
 

Meronic AdS black holes in Gauss-Bonnet theory

Daniel Flores-Alfonso 1,* and Bryan O. Larios 2,3,†

1Departamento de Física, Universidad Autónoma Metropolitana—Iztapalapa,
Avenida San Rafael Atlixco 186, C.P. 09340 Ciudad de México, Mexico

2Escuela de Física, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras,
Boulevard Suyapa, Tegucigalpa, Municipio del Distrito Central 11101, Honduras

3Mesoamerican Centre for Theoretical Physics, Universidad Autónoma de Chiapas,
Carretera Zapata Km. 4, Real del Bosque (Terán), 29040 Tuxtla Gutiérrez, Chiapas, Mexico

(Received 15 June 2020; accepted 13 August 2020; published 8 September 2020)

We examine analytical, intrinsically non-Abelian, black holes with SU(2) Yang-Mills matter content.
Working in the extended thermodynamics scenario of Lovelock black holes, we study the phase structure of
a four- and a five-dimensional spherically symmetric configuration. We work in Gauss-Bonnet-Einstein-
Yang-Mills gravity with a negative cosmological constant and use Euclidean methods to explore the
thermodynamics of the systems. We observe that the solutions belong to the expected universality class of
van der Waals and find a reentrant phase transition.
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I. INTRODUCTION AND MOTIVATION

Taking into consideration both quantum and spacetime
physics has shown that black holes are indeed thermody-
namic systems. Black holes radiate heat in a manner quite
similar to blackbody radiation. It is now a famous result that
the temperature of a black hole is given by its surface
gravity and that the horizon area corresponds to the entropy
[1–4]. The archetypal example is the Schwarzschild black
hole, which is completely determined by its mass M. This
single-parameter family is characterized by a temperature
of T ¼ 1=8πGM and an entropy of S ¼ 4πGM2. The
relationships between the gravitational charge M and the
thermodynamic quantities T and S yield

M ¼ 2TS and dM ¼ TdS: ð1Þ

These algebraic and differential relations establish the mass
as the thermodynamic internal energy of the system. The
first equation in (1) is Smarr’s mass formula, while the
second is the first law of black hole thermodynamics [5,6].
From the point of view of thermodynamics, Smarr’s

relation is a type of Gibbs-Duhem equation. The factor of 2
appearing in the formula is indicative that black hole
thermodynamics is not exactly like that of ordinary sub-
stances such as fluid mixtures, ferromagnetic dipoles, or
quantum gases. Common substances are characterized by
homogeneous fundamental relations, e.g., SðλU; λVÞ ¼
λSðU;VÞ. The Schwarzschild black hole is a homogeneous

thermodynamic system of degree 2, i.e., SðλMÞ ¼ λ2SðMÞ.
When it exists, the degree of homogeneity of a fundamental
relation can be read off from its associated Gibbs-Duhem
equation. This highlights the significance of a black hole’s
Smarr formula; see, for example, Ref. [7].
In this manuscript, we are interested in spherically

symmetric spacetimes. Birkhoff’s theorem asserts that
any spherically symmetric vacuum solutions of General
Relativity (GR) must be static and asymptotically flat. In
other words, the unique solution in four dimensions is the
Schwarzschild metric. In dimensions higher than four, the
equivalent solutions were derived by Tangherlini [8]. For
any given dimension, D, say, the first law of black hole
thermodynamics is as in Eq. (1). Regardless, the Smarr
relation generalizes in accordance with two basic ideas:
(i) the action of gravity when higher spatial dimensions are
available and (ii) the holographic principle. In general, the
mass formula takes the form

ðD − 3ÞM ¼ ðD − 2ÞTS: ð2Þ

Until now, the equations we have written down lack
the typical pressure-volume terms found in the first
law of thermodynamics and the Gibbs-Duhem equation
(cf. Ref. [9]). With this in mind, let us recall that the
cosmological constant Λ admits a perfect fluid interpre-
tation, where the isotropic pressure is given by p ¼
−Λ=8πG. One way to consider this pressure as actually
thermodynamical arises when Λ is not a universal constant
but rather a constant of motion [10–13]. Furthermore, the
Euclidean approach to quantum gravity [14,15] is consis-
tent with this idea, as its methods are on shell. This method
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relates the Euclidean on-shell action to the free energy of
the system through a bridge equation [16]. Thus, consi-
dering Λ as a thermodynamic variable that remains fixed in
the action is comparable to isobaric ensembles [17]. As a
consequence, variation of the free energy entails a variation
with respect to the thermodynamic pressure.
Crucially, note that the original Smarr relation for Kerr

black holes is modified in the presence of a nonzero
cosmological constant [18]. Thus, adopting Λ as a ther-
modynamical variable endows meaning to the Smarr
relation of Kerr-Newman-AdS black holes [19]. The
extension of the classic framework of black hole thermo-
dynamics leads to a new interpretation of black hole mass.
The extended first law of thermodynamics and the Gibbs-
Duhem relation determine the mass to be the enthalpy of
the system rather than its internal energy [20,21]. The
thermodynamic conjugate of pressure p is, of course,
referred to as volume. However, this thermodynamic
variable, V, say, need not be related to any geometrical
volume [22,23]. This extended thermodynamics can be
further expanded when considering Lovelock gravity. This
is to say, all Lovelock couplings are considered as thermo-
dynamic variables [24]. Our focus here is Gauss-Bonnet
(GB) theory, meaning both the cosmological constant Λ
and the GB coupling α are considered as thermodynamic
variables. It should be understood, for consistency, that
these thermodynamic variables are held fixed in the action.
Let us assume for the time being that the pressure and

volume variables are not in play. The spherically symmetric
Gauss-Bonnet vacua is the Boulware-Deser black hole
[25]. For a zero-valued cosmological constant, the black
hole family is asymptotically flat. Thus, aside from the
black hole mass, the only additional thermodynamic
variable is the GB parameter α. Since both the mass and
the entropy depend on the horizon geometry, this entails a
modification of the first law of thermodynamics within the
extended framework, i.e.,

dM ¼ TdS − ψdα: ð3Þ

Just above ψ is the thermodynamic conjugate of α; see the
Appendix for further details. Smarr’s approach leads to an
algebraic equation which is exactly of Gibbs-Duhem type:

ðD − 3ÞM ¼ ðD − 2ÞTS − 2ψα: ð4Þ

Extended thermodynamics provides the necessary concep-
tual structure for this Smarr relation to admit a thermody-
namical interpretation. Moreover, the Gauss-Bonnet
parameter has units of length squared; this is consistent
with the scaling factor of 2 in Eq. (4). Entropy is given by
the horizon area (plus corrections due to α) consistent with
the factor D − 2 in the equations above. As a thermody-
namic variable, α is very closely related to entropy, which is

why its dual ψ is closely related to temperature (cf. the
Appendix).
Of course, various spherically symmetric spacetimes

have been studied beyond vacuum Gauss-Bonnet,
Lovelock gravity especially, where many static solutions
have been investigated [26–31]. Therein, black hole solu-
tions have been generalized in such a way that their
spherical horizon has been substituted by some other
appropriate manifold. In addition, solutions may be gene-
ralized to electrovacuum, as in the classic thermodynamic
framework of GR. It is well known that electromagnetic
fields can also be included into the Lovelock scenario.
Matter fields from Maxwell theory and nonlinear electro-
dynamics have been studied [32–36] generalizing solutions
in GR [37–39]. Many of the previous scenarios have been
investigated in the context of extended thermodynamics as
well (see Ref. [40] for a recent review). Some examples
include Refs. [41,42], where the focus is nonlinear con-
stitutive relations.
Maxwell theory is a special case of Yang-Mills (YM)

theory when the gauge group is chosen as U(1). We
know from the standard model of particles that YM
fields represent interactions beyond the electromagnetic.
Electroweak theory is an example that together with
Einstein-Maxwell gravity points naturally toward the study
of Einstein-Yang-Mills equations. For SU(2), particlelike
and black hole solutions have been known for some time
[43–46]; for a review on the subject, we refer to Ref. [47]. It
should be mentioned that the first results in this area were
numerical and many efforts have been made since toward
finding and understanding analytical solutions. A relatively
recent attempt to move forward in this direction is to
construct self-gravitating meron configurations [48,49].
Merons were originally proposed in Ref. [50]; they are
essentially non-Abelian and arguably simple in nature.
As mentioned above, genuinely non-Abelian self-

gravitating YM configurations are desirable. Very few
exact solutions of this nature are known in the literature.
We stress the non-Abelian quality of the field content, as it
is often unclear whether a given configuration, in fact,
belongs to an Abelian sector of the theory. Furthermore, as
opposed to the Maxwell case, there is no uniqueness
theorem for YM black holes. However, the general thermo-
dynamics of YM black holes has been carried out (in the
classic setting) in Ref. [51]. Therein, the YM configuration
is analyzed alongside another nonlinear matter model, that
of Skyrme. This model is very useful in particle and nuclear
physics, as it is closely related to the low-energy limit of
QCD [52]. Additionally, we mention that Einstein-Skyrme
systems [53] have been recently analyzed in Ref. [54]
which point to a close relationship with charged AdS
black holes.
Our objective is to study meronic black holes in Gauss-

Bonnet theory. We focus on generalizing known Einstein
solutions and examining the effects of the GB parameter.
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We present a four-dimensional Reissner-Nordström-like
black hole with entropy modified by α. This solution is
closely related to those studied in Refs. [48,55,56]. Note
that in four dimensions the GB contribution is a boundary
term that does not affect the dynamics but makes a
difference in the calculation of conserved quantities [57].
We also present a five-dimensional black hole with a
Boulware-Deser-esque metric function. The structure of
the solution generalizes black holes such as those found in
Refs. [49,58].
This paper is organized as follows: In Sec. II, we present

the Einstein-Gauss-Bonnet gravity theory minimally
coupled to Yang-Mills fields. We provide the equations
of motion and detail the field and symmetry assumptions
we use throughout the manuscript. We end the section
describing the Euclidean approach undertaken in sub-
sequent sections. In Sec. III, we inject a self-gravitating
four-dimensional Einstein meron into Gauss-Bonnet theory
and explore the consequences of the theory’s parameter α.
The dynamics the meron obeys is Einstein-Yang-Mills, as
the Gauss-Bonnet term is topological in this dimension;
however, it does affect the thermodynamics. We study the
configuration’s thermodynamics and phase structure. In
Sec. IV, we generalize a five-dimensional Einstein-Yang-
Mills solution to the Lovelock scenario. After detailing the
singularity structure of the new black hole, we establish
which known solutions it interpolates. We interpret the
parameters of the solution in accordance with its thermo-
dynamics. We compute the thermodynamic state equations
and describe the solution’s phase transitions. We end the
section with comments about certain special values of the
Lovelock coupling constants. Lastly, in Sec. V, we write
the concluding remarks of our work.
In the Appendix, we provide a way to compute ψ , the

thermodynamic conjugate of α, when the mass and entropy
are known as functions of the horizon radius rþ and the GB
parameter α. The definition of the horizon radius and its
differential yield functions for the mass and the temperature
(via the Hawking prescription). This, in turn, gives the
corresponding entropy function; see, e.g., Ref. [59].

II. ACTION, ANSÄTZE, AND ANTI–DE SITTER

General Relativity and Gauss-Bonnet gravity are special
cases of Lanczos-Lovelock theory [60,61]. Lovelock’s
theorem establishes GR as the most general metric theory
of gravity, in a four-dimensional vacuum, which has
symmetric, divergence-free, and second-order equations
of motion.1 Lovelock constructed, exhaustively, all second-
rank tensors which comply with these properties for any
arbitrary dimension. Lovelock gravity is ghost free [62],
and, as far as propagation is concerned, the theory has the

same degrees of freedom as GR for any given dimension
[63]. In this paper, we are concerned only with dimensions
four and five for which the Lanczos-Lovelock action
corresponds to that of Gauss-Bonnet. It should be noted
that in dimension four the Gauss-Bonnet contribution is
nondynamical, and so the equations of motion are
Einstein’s. As a final introductory remark, we mention
that GB theory appears in string theory as a low-energy
effective action [64]. In other words, the Gauss-Bonnet
term corrects the stringy field equations in dimensions
higher than four.
Let us write down the Gauss-Bonnet gravity action

minimally coupled to SU(2) Yang-Mills matter:

I½g; A� ¼ 1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p ðR − 2Λþ αLGBÞ

þ 1

8πe2

Z
dDx

ffiffiffiffiffiffi
−g

p
trhF;Fi; ð5Þ

with G and e Newton’s constant and the YM coupling in
spacetime dimension D, respectively. In the previous
equation, we have used

LGB ¼ R2 − 4RabRab þ RcdabRcdab ð6Þ

as shorthand for the Gauss-Bonnet contribution to the
gravity functional and F for the YM field strength:

F ¼ dAþ 1

2
½A; A�: ð7Þ

We have also denoted by h·; ·i the inner product of differ-
ential forms. Let us recall that F is locally represented by an
suð2Þ-valued two-form.We conventionally use t1, t2, and t3

to represent the linear generators of suð2Þ as well as the
unit vectors in C2, which model SU(2). These matrices are
traceless and have Frobenius norm 1=

ffiffiffi
2

p
. They also

comply with the commutation relations

½ti; tj� ¼ iϵijktk: ð8Þ

Varying the action functional (5) with respect to the
metric g yields

Rab −
1

2
Rgab þ Λgab þ αHab ¼ 8πGTab; ð9Þ

where we have defined a tensor H which has components

Hab ¼ 2RRab − 4RacRc
b − 4RcdRacbd

þ 2Ra
cdeRbcde −

1

2
LGBgab: ð10Þ

In Eq. (9), the energy-momentum tensor T is given by

1The fundamental assumption that the equations of motion be
second order is justified, as it systematically prevents the
appearance of Ostrogradsky instabilities.
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Tab ¼ −
1

4πe2
tr

�
FacFb

c −
1

2
gabhF;Fi

�
: ð11Þ

Notice that for two-forms hF;Fi ¼ FabFab=2. When
varying the action with respect to the gauge potential A,
the resulting equation is

D⋆F ¼ 0; ð12Þ

where ⋆ is the Hodge star linear map and D ¼ dþ ½A; � is
the covariant derivative—in the YM sense.

A. Meron and symmetry Ansätze

In order to produce intrinsically non-Abelian self-
gravitating configurations, we opt for a meron Ansatz, i.e.,

A ¼ λω ðλ ≠ 0; 1Þ; ð13Þ

where λ is a constant and ω satisfies the following equation:

dωþ 1

2
½ω;ω� ¼ 0: ð14Þ

Thence, using Eq. (7) and the previous equations, we see
straightforwardly that

F ¼ λdωþ 1

2
λ2½ω;ω�;

¼ −λ
1

2
½ω;ω� þ 1

2
λ2½ω;ω�;

¼ 1

2
λðλ − 1Þ½ω;ω�: ð15Þ

In other words, the trivial nature of ω (14) guarantees that A
is nontrivial.
The self-gravitating Yang-Mills fields that we consider in

the upcoming sections are purely magnetic. It is known that
under this circumstance the supporting spacetime must be
static [51], while it was proved in Ref. [65] that static
configurations of this type (that are well behaved in the far
field) are either black holes, particlelike solutions, or of
Riessner-Nordström-like nature. Additionally, the merons
we investigate produce spherically symmetric energy-
momentum tensors. In other words, the backgrounds they
generate are spherically symmetric as well.
In general, a spherically symmetric spacetime admits

Schwarzschild coordinates such that the metric is written as

g ¼ −aðrÞdt ⊗ dtþ bðrÞdr ⊗ drþ r2γD−2; ð16Þ

with γ the round metric on the nested (hyper)spheres.
Further simplification is possible once the equations of
motion are taken under consideration; e.g., the Einstein
merons of Refs. [48,49] have geometries of the form

g ¼ −fðrÞdt ⊗ dtþ fðrÞ−1dr ⊗ drþ r2γD−2: ð17Þ

This symmetry, in turn, implies that the Lovelock field
equations reduce to a single ordinary differential equation
for the metric function f. This equation integrates to
produce an algebraic equation for f [66,67]. This poly-
nomial has degree n, given by the highest-order curvature
term in the Lanczos-Lovelock action which contributes to
the equations of motion, i.e., n ¼ ½ðD − 1Þ=2�, where
closed brackets indicate taking the integer part. The most
compact way to write these Wheeler polynomials is by
introducing an auxiliary function F ¼ ð1 − fÞ=r2. A
Wheeler polynomial PðF Þ satisfies the following equation:

PðF Þ≡Xn
i¼0

aiF ðrÞi ¼ s
rD−1 þ SðrÞ; ð18Þ

where the ai coefficients are determined by the Lovelock
couplings and s is an integration constant. For many
black holes, the constant s corresponds to the mass,
e.g., Schwarzschild-Tangherlini. The source function S is
derived from the energy-momentum tensor, of course, for
vacuum solutions SðrÞ ¼ 0. For recent applications, we
refer the reader to Refs. [68–73]. In what follows, we use
Wheeler polynomials to concisely present the meronic
black holes under consideration.

B. Anti–de Sitter boundary counterterms

In this paper, we focus on solutions to Eqs. (9) and (12)
with a negative cosmological constant, in order to describe
asymptotically anti–de Sitter (AdS) spacetimes. The defin-
ing length scale l of AdS is given by its radius of curvature,
which is related to the cosmological constant by

Λ ¼ −
ðD − 1ÞðD − 2Þ

2l2
: ð19Þ

Analogously, the GB coupling constant is often rewritten as

α ¼ α̃

ðD − 3ÞðD − 4Þ : ð20Þ

This way of parameterizing the Lovelock coupling con-
stants appears naturally in Wheeler polynomials, fixing the
constants ai in Eq. (18).
To analyze the thermodynamics of the aforementioned

black holes, we use Euclidean methods. Thus, consider the
Euclidean version of action (5):

IB ¼ −
1

16πG

Z
dDx

ffiffiffi
g

p ðR − 2Λþ αLGBÞ

−
1

8πe2

Z
dDx

ffiffiffi
g

p
trhF;Fi; ð21Þ

where we have adhered to the conventions of Ref. [74]. As
far as the gravitational sector is concerned, if the boundary
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metric is fixed beforehand, then variation with respect to
the bulk metric will not yield Eq. (9) unless the functional is
supplemented by surface terms at the boundary. For the
Einstein part of the equations of motion, the boundary term
is known as the Gibbons-Hawking term [14]. For the
Gauss-Bonnet component, the term was given by Myers in
Ref. [75]. Here, we use the notation of Ref. [76] to write
both surface integrals as

IST ¼ −
1

8πG

Z
dD−1x

ffiffiffi
h

p
½K þ 2αðJ − 2ĜabKabÞ�; ð22Þ

where Kab are the components of the extrinsic curvature
tensor of the boundary and K designates its trace. The
induced metric on the boundary is h, and Ĝ represents its
Einstein tensor. Finally, J is the trace of a tensor defined by

