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We construct novel solutions to the effective Einstein equation with four dimensional cosmological
constant on a 3-brane in Randall-Sundrum II scenario. The charged solution is obtained by assuming the
existence of localized Maxwell fields on the 3-brane. Timelike and null circular geodesics in the neutral
rotating braneworld spacetime with Newman-Unti-Tamburino parameter are discussed, and we find that
such geodesics cannot occur on the equatorial plane. On nonequatorial planes, timelike circular geodesics
can occur for the negative tidal charge, but we cannot find numerical results to support the existence of
nonequatorial null circular geodesics.
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I. INTRODUCTION

String theory or M-theory [1–3] predicts the existence of
extra dimensions in addition to our daily experienced four
dimensional spacetime. The idea of extra dimensions goes
back to the attempt by Kaluza [4] and Klein [5] in unifying
gravity and electromagnetism by considering five dimen-
sional Einstein theory where the extra spatial dimension is
compactified into a circle S1 with very small radius. The
coordinate transformation of this compact manifold S1 then
associates the Abelian gauge invariance of Maxwell theory,
and leaving the residual spacetime dimensions to have
general coordinate invariance of the ordinary Einstein
gravitational theory.
The idea that our four dimensional world could be a

hypersurface of a higher dimensional spacetime, which we
would refer as braneworld scenario, had appeared almost
four decades ago in the work by Rubakov et al. [6]. The
four dimensional spacetime where we live is normally
referred as the brane, embedded in the higher dimensional
spacetime which is called as the bulk. In the braneworld
model of Rubakov et al., the geometry under consideration
is Minkowski space Mð3þN;1Þ with (3þ N) spatial dimen-
sions. Clearly this type of braneworld picture has not
incorporated gravity. Light or ordinary particles are con-
fined inside a potential well that is narrow enough along
the N spatial dimensions. Almost two decades later, a quite
similar idea was used to tackle the hierarchy problem
[7–14], where the braneworld models include gravity into
consideration. In these models, unlike the matter fields
which are assumed to be localized on the 3-brane,1 gravity
can propagate in extra dimensions.

Since gravity is an integral part in the braneworld
approach, black holes must be among the main interests.
Particularly in the Randall-Sundrum II (RS-II) model [10]
which we consider in this work, Shiromizu et al. [15] have
provided us the effective Einstein equation on the brane
using Gauss-Codazzi approach. This equation has been
studied extensively, and the corresponding braneworld black
hole solutions have been proposed. For example the static
black hole solution to this effective equation was given in
[16], where the metric function has the form of Reissner-
Nordstrom solution with a “charge” term appeared in the
metric. This charge is interpreted as the tidal charge and
considered as the bulk geometrical effect. If we assume that
the brane is not vacuum, for example it contains localized
Maxwell fields, this tidal charged has no coupling to the
Uð1Þ gauge fields. This implies there is no electromagnetic
interaction between charged probe and the neutral brane-
world black hole with tidal charge reported in [16]. The
nonvacuum brane in RS-II model containing localized
Maxwell fields was considered in [17], where the static
charged black hole analogous to the Reissner-Nordstrom
solution of Einstein-Maxwell theory was given. The limit of
vanishing electric charge in the solution by Chamblin et al.
[17] reduces to that in [16], and these black holes are
asymptotically flat. The rotating and charged solution of
black holes in RS-II model was obtained byAliev et al. [18],
using the Kerr-Schild ansatz in solving the Hamiltonian
constraint from the effective Einstein equation on the brane.
The case of (A)dS black holes on the branewere investigated
in [19], where the effective Einstein equation under
consideration contains the four dimensional cosmological
constant. Furthermore, topological black holes on the
branewere studied in [20]where a class of solution describes
the static charged AdS black hole on the brane. Braneworld
black holes from the bulk black string solutions in
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five-dimensional theory with a scalar field nonminimally
coupled to gravity are studied in [21–23].
Assuming the existence of localized black holes on

the brane, black holes or compact objects in brane-
world scenario have been discussed in several aspects.
Gravitational wave which is produced by collisions of
massive objects in braneworld scenario could open the
window to search for extra dimensions [24]. Studies related
to the lensing and optical process for braneworld black
holes are presented in [25–29], and the possibility to
constrain the extra dimension parameter namely the bulk
AdS5 radius from the black hole image found by The Event
Horizon Telescope assuming that the supermassive rotating
black hole at the center of M87 galaxy is described by RS-II
braneworld black hole [30]. However, despite the number
of studies for localized black holes as previously men-
tioned, the localization of black hole on the brane itself is
still under investigation [31–38]. The first numerical study
of the gravitational collapse of a strong pulse of massless
scalar field within the framework of the RS-II mode is a
black hole with finite extension into the bulk [39].
The Kerr-Newman-Taub-NUT-(A)dS spacetime is

a class of solutions to the Einstein-Maxwell theory with a
nonvanishing cosmological constant Λ. This solution is a
special case of Plebanski-Demianski solution [40,41] that
has parameters of mass, electric charge, rotation, Newman-
Unti-Tamburino (NUT), and cosmological constant. With or
without the electric charge and cosmological constant in the
discussions, this solution has been studied rigorously in
literature [42–51]. Despite the irregularity of spacetime with
NUT parameter on its rotational axis [52–54], most aspects of
this type of spacetime resemble those of black holes [55–59].
The NUT parameter itself has an interesting interpretation
[41], i.e., the gravitomagnetic mass, after making an analogy
to the electromagnetic phenomena where gravitational mass
in the Kerr-Taub-NUT solution sometime is labeled as the
gravitoelectric charge. Furthermore, the presence of NUT
parameter in Kerr-Taub-NUT solution makes the asymptotic
geometry to be nonflat, unlike the Kerr metric counterpart. On
the other hand, the presence of NUT parameter yields the
absence of curvature singularity in the spacetime, despite the
conic singularity that it has. This conic singularity problem
somehow can be solved by introducing periodicity in timelike
coordinate, but it costs the existence of closed timelike curves
in spacetime. Consequently, the collapsing object in Kerr-
Taub-NUT spacetime or its generalization cannot be consid-
ered as the regular black hole. Nevertheless, investigating
properties of rotating object with NUT parameter is still of
great interests, for example the motions of test objects around
it. It was shown that equatorial circular geodesics cannot exist
in rotating spacetime with NUT parameter, in Einstein-
Maxwell theory or low energy heterotic string version [54,59].
In this paper, we extend the rotating charged black

