicyclic frequency is always positive and the stability is
determined only by the radial epicyclic frequency. Thus, all
the orbits with radial positions larger than the ISCO are
stable. For the distorted Schwarzschild black hole with
positive quadrupole moment again only the radial epicyclic
frequency determines the stability. However, there are two
marginally stable orbits with respect to perturbations in the
radial direction. For negative quadrupole moment the
requirement that the orbits are stable with respect to vertical
perturbations imposes an upper limit on the region of
stability. Consequently, the stable orbits both for positive
and negative distortion are located in an annular region
bounded between two marginally stable orbits.
Since the distorted Schwarzschild black hole is a local

solution, it is supposed to be valid up to a certain radial
distance after which it should be extended in order to
construct a global solution. Depending on the physical
scenario, which the global solution should describe, the
stable circular orbits can be distributed in a different way.
This imposes restrictions on the location of the boundary of
the region of validity. If we require that the global solution
possesses a continuous region of stable circular orbits
spanning from a certain ISCO to infinity, the boundary
of the region of validity of the distorted Schwarzschild
solution should be chosen within the region of stability of
the circular orbits. Then, by extending the distorted black
hole to an appropriately chosen exterior solution, it is
possible to achieve an unbounded distribution of stable
circular orbits. In this situation the outer marginally stable
orbit for a fixed value of the quadrupole moment sets an
upper limit for the possible region of validity of the
distorted solution.
However, certain compact objects naturally possess

annular regions of stability of the circular orbits.
Examples for this property are some naked singularities
like the Janis-Newman-Winicour solution or the Reissner-

Nordström solution. If we aim at a global solution with
such a distribution of the stable circular orbits, the
boundary of the region of validity for the distorted
Schwarzschild solution can be chosen also outside the
region of stability.

A. Null circular orbits

We can obtain the epicyclic frequencies for the null
circular orbits as a limit of the timelike case. The existence
condition for circular null orbits is given by the equation
2A − x ¼ 0. Imposing this condition on the epicyclic
frequencies for the timelike circular orbits, we obtain the
corresponding expressions for the null geodesics

ω2
y ¼ −ω2

x ¼
ω2
0e

−2V

A
ð1þ 2qx3Þ: ð25Þ

We see that the radial and the vertical epicyclic frequencies
are not independent, and always possess opposite signs.
Therefore, orbits which are stable with respect to radial
perturbations will be unstable with respect to vertical ones,
and vice versa. The region of stability with respect to radial
and vertical perturbations is presented in Fig. 2. The
circular orbits are located on the curve 2A − x ¼ 0, and
the curve ω2

y ¼ 0 is depicted in purple. The grey area
corresponds to positive values of ω2

y, and consequently
negative values of ω2

x. For positive quadrupole moments all
the circular orbits are unstable with respect to radial
perturbations, and stable for vertical ones. For negative
quadrupole moments the circular orbits, which are located
closer to the black hole horizon are unstable with respect to
radial perturbations, while the more distant ones are stable.
They correspond, respectively, to maxima and minima of
the effective potential Ueff , which determines the motion in
the equatorial plane. When the quadrupole moment
decreases, the two orbits approach each other and finally
merge at the point P ¼ fxmin ≈ 2.879; qmin ≈ −0.021g, in
which the region of existence 2A − x ¼ 0 intersects the
curve ω2

y ¼ 0. If we look at the alternative description by
means of the effective potential, this point corresponds to
its inflection point.
The stability of the circular null geodesics was studied

previously also in [37–38]. It was demonstrated that by
taking advantage of Eq. (9) the orbital and epicyclic
frequencies can be expressed as functions only of the
position of the circular orbit in the form

ω2
0 ¼

x − 1

ðxþ 1Þ3 exp
�ðx − 2Þðx2 þ 1Þ

xðx2 − 1Þ
�
; ð26Þ

ω2
x ¼ −ω2

y ¼
2ω2

0e
−2V

xðx2 − 1Þ ðx
3 − 3x2 þ 1Þ;

V ¼ x − 2

16x2ðx2 − 1Þ ðx
3 þ 14x2 − xþ 2Þ:
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B. Properties of the epicyclic frequencies

In this section we examine some of the properties of the
epicyclic frequencies for the timelike circular orbits, which
are relevant for the occurrence of different kinds of non-
linear resonances, and we compare them to the case of the
Schwarzschild solution. For the Schwarzschild black hole
the epicyclic frequencies are given by the expressions