Jab ¼
1

3
ð2KKacKc

bþKcdKcdKab−2KacKcdKdb−K2KabÞ:
ð23Þ

Notice that the surface integrals in Eq. (22) depend on the
bulk metric in the sense that the integrands depend on
extrinsic curvatures. We point this out because there is a
crucial ambiguity which arise from the following fact. An
arbitrary surface integral over the boundary may be added
as long as it depends on only the intrinsic curvature of the
boundary. This includes integrands that depend on only the
fixed metric h and its scalar curvature R̂. For AdS, this
ambiguity has been resolved for some time now, at least up
to dimensions relevant for string theory.
This counterterm method originated with the AdS=CFT

correspondence, but the main purpose it serves here is that
it allows for the calculation of a finite Euclidean action. For
an in-depth description of how this method came to be, we
refer the reader to Ref. [74] and references therein. The
counterterm integral is arrangeable as a power series over
the boundary’s intrinsic curvature and its derivatives. We
truncate this power expansion up to orders relevant for
dimensions four and five, i.e.,

ICT ¼ 1

8πG

Z
dD−1x

ffiffiffi
h

p �
D − 2

l
þ l
2ðD − 3Þ R̂

�
: ð24Þ

Now, concerning the matter action, not all actions require
additional counterterms, e.g., Maxwell in spacetime dimen-
sion four. However, surface integrals as counterterms for
specific matter content have been developed. Close exam-
ples to YM merons are skyrmions and axions, for which
counterterms have been successfully applied [54,77].

III. THE FOUR-DIMENSIONAL MERON

A distinctive aspect of non-Abelian theory is that a given
field strength does not determine a uniquegauge potential up

to gauge transformations. This profound attribute was first
noticed inRef. [78].Onemay, in fact, constructmany (gauge
inequivalent) gauge potentials which yield the same field
strength. Albeit, the field content is distinguishable through
higher curvature invariants. Merons provide an easy way for
constructing such examples [79]. For the self-gravitating
kind of merons, an example is provided by an Abelian
Reissner-Nordström-like solution [80] and a meronic black
hole which has Reissner-Nordström (RN) geometry [48].
The meron we analyze in this section has a gauge field of

the following type:

A ¼ λU−1dU; ð25Þ

where U is an SU(2)-valued scalar field, in the adjoint
representation. The field is such that it yields a spherically
symmetric background. We choose to coordinate the metric
as in Eq. (17):

g ¼ −fðrÞdt ⊗ dtþ fðrÞ−1dr ⊗ drþ r2γ2; ð26Þ

with γ2 charted by spherical angles ðϑ;φÞ. In these
coordinates, the scalar field is

U ¼ cosϑt3 þ sin ϑ sinφt2 þ sin ϑ cosφt1: ð27Þ

Notice that the value of U is traceless and has Frobenius
norm 1=

ffiffiffi
2

p
, placing it on SU(2). The origin of this scalar

field is a hedgehog Ansatz [48]. From Eq. (27), it can be
verified that the field strength is purely magnetic and that
the energy-momentum tensor is spherically symmetric. In
fact, the latter coincides (up to a scaling) with the energy-
momentum tensor of the famous Dirac monopole [81].
The YM equations of motion hold only if λ ¼ 1=2, in

correspondence with the seminal work of Ref. [50]. The
gravity equations are Einstein and lead to the metric
function being of RN type:

fðrÞ ¼ 1 −
2Gm
r

þ ρ2

r2
þ r2

l2
; ð28Þ

consistent with the previous paragraph. The equations of
motion also determine ρ to be

ρ2 ¼ G
2e2

: ð29Þ

Notice that this quantity is not an integration constant; it is
fixed by the couplings of the theory. However, many
parallels exist between ρ and the electromagnetic charge
of an RN black hole. For example, consider the energy of
the meron

E≡ −
1

8πe2

Z
trhF;Fi⋆k ¼ ρ2

2Grþ
; ð30Þ
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where k is the timelike Killing form and rþ is the horizon
radius. Here again ρ plays the role the Abelian charge does
in the RN solution.
As a final introductory remark and for illustrative

purposes concerning the next section, we write down the
Wheeler polynomial (18) for this meron configuration:

1

l2
þ F þ α̃F 2 ¼ 2Gm

r3
−
ρ2

r4
: ð31Þ

For this dimension α̃ ¼ 0, so what would be a quadratic
equation for Gauss-Bonnet theory is instead linear as, once
more, the dynamics are Einstein. In the next section, this tool
allows us to straightforwardly find a new meron solution
generalizing the spherically symmetric Gauss-Bonnet vac-
uum and a recently found five-dimensional Einstein meron.

A. Extended thermodynamics

In this section, we turn to the study of the meronic
black hole solution using the Euclidean quantum gravity
approach. By Wick rotating the black hole, we find that the
Euclidean time period must be

β ¼ 4πl2r3þ
3r4þ þ l2ðr2þ − ρ2Þ : ð32Þ

This quantity corresponds to the inverse temperature of the
black hole, T ¼ β−1. In other words, the temperature is
calculated à la Hawking: T ¼ f0ðrþÞ=4π. With this in
mind, we calculate the Euclidean action in accordance with
Sec. II B, considering the bulk action, the surface terms,
and the AdS counterterms:

IE ¼ IB þ IST þ ICT: ð33Þ
For the YM meron at hand, we obtain

IE ¼ β

2G

�
Gm −

r3þ
l2

þ ρ2

rþ
− α

�
8G2m2

r3þ

−
12Gmρ2

r4þ
þ 4ρ4

r5þ
−
4r3þ
l4

þ 4Gm
l2

��
; ð34Þ

and after some algebraic manipulations

IE ¼ βm −
π

G
ðr2þ þ 4αÞ: ð35Þ

It comes as no surprise that the characteristic energy of the
system is the black hole mass, i.e.,

H ≡
�∂IE
∂β
�

p;α
¼ m: ð36Þ

Even in four dimensions, we know that the GB parameter
serves as a modification to the Bekenstein area formula
[55]. Indeed, the entropy for the meronic black hole is

S≡ β

�∂IE
∂β
�

p;α
− IE ¼ π

G
ðr2þ þ 4αÞ: ð37Þ

This result coincides with the Wald entropy. The thermo-
dynamic volume of the system is

V ≡ 1

β

�∂IE
∂p
�

β;α
¼ 4πr3þ

3
: ð38Þ

This variable is unaffected by the addition of α into the fold,
contrasting with the entropy. The final equation of state is
for the dual of α

ψ ≡ −
1

β

�∂IE
∂α
�

β;p
¼ 4πT

G
; ð39Þ

which is consistent with Eq. (A9) of the Appendix. Notice
that ψ is completely determined by the temperature. This is
similar to how radiation pressure in a photon gas is fixed
exclusively by the temperature. The previous equation
signals a decrease in thermodynamic degrees of freedom.
For example, the GB parameter is completely determined
once S and V are fixed. Alternatively, the thermodynamic
volume is totally determined for a given pair S, α.
Proceeding as in Ref. [5] determines the following Smarr

relation:

H
2
¼ κA

8πG
− pV þ E; ð40Þ

where κ is the surface gravity of the black hole and A the
horizon area. We have also used Eq. (30) as the meron’s
energy appears above. Nonetheless, Eqs. (36)–(39) allow
for this equation to be written in Gibbs-Duhem form:

H
2
¼ TS − pV − αψ þ E: ð41Þ

The equations of state are consistent with the association of
the Euclidean action with the Gibbs free energy of the
system, i.e., G ¼ IE=β ¼ H − TS, and with the following
first law of thermodynamics

dH ¼ TdSþ Vdp − ψdα: ð42Þ

In what follows, we illustrate how the Gibbs free energy
behaves near criticality. First off, notice that Eq. (32)
determines the horizon radius as a function of the thermo-
dynamic variables. The equation is a quartic polynomial in
rþ, yet one of the solutions is always negative. Since this is
mathematically unsensible, three characteristic sizes exist
for the meronic black hole. The usual parlance is to dub the
three branches the small, intermediate, and large black
holes. In Fig. 1, we plot the Gibbs free energy of the
system. There, it is shown that the intermediate black hole

DANIEL FLORES-ALFONSO and BRYAN O. LARIOS PHYS. REV. D 102, 064017 (2020)

064017-6



always has greater free energy than the other two. Thus, it is
under no condition thermodynamically preferred. For low
temperatures, the small black hole dominates, and, for high
temperatures, it is the large one. There is a first-order phase
transition of Hawking-Page type [15] between small and
large black holes.
In the left panel in Fig. 2, the small to large phase

transition is plotted for a fixed pressure but varying
temperature. A different type of phase transition occurs

in the system if we allow for negative values of α and
restrict the entropy to be positive [56]. This restriction
conduces to a reentrant phase transition, which we depict in
the right panel in Fig. 2.

IV. THE FIVE-DIMENSIONAL BLACK HOLE

In the previous section, we presented a meron adapted to
the nested spheres of a static spacetime. We saw that the

FIG. 1. Free energy G against temperature T and pressure p are displayed for the meron in Gauss-Bonnet theory with Reissner-
Nordström geometry. Here we have used G ¼ 1, ρ ¼ 0.578, and α ¼ −0.1. The left panel allows for a more detailed visualization of the
swallowtail cross sections. The right panel offers a view of the characteristic curve formed by the Hawking-Page-like transitions.

FIG. 2. Plots of free energy versus temperature with G ¼ 1, ρ ¼ 1, and l ¼ 10. The left panel shows a typical small black hole (SBH)
to large black hole (LBH) phase transition when α ¼ 0. The right panel shows a reentrant phase transition of the type LBH/SBH/LBH
when α ¼ −0.42.
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YM meron contributes through an inverse square term in
the metric function. This allowed the matter content to
mirror a Dirac monopole. We continue with this strategy
here, choosing a meron well adapted to a spherically
symmetric background. However, as we see below, the
meron backreacts in the metric with a term that goes as
ln r=r2. In five dimensions, this can no longer be inter-
preted as electromagnetic matter. In fact, this is closer to a
mass term which goes as an inverse square. Thus, the
meron’s self-gravity requires a careful definition of gravi-
tational charge.
We use Schwarzschild coordinates (17) for the black

hole geometry

g ¼ −fðrÞdt ⊗ dtþ fðrÞ−1dr ⊗ drþ r2γ3 ð43Þ

and choose Euler angles ðΨ;Θ;ΦÞ to chart γ3. The gauge
potential has the form A ¼ λU−1dU as in Eq. (25) with an
SU(2)-valued scalar field

U ¼ exp ðΦt3Þ exp ðΘt2Þ exp ðΨt3Þ: ð44Þ

In other words, the meron is proportional to the left-
invariant Maurer-Cartan form of SU(2). In comparison with
the meron of Sec. III, this configuration employs a
generalization of the hedgehog Ansatz [82,83]. This
configuration presents a gravitational spin from isospin
effect [49], where fermionic excitation arises as a bound
state of two bosons: a scalar and a meron. This phenome-
non is possible only when the meron self-gravitates. From a
holographic point of view, this configuration is also worth
examining. The spin from the isospin effect in the bulk may
lead to the computation of fermionic observables of the
boundary CFT using a purely bosonic theory.

The YM equation of motion (12) fixes λ ¼ 1=2, while
the gravitational field equation (9) determines the following
Wheeler polynomial:

1

l2
þ F þ α̃F 2 ¼ s

r4
þ 2ρ2 ln r

r4
: ð45Þ

The roots of this polynomial yield the following metric
functions:

fðrÞ ¼ 1þ r2

2α̃

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4α̃

l2
þ 4α̃½sþ 2ρ2 ln r�

r4

s 1
A; ð46Þ

and from now on we consider only the branch with the
negative sign. This is often the most studied branch
solution, as it connects continuously with Einstein theory.
Like all spherically symmetric solutions of GB theory, the
metric function has the form

fðrÞ ¼ 1þ r2

2α̃
−

1

2α̃

ffiffiffiffiffiffiffiffiffiffi
QðrÞ

p
: ð47Þ

Thus, the black hole has two curvature singularities: the one
at r ¼ 0 and another at r ¼ rc, where QðrcÞ ¼ 0. For the
present meronic black hole, rc is always hidden behind the
event horizon when α is positive. This is the prescribed
phenomenology from string theory. However, if only for
generality, when α is negative, the singularity will remain
covered by the horizon if α < −L2=8.
Now, drawing inspiration from Ref. [49], we reparame-

terize s so that the metric function takes the form

fðrÞ ¼ 1þ r2

2α̃

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4α̃

l2
þ 4α̃½8mG=3π þ ð1þ L2=l2ÞL2 þ 2ρ2 ln r=L�

r4

s !
: ð48Þ

Following the last reference exactly would yield a similar
result and is obtained by a shift in s by 2α. In Eq. (48), L is
defined by

