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We study the generalized version of energy-momentum squared gravity (EMSG) in the Palatini
formalism. This theory allows the existence of a scalar constructed with energy-momentum tensor as
TαβTαβ in the generic action of the theory. We study the most general form of this theory in the Palatini
framework and present the underlying field equations. The equations of motion of a massive test particle
have been derived. The weak field limit of the theory is explored and the generalized version of the Poisson
equation is obtained. Moreover, we explore the cosmological behavior of the theory with emphasis on
bouncing solutions. Some new bouncing solutions for the specific Palatini EMSG model given by the
Lagrangian density L ¼ Rþ βR2 þ ηTμνTμν are introduced. We show that only the case η > 0 can lead to
viable cosmic bounce.
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I. INTRODUCTION

Recently the energy-momentum squared gravity
(EMSG)1 has been introduced to resolve the big bang
singularity [1,2]. This theory allows the existence of a
special scalar constructed using the energy-momentum
tensor as TαβTαβ. This is different from theories exploiting
the trace of Tμν, for example, see [3]. The main idea behind
EMSG was to avoid the existence of the big bang
singularity. It is shown in [1] that a simple model of
EMSG in the metric formulation leads to a viable cosmic
behavior possessing a true sequence of the cosmic epochs.
On the other hand, the only difference with the standard
picture is that there is no early universe singularity. In other
words, EMSG predicts a minimum length and a maximum
but finite energy density in the early universe. Currently,
interest in this theory is not limited to removing the big
bang singularity. Depending on the EMSG model consid-
ered, it may suggest interesting modifications/corrections
to the whole cosmic history and not only to the early
universe. Although this model does not avoid black hole
singularities, it predicts larger masses for neutron stars with
the ordinary equation of states [4,5]. For a recent work on
quark compact stars in EMSG we refer the reader to [6].
Recently, several aspects of EMSG have been inves-

tigated. In [7], different models of EMSG have been studied
using the dynamical system approach. Consequently, by

analyzing the relevant fixed points, interesting cosmologi-
cal behavior has been reported. For other investigations on
the cosmology of EMSG, we refer the reader to [8–13]. In
[14], the Jeans analysis has been explored in EMSG and a
new Jeans mass has been introduced. Furthermore, by
finding a generalized version of Toomre’s parameter in the
context of EMSG, the local stability of hypermassive
neutron stars has been studied and some constraints on
the free parameters of the theory have been reported.
Recently it has been shown in [11] that the bounce reported
in [1] cannot describe the real Universe in the sense that it
cannot regularly connect the early universe bounce to a
viable de Sitter late time universe. More specifically EMSG
has a viable bounce only in the matter dominated cosmo-
logical toy model [11]. To achieve a viable bounce, the
specific term ðTμνTμνÞ5=8 has been included in the action
instead of the quadratic scalar TμνTμν. However, it is
straightforward to show that the existence of a vacuum
energy density in EMSG, can resolve the mentioned
problem without any changes to the action of the theory.2

It is necessary to mention that EMSG discriminates
between geometrical cosmological constant appearing in
the action and the vacuum energy density treated as a
perfect fluid. Albeit, in this case although there is a regular
bounce connecting the early universe bounce to the late
time de Sitter phase, the viability of the cosmological
model needs more careful investigations.
So far, all the research on EMSG has been carried in the

metric formulation. On the other hand, like any other
modified theory of gravity, the Palatini framework, in

*mroshan@um.ac.ir
1EMSG is used only for the special case with Lagrangian

density L ¼ Rþ ηTμνTμν. However, for convenience throughout
this paper, we use this name also for the generalized version of the
theory, i.e., L ¼ fðR; TμνTμνÞ. 2Private communication with Fatimah Shojai.
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principle, leads to a different theory with different pre-
dictions. Therefore, our main purpose in this paper is to
explore EMSG in the Palatini formulation. In this formu-
lation, the connection Γα

μν and the metric tensor gμν are
considered as different and independent fields. As we
know, Palatini formulation of general relativity (GR)
coincides with the metric one [15–17]. However, this is
not the case necessarily for other gravitational theories, for
example in the case of fðRÞ gravity see [18].
We explore the weak field limit by finding the gener-

alized form of the Poisson equation. Furthermore, we show
that Palatini EMSG is also capable to introduce cosmo-
logical bouncing solutions. All the necessary conditions for
having a bounce are found.
The content of the paper is organized as follows. We

begin in Sec. II by obtaining the modified version of the
Einstein field equations in the Palatini formalism of EMSG.
Then, by using these field equations, we find the con-
servation and geodesic equations in this framework. In
Sec. III, we investigate the weak-field limit of this model.
Also, in Sec. IV, by choosing a toy model given by the
Lagrangian density L ¼ Rþ βR2 þ ηTμνTμν, we study the
existence of a cosmic bounce in the very early universe.
Finally, in Sec. V, our results are discussed.
Throughout this paper, the Greek indices vary from 0 to

3. Also, the Latin indices vary from 1 to 3. Here, we assume
that the metric signature is ð−;þ;þ;þÞ and we use
physical units in which the velocity of light is c ¼ 1.

II. FIELD EQUATIONS IN PALATINI EMSG

We launch our calculation of the field equations in the
torsionless Palatini formulation of EMSG by introducing
the following action that is a function of a metric as well as
an independent connection.

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR;QÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lmðgμν;ψÞ; ð1Þ

where κ ¼ 8πG and we work using the units in which the
velocity of light is c ¼ 1. Here, g is the determinant of the
spacetime metric tensor gμν, and ψ is the representative of
the matter fields. In the EMSG, we assume that f is an
arbitrary function of Q ¼ TμνTμν and the Ricci scalar
R ¼ gμνRμν. It should be mentioned that in the Palatini
formalism where the spacetime metric and affine connec-
tion Γλ

μν are considered as independent fields, the Riemann
and Ricci tensors are constructed from the affine connec-
tion Γλ

μν. So, we have RμνðΓÞ ¼ Rα
μανðΓÞ in which gμν is

not utilized to raise or lower indices. Here, as usual, we
assume that the matter Lagrangian density Lm is only a
function of ψ and the metric components and it does not
depend on the metric derivations. Although the matter field
is in principle coupled to the metric, we assume that there is

no coupling between the matter fields ψ and the connec-
tion Γλ

μν.
By considering the above assumptions and varying the

action (1) with respect to the metric and affine connection,
after some simplification, we arrive at

δS¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fRgμνδRμνðΓÞ

þ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
fRRμνþfQΘμν−

1

2
fgμν−κTμν

�
δgμν;

ð2Þ

where fR ¼ ∂f=∂R and fQ ¼ ∂f=∂Q. Here, Tμν and Θμν

are defined by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

; Θμν ≡ δQ
δgμν

: ð3Þ

The modified version of the field equations is then
derived from the condition that δS ¼ 0. Therefore, the first
integral in Eq. (2) representing the variation of action with
respect to the affine connection can be reduced to the
following equation

∇Γ
λ ð

ffiffiffiffiffiffi
−g

p
fRgμνÞ ¼ 0; ð4Þ

after using the identity δRσν ¼ ∇ρðδΓρ
νσÞ −∇νðδΓρ

ρσÞ and
applying the divergence theorem. Here, ∇Γ

λ stands for the
covariant derivative which is associated with the indepen-
dent symmetric connection Γλ

μν. We recall that there is no
torsion postulated in this theory. The general version of
Eq. (4) containing both symmetric and antisymmetric parts
of Γλ

μν is derived in [19]. The second sector of Eq. (2)
denoting the variation of action with respect to the metric
can be written as

fRRμν −
1

2
fgμν ¼ κτμν; ð5Þ

in which τμν is an effective energy-momentum tensor
defined as

τμν ¼ Tμν −
fQ
κ
Θμν: ð6Þ

Equation (5) is the modified version of the Einstein field
equations in the Palatini formulation of EMSG.
Now, by utilizing the similar method introduced in [20],

we attempt to simplify Eqs. (4) and (5). To do so, we first
contract Eq. (5) with the metric tensor gμν and obtain the
following trace equation

RfR − 2f ¼ κτ; ð7Þ
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in which τ ¼ gμντμν. We can then introduce the conformal
relation between the physical metric gμν and auxiliary
metric3 hμν as hμν ¼ fRgμν for which one can show that

Γλ
μν ¼

hλα

2
ð∂μhαν þ ∂νhαμ − ∂αhμνÞ: ð8Þ

For more detail, see [20] and references therein. The above
relation implies that the affine connection Γλ

μν coincides
with the Christoffel symbols of the auxiliary metric hμν.
Next, by applying the definition of hμν and after some
manipulation, we can rewrite the connection equations (4)
and field equations (5) as

∇λð
ffiffiffiffiffiffi
−h

p
hμνÞ ¼ 0; ð9Þ

and

Rμ
νðhÞ ¼

κ

f2R

�
τμν þ

f
2κ

δμν

�
; ð10Þ

respectively. Here, Rμ
νðhÞ ¼ hμαRαν.

Although the appearance of the latter equation is similar
to the corresponding relation in the metric-affine fðR; TÞ
theories [20], where T is the trace of the energy-momentum
tensor, it should be recalled since the role of Q is encoded
in τμν and f, the equation of motion is different.
Equation (10) is our final field equation for Palatini
EMSG and in the following sections we will explore its
consequences in different contexts. To do so, we use the
perfect fluid as the matter source. In this case, the energy-
momentum tensor is given by

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð11Þ

where uμ is the velocity four vector for which uμuμ ¼ −1.
Here, ρ and p are the energy density and pressure of the
fluid, respectively. It is necessary to mention that except the
fifth force and weak field limit of the geodesic equation
where we study two different matter Lagrangian densities,
i.e., Lm ¼ p and Lm ¼ −ρ, we assume everywhere
throughout this paper that L ¼ p. In this case, for the
perfect fluid, it is straightforward to verify that

Θμν ¼ −ðρ2 þ 4ρpþ 3p2Þuμuν; ð12Þ

Substituting these relation into (6), we simplify Eq. (10) as
follows

Rμ
νðhÞ ¼

κ

f2R

�
ðρþ pÞuμuν þ

�
pþ f

2κ

�
δμν

þ fQ
κ
ðρ2 þ 4ρpþ 3p2Þuμuν

�
: ð13Þ

As a final task in this part, let us find the modified
version of the Einstein curvature tensor in the Palatini
EMSG. To do so, by utilizing Eq. (10), we obtain the Ricci
scalar. Then by considering the definition of the Einstein
tensor and some algebra, we have

Gμ
νðhÞ ¼

κ

f2R

�
τμν −

δμν
2

�
τ þ f

κ

��
: ð14Þ

By specifying the function fðR;QÞ and the energy-
momentum tensor of the matter fields, in principle, one
may use these field equations for obtaining the auxiliary
metric hμν. Consequently, regarding the conformal relation
between hμν and gμν the physical spacetime metric in the
Palatini EMSG can be found. The field equations (9) and
(14) are the cornerstone of future calculations in the metric-
affine fðR;QÞ theories.
It is necessary to mention that there is no a priori way to

find the generic function fðR;QÞ. Normally these kinds of
functions in modified gravity theories, are postulated in
such a way that the theory reveals a new feature in
comparison with GR while leaving the classical tests of
the gravity unchanged. This new feature would be used to
alleviate GR’s problems. Some times forcing the theory to
comply with some symmetry issues is helpful to fix the
functionality of the generic function. For example see [22]
in which by requiring the Noether symmetry in Palatini
fðRÞ gravity, it is possible to fix the function fðRÞ.