hole solution proposed by Aliev and Gümrükçüoğlu
[18], where now the solution includes NUT parameter

and cosmological constant Λ. We follow the same pre-
scription presented in [18], where the spacetime ansatz
takes the form of Kerr-Schild, and solve the corresponding
equation which is the trace of effective equation on the
brane in RS-II scenario. The class solution introduced in
this work resembles the Kerr-Newman-Taub-NUT-(A)dS
solution of Einstein-Maxwell theory, with additional tidal
charge as an effect from the bulk. Particularly for the
spacetime of rotating neutral black hole with NUT param-
eter, we investigate the corresponding equatorial circular
geodesics by deriving the associated Hamilton-Jacobi
equation first. The organization in this paper is as follows.
In the next section, we give a short review on the effective
gravitational equations on brane whose solutions we
attempt to achieve in this work. In Sec. III, several types
solutions are constructed. We start by getting the neutral
rotating spacetime with tidal charge and NUT parameter
in Sec. III A, followed by including cosmological constant
in Sec. III B. The rotating charged case is discussed in
Sec. III C, while the nonrotating limit is considered in
Sec. III D. The investigation of equatorial circular geo-
desics around rotating object on the brane with tidal charge
and NUT parameter is performed in section IV. Finally we
give conclusion and discussion. In this paper, we consider
c ¼ G4 ¼ 1 where c and G4 are the light speed and four
dimensional cosmological constant, respectively.

II. EFFECTIVE EQUATIONS ON THE BRANE

In their seminal work [15], Shiromizu et al. obtained an
effective Einstein equation on the brane in the context of
RS-II scenario [10]. The Einstein equation in the bulk reads

ð5ÞGMN þ Λ5ḡMN ¼ κ25

�
ð5ÞTMN þ

ffiffiffi
g
ḡ

r
T MNδðXÞ

�
ð2:1Þ

with κ25 ¼ 8πG5, and G5 is the five dimensional Newton
gravitational constant. Intuitively ð5ÞGMN, ð5ÞTMN , and Λ5

are five dimensional Einstein tensor, energy-momentum
tensor, and bulk cosmological constant, respectively. Bulk
spacetime metric is denoted by ḡMN, while the brane is
endowed with the metric gMN . Then ḡ and g represent the
determinant of bulk and brane spacetime metric, respec-
tively. If we allow the brane to be nonempty, then the
energy and momentum tensor distribution on the brane is
represented by T MN. The scalar function X ¼ XðyMÞ is
introduced to specify the “brane” hypersurface, namely
X ¼ const., where the hypersurfaces ΣX have no timelike
intersections between each other. The coordinates yM labels
the spacetime in the bulk with the capital latin indices
M ¼ 0, 1, 2, 3, 4.
Deriving the effective Einstein equation on the brane can

be done by employing the Gauss-Codazzi method to
project the bulk equation onto the brane, and also imposing
Z2 symmetry to get the desired equation. In [15], the choice
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of Gaussian normal coordinate were subsequently picked in
particular form. However, a more general setting for the
coordinates to get the effective Einstein equation on the
brane from the five dimensional gravitational in the bulk
[60]. The effective Einstein equations on the brane with
cosmological constant can be shown to take the form
[15,18]

Gμν þ Λ4gμν ¼ 8πTμν þ κ45

�
Sμν −

1

2
gμνSαα

�
− Eμν; ð2:2Þ

where Gμν is the four dimensional Einstein tensor, Λ4

denotes the four dimensional brane cosmological constant,
and gμν is the corresponding tensor metric. In the next
section we will express the five dimensional cosmological
constant in terms of AdS5 curvature radius l as

Λ5 ¼ −
6

l2
; ð2:3Þ

and relation between five and four dimensional Newton
constants is G5 ¼ lG4. In this paper we use convention
G4 ¼ 1 which then implies G5 ¼ l and κ45 ¼ 64π2l2.
Explicitly the AdS radius l ¼ 6ðλκ25Þ−1 where λ denotes
the brane tension.
The bulk contribution in Eq. (2.2) is given by the

traceless tensor

Eμν ¼ ð5ÞCKLMNnKnMeLμeNν ð2:4Þ

which comes from the projection of five dimensional Weyl
tensor on the brane. In Eq. (2.4) we have used the unit
spacelike vector nK normal to the brane and tangent vectors
representing local frame

eKμ ¼ ∂yK
∂xμ ð2:5Þ

obeying nKeKν ¼ 0. Here we have used xμ as the brane
spacetime coordinate where μ ¼ 0, 1, 2, 3. Using the legs
in (2.5), the bulk and brane spacetime metric can be
connected via

ḡMN ¼ nMnM þ gμνe
μ
Me

ν
N: ð2:6Þ

As it was argued in [16–19], the traceless tensor Eμν is
assumed to exist in order to fulfill the corresponding
Einstein equations. This tensor comes from the bulk
geometrical effect, and until today the exact bulk spacetime
geometry which gives the exact brane spacetime as reported
in [16–19] have not been discovered yet. In the next
sections, we follow the same spirit, assuming the corre-
sponding Eμν to exist, and the spacetime metric component
can be achieved using the trace of effective Einstein
equation.

In this work, we will consider the brane to be filled by
some localized Maxwell fields. This field gives rise to the
electric charge of a black hole, and electromagnetic
interaction between the black hole and charged object.
Therefore, the associated energy-momentum tensor on the
brane reads

Tμν ¼
1

4π

�
FμαFα

ν −
1

4
gμνFαβFαβ

�
; ð2:7Þ

and the “squared” of Tμν in (2.2) is given by

Sμν ¼ −
1

4

�
TμαTα

ν −
1

2
gμνTαβTαβ

�
: ð2:8Þ

The field strength tensor takes the familiar form, namely
Fμν ¼ ∂μAν − ∂νAμ. Nevertheless, the absence of an effec-
tive action which is responsible for the equation of motion
in (2.2) hinders us to have the second field equation, in
addition to (2.2), which is supposedly obtained by varying
an action with respect to Aμ. However, we can assume that
the source free equation ∇μFμν ¼ 0 holds when we discuss
the brane with confined electromagnetic fields.