L2 ¼ l
4

�
−lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 8ρ2

q �
; ð49Þ

the reason is given further below. Now, notice that when
ρ → 0, then L → 0 which is useful for evaluating Eq. (48)
in this limit, i.e.,

fðrÞ → 1þ r2

2α̃

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4α̃

l2
þ 4α̃½8mG=3π�

r4

r �
: ð50Þ

This is the branch of the Boulware-Deser black hole which
smoothly connects to the Schwarzschild-Tangherlini sol-
ution when α̃ → 0. In this equation, our parametrization
shows m to be the black hole mass. Now, by taking the
Einstein limit of Eq. (48), we obtain

fðrÞ→1−
8Gm
3πr2

−
ð1þL2=l2ÞL2þ2ρ2 lnr=L

r2
þr2

l2
; ð51Þ

thus recuperating the geometry of the meronic black hole in
Ref. [49]. This is to say, Eq. (48) is the interpolation
between these two spherically symmetric black holes.
The two merons we present in this manuscript are

complementary in the following way. The YM energy of
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the four-dimensional meron is finite, but its winding
number is trivial. The meron in this section has winding
number 1, and its Chern number is 1=2, which makes it
interesting from a topological point of view. However, it is
less manageable than the one in Sec. III, as its energy is
infinite. This, in turn, makes the mass of the black hole
infinite. Nonetheless, sensible thermodynamics can be
extracted from this type of solution. The key is to consider
the black hole of the smallest size (the least entropy) as a
reference geometry. This extremal black hole occurs at zero
temperature. The enthalpy of formation of any finite
temperature black hole coincides with the mass difference
between the two black holes. In Eq. (51), m represents
precisely this amount, the difference between the black hole
mass and that of the zero temperature black hole. This
approach was taken in Refs. [54,74] and could have been
taken in the previous section, but there the distinction was
not crucial due to finite YM energy. In what follows, we
provide further detail on this matter.
The temperature of the black hole is fixed by the period

of the imaginary time circle in the Euclidean sheet of the
solution. This period is determined by demanding that the
gravitational instanton be free of conical singularities in
the Euclidean version of the event horizon; thus,

T ¼ f0ðrþÞ
4π

¼ 2r4þ þ l2ðr2þ − ρ2Þ
2πl2rþðr2þ þ 4αÞ : ð52Þ

Notice that the temperature and the horizon radius are related
through a quartic polynomial. Restricting the radius to be
positive determines that the minimum size of the black hole
occurs at zero temperature.We designate this extremal value
by L, and Eq. (49) is now justified. The mass difference
between a black hole of size rþ and one of size L is

ΔM ¼ m −
3πα

4G
: ð53Þ

The parametrization of Ref. [49] is such that ΔM is dubbed
m in the metric function. As mentioned above, this is
achieved in Eq. (48) shifting the integration constant s by
2α. This mass difference is motivated from a thermody-
namical point of view, as in the extended framework mass
corresponds to enthalpy of formation. Pictorially, one may
think of black hole mass as the amount of energy it takes to
cut away a region of spacetime to form a black hole [20,23].
In this scenario, it is natural to find the spacetime with no
horizon or the smallest one. However, there is an additional
motivation from this one which comes from field theory. In
spite of the infinite YM energy each configuration pos-
sesses, the energy difference between any two configura-
tions is finite. Harmonizing these two ideas results in us
calculating the YM energy difference

ΔE ¼ −
3πρ2

4G
ln

�
rþ
L

�
: ð54Þ

A. More on the thermodynamics

Before continuing with the thermodynamics of the
Gauss-Bonnet meron, let us consider its Einstein limit,
given by Eq. (51). The methods of Sec. II B yield a finite
Euclidean gravitational action, but the matter action
diverges. However, subtracting the on-shell action of the
extremal black hole yields a finite result:

ΔIE
β

¼ 1

2G

�
2Gm
3

−
π2ðr4þ −L4Þ

2l2
− πρ2 ln rþ=L

�
¼m− TS:

ð55Þ

The main purpose the subtraction serves is to yield a finite
thermodynamic energy, a sensible notion of enthalpy of
formationH ≡ ∂ΔIE=∂β ¼ m. The volume is defined as in
Eq. (38) by ΔV ≡ ∂ΔIE=∂p. We also adopt the notation
ΔV ¼ V − Ve to highlight the role of the extremal black
hole solution. Hence, we write

V − Ve ¼
π2ðr4þ − L4Þ

2
: ð56Þ

Returning to Eq. (48), we may proceed as in Ref. [84]
given that our black hole is five dimensional. However, an
alternative regularization is given by a Kounterterm series
[85], boundary terms which contain extrinsic geometric
information. In general, the advantage is that there is a
universal form for the boundary terms for any given
dimensionand anyLovelock theory [86]. In odddimensions,
thismethod gives rise to characteristic vacuum energieswith
thermodynamical implications [87]. However, since we
perform an action subtraction, this energy is not in play
here. Thus, we write the action difference as

ΔIE ¼ β

�
m −

3πα

4G

�
−
π2rþ
2G

ðr2þ þ 12αÞ; ð57Þ

yielding the enthalpy of formation, i.e., as

H ¼ 3πðr4þ − L4Þ
8Gl2

þ 3πðr2þ − L2Þ
8G

−
3πρ2 ln rþ=L

4G
: ð58Þ

Moreover, the entropy of the system can be directly read off
Eq. (57) as

S ¼ π2rþ
2G

ðr2þ þ 12αÞ: ð59Þ

This equation possesses the same form as the Boulware-
Deser entropy. This is also true of its charged version, the
Wiltshire solution [32], which was studied from the per-
spective of the standard references [88,89] in Ref. [59]. The
idea behind this procedure is also used in the Appendix to
derive an expression for the thermodynamic dual ofα, which
for the present solution means
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Δψ ¼ ψ − ψe ¼
6π2rþ
G

T: ð60Þ

In summary, the first law of thermodynamics is

dH ¼ TdSþ ðV − VeÞdp − ðψ − ψeÞdα: ð61Þ

This equation is structurally comparable to the first law of
thermodynamics coming from the fixed charge ensemble of

AdS black holes [90]. With these thermodynamic quantities
in mind, we write down its Smarr relation as

H ¼ 3

2
TS − pΔV − αΔψ þ ΔE; ð62Þ

where we have used Eq. (54). Notice that, as in Sec. III, the
meron’s simple nature manifests itself through almost hair-
like thermodynamic equations. This is to say, that the YM
matter does not show itself in the first law [cf. Eqs. (42) and
(61)], so at a glance, it appears to be a black hole hair.
However, the merons’ Smarr relations (41) and (62) show
that this is a misconception.
The Gibbs free energy G ¼ H − TS of this system is

plotted in Fig. 3, where it shows typical swallowtail
behavior in the subcritical regime. In a complementary
manner, we display in Fig. 4 how the free energy conducts
itself from subcritical to supercritical values of ρ.