A. Conservation equations of Tμν

As we know, the energy and momentum are conserved
when the covariant derivative of the energy-momentum
tensor of the matter vanishes. It should be noted that the
covariant derivative should be written in terms of the
physical metric gμν. Therefore, in order to find the con-
servation equations in this theory, we first take the covariant

derivative ∇ðhÞ
μ of Eq. (14) where ∇ðhÞ

μ is based on the
auxiliary metric hμν. Then by considering the Bianchi

identity and obtaining the relation between ∇ðhÞ
μ and

∇ðgÞ
μ , we find the conservation equations in this theory.
Applying the Bianchi identities, i.e., ∇ðhÞ

μ Gμ
νðhÞ ¼ 0,

reveals that the right-hand side of Eq. (14) can be written as

3Although we call hμν as auxiliary metric throughout this
manuscript, it should be noted that, as seen from Eq. (48), the
perturbations of the physical metric gμν couple to those of hμν.
Therefore, studying the gravitational wave and investigating its
propagation in the linearized theory of Palatini EMSG would
reveal whether the auxiliary metric hμν can be “physical” or not.
For instance, in [21], the gravitational waves in the Palatini-type
gravity theories are studied and from this point of view, the
physical aspect of the metric hμν is investigated.
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∇ðhÞ
μ τμν − ∂ν

�
τ

2
þ f
2κ

�

− 2∂μ ln fR

�
τμν −

δμν
2

�
τ þ f

κ

��
¼ 0: ð15Þ

To simplify this relation, as mentioned before, one should

rewrite ∇ðhÞ
μ with respect to ∇ðgÞ

μ . To do so, let us find the
relation between the Christoffel symbols of the auxiliary
metric, Γλ

μν, and those of the physical metric, Γ̂λ
μν. One can

easily show that

Γλ
μν ¼ Γ̂λ

μν þ Cλ
μν; ð16Þ

after inserting the conformal relation between hμν and gμν
within Eq. (8). Here, Cλ

μν is given by

Cλ
μν ¼

fRR
2fR

ðδλν∂μRþ δλμ∂νR − gλαgμν∂αRÞ: ð17Þ

Now, we can use the above relations to transform the
covariant derivative based on the auxiliary metric to the
standard form. So, we have

∇ðhÞ
μ τμν ¼ ∇ðgÞ

μ τμν þ Cμ
μλτ

λ
ν − Cλ

μντ
μ
λ: ð18Þ

By considering the definition (17) and substituting
Eqs. (18) and (7) into Eq. (15), after some manipulation
and simplification, we finally arrive at

∇ðgÞ
μ τμν ¼ −

fQ
2κ

∂νQ: ð19Þ

The above relation represents the conservation equation in
the Palatini formulation of EMSG. We see that Tμν is not
conserved in Palatini EMSG. This is also the case in the
metric formulation of EMSG [1]. On the other hand, the
effective energy-momentum tensor can be conserved pro-
vided that ∂νQ ¼ 0. This is not a physically interesting
condition. Therefore, we conclude that neither Tμν nor τμν
are conserved in Palatini EMSG.4 By setting fQ ¼ 0, the
standard energy-momentum tensor conservation is
recovered.
This nonconservation has immediate consequences that

could rule out the theory. Therefore, this kind of corrections
to the gravitational law should be carefully treated. In the
next subsection, we explore this issue with more details.

B. Fifth force

In this subsection, we obtain the geodesic equation in
Palatini EMSG. In fact, we investigate the world line of a

test particle and show that the path deviates from the
standard geodesic curves of the spacetime. To be specific,
we show that the right-hand side of the geodesic equation is
nonzero and behaves like an extra force, namely the
fifth force.
To find this extra fore, we apply the method presented in

[20]. We first insert the definition of Tμν and Θμν within
Eq. (6). After contracting the result with the metric tensor
gμν and some simplification, we have

τμν ¼ Tμ
ν −

fQ
κ

�
2TμαTνα − 2L2

mδ
μ
ν

þ 2ðT þ 2LmÞgμλ
∂Lm

∂gλν − 4Tαβgμλ
∂2Lm

gλνgαβ

�
: ð20Þ

Then by utilizing the above relation, one can rewrite the
conservation equation (19) as follows:

∇ðgÞ
μ Tμ

ν¼−
fQ
2κ

∂νQþ∇ðgÞ
μ

�
fQ
κ

�
2TμαTνα−2L2

mδ
μ
ν

þ4Lmgμλ
∂Lm

∂gλνþ2Tgμλ
∂Lm

∂gλν−4Tαβgμλ
∂2Lm

∂gλν∂gαβ
��

:

ð21Þ

In order to simplify the above relation, we should next
obtain each term on the left-hand side of this equation. By
considering the fact that

δρ ¼ 1

2
ρðuμuν þ gμνÞδgμν; ð22Þ

which is comprehensively derived in Eq. (32) of [20], we

find the ∂Lm
∂gλν and

∂2Lm
∂gλν∂gαβ terms as

gμλ
∂Lm

∂gλν ¼
1

2
ρ
dLm

dρ
ðuμuν þ δμνÞ; ð23Þ

and

gμλ
∂2Lm

∂gλν∂gαβ

¼ 1

4
ρðgαβ þ uαuβÞðuμuν þ δμνÞ

�
dLm

dρ
þ ρ

d2Lm

dρ2

�
; ð24Þ

respectively. On the other hand, Tμν can be written as [1]

Tμν ¼ −ρuμuν
dLm

dρ
þ gμν

�
Lm − ρ

dLm

dρ

�
; ð25Þ

and then Q as

Q ¼ −6ρLm
dLm

dρ
þ 3ρ2

�
dLm

dρ

�
2

þ 4L2
m: ð26Þ4Albeit, in the following, we show that for the null dust fluid,

Tμν is conserved in Palatini EMSG.
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Using these relations, we simplify the other terms in
Eq. (21), i.e., TαμTνα, ∂νQ,5 and Tαβðuαuβ þ gαβÞ, as
follows:

TαμTνα ¼ δμνL2
m

�
ρ2
�
dLm

dρ

�
2

− 2ρLm
dLm

dρ

�
ðuμuν þ δμνÞ;

ð27Þ

∂νQ ¼
�
2Lm

dLm

dρ
þ 6ρ2

dLm

dρ
d2Lm

dρ2
− 6ρ

d2Lm

dρ2
Lm

�
∂νρ;

ð28Þ

Tαβðuαuβ þ gαβÞ ¼ 3

�
Lm − ρ

dLm

dρ

�
: ð29Þ

Therefore, considering the mathematical definition of

uν∇ðgÞ
ν uμ, i.e.,

uν∇ðgÞ
ν uμ ¼ d2xμ

ds2
þ Γ̂μ

λν
dxλ

ds
dxν

ds
; ð30Þ

one can rewrite Eq. (21) as

d2xμ

ds2
þ Γ̂μ

λν
dxλ

ds
dxν

ds
¼ Fμ; ð31Þ

after some manipulation and simplification. Here, the fifth
force Fμ is of the form

Fμ ¼ fQ
2κ

1

X

�
4
dLm

dρ

�
Lm − ρ

dLm

dρ

��
gμν∇ðgÞ

ν ln ρ

− ðgμν þ uμuνÞ∇ðgÞ
ν ðln XÞ; ð32Þ

in which

X ¼ fQ
2κ

�
−2Lm

dLm

dρ
þ 4ρ

�
dLm

dρ

�
2

− 6ρ
d2Lm

dρ2

�
Lm − ρ

dLm

dρ

��
þ dLm

dρ
: ð33Þ

Eq. (31) represents the trajectory of a test particle in this
theory. In GR, for a freely falling particle, the right-hand
side is zero, i.e., Fμ ¼ 0. However, in Palatini EMSG, we
see that Fμ is nonzero and appear as a force, namely the
fifth force. The particle equation of motion Eq. (31) is
written in terms of connections of the metric gμν and not the
“independent” connections Γα

μν. It is necessary to recall that
we assumed that the matter Lagrangian does not depend on
Γα
μν. This directly means that the Levi-Civita connection of

the metric is used to define the parallel transport, and
accordingly it should also appear in the geodesic equation.
In order to compare our result with the corresponding

one in the metric-affine fðR; TÞ theories, see Eq. (38) in
[20], let us study the simplest case, i.e., the dust fluid, in
which p ¼ 0 and Lm ¼ −ρ. For this case, Eq. (32)
reduces to

Fμ
dust ¼ −ðgμν þ uμuνÞ∂ν ln

�
fQ
κ
ρ − 1

�
: ð34Þ

It is seen that the extra force depends on fQ, while the
corresponding force in the fðR; TÞ theories is a function of
fT . Therefore, it seems that any kind of dependency of
function f on the energy-momentum content of the fluid (at
least the linear and squared ones examined in [20] and the
current work, respectively) can induce an extra force. It is
interesting to mention that the fifth force (34) in
perpendicular to uμ, namely Fμuμ ¼ 0. This means that
the fifth force does not have any component tangent to the
four velocity vector. Of course, the spacial part of the force
F, in principle, has component tangent to the spacial
velocity v.
As expected, when fQ ¼ 0, i.e., when f is only a

function of the Ricci scalar, our results reduce to those
of the fðRÞ gravitational models in the Palatini formalism.
It is worth mentioning that by adopting the standard
Lagrangian density Lm ¼ p, one can easily show that this
fifth force is zero for the dust fluid. This difference between
the fifth forces for the dust fluid in two cases Lm ¼ p and
Lm ¼ −ρ reveals that these two Lagrangian densities, like
the similar case in the fðRÞ gravity, are not equivalent, for a
more detailed discussion on this issue see [23] and
references therein.
It is worth mentioning that the existence of the fifth force

can be considered as a direct consequence of the energy-
momentum nonconservation. As we already mentioned,
this causes consequences that might rule out the theory. We
see that the fifth force Fμ depends on the internal properties
of the moving object. This directly violates Einstein’s
equivalence principle (EEP). On the other hand, EEP is
well constrained in the solar system local tests [24].
Therefore, the correction terms in EMSG should be small
enough to pass the tests. We recall that the main motivation
behind EMSG is to resolve the big bang singularity [1]. Of
course, there is no constraint or observational evidence on
EEP at the early universe where EMSG’s effects are not
negligible. From this perspective, EMSG would remain
viable at the cosmological scale. In the next section, we
explore the weak field limit of Palatini EMSG to ensure the
viability of the model.
As a final remark in this subsection, let us obtain the null

geodesic equation in Palatini EMSG. To do so, we can use
the conservation equation of a null dust fluid [25]. In this
case, the energy-momentum tensor is given by5Note, for deriving the ∂νQ term, we use ∂νQ ¼ ∂Q

