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We analyze the spin stability of a binary black hole coalescence when the binary system is described by
the Post-Newtonian (PN) equations in the adiabatic regime. The main idea in this work is to make a massive
exploration of the solution space in search of chaos. For that, we evolve the PN equations using a CUDA
implementation of the RKF78 scheme and study the dynamical behavior of the system. Each initial spin
configuration run in the GPU is composed by more than 80000 simulations. The chaos indicator used to
characterize the degree of separation of two infinitesimally close trajectories is the Lyapunov exponent. We
find zones in the solution space where the separation between nearby trajectories reaches several orders of
magnitude bigger than the initial separation. Also, we note that the chaotic behavior can be observed in
forward as well as in backward evolution.
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I. INTRODUCTION

The detection of gravitational waves made by LIGO [1]
relies on the filtering of the measured signal to improve the
signal-to-noise ratio of the detector. The so-called matched
filtering compares the signal with a bank of templates that
represent the best theoretical predictions for the expected
signal. The theoretical models used to construct these tem-
plates are based on Post-Newtonian (PN) and extended PN
models. These formalisms link the dynamic variables of the
system with the gravitational radiation emitted during the
coalescence.
It is then clear that the presence of chaos in the PN

equationsofmotion thatdescribe thecoalescenceof spinning
black holes (BH) translates into a huge enlargement of the
parameter space needed for a matching algorithm. In fact, it
has been shown by several authors that chaos does appear in
the inspiral time of a coalescing system [2–7]. Therefore, a
high accurate parameter estimation (component masses, sky
location, distance, etc.) of gravitational waves requires
computing millions of waveforms. Otherwise, the presence
of chaos in the system can lead to an incorrect parameter and
uncertainties in predicting initial configurations. Thus, the
study of chaos during the inspiral time using a massive
exploration of the solution space is required in order to
improve the PN models and parameter estimates.
Another place where chaos may be present before the

inspiral time is in the quasicircular or adiabatic regime. In
this case, one asks whether or not the system may become

chaotic before the frequency of revolution reaches the
maximum level compatible with the quasicircular assump-
tion. An effective time tm ¼ 2π=ωmax can be used to check
whether the system becomes chaotic even in the circular
phase. Any chaotic behavior in this regime will also be
present in the final inspiral period, and it can greatly reduce
the possibility of detection even with templates that include
spin effects. It is thus important to study the stability of the
spins in the adiabatic regime of the BH binary.
In this work, we address this issue using a suitable PN

model that describes quasicircular or adiabatic orbits. It is
worth mentioning that in our setup we describe the orbital
plane using the Newtonian angular momentum L⃗N ¼ r⃗ ×
mv⃗ since L⃗N is perpendicular to the orbital plane for
circular orbits. Although in Hamiltonian formulations, the
orbital angular momentum L⃗ ¼ r⃗ × p⃗ is a more useful
object to describe the orbital plane; in our case, we are
following an ansatz that uses L⃗N as one of the auxiliary
variables in the ODEs with a geometrical meaning.
We take advantage of the performance of Nvidia GPUs

in order to accelerate the intensive exploration of the
parameter space looking for chaos in the PN equations
that describe the BH-BH coalescence. For this, we intro-
duce a new numerical code written in CUDA-C [8], which
can solve the PN system of ordinary differential equations
(EDOs) for a large set of initial conditions. One of the
benefits of our approach is that the numerical implementa-
tion will have the basic infrastructure of a competitive code,
which can be subsequently generalized to include extended
PN models like the “effective one body” (EOB), which
is more accurate to describe binary coalescence and the
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emitted radiation [9–11]. The basic idea, in this first paper,
is to focus on studying chaos of binary BHs for different
initial spin configurations and mass ratios. The coalescence
will be described by PN formalism in the adiabatic regime,
and the indicator used to characterize chaos will be the
Lyapunov coefficient, defined as the divergence rate
between initially nearby trajectories,