III. SOLUTIONS ON THE BRANE

A. Kerr-Taub-NUT spacetime with tidal charge
on the brane

The neutral rotating braneworld black hole in RS-II
scenario was found in [18] has the spacetime metric that
can be expressed as

ds2¼−
Δ0

r2þa2x2
ðdt−aΔxdϕÞ2þðr2þa2x2Þ

�
dr2

Δ0

þdx2

Δx

�

þΔxðadt−ðr2þa2ÞdϕÞ2
ðr2þa2x2Þ ; ð3:1Þ

where we have used Δx ¼ 1 − x2 and Δ0 ¼ r2−
2Mrþ a2 þ β. This metric is just the Kerr-Newman
solution after replacing β → Q2 where Q is charge of
the black hole. Here, β is known as the tidal charge [16,18]
and considered as some geometrical effects from the bulk.
This spacetime metric is asymptotically flat, and possesses
the timelike and axial Killing symmetries. Using Komar
integrals, these Killing symmetries can lead to two con-
served charges, namely the black hole mass m and angular
momentum J ¼ aM.
In this section, we consider the simplest extension to the

solution (3.1) where now the spacetime is equipped with
NUT parameter n. Recall that the Kerr-Taub-NUT space-
time is solution to the vacuum Einstein equation, hence we
can keep considering the vacuum brane as in the case
described by the metric (3.1). To proceed, we follow the
prescription by Aliev et al. [18] using the Kerr-Schild
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ansatz for the metric and solve the Hamiltonian constraint
equation for the unknown function in the metric. Since we
are interested in the metric solution with NUT parameter,
the “massless” term in Kerr-Schild ansatz is extended to
contain the NUT parameter, which then yields the Kerr-
Schild ansatz to be

ds2 ¼ ds̄2mNUT þHðr; xÞðlμdxμÞ2; ð3:2Þ

where2

ds̄2mNUT ¼ −
r2 − n2 þ a2x2

ρ2
du2

þ Δxðr2 þ a2 þ n2Þ2 − P2ðr2 þ a2 − n2Þ
ρ2

dψ2

þ ρ2

Δx
dx2 −

4nððr2 þ a2 − n2Þxþ anΔxÞ
ρ2

dψdu

þ 2dudrþ ð4nx − 2aΔxÞdψdr: ð3:3Þ

Here we have used ρ2 ¼ r2 þ ðnþ axÞ2 and the null vector
lμdxμ ¼ du − Pdψ where P ¼ aΔx − 2nx. Taking the limit
n → 0 in the ds̄2mNUT gives us the massless limit of Kerr
metric. The quantities n and a are the NUT and rotational
parameters, respectively. On the brane, from Eq. (2.2) one
can write the vacuum effective Einstein equation without
the four dimensional cosmological constant Λ4 as

Rμν ¼ −Eμν: ð3:4Þ

As the result that Eμν being tracefree, the corresponding
Hamiltonian constraint achieved from the last equation is

R ¼ 0: ð3:5Þ

Plugging the metric ansatz (3.3) into Eq. (3.5) gives us

� ∂2

∂r2 þ
4r
ρ2

∂
∂rþ

2

ρ2

�
Hðr; xÞ ¼ 0: ð3:6Þ

As one would expect, Eq. (3.6) reduces to the analogous
one appearing in [18] as the limit n → 0 is taken. Solution
to the last equation can be written as

Hðr; xÞ ¼ 2Mr − β

ρ2
; ð3:7Þ

where m and β in the last expression are interpreted as the
mass and tidal charge parameters of the object on the brane.
To achieve the Boyer-Lindquist form of the metric for (3.2)

with the solution Hðr; xÞ in (3.7), we can make use the
following transformation

du ¼ dtþ r2 þ a2 þ n2

Δr
dr and dψ ¼ dϕþ a

Δr
dr;

ð3:8Þ

with Δr ¼ r2 − 2Mrþ a2 − n2 þ β. Explicitly, the result-
ing metric after performing transformation (3.8) to the
Eq. (3.2) can be written as

ds2 ¼ −
Δr

ρ2
ðdt − PdϕÞ2 þ ρ2

�
dr2

Δr
þ dx2

Δx

�

þ Δx

ρ2
ððr2 þ a2 þ n2Þdϕ − adtÞ2: ð3:9Þ

In the absence of tidal charge β, the metric (3.9) is just the
Kerr-Taub-NUT line element, i.e., solution to the vacuum
Einstein equation Rμν ¼ 0. Furthermore, the line element
(3.9) is just the Kerr-Newman-Taub-NUT metric after
replacing β → Q2, where Q is the electric charge in
Kerr-Newman-Taub-NUT spacetime. Note that unlike the
charge squared Q2 in Kerr-Newman family which always
takes positive value, the tidal charge can be negative which
could lead to some nontrivial deviations in the geodesics
compared to that of Kerr-Newman-Taub-NUT case.
Moreover, the negative tidal charge can help the production
of naked singularity which is not allowed to exist according
to the cosmic censorship conjecture.
The tensor Eμν that responsible for the solution above

can be computed using Eq. (3.4). The components are

Ett ¼ −
β

ρ6
ðΔr þ a2ΔxÞ; Err ¼ −

Δx

Δr
; Exx ¼

β

ρ2Δr
;

Etϕ ¼ −
2β

ρ6
ðnxΔr − aΔxða2 þ r2 þ β=2Þ þmraΔxÞ;

Eϕϕ ¼
β

ρ6

�
2mrð2nx− aΔxÞ2

−Δxðða2 þ r2Þða2Δx þ a2 þ r2Þ þ a2BΔxÞ

− n
X3
k¼0

ckak
�
; ð3:10Þ

with each ck’s in the equation above is given by

c0 ¼ nðn2ð1 − 5x2Þ þ 2r2ð1þ x2Þ þ 4βx2Þ;
c1 ¼ 4xΔxðn2 − r2 − βÞ;
c2 ¼ nð1þ 4x2 − x4Þ; c3 ¼ −4xΔx: ð3:11Þ

As it was mentioned before that we assume the existence
of bulk metric which gives rise to this components
of Eμν following mechanism described in previous section.