B. Special couplings

To finalize this section, we offer a word on very particular
values of the Lovelock coupling constants. In five dimen-
sions, the Gauss-Bonnet action (5) corresponds to Lanczos-
Lovelock theorywith couplingconstantsα0 ¼ −2Λ,α1 ¼ 1,
and α2 ¼ α. The Lovelock parameters couple the cosmo-
logical constant and the Einstein-Hilbert and the Gauss-
Bonnet terms together. The special class α1 ¼ 0 is known as
pure Lovelock gravity [27,28], where we have allowed for a
possibly nonzero cosmological constant.
The Wheeler polynomial (18) is given by

1

l2
þ 2αF 2 ¼ 8mG=3π þ ð1þ L2=l2ÞL2 þ 2ρ2 ln r=L

r4
;

ð63Þ

FIG. 3. The Gibbs free energy of our meronic Gauss-Bonnet
solution exhibiting swallowtail behavior in the subcritical regime.
The thermodynamic potential G is plotted against temperature T
and pressure p. The intersection of planes representing large and
small black holes is a curve designating Hawking-Page transi-
tions; here we chose the values G ¼ 1, ρ ¼ 0.5, and α ¼ 1.

FIG. 4. Multiple views of the Gibbs free energy G plotted against temperature T and the coupling parameter ρ ¼ G=2e2 with G ¼ 1,
ρ ¼ 0.5, α ¼ 1, and p ¼ 0.001. The left panel shows the characteristic swallowtail behavior of the thermodynamic potential. The middle
panel offers a “bird’s-eye view” of the figure showing how as the coupling parameter grows larger the swallowtail structure disappears.
The right panel displays how the swallowtail shrinks, leaving a continuous curve beyond a critical value of ρ.
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where we have chosen to parameterize the integration
constant as in Eq. (48). From it, the temperature of the
pure Lovelock (PL) black hole is determined to be

TPL ¼ 2r4þ − ρ2l2

8πl2αrþ
: ð64Þ

This implies L in Eq. (63) is given by L4 ¼ ρ2l2=2 so that it
corresponds to the horizon radius of the extremal black
hole. Basing ourselves in Sec. IVA, we find the enthalpy of
the system to be the black hole mass difference from the
extremal configuration. Thus, we write

HPL ¼ −
3πρ2 ln rþ=L

4G
þ 3πðr4þ − L4Þ

8Gl2
: ð65Þ

The entropy of the black hole is analogous to Eq. (59):

SPL ¼ 6π2αrþ
G

: ð66Þ

Notice the absence of the Bekenstein area contribution
which comes from the Einstein dynamics. Aside from the
equations just above and the observation that ψe ¼ 0, every
other equation of state from Sec. IVA remains the same.
Indeed, the first law of thermodynamics and the Smarr
relation for this black hole read as Eqs. (61) and (62),
respectively. Nonetheless, a key difference in the thermo-
dynamics is the phase structure. Equation (64) is a quartic
equation for rþ; the discriminant of this relation is negative,
meaning only two real solutions exist to the equation.
However, only one of these solutions is positive. In other
words, the system is single phased.
Another specialization of the Lanczos-Lovelock func-

tional (5) is the gravitational Chern-Simons action, which
exists only in odd spacetime dimensions [30]. The char-
acteristic coupling constants are given by α0 ¼ −2Λ,
α1 ¼ 1, and α2 ¼ −3=4Λ. It is very well known that the
relation among the couplings arises from requiring the
theory to have the maximum possible number of degrees of
freedom [91]. Notice that Einstein theory cannot be
recovered from this action; e.g., neither the limit Λ → 0
nor Λ → ∞ are realizable. We can think of this Chern-
Simons gravity as a five-dimensional analog of the Chern-
Simons (CS) description of three-dimensional Einstein
theory [92]. For further details on this theory, we refer
the reader to Ref. [93].
The Wheeler polynomial for the CS class is

1

l2

�
1þ l2F

2

�
2

¼ 8mG=3π þ ð1þ L2=l2ÞL2 þ 2ρ2 ln r=L
r4

;

ð67Þ

allowing us to write down the Hawking temperature as

TCS ¼
2r4þ þ l2ðr2þ − ρ2Þ
πl2rþð2r2þ þ l2Þ ; ð68Þ

which is just Eq. (52) evaluated at the CS condition, i.e.,
α ¼ l2=8. Notice that, once again, the temperature is related
to the black hole horizon radius through a quartic function.
The discriminant of this quartic is always negative, deter-
mining that the CS black hole has only one phase. Now, the
enthalpy of formation H is given by the black hole mass
difference from the extremal case. The equation just above
determines L to be just as in Sec. IVA, and H is given by
Eq. (58). Hence, the entropy is

SCS ¼
π2rþ
2G

�
r2þ þ 3l2

2

�
; ð69Þ

just Eq. (59) evaluated at the CS condition, as expected.
In contrast, the thermodynamic volume suffers the

greatest departure from its value in the general Gauss-
Bonnet case. Entropy and pressure are not independent
variables, so we expect some contribution from entropy to
be reflected in the volume; indeed, we have

ΔVCS ¼
π2ðr4þ − L4Þ

2
þ TCSðπ3l4rþÞ: ð70Þ

This complies with the first law of thermodynamics in the
form

dH ¼ TdSþ ðV − VeÞdp ð71Þ

and is also consistent with the Gibbs-Duhem equation

H ¼ 3

2
TS − pΔV þ ΔE ½for CS�: ð72Þ

We mention that, following a similar process to the one
found in the Appendix, one finds

ΔV ¼
�∂H
∂p
�

rþ
− T

�∂S
∂p
�

rþ
½for CS�: ð73Þ

When the cosmological constant is fixed, we recover the
first law in the form dH ¼ TdS with the absence of YM
energy contributions as is characteristic of merons. In the
limit ρ → 0, we obtain the vacuum case; see, for example,
Ref. [94]. It is noteworthy that, even though the CS theory
has a higher (gauge) symmetry than GB, it does not lead to
more global charges. Thus, as we have seen above, there is
no additional charge entering the thermodynamics.
As a final comment, we mention that in this work we

have focused on the metric formulation (torsion-free) of
Gauss-Bonnet theory. However, one may consider a more
general situation in which torsion is present. Finding
(stable) solutions with torsion is, in general, more
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complicated. Our present solution bears many geometric
features with the half-Bogomol’nyi-Prasad-Sommerfield
solutions found in Ref. [95]. Thus, an extension of our
present solution is desirable along these lines. To minimally
couple torsion to the Yang-Mills sector could be problem-
atic from the gauge symmetry point of view. To preserve
the gauge symmetry, one possibility is to have the torsion
uncoupled from the YM matter. That said, the equations of
motion for the connection do not imply that the matter
content sources the torsion. Thus, within the first-order
formalism, our solution may be recovered with zero
torsion. Furthermore, an extension with a non-Abelian
gauge field and torsion is (in principle) obtainable. It
would be interesting to see how the presence of torsion
modifies the present black hole.