ω2
θ ¼ ω2

0 ¼
M
r3

;

ω2
r ¼ ω2

0

�
1 −

6M
r

�
; ð27Þ

in the usual Schwarzschild coordinates. The stability of the
circular orbits is determined only by the radial epicyclic
frequency, since the vertical one coincides with the orbital
frequency ω0 and is always positive. Therefore, the stable
circular orbits are located at radial distances larger than the
location of the ISCO at rISCO ¼ 6m, or in the prolate
spheroidal coordinates xISCO ¼ 5, and the unstable ones
belong to the interval ðxph; xISCOÞ, where xph ¼ 2 is the
position of the photon sphere. The radial epicyclic fre-
quency has a single maximum. The vertical epicyclic
frequency is a monotonically decreasing function and
it is always larger than the radial one [see Fig. 5(a)].

FIG. 3. Comparison between the epicyclic and the orbital frequencies. Left column: the curve ω2
x ¼ ω2

y is plotted in green. The curves
ω2
x ¼ 0 and ω2

y ¼ 0 are plotted in blue and purple respectively, and both the epicyclic frequencies are positive in the light gray region
between them. In the region below the green curve it is satisfied that ω2

x > ω2
y, and the hatched area denotes its intersection with the

region of stability of the circular motion. The domain of existence of the circular orbits is represented in dark gray. Right column: the
curve ω2

x ¼ ω2
0 is plotted in dark green. In the hatched region below the curve it is satisfied that ω2

x > ω2
0.
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This ordering between the frequencies imposes restrictions
on the possible resonances that could occur.
In the case of the distorted Schwarzschild black hole

much more diverse situations can be realized. All the
characteristic frequencies are independent, and there exist
regions in the parametric space with different kinds of
ordering between them. The various cases that can occur
are investigated in Fig. 3, where we compare the three
frequencies by plotting the curves ω2

x ¼ ω2
y, and ω2

x ¼ ω2
0.

Below the curve ω2
x ¼ ω2

y we have ω2
x > ω2

y, and in a

similar way below the curve ω2
x ¼ ω2

0 it is satisfied that
ω2
x > ω2

0. The solutions of the equation ω2
y ¼ ω2

0 coincide
with the axis q ¼ 0, as ω2

y > ω2
0 is fulfilled for q > 0. The

curves ω2
x ¼ ω2

y, and ω2
x ¼ ω2

0 approach asymptotically the
axis q ¼ 0 for large x without crossing it. Hence, for
positive quadrupole moments the three characteristic
frequencies are ordered as ω2

y > ω2
0 > ω2

x. For negative
quadrupole moments three different cases are possible. In
the region above the curve ω2

x ¼ ω2
y up to the axis q ¼ 0we

(a)

(c)

(b)

FIG. 4. Behavior of the radial epicyclic and the orbital frequencies. The curves ∂xωx ¼ 0 and ∂2
xωx ¼ 0 are represented in green and

orange, respectively, in the plots (a) and (b). The function ∂2
xωx is positive in the region right to the orange curve. The two curves

intersect at the inflection point of the function ωxðxÞ, which occurs at qcrit ≈ −0.00034. In plot (c) we illustrate the curve ∂xω0 ¼ 0,
while the function ∂2

xω0 is positive in the whole domain of existence of the timelike circular orbits. In our usual notations the domain of
existence is depicted in dark gray, while the region of stability of the circular orbits is represented in light gray.
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have the ordering ω2
0 > ω2

y > ω2
x. Between the curves ω2

x ¼
ω2
y and ω2

x ¼ ω2
0 the frequencies satisfy ω2

0 > ω2
x > ω2

y,
while below the curve ω2

x ¼ ω2
0 the inequality ω2

x > ω2
0 >

ω2
y is valid. We note that all the analysis of the epicyclic

frequencies should be constrained to the domain of
existence of the timelike circular orbits, which is denoted
by the dark gray area in the figures.
We further investigate the behavior of the epicyclic and

the orbital frequencies as a function of the radial distance x.
Keeping the quadrupole moment as a parameter we
evaluate their possible form for a fixed value of q.
Unlike the Schwarzschild solution where ωy ¼ ω0 is
monotonically decreasing, while ωx has a single maximum,
we can observe qualitatively different cases depending on
the range of the quadrupole moment. The vertical epicyclic
frequency ωy is always monotonically decreasing for any
value of the quadrupole moment in the domain of existence
of the timelike circular orbits. The radial epicyclic fre-
quency ωx can have a single maximum, a maximum and a
minimum, or no extrema in the various ranges of q. The
orbital frequency ω0 either has no extrema, or possesses a
single minimum. Thus, we observe the following three
situations in the domain of existence of the timelike circular
orbits.