2We use mNUT acronym for massless-Newman-Unti-
Tamburino.
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Obviously this tensor Eμν is proportional3 to the energy-
momentum tensor that belongs to Kerr-Newman-Taub-
NUT solution, whose field strength can be written as

F ¼ Q
ρ4

½ðr2 − ðnþ axÞ2Þdr ∧ ðdt − PdϕÞ

− 2rðnþ axÞdx ∧ ððr2 þ a2 þ n2Þdϕ − adtÞ�: ð3:12Þ

B. Adding four dimensional cosmological constant

Now let us consider a more general case, where now we
include the four dimensional cosmological constant Λ4 in
our effective Einstein equation on the brane. The equation
of motion then reads

Gμν þ Λ4gμν ¼ −Eμν: ð3:13Þ

Adopting the same strategy as in the previous section, the
proper metric ansatz can be expressed as

ds2 ¼ ds2mNUT;Λ þHðr; xÞðlμdxμÞ2; ð3:14Þ

where

ds2mNUT;Λ ¼ 2ðdudr − PdrdψÞ þ ρ2

ΞΔx
dx2

þ ΞΔxa2 − Lr

ρ2
du2

þ ΞΔxðr2 þ a2 þ n2Þ2 − P2Lr

ρ2
dψ2

þ 2ðPLr − ΞaΔxðr2 þ a2 þ n2ÞÞ
ρ2

dudψ :

ð3:15Þ

In the equation above, the null vector is still lμdxμ ¼
du − Pdψ with P ¼ aΔx − 2nx,

Ξ ¼ 1þ Λax
3

ð4nþ axÞ; ð3:16Þ

and

Lr ¼ r2 þ a2 − n2 −
Λ
3
ð3n2ða2 − n2Þ þ r2ða2 þ 6n2Þ þ r4Þ:

ð3:17Þ

The corresponding Hamiltonian constraint equation in
this case is the trace of (3.13) which takes the form

R ¼ 4Λ: ð3:18Þ

Applying this equation to the metric ansatz (3.14) gives us
exactly Eq. (3.6) whose solution is given in (3.7). To obtain
the Boyer-Lindquist type metric from the line element
(3.14) where the correspondingHðr; xÞ is given in (3.7), we
can perform the following transformations

du ¼ dtþ r2 þ a2 þ n2

Δr;Λ
dr and dψ ¼ dϕþ a

Δr;Λ
dr;

ð3:19Þ

where Δr;Λ ¼ Lr − 2Mrþ β. Then the resulting metric can
be expressed as

ds2 ¼ −
Δ̃r

ρ2
ðdt − PdϕÞ2 þ ρ2

�
dr2

Δ̃r
þ dx2

ΞΔx

�

þ ΞΔx

ρ2
ðadt − ðr2 þ a2 þ n2ÞdϕÞ2: ð3:20Þ

As one would expect, this solution coincide to the
Kerr-Newman-Taub-NUT-(A)dS metric4 after replacing
β → Q2. Then one can understand the corresponding
traceless tensor Eμν in Eq. (3.13) is proportional to the
energy-momentum tensor in the Kerr-Newman-Taub-NUT-
(A)dS solution after replacing Q2 → β. As before, we
have assumed that there exist some bulk geometries which
allow this Eμν tensor on the brane obeying Eq. (2.4). The
Kerr-(A)dS spacetime on the brane reported in [19] can be
obtained from Eq. (3.20) after setting the NUT parameter to
be vanished.

C. Incorporating electric charge on the brane

In the previous sections we were dealing with an empty
brane, hence the effective Einstein equation on the brane
does not contain any energy momentum tensor for fields
that are localized on the brane. Here let us consider the
brane to be nonempty, filled by electromagnetic field
confined on the brane. The energy-momentum tensor for
this field takes the familiar form (2.7). Recall that we are
working in the unit that G4 ¼ 1, then we have G5 ¼ l and
κ25 ¼ 8πl. Therefore, the effective Einstein equation on the
brane in the presence of cosmological constant and
Maxwell fields in the brane (2.2) then can be rewritten as

Gμν þ Λgμν ¼ 8πTμν þ 64π2l2Sμν − Eμν: ð3:21Þ

To solve Eq. (3.21), we consider the Maxwell vector
potential living on the brane to take the form

3They become equal after replacing β → Q2 in Eμν, multiplied
by −8π.

4See the Appendix for some features of Kerr-Newman-Taub-
NUT-(A)dS solution.
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Aμdxμ ¼ −
Qr
ρ2

ðdu − ðaΔx − 2nxÞdψÞ: ð3:22Þ

Consequently, the corresponding field strength tensor
related to the gauge field (3.22) reads

F¼ Q
ρ4

½ðr2 − ðnþ axÞ2Þdr ∧ ðdu−PdψÞ

− 2rðnþ axÞdx ∧ ððr2 þ a2 þ n2Þdψ − aduÞ� ð3:23Þ

which is just (3.12) after replacing dt → du and dϕ → dψ .
Clearly the energy-momentum tensor Tμν associated to this
field strength tensor is traceless, but the trace of Sμν can be
found to be

S ¼ Q4

64π2ρ8
: ð3:24Þ

The Hamiltonian constraint in this case achieved by taking
the trace of Eq. (3.21) reads

Rþ κ45S ¼ 4Λ: ð3:25Þ
Applying the last equation to the metric ansatz (3.14) gives
us an equation,

∂2Hðr; xÞ
∂r2 þ 4r

ρ2
∂Hðr; xÞ

∂r þ 2Hðr; xÞ
ρ2

¼ −
l2Q4

ρ8
ð3:26Þ

whose solution can be written as

Hðr; xÞ ¼ 2Mr −Q2 − β − l2Q4hðr; xÞ
ρ2

; ð3:27Þ

where

hðr;xÞ¼ 1

8ðaxþnÞ4
�
2þ r2

ρ2
þ 3r
ðaxþnÞtan

−1
�

r
axþn

��
:

ð3:28Þ

The solution (3.27) reduces to the one found in [18] for the
null NUT parameter n.
To bring this solution into the form of Boyer-Lindquist

type metric, we can employ the following transformation

du ¼ dtþ ðr2 þ a2 þ n2Þ
Δr;Q

dr; dψ ¼ dϕþ a
Δr;Q

dr;