∂ρ ∂νρ.
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Tμν ¼ ρuμuν: ð35Þ

Regarding the null condition uαuα ¼ 0, it is easy to show
that for the null dust fluid, Q vanishes. Here, uα is the four-
velocity of the null fluid element. Therefore, for this fluid,
considering Eqs. (23)–(24) and using this fact that Q ¼ 0,
one can simplify Eq. (21) as

∇ðgÞ
μ Tμ

ν ¼ 0: ð36Þ

This relation obviously illustrates that for the massless dust
fluid, Tμν is conserved in Palatini EMSG. Now, by utilizing
Eq. (35), we can obtain the left-hand side of the above
relation. So, after some manipulation, we arrive at

uμ∇ðgÞ
μ uν ¼ −

�
∇ðgÞ

μ uμ þ 1

ρ
uμ∂μρ

�
uν; ð37Þ

as the definition of the null geodesic curve. So, as expected
from Eq. (36), unlike the previous case, the null geodesic
equation does not change in Palatini EMSG.
Before closing this section let us mention that deriving

the modified version of the geodesic deviation equation and
the Raychaudhuris equation in the context of EMSG would
be interesting. These equations will provide a more
complete picture on the particle motion in EMSG. For
similar works in the context of other modified gravity
theories we refer the reader to [26–29]. This issue is
comprehensive enough to be considered as the subject
for future studies on EMSG.

III. WEAK-FIELD LIMIT IN PALATINI EMSG

By weak field limit we mean that the characteristic
velocity of the underlying system is small compared to the
speed of light, and gravity is weak everywhere. In this
situation one can ignore the relativistic effects. It is
convenient to assume that the background metric is
described by the Minkowski spacetime. One can easily
verify that the Minkowski metric is a trivial solution for
EMSG’s field equations in the vacuum. Now, a self-
gravitating system can be considered as a perturbation to
the background. So, we consider that the perturbed physical
and auxiliary metrics are expressed by

gμν ≈ ημν þ tμν; ð38Þ

and

hμν ≈ ημν þ t̄μν; ð39Þ

respectively. Here, tμν and t̄μν are the first order perturba-
tions, i.e., jtμνj ≪ 1 and jt̄μνj ≪ 1. By considering the
standard form of the perturbed metric in the Newtonian
limit as

hμν ¼ −ð1þ 2ϕ̄Þdt2 þ ð1þ 2ψ̄Þðdx2 þ dy2 þ dz2Þ ð40Þ

in which ϕ̄ and ψ̄ are two scaler fields, one can
conclude that t̄00 ¼ −2ϕ̄ and t̄ij ¼ 2ψ̄δij. Here, δij is the
Kronecker delta.
Hereafter, we consider that every quantity Mð0Þ is

perturbed as M ¼ Mð0Þ þ δM in which the “(0)” index
denotes the nonperturbed background quantities and
δM is a very small quantity and represents the first order
perturbation so that jδM=Mð0Þj ≪ 1. Note that in the
perturbation theory, we have δMμ

ν ≈ ημαδMαν. As we
know, there is no mass/energy distribution in the
Minkowskian background, So the perturbed material quan-
tities reduce to Q ¼ δQ, Tμν ¼ δTμν and Θμν ¼ δΘμν. For
convenience, let us gather the perturbed gravitational
quantities to the required order in the following

R ¼ Rð0Þ þ δRþ � � � ; ð41aÞ

Rμ
ν ¼ Rμ

ν
ð0Þ þ δRμ

ν þ � � � ; ð41bÞ

fR ¼ fð0ÞR þ fð0ÞRRδRþ fð0ÞRQδQþ � � � ; ð41cÞ

fQ ¼ fð0ÞQ þ fð0ÞQQδQþ fð0ÞRQδRþ � � � ; ð41dÞ

f ¼ fð0Þ þ fð0ÞR δRþ fð0ÞQ δQþ � � � : ð41eÞ

It should be recalled that Rð0Þ and Rμ
ν
ð0Þ are zero in the

background.
As a first step toward obtaining the perturbed

field equations, we derive δR by perturbing the trace
equation (5) as

δR ¼ −
κδT þ fð0ÞQ ð2δQ − δΘÞ

fð0ÞR

; ð42Þ

after using Eqs. (41a)–(41e). We now substitute the
perturbed quantities Q, Tμν, Θμν, and (41a)–(41e) into
the time-time component of Ricci tensor (10). After
utilizing Eq. (42) and keeping the first-order terms, we
arrive at

δR0
0¼

κ

fð0Þ2R

�
δT0

0−
1

2
δTþfð0ÞQ

2κ
ðδΘ−2δΘ0

0−δQÞ
�
: ð43Þ

Wewill see that for our purpose, computing this component
is sufficient and we do not need to obtain the rest
components of δRμ

ν .
For finding the right-hand side of the above relation, let

us briefly introduce the perturbed matter quantities. Taking
the energy-momentum tensor of the perfect fluid (11), one
can show that
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δT0
0¼−p; δT¼−ρ; δQ¼ δΘ¼ δΘ0

0 ¼ ρ2; ð44Þ

Therefore, by using these quantities, we can rewrite the
right-hand side of Eq. (43) in terms of pressure and energy
density. It is worth mentioning that in the weak-field
regime, one can neglect the contribution of pressure
compared with the energy density. In fact, in this limit,
we have jTjkj ≪ jT0jj ≪ jT00j.
Here, in order to construct the left-hand side of Eq. (43)

from the auxiliary perturbation metric t̄μν, we first perturb
Eq. (8) by using hμν ≈ ημν þ t̄μν, and find the first-order
Christoffel symbols. Then by inserting δΓλ

μν within the
definition of the Ricci tensor, after some simplification, we
find the following first order equation

δRμν ¼ −
1

2
ð□t̄μν − ∂λ∂μt̄λν − ∂λ∂νt̄λμ þ ∂μ∂νt̄Þ; ð45Þ

where □ ¼ ∂α∂α is the wave operator in the Minkowskian
spacetime and t̄ is the determinant of the auxiliary
perturbation metric t̄μν. By choosing the standard gauge
∂λðt̄λμ − t̄

2
δλμÞ ¼ 0, one can show that the sum of the last

three terms in Eq. (45) becomes zero and this relation
reduces to the following form

δRμ
νðhÞ ¼ −

1

2
□t̄μν ≃ −

1

2
∇2 t̄μν : ð46Þ

Notice that since the time derivative is smaller than the
spatial derivative in the weak-field regime [30], we can
replace the d’Alembertian operator □ with the Laplacian
operator∇2. Now, by substituting the time-time component
of Eq. (46) into Eq. (43) and also applying Eq. (44), we
finally obtain

∇2ϕ̄ ¼ κ

fð0Þ2R

�
1

2
ρþ fð0ÞQ

κ
ρ2
�
: ð47Þ

This equation cannot describe the nature of the modified
fðR;QÞ gravity in the weak-field limit. In fact, the scaler
field ϕ̄ is the auxiliary Newtonian potential based on hμν
which is not the actual spacetime. Therefore, to find the true
description of the gravity in Palatini EMSG, we should find
the relationship between ϕ̄ and the physical Newtonian
potential ϕ related to gμν. To do so, let us return to the
conformal relation between hμν and gμν once again. By
perturbing this relation and also using Eqs. (38) and (39),
we find

tμν ¼
1

fð0ÞR

ðt̄μν − ημνδfRÞ; ð48Þ

for the first-order equation. Furthermore, from the
Newtonian order of the conformal relation, one can easily

conclude that fð0ÞR ¼ 1. Although, here, we assume that δfR
does not vanish and it is given by δfR ¼ fð0ÞRRδR [20]. Using
this fact that t00 ¼ 2ϕ and inserting Eq. (42) within Eq. (48)
led to the following relation

ϕ ¼ ϕ̄ −
κfð0ÞRR

2

�
ρ −

fð0ÞQ

κ
ρ2
�
: ð49Þ

Finally, by regarding the above equation, we show that
Eq. (47) reduces to

∇2ϕ ¼ κ

�
ρ

2
þ fð0ÞQ

κ
ρ2
�
þ κfð0ÞRR

2

�
fð0ÞQ

κ
ρ − 1

�
∇2ρ: ð50Þ

In fact, this equation represents the modified version of the
Poisson equation in the weak-field limit of the Palatini
EMSG. Note that in this modified Poisson equation, the
first term in the right-hand side, i.e., κρ=2 denotes the
standard Poisson equation in the Newtonian gravity and
the rest terms are new correction terms induced by Palatini
EMSG. It is seen that these correction terms containing the
derivations of f with respect to R and Q, may cause
significant deviation from the Newtonian gravity in the
environments where those are not negligible. It is con-

structive to mention when fð0ÞQ → 0, the above relation
reduces to the corresponding Poisson equation in the
Palatini fðRÞ gravity, e.g., see [31] and references therein.
Equation (50) can be compared with Eq. (32) in [14]. In

this paper the weak field limit of EMSG in the metric
formulation has been investigated. It is interesting that
metric and Palatini versions lead to different weak field
limits. In the Palatini version we have second derivatives of
the matter density in the right-hand side of the modified
Poisson equation. While, in the metric formulation, there is
a nonlocal integral term over the whole space. It is also
interesting to mention that the existence of the Laplacian of
the matter density in the Poisson equation is reminiscent of
the weak field limit of EiBI gravity [32]. This correction
term may cause drastic consequences in the properties of
compact objects and the gravitational collapse. In the case
of Palatini fðRÞ gravity, i.e., fð0ÞQ → 0, it has been recently
argued in [33] that proper junction conditions formalism is
needed to be adapted in order to have well-defined compact
objects. We refer the reader to [34] where several aspects of
the existence of ∇2ρ in the Poisson equation have been
investigated.
For a given matter distribution ρðxÞ, one may solve

Eq. (50) to find the corresponding potential. Then the
trajectory of the particles can be found using the geodesic
equation written in the weak field limit, namely the
modified version of the Newtonian equation of motion
for a test particle in the gravitational field.
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From this point of view, it would be desirable to find the
weak field limit of the geodesic equation (31). As men-
tioned before, in the weak field limit, we assume that the
particle moves slowly. This is equivalent to considering that
j dxids j ≪ j dx0ds j in this case. By utilizing this fact, Eq. (31)
reduces to

d2xμ

ds2
þ Γ̂μ

00

�
dx0

ds

�
2

¼ Fμ: ð51Þ

We recall that s is an arbitrary affine parameter and xμðsÞ
represents the particle worldline in the curved spacetime.