(i) q ≥ 0: ωy and ω0 are monotonically decreasing, and
ωx has a single maximum.

(ii) 0 > q > qcrit ≈ −0.00034: ωy is monotonically de-
creasing, ω0 has a single minimum, and ωx posse-
sses a minimum and a maximum.

(iii) q < qcrit: ωy is monotonically decreasing, ωx is
monotonically increasing, while ω0 has a single
minimum.

The analysis of the possible extrema of the epicyclic
frequencies is presented in Fig. 4 where we plot the curves
∂xωx ¼ 0 and ∂2

xωx ¼ 0, and ∂xω0 ¼ 0, respectively. The
critical value of the quadrupole moment qcrit ≈ −0.00034,
which separates the two regions of qualitatively different
behavior of ωx for negative quadrupole moments, corre-
sponds to the minimum of the curve ∂xωx ¼ 0, or the
inflection point of the function ωxðxÞ. In the figures it co-
incides with the intersection point of the curves ∂xωx ¼ 0

and ∂2
xωx ¼ 0. The curve ∂2

xω0 ¼ 0 does not intersect the
domain of existence of the circular orbits, and ∂2

xω0 is
always positive there. The positions of the minima of ωx
and ω0 tend to infinity when q → 0. Examples of the three
qualitatively different types of behavior of the characteristic
frequencies are illustrated in Fig. 5 for fixed values of the
quadrupole moment belonging to the relevant ranges.

(a)

(c) (d)

(b)

FIG. 5. The possible qualitatively different types of behavior of the epicyclic and the orbital frequencies for the distorted
Schwarzschild solution. The case of the Schwarzschild black hole is also presented for comparison in (a).
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V. NONLINEAR RESONANCES

In the linear approximation we obtained two oscillator
equations for the radial and vertical perturbations of the
circular orbits with decoupled frequencies. However, if we
consider higher order corrections, nonlinear terms will be
also introduced including coupling between the epicyclic
frequencies. This coupling gives rise to different resonan-
ces, which are typically excited in nonlinear systems. The
exact form of the nonlinear equations depends on the
physical processes in the accretion disk, which are not well
understood. However, irrespective of their exact excitation
mechanism, the formation of resonances is a natural
manifestation of the nonlinear effects. The analytical and

numerical studies of some simple models of accretion
confirm that they are indeed present, and play an important
role in the dynamics of the system.
One of the simplest situations when resonances can be

excited is if we include a ξxξy term in the equation for the
vertical oscillations. Then, it takes the form

d2ξy

dt2
þ ω2

yξ
y ¼ −ω2

yh cosðωxtÞξy; ð28Þ

where h is a constant. We obtain the Mathieu equation,
which is known to describe parametric resonances for ratios
of the frequencies

(a)

(c)

(b)

FIG. 6. Location of the parametric and forced resonances for ordering between the epicyclic frequencies (a) ωx > ωy, and
(b) ωx < ωy. In the zoomed version of the case ωx < ωy (c) we can see the location for the Schwarzschild black hole in the limit q ¼ 0.
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ωx

ωy
¼ 2

n
; ð29Þ

where n is a positive integer. The smallest possible value of
n leads to the strongest resonance. Despite the simplicity of
this resonance model, it was found to be an intrinsic
property of thin, nearly Keplerian disks [7,39,40].
Another possible source of resonant phenomena is the

excitation of forced resonances. For example, the equation
for the vertical oscillations may represent a forced non-
linear oscillator with a force frequency equal to the radial
epicyclic frequency

d2ξy

dt2
þ ω2

yξ
y þ ½non linear terms in ξy� ¼ hðxÞ cosðωxtÞ:

ð30Þ

Resonances occur for integer ratios between the frequen-
cies ωy ¼ nωx, and due to the nonlinear terms linear
combinations of the frequencies can be also present in
the resonant solution. A third possibility is to obtain
resonances due to a coupling between one of the epicyclic
frequencies and the orbital frequency. Unlike the previous
cases of coupling between the two epicyclic frequencies,