ð3:29Þ

with

Δr;Q ¼ Δr;Λ þQ2 þ l2Q4h0; ð3:30Þ

and h0 ¼ hðx0Þ. The resulting metric after performing the
above transformation reads

ds2¼−
ðΔr;Qþδ−a2ΞΔxÞ

ρ2
dt2

þðΞΔxðr2þa2þn2Þ2−P2ðΔr;QþδÞÞ
ρ2

dϕ2þρ2
dx2

ΞΔx

þρ2
�
1−

δ

Δr;Q

�
dr2

Δr;Q
þ 2δ

Δr;Q
ðPdϕ−dtÞdr

þ2ðPðΔr;QþδÞ−aΔxΞðr2þa2þn2ÞÞ
ρ2

dtdϕ; ð3:31Þ

with δ ¼ l2Q4ðh − h0Þ. In the absence of NUT parameter
n and cosmological constant Λ, the metric above is just the
charged and rotating spacetime on the brane reported
in [18].
An alternative coordinate transformation to get the

Boyer-Lindquist type metric is

du ¼ dtþ ðr2 þ a2 þ n2ÞðΔr;Q − δÞdr
Δr;QðΔr;Q þ δÞ ;

dψ ¼ dϕþ aðΔr;Q − δÞdr
Δr;QðΔr;Q þ δÞ ; ð3:32Þ

where the spacetime metric now reads

ds2¼−
ðΔr;Qþδ−a2ΞΔxÞ

ρ2
dt2

þðΞΔxðr2þa2þn2Þ2−P2ðΔr;QþδÞÞ
ρ2

dϕ2þρ2
dx2

ΞΔx

þρ2
�
1−

δ

Δr;Q

�
dr2

Δr;Q
−

2δ

Δr;Q
ðPdϕ−dtÞdr

þ2ðPðΔr;QþδÞ−aΔxΞðr2þa2þn2ÞÞ
ρ2

dtdϕ: ð3:33Þ

The last expression differs to (3.31) in the signs of ðt; rÞ and
ðϕ; rÞ components of the metric. Nevertheless, by doing the
transformation ϕ → −ϕ and t → −t, the result (3.33)
transforms to the one in (3.31). This behavior is also the
case for the charged and rotating black hole metric on the
brane found by Aliev et al. [18]. In the absence of NUT
parameter n, the asymptotics of the spacetime metric above
is de Sitter for Λ > 0, and anti–de Sitter when Λ < 0.
Now let us discuss the accompanying vector field to this

spacetime metric in Boyer-Lindquist type coordinate. The
transformed vector field (3.22) using the transformation
(3.29) reads

Aμdxμ ¼ −
Qr
ρ2

ðdt − ðaΔx − 2nxÞdϕÞ − Qr
Δr;Q

dr: ð3:34Þ

At first sight, this vector is not what we would expect for a
charged rotating spacetime with timelike and axial Killing
symmetries. Nevertheless, the gauge freedom allows one to
shift the gauge field
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Aμdxμ → Aμdxμ þ ArðrÞdr ð3:35Þ

leaving the field strength tensor Fμν remains unchanged.
Therefore, we are permitted to get rid of the Ar component
in (3.34) to get a solution which reduces to the vector field
of Kerr-Newman system if all of the bulk contributions
such as tidal charge β and AdS5 radius l are turned off, if
any. In fact, we observe that the gauge field (3.34) does not
contain any of these bulk parameters, which is understood
since this field is a local property of the brane. Now, we can
just express the vector solution companion to the line
element (3.31) to be

Aμdxμ ¼ −
Qr
ρ2

ðdt − ðaΔx − 2nxÞdϕÞ: ð3:36Þ

So now we can verify that by taking the bulk parameters
l and β vanish in the solution (3.31), accompanied by the
vector field (3.36), the fields solutions in Kerr-Newman-
Taub-NUT-(A)dS system are recovered. It is interesting to
find that the vector field (3.36) obeys the source free
Maxwell equation ∇μFμν ¼ 0, and obviously the Bianchi
identity as well,

∇κFμν þ∇νFκμ þ∇μFνκ ¼ 0; ð3:37Þ

with the corresponding operator ∇μ above is performed in
the background (3.31). However, the transformation (3.32)
brings the vector field (3.22) to the form

Aμdxμ ¼ −
Qr
ρ2

ðdt − ðaΔx − 2nxÞdϕÞ − QrðΔr;Q − δÞ
Δr;QðΔr;Q þ δÞ dr

ð3:38Þ

where δ ¼ δðr; xÞ. The previous argument when we
attempt to get rid of Ar does not work when the extra
term is a function of x, hence the transformation (3.32) is
not the type that we would perform to get the solutions
which reduce to the familiar form in the Einstein-Maxwell
system.5

D. Static charged (A)dS braneworld black hole

In this section, let us discuss how to achieve a static
charged black hole in braneworld scenario with the AdS
asymptotic, using the same approach employed previously.
The obtained black hole solution would resemble the
Reissner-Nordstrom -AdS black hole which has been
studied extensively in aspects of AdS=CFT and holography
[61]. At first sight, the job seems to be trivial since we just
need to set n ¼ 0 and a ¼ 0 in the solution (3.31) and the
corresponding gauge field (3.36) as well. However, these
actions cannot be done directly in the corresponding

spacetime, since it yields the singular result for the metric.
The same concern also appeared in [18], where the authors
had to expand their charged rotating solution in small
rotation first, followed by imposing the static limit to match
the static charged black hole solution in RS-II braneworld
scenario reported in [17].
However, we could get the desired solution directly from

the corresponding Hamiltonian constraint equation applied
to the associated metric ansatz, rather than expanding the
solution (3.31) for small rotation and NUT parameter. The
proper metric ansatz and gauge field are

ds2 ¼ −
�
1 −

Λ4

3
r2
�
du2 þ 2dudr

þ r2
�
dx2

Δx
þ Δxdϕ2

�
þHðr; xÞdu2; ð3:39Þ

and

Aμdxμ ¼ −
Q
r
du; ð3:40Þ

respectively. The last two equations above are understood
as the n ¼ 0 and a ¼ 0 cases of Eqs. (3.14) and (3.36).
Employing the Hamiltonian constrain (3.25) to this metric
and gauge field, we can get an equation for Hðr; xÞ,