In the first order perturbation, one can find that Γ̂μð0Þ
00 ¼ 0

and Γ̂μ
00 ≃ δΓ̂μ

00 ¼ − 1
2
ημν∂νt00. Here, we assume that the

metric is stationary. We should also mention that in the
Minkowskian background, Fμð0Þ ¼ 0 and consequently,
Fμ ≃ δFμ. Therefore, by considering these assumptions
and t00 ¼ −2ϕ, we have

d2xμ

ds2
þ ημν∂νϕ

�
dx0

ds

�
2

¼ δFμ: ð52Þ

We now turn to obtain δFμ. To do so, let us first apply the
standard Lagrangian density Lm ¼ p. Here, we also use the
barotropic equation of state for the matter, i.e., p ¼ wρ. For
this case, we arrive at

Fμ ¼ −
�
gμν þ dxμ

ds
dxν

ds

�
∂ν ln X ; ð53Þ

as the fifth force in which

X ¼ w2

κ
fQρþ w: ð54Þ

Since there is no mass/energy distribution in the
Minkowskian background, the zero and first orders of

Eq. (54) are given by X ð0Þ ¼ 0 and δX ¼ w2=κfð0ÞQ ρþ w,
respectively. Therefore, one can obtain that

δFμ ¼ −
�
ημν þ dxμ

ds
dxν

ds

�
∂ν ln

�
w2

κ
fð0ÞQ ρþ w

�
; ð55Þ

We notice again that in the weak-field regime, one can
neglect the contribution of pressure compared with the
energy density. In fact, in this limit, we consider that
w ¼ cte which is very small, i.e., w ≪ 1. By keeping this
fact in mind, we find that δFμ ¼ 0. Therefore, for this
Lagrangian density, the time and space components of
Eq. (52) reduce to

d2t
ds2

¼ 0;
d2xi

ds2
¼ −∂iϕ

�
dt
ds

�
2

; ð56Þ

respectively. Here, t is defined by x0 ≡ t. The first relation
in the above equations revels that dt=ds ¼ cte. So, the
second relation can be written in the following vectorial
form

d2x⃗
dt2

¼ −∇ϕ: ð57Þ

As can be seen, although, the mathematical form of the
above relation is quite similar to the Newtonian equation of
motion for a particle in the weak field limit of GR,
regarding Eq. (50), a particle can move in a completely
different path in the weak-field regime of the Palatini
EMSG. We mention that in this case, the fifth force has no
role in the worldline of the particle. However, EMSG’s
corrections appear in the gravitational sector.
For the sake of completeness, it is also instructive to

investigate theweak field limit of the geodesic equation (52)
in the case of L ¼ −ρ. By considering Eq. (34), one can
find that

δFμ
dust ¼ −

�
ημν þ dxμ

ds
dxν

ds

�
∂ν ln

�
fð0ÞQ

κ
ρ

�
: ð58Þ

By inserting the above relation within Eq. (52) and using

∂μf
ð0Þ
Q ¼ fð0ÞQQ∂μδQ, after some manipulations, we arrive at

d2t
ds2

¼ 0; ð59Þ

and

d2x⃗
ds2

¼ −∇ϕ

�
dt
ds

�
2

−
ðfð0ÞQ þ 2ρ2fð0ÞQQÞ

fð0ÞQ

∇ρ

ρ
; ð60Þ

for the time and space components of Eq. (52), respectively.
Then by using Eq. (59) and keeping in mind that
ds2 ≃ g00dt2, we arrive at

d2x⃗
dt2

¼ −∇ϕþ ðfð0ÞQ þ 2ρ2fð0ÞQQÞ
fð0ÞQ

∇ρ

ρ
; ð61Þ

which is the modified version of the equation of motion
describing the path of a particle. In this case, in contrast to
the previous one, i.e., when Lm ¼ p, the fifth force plays a
significant role in determining the worldline of the particle.

It is obvious if either fð0ÞQ þ 2ρ2fð0ÞQQ ¼ 0 or ∇ρ ¼ 0 is
established, Eq. (61) reduces to Eq. (57). Therefore, only
under these specific conditions, a particle can fall freely on
the same path in both Lagrangian densities Lm ¼ p
and Lm ¼ −ρ.
It is also important to mention that outside the matter

distribution where ρ ¼ 0, the geodesic equation coincides
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with the standard case. In other words, there is no fifth force
experiencing by the test particle moving within the vacuum.
More interestingly, this theory does not induce any modi-
fication to vacuummetric solutions in Palatini fðRÞ gravity.
One should note that vacuum solutions in the Palatini
and metric formulations of fðRÞ gravity are effectively
equivalent to “vacuum” solutions in GRþ Λ. Therefore,
one may conclude that vacuum solutions in Palatini/metric
EMSG are equivalent to those of in GRþ Λ, like de Sitter/
anti–de Sitter Schwaraschid and Kerr-de Sitter metrics. For
example, the linear model investigated in [1] does not
change GR’s vacuum solutions like Schwarzschild and
Kerr metrics.
As the last point in this section, it should be noted that we

expect the corrections in the modified Poisson equation of
EMSG are negligible even in the galactic scales. In other
words, there are modified gravity theories that are identical
to GR at solar system experiments while showing signifi-
cant deviations from GR at galactic scales. The deviations
are helpful in the sense that they can alleviate the missing
mass problem in the galaxies, for example see [35] and
[36]. However, EMSG is by no means relevant to the dark
matter problem. This theory’s effects appear only at the
strong field limit. In the next section, we explore the
cosmological behavior of the theory.

IV. COSMIC BOUNCE IN PALATINI EMSG

As we mentioned before, EMSG deviates from GR at
high curvature. Therefore, we expect different behavior for
this theory in the very early universe. In the case of the
metric EMSG, it has been shown that the universe does not
necessarily start from a singularity and it can instead cross a
bounce at which the maximum energy density of the
cosmic fluid has a finite value [1].
We know that the cosmic bounce can exist in the Palatini

formalism of modified theories of gravity, e.g., for fðRÞ

theories see [37] and references therein. Therefore, as the
first cosmological consequence of Palatini EMSG, we are
interested to identify the characterization of a bounce in the
early time cosmology.
For our purposes, it is convenient to rewrite the Einstein

tensor in terms of the physical metric gμν. To do so, as
mentioned before, we utilize the conformal transformation
hμν ¼ fRgμν. After some manipulation and simplification,
we express Eq. (5) in the form

GμνðgÞ ¼ GμνðhÞ þ
1

fR
ð∇μ∇νfR − gμν□fRÞ

−
3

2f2R

�
∂μfR∂νfR −

1

2
gμν∂λfR∂λfR

�
; ð62Þ

in which GμνðgÞ is the Einstein tensor obtained from the
physical metric. It should be mentioned that, here, the
covariant derivatives are written in terms of gμν. We assume
that the distribution of matter and energy in the universe can
be described with the perfect fluid and consequently, the
metric of the space-time is given by the Friedmann-
Robertson-Walker (FRW) metric

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2dΩ2

�
; ð63Þ

where aðtÞ is the cosmological scale factor and k ¼ 0;�1
represents the spatial curvature. We assume that the
equation of state of the cosmic fluid is p ¼ wρ. Then
one can readily verify that Q ¼ ð3w2 þ 1Þρ2. By consid-
ering the above assumptions, and inserting Eq. (62) into
Eq. (14), we finally derive time-time and space-space
components of Eq. (14) as

H2 ¼ 2

�
2ρðαρfQ þ κÞ þ Π1

3fR
−
2k
a2

��
Γ1Π2

2Γ1Π2 − 3ðwþ 1ÞρΓ2fRRðð3wþ 1ÞρfQ þ κÞ
�

2

; ð64Þ

4 _H

�
2 −

3

Γ1Π2

ðwþ 1ÞρΓ2Γ3fRR

�
þ 4k

a2
−

2

fR
ðΠ1 − 2κwρÞ

þ 3H2

�
4þ 1

Γ3
1Π3

2

�
3ðwþ 1Þ2ρ2Γ1Γ2

2Γ2
3fRð4f2RfRRR − 3fRf2RR þ 3Rf3RRÞ þ 4ðwþ 1ÞρΦΓ3Π2

2fRR

��
¼ 0; ð65Þ

receptively. Here, α ¼ ðwþ 1Þð3wþ 1Þ and H ¼ _a
a where the dot sign stands for a derivative with respect to time. For

simplifying these relations, we also introduce the following functions

Γ1 ¼ κ þ ðαþ 4wÞρfQ þ 2αð3w2 þ 1Þρ3fQQ; ð66Þ

Γ3 ¼ κ þ ð3wþ 1ÞρfQ; ð67Þ

Γ2 ¼ κð1 − 3wÞ þ 2ðα − 6w2 − 2ÞρfQ þ 2αð3w2 þ 1Þρ3fQQ; ð68Þ
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Γ4 ¼ 3ðα − 6w2 − 2Þf2Q þ ð3w2 þ 1Þð9α − 24w2 − 8Þρ2fQfQQ þ 2αð3w2 þ 1Þ2ρ4ðf2QQ þ fQfQQQÞ; ð69Þ

Γ5 ¼ ð2α − 21w2 − 3ÞfQ þ ð3w2 þ 1Þρ2ð3ð2α − 7w2 − 1ÞfQQ þ 2αð3w2 þ 1Þρ2fQQQÞ; ð70Þ

Γ6 ¼ ðαþ 4wÞfQ þ 4ð3w2 þ 1Þρ2ð2ðαþ wÞfQQ þ αð3w2 þ 1Þρ2fQQQÞ; ð71Þ

Φ ¼ −2Γ2
1Γ2 − 3ðwþ 1ÞρΓ2Γ3Γ6 þ 3ðwþ 1ÞΓ1ðκ2ð1 − 3wÞ þ 2κρΓ5 þ 2ð3wþ 1Þρ2Γ4Þ; ð72Þ

Π1 ¼ RfR − f; ð73Þ

Π2 ¼ fRðfR − RfRRÞ; ð74Þ

So, Eqs. (64) and (65) are enough to find the unknown
functions, i.e., aðtÞ and ρðtÞ. It should be mentioned that in
order to simplify these equations, we applied Eq. (4) and
the conservation relation

_ρ ¼ −
3Hðwþ 1Þðκρþ ð1þ 3wÞρ2fQÞ

κ þ ðαþ 4wÞρfQ þ 2αð3w2 þ 1Þρ3fQQ
: ð75Þ

It is instructive to note that by setting fQ, fQQ, and fQQQ to
zero, these relations reduce to corresponding equations in
Palatini fðRÞ theories introduced in [37]. As expected, the
FRW equations in GR are also reproduced in the linear
limit f → R.
Now, we are in a position to study in what conditions a

regular bounce can happen in Palatini EMSG. In the
following subsections, we first introduce the general
bouncing conditions. Then, by choosing a toy model for
fðR;QÞ, we examine these conditions one by one and
investigate the existence of a cosmic bounce in the very
early universe.