(a)

(c)

(b)

FIG. 7. Location of the Keplerian resonances with coupling between the radial epicyclic frequency and the orbital frequency. The case
ωx > ω0 is represented in (a), while (b) and (c) illustrate the ordering ωx < ω0. For ωx > ω0 the location of the possible 2∶1 and 3∶1
resonances has no cross section with the domain of existence of the circular orbits. In the zoomed image (c) we compare the locations of
the Keplerian resonances with the parametric and forced ones for ωx < ωy.
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which can be realized in numerous physical situations, such
Keplerian resonances are less motivated. However, there is
no physical reason restricting their existence.
The described resonance phenomena can give an explan-

ation for the twin-peak oscillations in the accretion disk,
provided that the ratio of the coupled frequencies is chosen
appropriately, and the lower and the upper observable
frequencies νL and νU are suitably identified. For the
Schwarzschild black hole the observed ratio νU∶νL ¼
3∶2 can be reproduced in the three resonant models in
the following ways. Since it is always satisfied that
ωy > ωx, the lowest possible parametric resonance is for
n ¼ 3, i.e., we have 2ωy ¼ 3ωx. Making the identification
νU ¼ νy ¼ ωy=2π and νL ¼ νx ¼ ωx=2π we achieve the
required 3∶2 ratio. Considering the forced resonances, it is
impossible to choose a value of n so that ωy∶ωx ¼ 3∶2.
However, we can identify some of the observable frequen-
cies with a linear combination of the epicyclic frequencies.
Choosing νU ¼ νy þ νx ¼ ðωy þ ωxÞ=2π and νL ¼ νy we
can reproduce the 3∶2 ratio by means of the n ¼ 2 forced
resonance, or ωy∶ωx ¼ 2∶1. Another possibility is the
identification νU ¼ νy and νL ¼ νy − νx ¼ ðωy − ωxÞ=2π,
where the n ¼ 3 forced resonance ensures the observed
ratio, i.e., ωy∶ωx ¼ 3∶1. For the Schwarzschild solution
the simplest cases for Keplerian resonances, such as
ω0∶ωx ¼ 3∶2, ω0∶ωx ¼ 2∶1, or ω0∶ωx ¼ 3∶1, do not
provide new possibilities for modeling the twin-peak
oscillations since the orbital frequency coincides with
the vertical epicyclic frequency.
In the case of the distorted Schwarzschild solution the

diversity of the possible resonances increases, since we

have regions in the parametric space where the ordering of
the epicyclic frequencies changes to ωy ≤ ωx. Moreover,
the degeneracy between the orbital and vertical epicyclic
frequencies is broken, and Keplerian resonances can exist
independently. In addition to the types of resonances
available for the Schwarzschild solution, the distorted
black hole allows for parametric resonances with n ¼ 1
and n ¼ 2 in the regions where ωy ≤ ωx is satisfied, which
are supposed to be stronger than the n ¼ 3 one (see
e.g., [7]). For n ¼ 1 the observed 3∶2 ratio can be achieved
by identifying the lower and the upper frequencies as νU ¼
νy þ νx and νL ¼ νx, while for n ¼ 2 we have νU ¼ 3νy ¼
3νx and νL ¼ 2νx ¼ 2νy. The new possibilities for forced
resonances include ratios of the epicyclic frequencies
like ωy∶ωx ¼ 1∶2 and ωy∶ωx ¼ 1∶3, which result in the
observable frequencies νU ¼ νy þ νx, νL ¼ νx, and
νU ¼ νx, νL ¼ νx − νy, respectively. The Keplerian reso-
nances can be excited independently with combinations
like ω0∶ωx ¼ 3∶2 (νU ¼ ν0, νL ¼ νx), ω0∶ωx ¼ 2∶1
(νU ¼ 3νx, νL ¼ ν0), or ω0∶ωx ¼ 3∶1 (νU ¼ ν0,
νL ¼ 2νx) in the regions where the ordering ω0 > ωx is
valid, and with switched positions of the two frequencies
ω0 ↔ ωx where the inequality ω0 < ωx is satisfied. The
location of the described resonances as a function of the
quadrupole moment is illustrated in Figs. 6–8.