∂2Hðr; xÞ
∂r2 þ 4

r
∂Hðr; xÞ

∂r þ 2Hðr; xÞ
r2

¼ −
l2Q4

ρ8
: ð3:41Þ

As one would have expected, Eq. (3.41) is the limits a → 0
and n → 0 of Eq. (3.26). The general solution to this
equation is

Hðr; xÞ ¼ F1ðxÞ
r

þ F2ðxÞ
r2

−
l2Q4

20r6
; ð3:42Þ

with F1ðxÞ and F2ðxÞ are some x dependent functions to be
determined. In order to have agreement between the
solution (3.39) and the one presented in [17] as Λ4 is
turned off, we have F1ðxÞ ¼ 2m and F2ðxÞ ¼ −ðβ þQ2Þ.
Furthermore, to get the diagonal form of the metric we

can perform the transformation

du → dtþ r2

Δ
dr; ð3:43Þ

where

Δ ¼ r2 − 2mrþ β þQ2 −
Λ4r4

3
þ l2Q4

20r4
: ð3:44Þ

This transformation yields the spacetime metric (3.39) with
the Hðr; xÞ function as given in (3.42) can be written as5See Appendix.
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ds2 ¼ −FðrÞdt2 þ FðrÞ−1dr2 þ r2dΩ2; ð3:45Þ

with

FðrÞ ¼ 1 −
2m
r

þ β þQ2

r2
−
Λ4r2

3
þ l2Q4

20r6
; ð3:46Þ

and dΩ2 is the unit 2-sphere.
It turns out that this solution had appeared in [20] where

the topological charged braneworld black holes and some
of their properties are discussed. The authors of [20] follow
the diagonal metric ansatz proposed in [17], and solve the
metric function using the corresponding Hamiltonian con-
straint equation (3.25). In this section we just showed that
the same result can be achieved using the Kerr-Schild
ansatz for the metric. Related to the vector field (3.40), the
transformation (3.43) yields this field can be expressed as

Aμdxμ ¼ −
Q
r
dt; ð3:47Þ

where the redundant ArðrÞ component has been removed
using the gauge freedom argument. This gauge potential is
exactly the vector fields of Reissner-Nordstrom -(A)dS of
Einstein-Maxwell theory. In the vanishing ofΛ4, this metric
reduces to that of Chamblin et al. [17], and turning off
parameters form the bulk l and β simultaneously gives us
the Reissner-Nordstrom-(A)dS spacetime. Note that the
spacetime metric (3.45) can be asymptotically dS or AdS,
depending on the value of Λ4.

IV. GEODESICS AROUND BRANEWORLD BLACK
HOLES WITH NUT PARAMETER

A. Hamilton-Jacobi equation

Studies on timelike and null geodesics around rotating
object play an important role in gravitational physics
[44,48,52,54,59,60,62,63]. It may give us predictions on
reasonable orbit for some astrophysical objects or even
light ring radius. Moreover, recently studies on these
geodesics may provide us some estimates on black hole
mergers [64,65]. Particularly for circular geodesics, one
can employ the approach by writing down the correspond-
ing radial effective potential directly from the metric
as performed in [64,65], or alternatively from the associ-
ated Hamilton-Jacobi equation for a test particle. Both
approaches should lead to the same conclusion.
Here we proceed to study the geodesics of null and

timelike test particles in the background (3.9) by obtaining
the Hamilton-Jacobi equation first. The corresponding
horizon that corresponds to this spacetime has the radius

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ n2 − β − a2

q
; ð4:1Þ

which is one of the zeros of Δr in the metric (3.9). The
general form of Lagrangian for a test body can be read as

L ¼ 1

2
gμν _xμ _xν; ð4:2Þ

where the overdot stands for the differentiation with respect
to the affine parameter λ. As usual, the proper time τ is
related to the affine parameter via τ ¼ mλ. Due to the
metric convention in (3.9), our normalization condition is
gμν _xμ _xν ¼ γ where γ ¼ −1 for timelike and γ ¼ 0 for null.
From the Lagrangian (4.2), the four momentum of test
particle can be expressed as

pμ ¼
∂L
∂ _xμ ; ð4:3Þ

where the relativistic relation p2 ¼ −m2 of a particle with
mass m holds. On the other hand, the Hamilton-Jacobi
equation can be written as [62]

−
∂A
∂λ ¼ 1

2
gμν∂μA∂νA; ð4:4Þ

where A is an action for the test particle satisfying

pμ ¼ ∂μA; ð4:5Þ

and

∂A
∂τ ¼ m2

2
: ð4:6Þ

Just like the ordinary Kerr-Taub-NUT solution, the
spacetime (3.9) also possesses the timelike and axial
Killing vectors. Consequently, there exist two constants
of motion that belong to a test body in this spacetime,
namely the energy E ¼ −pt and angular momentum
L ¼ pϕ. To proceed the Hamilton-Jacobi equation (4.4),
we can employ the ansatz

A ¼ m2τ

2
− Etþ LϕþArðrÞ þAxðxÞ; ð4:7Þ

which agrees to (4.5) and (4.6). Accordingly, we now have

E ¼ Δr − aΔx

ρ2
pt −

PΔr − aðρ2 þ aPÞΔx

ρ2
pϕ; ð4:8Þ

and

L ¼ PΔr − aðρ2 þ aPÞΔx

ρ2
pt −

P2Δr − ðρ2 þ aPÞ2Δx

ρ2
pϕ:

ð4:9Þ

Solving the last two equations yields
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pt ¼ PðL − PEÞ
ρ2Δx