A. General bouncing conditions

In this subsection, we introduce the bouncing conditions
and characterize possible cosmic bounces. Henceforth, for
the sake of simplicity, we consider a flat geometry and set
k ¼ 0 in Eqs. (64) and (65). In the below, for convenience,
we categorize these conditions:

(i) _aB ¼ 0 is known as the first necessary condition for
the existence of a bounce. i.e., the scale factor can
reach an extremum where a cosmic bounce may
exist. Here, the index “B” represents the bounce.
Under this condition, we haveHB ¼ 0. As seen from
the first Friedmann equation (64), there are three
cases for which H can be zero at ρ ¼ ρB, i.e., when
ΔB ¼ 0, Γ1B ¼ 0, or Π2B ¼ 0. Here, Δ is defined as
Δ ¼ 2ρðαρfQ þ κÞ þ Π1. We will separately exam-
ine each case in the following.

(ii) The second condition for having a bounce is that this
extremum should be a minimum. Therefore, we put
äB > 0. As H ¼ 0 at the bounce, this condition
reduces to _HB > 0. Using Eq. (65), one can obtain

_HB ¼
� ðΠ1 − 2κwρÞΓ1Π2

fRð4Γ1Π2 − 6ðwþ 1ÞρΓ2Γ3fRRÞ
�

B
> 0;

ð76Þ

as the second bouncing condition.
(iii) In order to have a maximum energy density at the

bounce point, the next condition is that ρ̈B < 0.
Since _H should be positive at this point, as expressed
in the previous part, the third condition can be
written as

� ðwþ 1Þðκρþ ð1þ 3wÞρ2fQÞ
κ þ ðαþ 4wÞρfQ þ 2αð3w2 þ 1Þρ3fQQ

�
B
> 0;

ð77Þ

after applying Eq. (75). This is true provided that
the denominator does not vanish at the bounce.
Furthermore, to have a regular bounce and to
avoid singularity in the continuity equation, the
denominator should not vanish in the interval
ρ ∈ ð0; ρBÞ, or its root coincides with that of the
term ðκ þ ð1þ 3wÞρfQÞ in the numerator. The
singularity should be carefully checked in other
governing equations. Regarding the complicated
nature of the equations for a general fðR;QÞ
function, it is difficult to find a single condition
to remove singularity in all the governing equations.
However, as we shall show, for our toy model this
issue can be straightforwardly addressed.

(iv) As we know, H is a real function, so H2 must be
positive. To fulfill this condition, by considering the
Eq. (64) and also ignoring 2k=a2, we obtain that
ΔfR > 0 within the interval 0 < ρ < ρB.

(v) As the last bouncing condition, it should be recalled
that to avoid having a singularity at the beginning of
the universe, the minimum value of the scale factor
should not be zero, i.e., aB ≠ 0. In fact, it means that
the Hubble parameter H remains finite in the very
early universe. Therefore, by considering Eq. (64),
the fifth condition is that
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ð2Γ1Π2−3ðwþ1ÞρΓ2fRRðð3wþ1ÞρfQþ κÞÞB ≠ 0:

ð78Þ
Moreover, in order to have a regular bounce and to
avoid singularity in the Friedman equation, the
roots of this relation should not be in the interval
ρ ∈ ð0; ρBÞ.

To sum up, we have defined five bouncing conditions.
When all of these conditions are satisfied and also the root
of Eq. (64), ρroot, be a real value, ρroot can represent a
physical cosmic bounce, i.e., ρroot ¼ ρB. We next return to
specify the cases under which H can be zero. According to
the discussion in the first part, there are three cases that
satisfy this condition. In the following, for each case, we
examine the rest bouncing conditions.

1. Case A: Π2B = 0

According to the definition (74), this case means that fR
or fR − RfRR is zero at ρ ¼ ρB. It is worth mentioning as
the bounce happens at some high curvature in the very early
universe, it is expected that RB ∼ RP where RP is the Planck
curvature written in terms of the Planck length as RP ∼ l−2

P .
For the case fR ¼ 0 (at the bounce), by substituting

fR ¼ 0 into Eq. (7), after some algebra, one can obtain that

fB ¼ 1

2
ρðαρfQ þ κð1 − 3wÞÞB; ð79Þ

ΔB ¼ 3

2
ρðαρfQ þ κðwþ 1ÞÞB: ð80Þ

Now, by inserting fB within the second condition (76), we
find that

_HB ¼
�
−
ðκðwþ 1Þρþ αρ2fQÞRΓ1

12ðwþ 1ÞρΓ2Γ3

�
B
> 0: ð81Þ

Also, since the third condition is a function ofρ,fQ, andfQQ,
the mathematical appearance of Eq. (77) does not change in
this case. Moreover, in this case, the fourth and fifth
conditions can be established. Hence, fR ¼ 0 (at the bounce)
can be one of the possible case for creating a cosmic bounce.
In the case ðfR − RfRRÞB ¼ 0, bothH and _H are equal to

zero. So, the second condition is not satisfied and con-
sequently, this case cannot create a bounce.

2. Case B: Γ1B = 0

For this case, one can show that _HB is zero. Therefore,
we conclude that this case like the latter one in the previous
part, cannot induce a cosmological bounce.

3. Case C: ΔB = 0

This condition means that at the bounce we have

fQ ¼ −
Π1 þ 2κρ

2αρ2
: ð82Þ

By inserting this relation within Eq. (7), after some
simplification, we obtain that

fB ¼
�
1

3
RfR − 2κwρ

�
B
: ð83Þ

For this value, the second bouncing condition reduces to

_HB ¼
�

2RΓ1Π2

12Γ1Π2 − 18ðwþ 1ÞρΓ2Γ3fRR

�
B
> 0; ð84Þ

and the condition ρ̈B < 0 is given by

αρRfR½ð3w2 þ 8wþ 1ÞRfR þ 3ðð3w2 þ 5wÞκρ
− 2αð3wþ 1Þð3w2 þ 1Þρ4fQQÞðwþ 1Þ�−1B > 0: ð85Þ

In this case, the rest of the bouncing conditions, i.e., the
fourth and fifth conditions, can be satisfied. Therefore, the
current case can also be considered as one of the possible
situations where a nonsingular solution exists.
We have so far introduced the general conditions for

having a bouncing solution. In fact, these results are valid
for any fðR;QÞ theory near the bounce. As shown, without
fixing fðR;QÞ, the above relations are quite complicated.
So, in order to investigate these conditions and gain more
intuition, we will choose a simple and also helpful model
for the fðR;QÞ theory in the very early universe and obtain
the cosmic bounce for each case in the next subsection.
As the last part of this subsection, let us recall the energy

conditions. For the perfect cosmic fluid with p ¼ wρ, it is
shown that the general forms of the energy conditions are
given by

ρð1þ wÞ ≥ 0; ð86aÞ

ρ ≥ 0; and ρð1þ wÞ ≥ 0; ð86bÞ

ρð1þ wÞ ≥ 0; and ρð1þ 3wÞ ≥ 0; ð86cÞ

which are respectively known as the null energy condition
(NEC), weak energy condition (WEC), and strong energy
condition (SEC) [38]. We know that one or more energy
conditions are violated in the bouncing models, for instance
see [38] and references therein. It should be added by
regarding that WEC is a necessary condition for establish-
ing the dominant energy condition (DEC), we do not
consider DEC here. In order to investigate these conditions
in Palatini EMSG, we should obtain ρ in terms of a from
Eqs. (64) and (65). After inserting this relation within the
above conditions and considering _a ¼ 0 and ä > 0, we can
examine these conditions in this formalism. To do so, we
should first choose a toy model for fðR;QÞ. We will
postpone this issue to the next subsection and show how
these conditions restrict the allowed value of w.
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B. A toy model

We launch our calculation by choosing a toy model of
fðR;QÞ. In this model, f is a linear and quadratic function
of Q and R, respectively. It takes the following form

fðR;QÞ ¼ Rþ βR2 þ ηQ; ð87Þ
in which β and η are coupling constants that their values can
be determined by observational constraints. It is necessary to
mention that the Palatini fðRÞ model fðRÞ ¼ Rþ βR2

already leads to bouncing cosmology [37]. Therefore it is
natural to expect the existence of bounce in our model.
Notice that our aim here is just to present the simplest toy
model in EMSG. It is obvious that in the solar system
local tests these parameters should satisfy the constraint
jηj ≪ jR=Qj and jβj ≪ 1=jRj. It should be mentioned
that both β and η can be positive or negative. The coefficient
of the linear term R is a unity to ensure that at low curvature
regime this model recovers GR, i.e., limR→0 fR ¼ 1. For this
model, using the trace equation (7) one can find that

R ¼ ð3w − 1Þðð1 − wÞηρ2 − κρÞ: ð88Þ
It should be added since our aim is to describe the very early
universe, there is no need to consider the role of the
cosmological constant Λ in our toy model. However, we

will bring it back when we attempt to estimate the magnitude
of the coupling constants η and β. It is necessary to mention
that in the metric formulation the existence of the cosmo-
logical constant can play an essential role for the bounce. For
example, in the simple linear model investigated in [1],
without Λ one cannot achieve a nonsingular solution.
Therefore, interestingly, the cosmological constant in that
model plays essential roles in both the early universe (for
addressing the singularity problem) and the late time universe
(for explaining the cosmic speed-up). Such behavior might
happen in the Palatini version. However, we omit such a
possibility and focus on bounces without Λ.
Before introducing the bouncing conditions for this

model, let us rewrite Eqs. (64), (65), and (75) in a dimension-
less form. The dimensionless form of the equations is helpful
for our subsequent calculations. To achieve this goal, we
introduce the dimensionless quantities as follows