VI. CONCLUSION

Astrophysical black holes are not expected to be isolated,
but interacting with external gravitational sources like
binary companions and accretion disks. If taken into
account, the influence of the external matter can lead to

(a) (b)

FIG. 8. Location of the Keplerian resonances with coupling between the vertical epicyclic frequency and the orbital frequency for
(a) ωy < ω0 and (b) ωy > ω0.
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significant observational effects, especially when particle
and light propagation in the black hole spacetime is
considered. In this paper we study how the impact of
the external matter can modify the interpretation of the
quasiperiodic oscillations from the accretion disk by means
of the resonance models. We consider in particular a
distorted Schwarzschild black hole interacting with an
external matter distribution possessing only a quadrupole
moment. As a first step we examine the linear stability of
the circular orbits in the equatorial plane and obtain
analytical expressions for the epicyclic frequencies. For
positive quadrupole moments the stability of the circular
orbits is determined only by their stability with respect to
perturbations in radial direction, similar to the isolated
Schwarzschild solution. However, there exists an upper
limit for the quadrupole moment, for which stable orbits
can exist. For negative quadrupole moments the vertical
epicyclic frequency can become negative, and introduce an
instability with respect to perturbations in vertical direction.
Therefore, the stability of the circular orbits is determined
by the condition that both epicyclic frequencies are
simultaneously positive. For a fixed quadrupole moment
this restricts the radial positions of the stable orbits to a
finite interval, so they belong to a finite annulus, rather than
extending to infinity like for the isolated Schwarzschild
solution. In addition, there is a lower limit of the quadru-
pole moment, for which stable orbits are possible. These
properties can be used to determine the region of validity of
the distorted Schwarzschild solution by physical reasons.
Depending on the desired structure of the equatorial
circular orbits for the global solution, the boundary of
the region of validity should be chosen either within
or outside the region of stability for the distorted
Schwarzschild solution. Some intuition about the plausible
stability structure of the circular geodesics can be acquired
by comparing with some available numerical solutions,
which describe configurations of a central black hole and a
self-gravitating disk [41–45], and the analysis of the
circular geodesics in these spacetimes [46]. It will be
interesting to perform such investigations in our future
work.
We further examine the properties of the epicyclic

frequencies, which show some important qualitative
differences from the isolated Schwarzschild case. The
vertical epicyclic and the orbital frequencies do not
coincide anymore. It addition, it is not always satisfied
that the vertical epicyclic frequency is larger than the radial
one. There are regions in the parametric space where the
opposite inequality is true. In the same way there can be
different ordering between the vertical or radial epicyclic
frequency and the orbital frequency. All these possibilities

enable the excitation of much more diverse types of
resonances compared to the isolated Schwarzschild solu-
tion, resulting from different physical processes in the
accretion disk. They can be stronger than in the
Schwarzschild case, and located at very different radial
distances, depending on the value of the quadrupole
moment.
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APPENDIX: CHRISTOFFEL SYMBOLS

We present the nonzero connection coefficients for the
distorted Schwarzschild solution:

Γt
tx ¼

1

ðx2 − 1Þ þ U ;x;

Γt
ty ¼ U ;y;

Γx
tt ¼

ðx − 1Þ
ðxþ 1Þ3 ½1þ ðx2 − 1ÞU ;x�e4U−2V;

Γx
xx ¼ −

1

x2 − 1
þ V;x − U ;x;

Γx
xy ¼ V;y − U ;y;

Γx
yy ¼ −

ðx − 1Þ
ð1 − y2Þ ½1þ ðxþ 1ÞðV;x − U ;xÞ�;

Γx
ϕϕ ¼ −ðx − 1Þð1 − y2Þ½1 − ðxþ 1ÞU ;x�e−2V;

Γy
tt ¼

ðx − 1Þ
ðxþ 1Þ3 ð1 − y2ÞU ;ye4U−2V;

Γy
xx ¼ ð1 − y2Þ

ðx2 − 1Þ ðU ;y − V;yÞ;

Γy
xy ¼ 1

xþ 1
þ V;x − U ;x;

Γy
yy ¼ y

1 − y2
þ V;y − U ;y;

Γy
ϕϕ ¼ ð1 − y2Þ½yþ ð1 − y2ÞU ;y�e−2V;

Γϕ
xϕ ¼ 1

ðxþ 1Þ − U ;x

Γϕ
yϕ ¼ −

y
ð1 − y2Þ − U ;y: ðA1Þ
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