þ ðaPþ ρ2Þððρ2 þ aPÞE − aLÞ
ρ2Δr

; ð4:10Þ

and

pϕ ¼ L − PE
ρ2Δx

þ aððρ2 þ aPÞE − aLÞ
ρ2Δr

: ð4:11Þ

Explicitly, the Hamilton-Jacobi equation (4.4) can now
be expressed as

Δr

�∂Ar

∂r
�

2

þm2ðr2 þ n2Þ þ ðL − aEÞ2

−
1

Δr
ððr2 þ n2 þ a2ÞE − aLÞ2

¼ −Δx

�∂Ax

∂x
�

2

þ x2
�
a2ðE2 −m2Þ − L2

Δx

�

þ 2anxð2E2 −m2Þ − 4nxE
Δx

ðnxEþ LÞ: ð4:12Þ

From the equation above, we can have

Δr

�∂Ar

∂r
�

2

þm2ðr2 þ n2Þ þ ðL − aEÞ2

−
1

Δr
ððr2 þ n2 þ a2ÞE − aLÞ2 ¼ −K; ð4:13Þ

and

Δx

�∂Ax

∂x
�

2

þ x2
�
a2ðm2 − E2Þ þ L2

Δx

�

þ 2anxðm2 − 2E2Þ þ 4nxE
Δx

ðnxEþ LÞ ¼ K; ð4:14Þ

where K is known as the Carter constant. Since pμ ¼ ∂μA,
from (4.13) and (4.14) we can write

px ¼ �ρ−2
ffiffiffiffiffiffiffiffiffiffi
XðxÞ

p
; ð4:15Þ

and

pr ¼ �ρ−2
ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð4:16Þ

with

XðxÞ ¼ ΔxK − x2ða2ðm2 − E2ÞΔx þ L2Þ
þ 2anxΔxðm2 − 2E2Þ þ 4nxEðnxEþ LÞ; ð4:17Þ

and

RðrÞ ¼ ððr2 þ n2 þ a2ÞE − aLÞ2
− ΔrðK þm2ðr2 þ n2Þ þ ðL − aEÞ2Þ: ð4:18Þ

In the absence of NUT parameter n and tidal charge β, the
last two equations reduce to those of Kerr spacetime [62].
In the next sections, we will use theses results above to
investigate the timelike and null circular geodesics, for
equatorial and nonequatorial planes.

B. Timelike geodesic

Motion on the plane for a fixed x ¼ x0 must obey [59]

Xðx0Þ ¼ 0 and
dXðxÞ
dx

����
x¼x0

¼ 0; ð4:19Þ

where XðxÞ is given in (4.17). The two equations in (4.19)
are related to the velocity and acceleration in x direction,
namely _x and ẍ respectively. Obviously, the first equation
in (4.19) is satisfied in equatorial plane x ¼ 0 since the
Carter constant vanishes in this consideration as dictated by
Eq. (4.14). However, the second equation in (4.19) which
can be expressed as

dXðxÞ
dx

����
x¼0

¼ 2nðaðm2 − 2E2Þ þ 2ELÞ; ð4:20Þ

which vanishes in the absence of the NUT parameter n.
This is exactly the case of the neutral rotating braneworld
black hole with a tidal charge β studied in [18], i.e., the
equatorial timelike geodesics are guaranteed. For nonzero
n, the last equation constrains the properties of test particles
and spacetime to yield the equatorial radial geodesics exist.
This in turn becomes a stringent restriction for the existence
of equatorial circular orbits.
Now let us define some effective potentials related to the

motion in r and x directions, namely [63]

ρ4
�
dr
dτ

�
2

¼ Vr;eff and ρ4
�
dx
dτ

�
2

¼ Vx;eff ; ð4:21Þ

from which we can write

Vr;eff ¼ ððr2 þ n2 þ a2Þϵ − ahÞ2
− Δrðkþ ðr2 þ n2Þ þ ðh − aϵÞ2Þ; ð4:22Þ

and

Vx;eff ¼ Δxk − x2ða2ð1 − ϵ2ÞΔx þ h2Þ þ 2anxΔxð1 − 2ϵ2Þ
þ 4nxϵðnxϵþ hÞ: ð4:23Þ

In equations above we have used ϵ≡ Em−1, h≡ Lm−1,
and k≡ Km−1. To obtain the innermost stable circular orbit
(ISCO) radius, the set of conditions

Vr;eff ¼ 0;
dVr;eff

dr
¼ 0;

d2Vr;eff

d2r
¼ 0; ð4:24Þ

ROTATING AND CHARGED TAUB-NUT-(A)dS … Phys. Rev. D 102, 064022 (2020)

064022-9



and

Vx;eff jx¼0 ¼ 0;
dVx;eff

dx

����
x¼0

¼ 0; ð4:25Þ

must be satisfied simultaneously. Equations (4.24) are
related to the motion in radial direction, and Eqs. (4.25)
to keep that motion on the plane with a particular fixed x.
It is obvious that Vr;eff is independent of x coordinate, as
Vx;eff does not depend on r. The first equation in (4.25) is
satisfied by effective potential (4.23). As indicated before,
normally Eqs. (4.25) do not appear when one studies
rotating black hole geometries without NUT parameter
since the nature of that spacetime that guarantees the
motion on equatorial plane. However, the second one in
(4.25) is satisfied for zero NUT parameter, or when

að1 − 2ϵ2Þ þ 2ϵh ¼ 0 ð4:26Þ

for non zero NUT parameter, which can be understood
from Eq. (4.20). The last equation can be considered as a
new additional constraint to the set equations in (4.24) to
find the ISCO radius on equatorial plane. Nevertheless,
from (4.26) and the set of equations in (4.24), one cannot
discover a solution to ISCO radius supported by real valued
NUT parameter. Consequently, we can infer that equatorial
timelike circular geodesics cannot occur in the spacetime
(3.9), unlike in the case of null NUT parameter [18].
However the timelike circular geodesics could lie on

some nonequatorial planes. Investigating this analytically is
obviously troublesome, hence we would pursue this job
numerically as presented in Figs. 1 and 2. From these plots
we learn that such geodesics exist, despite the incorporating
parameters such as the NUT parameter n and tidal charge β
are severely constrained. All ISCO radii presented in
Figs. 1 and 2 are larger than the corresponding event
horizon, and the associated tidal charge parameter β are all
negative. Note that the negative tidal charge is considered
to be the physically more natural one [16]. Interestingly,
from Fig. 3 we find that circular geodesics for x ¼ 0.01 and
x ¼ 0.05 are in prograde motion, while for x ¼ −0.01 and
x ¼ −0.05 are in retrograde motion.