ρd ¼
jηj
κ
ρ ¼ signðηÞ η

κ
ρ; td ¼

κffiffiffiffiffijηjp t;

βs ¼
κ2

η
β; ρs ¼

ρ

ρB
¼ ρd

ρBd
; Hd ¼

ffiffiffiffiffijηjp
κ

H: ð89Þ

Using these new variables, and after some simplification,
Eq. (64) takes the following form

H2
d ¼ −

Y2

6X2
ρdð2ð3w − 1Þð1þ ðw − 1ÞsignðηÞρdÞsignðηÞβsρd − 1Þ

× ð2þ ½λþ ð9w2 − 6wþ 1Þβs þ γð3w − 1Þð2þ ðw − 1ÞsignðηÞρdÞsignðηÞβsρd�signðηÞρdÞ; ð90Þ
in which λ ¼ αþ 4w, γ ¼ ð3w − 1Þðw − 1Þ and

X ¼ 1þ ½λþ ð9w2 − 1Þβs þ ð9wþ 3þ 4ð3w2 þ 2wþ 1ÞsignðηÞρdÞγsignðηÞβsρd�signðηÞρd; ð91Þ
Y ¼ 1þ λsignðηÞρd: ð92Þ

By applying the dimensionless parameters and functions, one can also obtain the dimensionless form of the second
Friedmann equation (65) as follows

8H0
d

�
1 − 2γβsρ

2
d þ

1

Y3
½ð9w2 − 1ÞsignðηÞβsρd þ 3ð3w − 1Þð6w3 þ 21w2 þ 6w − 1Þβsρ2d

þ 3ð3w − 1Þð9w5 þ 69w4 þ 132w3 þ 16w2 − 29w − 5ÞsignðηÞβsρ3d þ γλð27w3 þ 123w2 þ 97wþ 17Þβsρ4d
þ 6λ2ð9w4 − 10w2 þ 1ÞsignðηÞβsρ5d�

�
þ 12signðηÞ

Z
H2

d

�
1 − 4γβsρ

2
d þ 4ð3w − 1Þ2ð1þ ðw − 1Þ2ρ2dÞβ2sρ2d

− 4ð3w − 1Þð1 − 2γβsρ
2
dÞsignðηÞβsρd þ

6ðwþ 1Þ2
Y3

ð3w − 1Þð1þ ð3wþ 1ÞsignðηÞρdÞð1þ ð15w3 þ 55w2

− 15w − 7Þρ2d þ 2½5w − 1þ 2ðw − 1Þð3wþ 1Þλρ2d�signðηÞρdÞð2ð3w − 1Þβsρd − ð1 − 2γβsρ
2
dÞsignðηÞÞβsρd

þ 4ðwþ 1Þ
signðηÞY ð3w − 1Þð1þ 2ðw − 1Þð3wþ 1Þρ2d þ ð5w − 1ÞsignðηÞρdÞð1 − 2γβsρ

2
d − 2ð3w − 1ÞsignðηÞ

× βsρdÞβsρd −
9ð3w − 1Þ2

Y2
ðwþ 1Þ2ðð5w − 1Þρd þ ½1þ 2ðw − 1Þð3wþ 1Þρ2d�signðηÞÞ2β2sρ2d

�
þ 4wρd þ 2ð1

− βs þ 3wð2βs þ wð1 − 3βsÞÞ − ð3w2 − 4wþ 1Þ2βsρ2dÞsignðηÞρ2d − 4γð3w − 1Þβsρ3d ¼ 0; ð93Þ
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where Z is defined as

Z ¼ 2ð1 − 3wÞβsρd þ ð1 − 2γβsρ
2
dÞsignðηÞ: ð94Þ

Furthermore, the prime sign indicates differentiation with
respect to td and H0

d ¼ jηj
κ2

_H. It should be mentioned that
even for this simple toy model, we deal with modified
Friedmann equations which are much more complicated
compared with the standard Friedmann equations.
Finally, for the dimensionless conservation relation, we

have

ρ0d ¼ −
3

Y
Hdðwþ 1Þð1þ ð3wþ 1ÞsignðηÞρdÞρd; ð95Þ

where ρ0d ¼ jηj3=2
κ2

_ρd. In the case of dust (ω ¼ 0), Eq. (95)
coincides with the standard case, namely ρ0d ¼ −3Hdρd. On
the other hand, for an arbitrary equation of state, the
continuity equation is singular at ρ�d ¼ −signðηÞ=λ. To avoid
this singularity we expect that −signðηÞ=λ ∉ ð0; ρBdÞ. For
example if −signðηÞ=λ < 0 then there will not be any
singularity in the continuity equation and in the terms
proportional to Y−n (n > 0) in other governing equations.
It is easy to verify that for ω > −0.13, only η > 0 is
acceptable. Regarding that in the early universe one can
assume the dominant components in the cosmic fluid possess
a positive equation of sate parameter, then the free parameter
η should be positive. However, for the sake completeness we
explain the η < 0 case alongside with η > 0. Moreover, we
cannot certainly rule out the η < 0 case since depending on
the magnitude of other free parameters ρ�d can be larger than
the density at the bounce. Clearly, if this happens, then the
continuity equation will be free of singularity.
Equation (95) can be simply integrated. Let us write its

solution for the viable case η > 0

a ¼ amin

�
ρBd
ρd

� 1
3ωþ3

�ð1þ 3ωÞρBd þ 1

ð1þ 3ωÞρd þ 1

� ωð3ωþ5Þ
9ω2þ12ωþ3 ð96Þ

where amin is the scale factor at the bounce. One may plug
this equation into Eq. (90) in order to find aðtÞ. However,
Eq. (90) cannot be integrated analytically.
As seen from the above relations, in this model, the

dynamics of the cosmic fluid dramatically depends on the
magnitude of βs and the choice of the equation of state
parameter w. Therefore, it is necessary to estimate the order
of magnitude of βs and w. Furthermore, the sign of the
coupling constant η is another variable that must be
specified. This means that β and η do not appear separately
and only their ratio matters.
Here, we will first attempt to find a constraint on the

magnitude of βs and then categorize the possible bouncing
solutions in terms of the sign of the coupling constants. In
order to constraint βs, we need to estimate η and β. As

already mentioned, EMSG should recover the standard
gravity at the low energy regime. We use this fact to find a
restrict the parameters. In the presence of the cosmological
constant, our toy model takes the form fðR; TÞ ¼
Rþ βR2 þ ηT2 þ 2Λ. Naturally one may expect that the
correction terms should be negligible compared to other
terms at the present time. This means jβjR2 ≪ Λ and
jηjT2 ≪ Λ. For the former, by considering that R ∝ Λ,
we arrive at jβj ≪ 1=Λ. And for the latter, by assuming
that T ≃ ρΛ and ρΛ ¼ Λ=κ, we deduce that jηj ≪ κ2=Λ.
So, by gathering these results together, one can show
that jβsj ≫ 1.
So if βs is a positive quantity, i.e., when η > 0 and β > 0

or η < 0 and β < 0, then βs ≫ 1. And if βs be a negative
quantity, i.e., when η > 0 and β < 0 or η < 0 and β > 0, its
reliable realm is βs ≪ −1. In the following, we classify the
bouncing solutions with respect to the sign of βs and in each
case illustrate how the sign of the coupling constant η as
well as the choice of equation of state, i.e., w, can affect the
existence of a nonsingular universe.
As mentioned in the last part of the previous subsection,

it is interesting to examine the energy conditions in Palatini
EMSG. In the following, for each bouncing solution, we
check these conditions.

1. Case I: If βs > 0

a. η > 0 and β > 0
We first focus on the case where η > 0 and β > 0. Back

in Sec. IVA, we found the required conditions for the
existence of bounce. In a similar way, our first task here is
to find the roots of the dimensionless Friedmann equa-
tion (90) in which we put signðηÞ ¼ þ1. By considering
A-C cases in the previous subsection, we see that the two
cases fR ¼ 0 and Δ ¼ 0 can induce cosmic bounces.
Therefore, in this model, we restrict our study to the fR-
induced and Δ-induced bounces. For the fR and Δ
functions, we respectively obtain two and three roots that
can describe a bounce. Then, by inserting each root within
Eqs. (76) and (77), and imposing the second to fifth
bouncing conditions introduced in Sec. IVA, we obtain
allowed region in the βs − w plane. Here, we assume that
βs > 1 and −2 < w < 2. For the current case, these allowed
areas are exhibited in Fig. 1. In the top and bottom right
panels, the yellow and red surfaces represent the allowed
areas that come from two roots of the fR function.
Considering βs ≫ 1 reveals that the yellow region is not
physically important since βs is not large enough. In this
case, for the roots of Δ function, we do not have an allowed
regime in this interval of βs and w. It should be noted that to
display these areas, we also impose another condition under
which each root should be a real and positive parameter to
describe a physical energy density. In this case, the roots of
the fR function are given by
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ρd1 ¼
1

ð3w − 1Þβs −
ffiffiffiffi
A

p ; ð97aÞ

ρd2 ¼
1

ð3w − 1Þβs þ
ffiffiffiffi
A

p ; ð97bÞ

where A ¼ ð3w − 1Þðwð2þ 3βsÞ − βs − 2Þβs. We should
also mention that the roots of the Δ function are long and
for some values of βs and w, they can be imaginary. So, let
us only provide one of them as an example

ρd3 ¼ −
1

3B

�
3þ 2B

w − 1
þ w2ðβs − 1Þ

þ B2

ð1 − 4wþ 3w2Þ2βs
þ βs − 6wð4þ βsÞ

�
: ð98Þ

Here

B ¼ ½3
ffiffiffi
3

p
Cþ ð1 − 3wÞ4ðw − 1Þ3β2s ð36þ 9w2ð3þ βsÞ

þ 3wð15 − 2βsÞ þ βsÞ�1=3; ð99Þ

in which

C ¼ ð1 − 3wÞ3ðw − 1Þ3β3=2s ðð1þ wð8þ 3wÞÞ3
þ ð1 − 3wÞ2ð18w4 þ 42w3 þ 77w2 þ 104wþ 47Þβs
þ 3ð1 − 3wÞ4ð1þ wÞ2β2s Þ1=2: ð100Þ