V. CONCLUSIONS

In this work, we study spherically symmetric black holes
with SU(2) Yang-Mills matter in Einstein-Gauss-Bonnet
theory. The configurations are meronic, implying they are
simple in nature yet intrinsically non-Abelian. The first
black hole we examine is the four-dimensional Einstein
meron, which we inject into Gauss-Bonnet theory. The
principal effect is that the black hole entropy is modified by
the theory’s parameter α. However, this modification is
consistent with the classic thermodynamic equations. The
framework of extended thermodynamics supplements this
by providing the necessary conceptual structure for a new,
consistent, interpretation of the first law of thermodynamics
and the system’s Gibbs-Duhem equation. Under the
assumption that the black hole entropy must remain
positive always, the regimewhere α < 0 leads to a reentrant
phase transition. For high temperatures, large black holes
dominate the path integral. Lowering the temperature
conducts to a Hawking-Page transition into a small black
hole. However, further lowering the temperature leads to a
reentrance into the large black hole phase until the system
arrives to its lowest possible temperature.
In the second part of this investigation, we generalize a

recently found five-dimensional Einstein meron to a Gauss-
Bonnet version. Turning off the matter content yields the
Boulware-Deser solution. As a Yang-Mills field, the meron
is topologically nontrivial, yet it possesses infinite energy.
However, the Euclidean quantum gravity approach is able
to deal with this difficulty. The way this meron backreacts
on spacetime closely resembles the way mass usually
contributes to the metric function. Ultimately, the infinite
YM energy is the source of difficulty within the thermo-
dynamics. However, a sensible notion of mass is given by
considering the extremal black hole of the configuration.
This extremal black hole does not give off Hawking
radiation. The mass difference between any black hole
and the extremal provides a consistent notion of mass and
enthalpy. Enthalpy is derived from the Euclidean action
subtraction and coincides with the mass difference. As far

as the thermodynamics is concerned, our solution exhibits
the critical behavior of van der Waals fluids and charged
AdS black holes. This result further strengthens the state-
ment that black holes lie within the van der Waals
universality class.
In Ref. [54], compatibility was found between the

Euclidean and the Lorentzian quasilocal [19,96,97]
approaches. A treatment of meronic black holes along
the lines of quasilocal methods is desirable. We mention
that for planar black holes the Smarr relation in the
presence of a cosmological constant takes the form

ðD − 1ÞM ¼ ðD − 2ÞTS; ð74Þ

which is thermodynamically consistent with the first law of
black hole mechanics in the classical framework. A
generalized version of the previous equation for Lifshitz
black holes has been recently found [98]. Within the
extended framework, the equivalent form of the same
Smarr relation is found in Ref. [19]. The pair of equations
we reference are comparable, e.g., to our Eqs. (40) and (41).
We emphasize, for clarity, that Eq. (74) is satisfied by the
Bañados-Teitelboim-Zanelli black hole [99]. A short-
coming of our approach in this manuscript is that, although
the cosmological constant can be understood as a constant
of motion, as discussed above, it is not clear if this is
applicable for the Gauss-Bonnet sector.
During the preparation of this work, a recent paper was

published [100]. Therein, the authors construct SU(3) self-
gravitating skyrmions. A comparison is carried out between
trivially embedded SU(2) solutions into SU(3) and non-
embedded solutions. These configurations are closely
related to meronic Yang-Mills black holes. We shall further
explore this topic in upcoming investigations.

ACKNOWLEDGMENTS

We are in debt to Eloy Ayón-Beato, Fabrizio Canfora,
Cristóbal Corral, and Hernando Quevedo for interesting
comments and helpful discussions. D. F.-A. thanks the
Mexican Secretariat of Public Education for support under
Programa para el Desarrollo Profesional Docente (PRODEP)
Project No. 12313509. He is also grateful to the Centro de
Estudios Científicos for its hospitality during the completion
of this work. Secretaría de Educación Pública

APPENDIX: EXTENDED THERMODYNAMICS
OF ASYMPTOTICALLY FLAT

BOULWARE-DESER BLACK HOLES

The mass of asymptotically flat Schwarzschild-
Tangherlini black holes is completely determined by the
horizon geometry, M ¼ MðrþÞ. This is also true for their
entropies, S ¼ SðrþÞ; hence, mass is a function only of
entropy M ¼ MðSÞ, which yields
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dM ¼ dM
dS

dS; ðA1Þ

ultimately yielding

T ≡ dM
dS

: ðA2Þ

The Boulware-Deser family generalizes these black
holes to a spherically symmetric, and so static, class of
spacetimes which are now additionally parameterized
by the Gauss-Bonnet (GB) parameter α. Treating this
physical parameter as a thermodynamic variable modifies
the previous equations in that now M ¼ Mðrþ; αÞ and
S ¼ Sðrþ; αÞ. In general, mass is a function of both entropy
S and the GB coupling α. Thermodynamics is said to be
extended by this consideration. The first law of thermo-
dynamics is generalized to

dM ¼ TdS − ψdα; ðA3Þ

where T is the temperature and ψ is the thermodynamic
conjugate of α.
Given the new functional dependence among M, S, and

α, let us combine the following equations:

dM ¼
�∂M
∂rþ

�
α

drþ þ
�∂M
∂α
�

rþ
dα ðA4Þ

and

dS ¼
� ∂S
∂rþ

�
α

drþ þ
�∂S
∂α
�

rþ
dα: ðA5Þ

This leads to the expression

dM¼
�∂M
∂rþ

�
α

� ∂S
∂rþ

�
−1

α

�
dS−

�∂S
∂α
�

rþ
dα

�
þ
�∂M
∂α
�

rþ
dα:

ðA6Þ

In this context, the temperature is given by

T ≡
�∂M
∂S
�

α

¼
�∂M
∂rþ

�
α

� ∂S
∂rþ

�
−1

α

; ðA7Þ

so that Eq. (A6) becomes

dM ¼ TdS −
�
T

�∂S
∂α
�

rþ
−
�∂M
∂α
�

rþ

�
dα: ðA8Þ

Lastly, we have that

ψ ≡
�∂M
∂α
�

S
¼ T

�∂S
∂α
�

rþ
−
�∂M
∂α
�

rþ
: ðA9Þ
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