C. Null geodesic

In this section we discuss the possibility to observe light
ring around the rotating braneworld spacetime with NUT
parameter. The corresponding effective potential in null
case can be achieved by taking the massless limit of
Eqs. (4.17) and (4.18),

ρ4
�
dr
dλ

�
2

¼ Vr;eff and ρ4
�
dx
dλ

�
2

¼ Vx;eff ; ð4:27Þ

from which we can write

Vr;eff ¼ ððr2 þ n2 þ a2Þϵ − ahÞ2 − Δrðkþ ðh − aϵÞ2Þ;
ð4:28Þ

and

Vx;eff ¼ Δxkþ x2ða2ϵ2Δx − h2Þ þ 4nxϵðϵðnx− aΔxÞ þ hÞ;
ð4:29Þ

where again we have used the notations ϵ≡ Em−1,
h≡ Lm−1, and k≡ Km−1. Nevertheless, the set of
equations

FIG. 1. ISCO radius on the x ¼ 0.01 and x ¼ −0.01 planes, and
the numerical value for the NUT parameter n ¼ 0.1.

FIG. 2. ISCO radius on the x ¼ 0.05 and x ¼ −0.05 planes, and
the numerical value for the NUT parameter n ¼ 0.1.
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Vx;eff ¼ 0;
dVx;eff

dx
¼ 0; Vr;eff ¼ 0;

dVr;eff

dr
¼ 0;

ð4:30Þ

for the effective potentials given in (4.28) and (4.29) do not
have solutions for radius r for the case x ¼ 0, which
implies that light ring does not exist on equatorial plane in
rotating braneworld spacetime holes with NUT parameter.
Now, as we did for timelike case previously, let us

investigate the possibility for light rights to exist in non-
equatorial plane. To do so, we must deal with the set of
equations (4.30) for x ≠ 0, where some numerical evalu-
ations are given in Fig. 4. However, these results do not
support the existence of null circular geodesics on the
evaluated nonequatorial planes, since all of the achieved
radii in Fig. 4 are inside the corresponding horizons.
Furthermore, from the variety of evaluated nonzero x under
consideration, we can claim that it is unlikely for a rotating
braneworld spacetime equipped with NUT parameter to
accommodate light rings on nonequatorial planes.

V. CONCLUSION AND DISCUSSION

In this work, we have generalized the braneworld
spacetime solution in RS-II model obtained by Aliev et al.
[18] and Neves et al. [19]. The effective Einstein equation
on the brane is the one discovered by Shiromizu et al. [15],
and the method to get the solutions presented in this paper
closely follows the approach introduced in [18]. To obtain
the solutions presented in Sec. III, we have made several
assumptions. First we assume the existence of bulk con-
tribution through Eμν that yields the effective Einstein
equations on the brane to be closed. Indeed, it is remarkable
if we can write down a bulk metric that corresponds to this
Eμν and the brane metric gμν, but we do not aim to pursue
this question in our present work. This concern also arises
in the preceding works [17,18]. Second, for the nonvacuum

brane, we assume that the Maxwell field to be localized on
the brane. This field will give rise to the electric charge of a
black hole. Finally, as proposed in [18], we also assume that
the brane allows the Kerr-Schild form of its spacetime
metric. Using these assumptions, we manage to obtain
several solutions in Sec. III, based the effective Einstein
equation on a brane by Shiromizu et al. [15].
In Sec. IV, we study the circular geodesics for timelike

and null test objects in the rotating braneworld spacetime
with tidal charge and NUT parameter. We find that both
timelike and null equatorial circular geodesics cannot occur
in this background. However, numerical results presented
in Sec. IV support the existence of nonequatorial timelike
circular geodesics, but not for the null case. Furthermore,
the nonequatorial timelike circular geodesics in by the
neutral rotating braneworld spacetime with NUT parameter
can exist provided that the tidal charge is negative.
Of course this result has no analog in Kerr-Newman-
Taub-NUT spacetime case since it will require the charge
Q of the Kerr-Newman-Taub-NUT object to be purely
imaginary.
As we have mentioned previously that the exact bulk

metric which correspond to the solutions reported in this
work has not been discovered, as also to the braneworld
black holes solutions discovered in [16–19]. It is going to
be challenging to discover such bulk metric and to see how
the localization for the black holes and incorporating
Maxwell fields at works. In particular, here we also
reproduce the static charged AdS braneworld black hole
in RS-II model, which had been discussed in [20]. This type

FIG. 3. The angular momentum h for each cases plotted in
Figs. 1 and 2.

FIG. 4. The case of x ¼ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
are represented by the color black, yellow, brown, violet, red,
cyan, pink, green, orange, respectively. The solid lines are the
circular radii, and the dashed ones are the corresponding
horizons. The associated β and NUT parameters for each lines
in these plots are real valued.
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of black hole may have some interesting further studies,
related to its thermodynamics [66] and holographic uses
[61]. We address these projects in our future works.
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APPENDIX: KERR-NEWMAN-TAUB-NUT-(A)dS
SOLUTION

The Kerr-Newman-Taub-NUT-(A)dS solution solves the
Einstein equations with cosmological constant which is
Eq. (2.2) with vanishing κ5 and Eμν. The line element can
take the form [41]

ds2 ¼ −
Q
ρ2

½dt − ðaΔx − 2nxÞdϕ�2

þ ρ2
�
dr2

Q
þ dx2

PΔ

	
þ PΔx

ρ2
½adt − ðr2 þ a2 þ n2Þdϕ�2;

ðA1Þ

with

Q ¼ r2 − 2mrþ a2 þQ2 − n2

− Λ4

�
ða2 − n2Þn2 þ r2

�
a2

3
þ 2n2

�
þ r4

3

	
; ðA2Þ

and

P ¼ 1þ 4

3
Λalxþ 1

3
Λa2x2: ðA3Þ

The corresponding vector field is

Aμdxμ ¼
Qr
ρ2

½dt − ðaΔx − 2nxÞdϕ�: ðA4Þ

Setting n ¼ 0 and Λ ¼ 0 in line element (A1) yields the
Kerr-Newman metric describing rotating mass with electric
charge Q in Einstein-Maxwell theory. The metric (A1)
obeys the Einstein equations

Gμν þ Λ4gμν ¼ 8πTμν; ðA5Þ

where the energy-momentum tensor is given in Eq. (2.7).
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