Now, by regarding these solutions and considering
Eqs. (86a)–(86c), we are in a position to examine the energy
conditions. In the top and bottom left panels of Fig. 1, for
Eqs. (97a) and (97b), we respectively exhibit the allowed
region in the βs − w plane where the energy conditions are
established. As can be seen from the comparison of the top
row panels in this figure, for the first root of fR function, i.e.,
Eq. (97a), the allowed region for having a cosmic bounce is
completely restricted to the area where all NEC, WEC, and
SEC are established. On the other hand, for the second root
of fR function, i.e., Eq. (97b), the corresponding area is a
very tiny part of the zone where only NEC and WEC are
satisfied. See the yellow surface. Therefore, in the latter case,
SEC is violated.
So far, the acceptable area for the scaled coupling constant

βs and the equation of state parameterw have been obtained.
Now, by choosing a suitable point ðβs; wÞ6 from this allowed
area and inserting thatwithin thedefinitionofH2

d,weobtain a
maximum energy density that can truly describe a universe
without the big bang singularity. We display this dimension-
less density by ρBd. For instance, by choosing the allowed
point (92,0.8) from the red area of the top right panel of Fig. 1
and inserting itwithinEq. (90),weobtain the numerical value
of the roots of Hd. Among these roots, only the smallest
positive real root, here ρd ¼ 0.004, satisfies all five bouncing
conditions (i)–(v) introduced in Sec. IVA. We call this value
the density at the bounce.
Therefore, for this case, ρBd ¼ 0.004. One should note

that the allowed regions in the βs − w plane satisfy all the
bouncing conditions and after choosing a suitable point
from this plane, as illustrated above, one can find the
density at the bounce.
After rescaling ρd by ρBd, we numerically solve Eqs. (90)

and (95) for the allowed corresponding values of βs and w,
and find the dimensionless energy density and scale factor
in terms of dimensionless time. We repeat this method for
any point selected from the allowed area. These results are
exhibited in Figs. 2 and 3. Here, for convenience, we
display the time evolution of ρs. Therefore, for all cases at
the bounce we have ρs ¼ 1.
In Figs. 2 and 3, the solid and dashed lines express the

dynamics of the cosmic fluid in Palatini EMSG and GR,
respectively. In these figures, one can see that there is a
cosmic bounce for each allowed value of βs and w selected
from the red region of the top right panel in Fig. 1. Here, it
is assumed that the bounce occurs at tBd ¼ −5. In fact,

s s

s s

FIG. 1. The allowed areas for the scaled coupling constant and
the equation of state parameter in the βs − w plane for the case
ðη > 0; β > 0Þ. In the top and bottom right panels, the red and
yellow zones represent the acceptable values of βs and w for
having a cosmic bounce in the Palatini formalism of EMSG.
These red and yellow areas are obtained from the first and second
roots of the fR function, Eqs. (97a) and (97b), respectively. In the
top and bottom left panels, for Eqs. (97a) and (97b), we
respectively exhibit the allowed region where the energy con-
ditions are established. Here, we assume that −2 < w < 2 and βs
is a positive parameter.

6This point should not be on the border of the allowed area.
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without lose of generality, we set td ¼ −5 as the bouncing
time and leave td ¼ 0 as the initial time in this scenario. Of
course from the physical point of view, the time origin is
not important.

We see that at the bounce the scale factor undergoes a
minimum. At this minimum, the scale factor is nonzero.
On the other hand, as expected the energy density has a
finite value maximum at the bounce. It should be
mentioned that for all of these plots, the same initial
and physical conditions are considered. We assume that

FIG. 3. The dynamics of the perfect cosmic fluid in the very
early universe in Palatini EMSG in which we consider that η > 0
and β > 0. Here, we assume that w ¼ 0.8. From top to bottom,
the panels illustrate the behavior of the scaled energy density,
dimensionless scale factor, and dimensionless Hubble parameter
in terms of td for different values of βs, respectively. Here, for
βs ¼ 5, 40, 80, 120, we obtain ρBd ¼ 0.072, 0.009, 0.005, 0.003,
respectively. In each case, the analytical GR solutions, dashed
curves, are also scaled over the corresponding ρBd.

FIG. 2. The dynamics of the perfect cosmic fluid in the very
early universe in Palatini EMSG in which we choose that η > 0
and β > 0. Here, we assume that βs ¼ 100. From top to bottom,
the panels respectively illustrate the evolution of the dimension-
less scale factor, scaled energy density, and dimensionless Hubble
parameter in terms of td for different values of w selected from the
red region in Fig. 1. Here, for w ¼ 0.45, 0.65, 0.85, 0.98, we
obtain ρBd ¼ 0.0144, 0.0053, 0.0032, 0.0026, respectively. In
each case, the analytical GR solutions, dashed curves, are also
scaled over the corresponding ρBd.
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adðtd ¼ 0Þ ¼ 1 and ρsðtd ¼ tBdÞ ¼ 1. Also, in order to
achieve a meaningful comparison, the GR plots are derived
from the same conditions and in each case, they are scaled
by the corresponding value of ρBd. In the following, we will
explain more about this issue.
For a detailed survey of the dynamics of ad and ρs, in

Figs. 2 and 3, we study their evolution in terms of different
magnitudes for w and βs. Here, the density varies smoothly
in the interval ρs ∈ ð0; 1Þ. This guarantees that before and
after the bounce there is no singularity in the governing
equations, i.e., the third and fifth bouncing conditions
introduced in Sec. IVA are truly established. So these
solutions can be viable bounces.
As seen from the top panel of Fig. 2, by decreasingw, the

dimensionless scale factor evolves faster, i.e., at a fixed
time, the slope of a tangent line to these curves increases
with decreasing w. It should be noted that in this case,
w ¼ 1=3 does not lie in the allowed region, see the red
region of the top right panel of Fig. 1. In the next case,
where w can be very close to w ¼ 1=3, we will discuss this
specific value of w which can clearly indicate the radiation
dominated phase of the thermal history of the universe.
It should be noted that the dashed curves (in these figures

and forthcoming ones) are analytically derived in the GR
context. In this standard case, the Friedmann equations
have the exact solution. Let us first write these equations in
the dimensionless form. The result is

_ρs þ 3ð1þ wÞHdρs ¼ 0; Hd ¼
ffiffiffiffiffiffiffiffiffiffiffi
ρBdρs
3

r
: ð101Þ

Regarding the above mentioned initial conditions, the
solution takes the following form

aðtdÞ ¼
�
1

5
tdð1 −

ffiffiffiffiffi
ρ0

p Þ þ 1

� 2
3ð1þwÞ

; ð102aÞ

and

ρsðtdÞ ¼
25ρ0

ðtdð ffiffiffiffiffi
ρ0

p − 1Þ − 5Þ2 ; ð103aÞ

where ρ0 ¼ ρsðtd ¼ 0Þ and is given by

ρ0 ¼
�

2

2þ 5
ffiffiffi
3

p ffiffiffiffiffiffiffi
ρBd

p ð1þ wÞ

�
2

: ð104aÞ

Considering these results in the vicinity of the bounce,
see the magnified figure at the top right of the upper panel
of Fig. 2, one may deduce that the GR cosmic fluid with
larger ws, and also smaller ρBds, has a larger dimensionless
scale factor at a fixed time. Furthermore, by decreasing w,
the GR cosmic fluid expands more rapidly in the vicinity of
the bounce. This fact can be also grasped from this
magnified figure. In the middle panel of Fig. 2, we study

the time evolution of ρs in terms of different values of w. As
seen, in EMSG, the cosmological fluid with smaller w
expands much faster than those with larger w. The GR
system behaves in the same manner. This fact is illustrated
in the zoomed figure at the top left of this panel. We recall
that the above studies are only reliable in the vicinity of the
bounce.
Moreover, to complete our study, we survey the behavior

of the dimensionless Hubble parameter for each case. As it
is obvious, apart from the vicinity of the bounce, like the
GR case, Hd is a decreasing function in terms of the time.
This fact is also investigated for the next solutions.
The behavior of ρs, ad, and Hd in terms of different βs is

also examined in Fig. 3. Here, we choose a fixed w and
several βss from the allowed area in the top right panel of
Fig. 1. One can see that by decreasing βs, the cosmic energy
density decreases more quickly. Furthermore, at the smaller
βs, the universe expands faster.
We should keep it in mind if the bounces exist in EMSG,

they do not necessarily occur at the GR singularity, and
they might just be in its vicinity. This fact is clarified in
Figs. 2 and 3. As one can see from these figures, the GR
singularity does not occur exactly at tBd ¼ −5. This fact is
also checked for the bouncing solutions studied in the next
part. However, one should note that the location of the
bounce depends on our choice for the initial conditions. In
other words, it is always possible to choose initial con-
ditions in such a way that GR singularity and EMSG
bounce happens at the same td.

b. η < 0 and β < 0
We next turn to study the other possible case, i.e., when

both β and η are negative. For this case, by considering
signðηÞ ¼ −1 in Eqs. (90)–(95), and applying the same
method as before, the allowed values of βs and w can be
obtained. In this case, all roots of the fR function as well as
two of the roots of the Δ function do not specify any area in
the βs − w plane. Moreover, for one of the roots of the Δ
function, we obtain several very small regionsmost of which
are only displayed with their borders. As the chosen point
from these areas should not be on the border,wediscard these
unphysical regions. In fact, for very specific choices of the
parameters from these tiny areas, one may obtain a bounce.
But this seems like a fine-tuning and is not satisfactory.
Therefore, we ignore these kinds of unreliable solutions. To
sum up, in this case where β < 0 and η < 0, there is no
allowed value of ðβs; wÞ for which the regular cosmic bounce
can exist. However, we do not rule out the possibility of the
existence of a viable cosmic bounce in the case with β < 0
untilwe check theother caseβ < 0 andη > 0 in the next part.

2. Case II: If βs < 0

Here, we discuss the conditions for existing a cosmic
bounce in the case βs < 0. For this case, we have shown
that βs should satisfy the physical range βs ≪ −1. Here, as
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before, we choose that −2 < w < 2. By considering the
definition of βs, two cases ðη<0;β>0Þ and ðη > 0; β < 0Þ
are possible. So, in the following, we investigate them
separately and study the existence of the bounce in each
one. For both cases, again by considering the sign of η, we
find the roots of Eq. (90). Then, for each root, we impose
the second to fifth bouncing conditions introduced in
Sec. IVA. Furthermore, as before, we consider that ρroot
should be real and positive. By regarding these conditions,
we find the allowed region for w and βs that may discard the
big bang singularity and lead to a bounce in the very early
universe. Next, by applying these values, we obtain the
numerical value of the smallest real positive root of Hd as
ρBd. Finally, we numerically study the dynamics of ad and
ρs for the corresponding allowed values of w and βs. Here,
we consider the physical and initial conditions similar to
the preceding part.

a. η < 0 and β > 0
For the case of η < 0 and β > 0, by regarding the above

method, one can derive the allowed areas of βs and w. In
this case, the fR ¼ 0 condition does not specify any area in
the βs − w plane. Also, the regions obtained from theΔ ¼ 0
condition are quite tiny. Therefore, as before, we drop these
artificial areas. So, in this case, similar to the case IB where
both η and β are negative, there is no allowed surface in the
βs − w plane that can describe the nonsingular universe. In
fact, we found that although there is a bounce for which
most of the required conditions are satisfied. However, at
least one of the governing equations gets singular some-
where in the range (0; ρBd).

b. η > 0 and β < 0
In the next probable case where η > 0 and β < 0, the

allowed zones are shown in Fig. 4 and the bouncing

solutions are illustrated in Figs. 5 and 6. First of all, let
us mention that the smooth behavior of the density
guarantees that there is no singularity in this case. Here,
the green surface is deduced from one of the roots of the fR

s s

FIG. 4. The allowed area for the scaled coupling constant and
the equation of state parameter in the βs − w plane. In the right
panel, the green surface represent the acceptable values of βs and
w for having a cosmic bounce in the Palatini formalism of EMSG.
The this panel belongs to the case ðη > 0; β < 0Þ. In this case, the
green surface is deduced from one root of the fR function. In the
left panel, for the corresponding roots, we exhibit the allowed
region where the energy conditions (86a)–(86c) are established.
Here, we assume that −2 < w < 2 and βs is a negative parameter.

FIG. 5. The dynamics of the perfect cosmic fluid in the very
early universe in Palatini EMSG in which we consider that η > 0
and β < 0. Here, we assume that w ¼ 0.2. From top to bottom,
the panels illustrate the behavior of the scaled energy density,
dimensionless scale factor, and dimensionless Hubble parameter
in terms of td for different values of βs, respectively. These
values are selected from the green area in the bottom right
panel of Fig. 4. Here, for βs ¼ −5;−40;−80;−120, we obtain
ρBd ¼ 0.35, 0.03, 0.02, 0.01, respectively. In each case, the
analytical GR solutions, dashed curves, are also scaled over the
corresponding ρBd.
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function. For the rest of the roots of fR and also Δ
functions, we do not achieve an allowed regime in this
interval of βs and w. In Fig. 5, by fixing the equation of
state, we examine the behavior of ρs, ad, andHd in terms of

βs, which is negative here. It is obvious that for larger βs,
the energy density of the cosmic fluid vanishes faster, and
the infant universe grows more rapidly. This behavior
contrasts with the βs > 0 case. In Fig. 6, by fixing the
value of βs, we also see that by increasing w, the
cosmological fluid decreases more quickly and it expands
with higher speed. The same behavior is observed in GR in
the vicinity of the bounce point. These facts can be easily
grasped from the magnified plots in the top and middle
panels of Fig. 6. This behavior is also quite different from
the previous case where βs > 0. We will discuss these
differences in more detail in the next subsection.

C. Discussion

Now, let us summarize all the main results obtained
in the preceding subsections. First of all, as seen, the
dimensionless energy density starts from infinity in GR,
while, for some specific cases in the Palatini formalism of
EMSG, this function has a finite maximum, namely ρB.
On the other hand, the cosmic scale factor undergoes a
nonzero minimum. This means that Palatini EMSG pro-
vides bouncing solutions. In all the viable cases, we saw
that the density varies more slowly near the bounce
compared with the corresponding model in GR.
The second point is that the subcase η < 0 in the both

cases βs > 0 and βs < 0 provides no region in the param-
eter space βs − w for the existence of the bounce. From this
perspective, one may conclude that only the subcases
ðη>0;β<0Þ and ðη > 0; β > 0Þ are physically interesting.
The next is that, by considering the definition of the

scaled coupling constant and the results obtained from both
Figs. 3 and 5, after assuming a fixed β, one can deduce that
near the bounce, a cosmic fluid with larger η expands faster
than that with smaller η. Accordingly, the density falls more
rapidly.
Before discussing the fourth point, let us recall the

definition of fluid stiffness. As we know, the stiffness of the
fluid is measured by the sound speed cs, e.g., see [39]. For
simplicity, here, we consider the definition of the sound
speed in the Newtonian regime, i.e., c2s ¼ dp=dρ where we
assume that the pressure is only a function of ρ. By
regarding the barotropic equation of state p ¼ wρ, one
may deduce that w can represent the stiffness of the fluid.
Therefore, the big value of w indicating the dramatic
changes in pressure for small changes in density refers
to a stiff equation of state and the small value of w refers to
a soft equation of state.
Now, by considering the above definition, we interpret

the results of the previous subsection. As seen from Fig. 2,
in both GR and Palatini contexts, near the big bang
singularity, softer cosmic fluids expands more quickly
than stiffer ones. This behavior is observed in the case
βs > 0. So if the cosmic fluid has soft and stiff components
and they were around the bouncing point, the softer
component would expand faster. On the other hand, this

w=–0.3
w=–0.1
w=0
w=0.1
w=0.3

–150 –100 –50 0 50 100 150

–0.04

–0.02

0.00

0.02

0.04

Dimensionless time

D
im
en
si
on
le
ss
H
ub
bl
e
pa
ra
m
et
er

FIG. 6. The dynamics of the perfect cosmic fluid in the very early
universe in Palatini EMSG in which we choose that η > 0 and
β < 0. Here, we assume that βs ¼ −100. From top to bottom, the
panels illustrate the evolution of the scaled energy density, dimen-
sionless scale factor, and dimensionless Hubble parameter in terms
of td for different values ofw, respectively. Thesevalues are selected
from the green area in the bottom right panel of Fig. 4. Here, for
w ¼ −0.3;−0.1, 0, 0.1, 0.3, we obtain ρBd ¼ 0.003, 0.004, 0.005,
0.007, 0.052, respectively. In each case, the analytical GR solutions,
dashed curves, are also scaled over the corresponding ρBd.
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behavior is completely different in the case βs < 0. In this
case, as seen from Fig. 6, soft components are more
resistant to expansion than those with a stiff equation
of state.
The last remark is to emphasize the existence of the

bouncing cosmology for interesting toy models. As one can
see from the numerical curves in Fig. 6, a cosmic bounce
can even exist for the cold dust with w ¼ 0 and the fluid
with w ≃ 1=3. We reiterate again that the exact ω ¼ 1=3
case does not lie in the allowed region for the existence of
bounce in our toy model. However, the equation of state for
the bouncing solution can be very close to ω ¼ 1=3. In this
figure, it is also shown that a cosmic fluid with a negative
equation of state that may be a model for the dark energy,
can have a bouncing solution. Furthermore, for these toy
models, it is illustrated that the energy density of the
radiation-dominated universe with w ≃ 1=3 falls faster than
that of the matter-dominated universe. And the latter one
disappears more quickly than the energy density of
the universe with a negative w. So if the component of
the cosmic fluid with a negative pressure could exist in the
vicinity of the bounce, it would be more dominant than
the rest of the components of the cosmic fluid in the late-
time universe. Of course, these results are true only for this
simple toy model, and for more realistic results, more
physical models should be considered.

V. SUMMARY AND CONCLUSION

In this paper, we have studied the Palatini formulation of
EMSG. In this formalism, the modified version of the field
equations has been derived. We have explored their
consequences in different contexts. We have shown that
the energy-momentum tensor Tμν is not conserved and
consequently the path of a test particle deviates from the
standard geodesic curves of the spacetime. In fact, in this
context, a test particle undergoes an extra force called the
fifth force. We showed that in the vacuum, the geodesic
equations coincide with the standard case. This means that
EMSG does not predict any fifth force in the vacuum.
We have also investigated the weak field limit of this

formalism and obtained the modified version of the Poisson
equation. It is expected that the corrections in the modified
Poisson equation of EMSG are negligible even in the
galactic scales. As already mentioned, the original version
of EMSG is neither a theory for dark matter nor for dark
energy. It is worth mentioning that in the weak field limit of
this theory, the left-hand side of the field equations is
reduced to the formal wave equation. See Eq. (46).
Therefore, by investigating the right-hand side of this wave
equation and completing the analysis of the linearized
theory in Palatini EMSG, one can study the gravitational
waves in this theory [40].

In the second part of this paper, we have explored the
cosmological behavior of this theory. In fact, in order to
obtain the deviation of EMSG from GR, we focused on the
evolution of the cosmos at very early times. To do so,
we have obtained the modified version of the Friedmann
equations in Palatini EMSG. We have next introduced the
general bouncing conditions and then by choosing a toy
model as fðR;QÞ ¼ Rþ βR2 þ ηQ, as the simplest
Palatini EMSG model, we have examined the bouncing
solutions. To ensure that at low curvature regime, this
model recovers GR, the coefficient of the linear term R is
unity and the coupling constants β and η satisfy the
constraint jηj ≪ κ2=Λ and jβj ≪ 1=Λ. Like the metric
formulation of EMSG, here, it has been shown that the
cosmic fluid has a finite energy density value in the very
early universe and crosses a bounce. On the other hand, the
cosmic scale factor has a nonzero minimum. Our study on
the bouncing solution is in favor of the case η > 0. On the
other hand, as the case η < 0 does not provide any allowed
area, we rule out the possibility of the existence of a regular
bounce for the cases where η < 0. We have also shown that
most of the acceptable values of βs and w for having a
cosmic bounce in the Palatini formalism of EMSG, satisfy
all three energy conditions WEC, NEC, and SEC. It has
been exhibited that near the bounce, a cosmic fluid with
larger η expands faster than that with smaller η.
Accordingly, the density falls more rapidly. Furthermore,
in all cases, the density varies more slowly near the bounce
compared with the corresponding model in GR.
Therefore, in Palatini EMSG, the regular bounce exists

and the cosmic fluid dramatically deviates from the GR
case at the big bang singularity. This fact leads us to a
considerable question: Does this formalism possess the true
sequence of the cosmological epochs? As it is shown in [1],
a powerful method to check this issue is to use the
dynamical system analysis. In future work, we plan to
study the dynamical system approach to the cosmological
evolution in Palatini EMSG. Another crucial study that is
necessary to be done in EMSG, is the stability of the model
against tensorial cosmological perturbations. It is known
that bouncing cosmological models, like EiBI, suffer from
tensor instabilities [41]. If this kind of instability happens in
EMSG, then a serious challenge will be raised for the
viability of the model. We leave this issue as a subject for
future studies.
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