λðtÞ ¼ 1

t
ln

� jΔYðtÞj
jΔYð0Þj

�
: ð1Þ

In the above formula, ΔY between two points in phase
space is simply the Cartesian distance between the dimen-
sionless six-component coordinate vectors ½S1i; S2j� and
½S01i; S02j� of two nearby trajectories. In our numerical inte-
grations, the initial separation is a small displacement in
phase space with a random orientation and a magnitude of
ΔYð0Þ ¼ 10−9. The two trajectories are then integrated
forward in time, recording the separationΔYðtÞ, from which
λðtÞ is computed. In chaotic systems, the divergence will be
exponential in time with a roughly constant (positive)
exponent. We define the Lyapunov time tL ≡ 1=λ as the
time scale on which nearby trajectories separate by a
factor of e. This Lyapunov time can be computed for the
problem of coalescing compact binaries in quasicircular
orbits and compared with the relevant time scale tm ¼
2π=ωmax. Thus, if tm ≪ tL, chaos will not affect the
dynamics, whereas if tL ≥ tm, the system will be chaotic.
We numerically integrate the PN equations up to tm and
show that for extremely large regions in parameter space the
system is chaotic. We conclude that in general, the quasi-
circular binary system will exhibit chaotic behavior, and a
huge number of parameters must be used to adequately
define the templates for any system of wave extraction.
Another issue worth pursuing is whether or not the

presence of 3.5PN terms in the evolution equations for the
particular case of only one spinning binary produces
chaotic behavior. Let us recall that at the 2PN level, the
Hamiltonian equations of motion are integrable [12]. Thus,
there is no chaos in the evolution of these solutions. We
perform a similar evolution in our equations and find
several nice results that are presented in this work.
Finally, we also address the following question. Given a

set of coordinates in parameter space at tm that describe the
binary system at that time, how many different conditions
in the past were such that they produce the same present
state (up to an experimental error) of the observed orbits
and spins? This is a standard problem in meteorology if one
replaces the binary system by the weather data at a given
day and one wants to know how many different weather
conditions in the past were able to produce that particular
observed data. In binary coalescence, this is also an
important issue. In many cases, one computes the final
spin of the resulting black hole of the system as the initial
intrinsic angular momentum of the system plus an integral

of a suitable expression from −∞ to the final stationary
black hole, usually defined atþ∞. To answer this question,
we integrate the PN equations backwards in time and show
that the system is also chaotic.
This article is organized as follows, in Sec. II, the PN

equations are introduced. In Sec. III, the CUDA imple-
mentation of the Runge-Kutta-Fehlberg scheme is shown,
and also we discuss about the code architecture. In Secs. IV
and V, the simulation setup and the main results are
presented, respectively. Finally, we close the work, giving
some final remarks and conclusions.

II. PN EQUATIONS

The PN equations are an approximation of the two-body
problem in general relativity (GR), which essentially
involves expansions in terms of quotients of the ratio
v=c. Like the newtonian two-body problem, it is possible
in the PN approach to describe the motion of a binary
system from its center of mass. However, this approach
depends on the initial configuration of the black holes. A
general state of this topic is described by Luc Blanchet in
the following reference [13].
In this paper, we restrict our analysis to the adiabatic

regime where the inspiral of the compact objects can be
represented as a sequence of quasicircular orbits. The
numerical evolution is made using CUDA and GPU;
the equations evolved are written up to 3.5PN order in
the angular frequency ω and also up to 2PN order in spin
effects [14,15]. In this approach, the black holes are
assumed to follow quasicircular orbits, which correspond
to orbits that would be exactly circular, that is, of a constant
radius r in the absence of spin and gravitational radiation.
The coupled PN equation system is expressed in terms of
the masses, and the orbital frequency ω notes that the
validity of this formalism can be extended at the limit
ωmax ¼ 0.05 [16,17]. Thus, this limit will be introduced as
a stop condition in our simulations, and it also useful to
define a maximum time tm ≡ 2π=ωmax.
First, we introduce the mass ratios and some needed

constants,

M ¼ m1 þm2; ð2Þ

η ¼ m1m2

ðm1 þm2Þ2
; ð3Þ

δ ¼ m1 −m2

m1 þm2

; ð4Þ

θN ¼ 1039

4620
; ð5Þ

γE ¼ 0.577215664901532860606; ð6Þ

where γE is the is Euler’s constant. The separation r
between the two black holes in the quasicircular approach
[18] is given by
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Mω ¼
�
M
r

�
3=2

: ð7Þ

The evolution equations for the spin vectors of each
black hole S1, S2, the unit Newtonian angular momentum
vector L̂N, and the orbital frequency are written in
geometrized units (G ¼ c ¼ 1) as follows:

(i) Precession equations for the spins,

_S1 ¼ Ω1 × S1; ð8Þ

_S2 ¼ Ω2 × S2; ð9Þ

where

Ω1 ¼
ðMωÞ2
2M

�
ηðMωÞ−1=3

�
4þ 3

m2

m1

�
L̂N

þM−2ðS2 − 3ðS2 · L̂NÞL̂NÞ
�
; ð10Þ

and Ω2 is obtained exchanging 1 ↔ 2.
(ii) The evolution equation for the Newtonian angular

momentum, which comes from _J ¼ 0, can be
written as

_̂LN ¼ −
ðMωÞ1=3
ηM2

ð _S1 þ _S2Þ: ð11Þ

(iii) The orbital frequency equation is given by

_ω ¼ ω2
96

5
ηðMωÞ5=3

�
1 −

743þ 924η

336
ðMωÞ2=3 −

�
1

12

X
i¼1;2

�
1

m2
i
L̂N · Si

�
113m2

i

M2
þ 75η

��
− 4π

�
Mω

þ
�
34103

18144
þ 13661

2016
ηþ 59

18
η2
�
ðMωÞ4=3 − 1

48

η

m2
1m

2
2

½247ðS1 · S2Þ − 721ðL̂N · S1ÞðL̂N · S2Þ�ðMωÞ4=3

−
1

672
ð4159þ 15876ηÞπðMωÞ5=3 þ

��
16447322263

139708800
−
1712

105
γE þ 16

3
π2
�

þ
�
−
273811877

1088640
þ 451

48
π2 −

88

3
θ̂η

�
ηþ 541

896
η2 −

5605

2592
η3 −

856

105
logð16ðMωÞ2=3Þ

�
ðMωÞ2

þ
�
−
4415

4032
þ 358675

6048
ηþ 91495

1512
η2
�
πðMωÞ7=3

�
: ð12Þ

(iv) Finally, the accumulated orbital phase is given by

Ψ ¼
Z

t

t0

ωdt ¼
Z

ω

ω0

ω

_ω
dω: ð13Þ

This phase describes the position of the two compact
objects along the instantaneous circular orbits of the
adiabatic sequence.

At any point along the inspiral, the binary is completely
described by the orbital angular frequency ω, the orbital
phase Ψ, the direction L̂N of the orbital angular momen-
tum, and the two spins S1 and S2.

III. INTRODUCING THE OMEGA–CUDA CODE

In order to solve the system of ordinary differential
equations (ODEs) described by Eqs. (8), (9), (11), and (12),
we implement a numerical method of the Runge-Kutta
(RK) family [19].
Our general code, named Omega-CUDA, contains the

following methods of the RK family: the traditional Runge-
Kutta (RK4), the Dormand-Prince scheme (DP45) [20],

and the Runge-Kutta-Fehlberg (RKF78) used as one of the
main methods of MATLAB [21].
However, in this article, all the numerical simulations are

performed using the RKF78. For this reason, its imple-
mentation in Omega-CUDA is discussed below.
The RKF78 is an explicit and embedded method of the

seventh order, with an adaptive step, which allows for
validating the integration step using an eighth order
estimation for the error. In the RKF78 algorithm, ten
coefficients are calculated for the seventh order and
twelve coefficients for the highest order solutions. In
our code, all the mentioned methods are implemented in
the kernel of the GPU; thus, some modification was
introduced in order to make a massive parallelization to
keep a good performance without affecting the output
data, ensuring the same length and the same step size for
each initial condition.

A. Omega-CUDA architecture

CUDA is a parallel computing platform introduced by
NVidia in 2006 [22]; this leverages the parallel compute
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engine in video cards to solve many complex computational
problemswith ahigherperformance than the traditionalCPU
codes. The CUDA architecture allows developing codes in
familiar languages such as C/C++, Fortran, and PYTHON

among others.
Omega-CUDA is a GPUPU code inspired by two

previously published codes [23,24]; its basic structure is
shown in the following Fig. 1,

The initial conditions are stored in a text file (ic.txt) as
an array of 10 × N, where N is the desired number of
independent initial configurations or PN systems. The file
is arranged as follows:

ω S1x S1y S1z S2x S2y S2z L̂Nx L̂Ny L̂Nz

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

On the other hand, the output file is an ASCII flat text, where all the generated data during the integration is stored; this
file will be created in the output folder in the following format:

τ ω S1x S1y S1z S2x S2y S2z L̂Nx L̂Ny L̂Nz

0 ω1
0 S11x0 S11y0 S11z0 S12x0 S12y0 S12z0 L̂1

Nx0 L̂1
Ny0 L̂1

Nz0 1st PN-system at τ ¼ 0

0 ω2
0 S21x0 S21y0 S21z0 S22x0 S22y0 S22z0 L̂2

Nx0 L̂2
Ny0 L̂2

Nz0 2nd PN-system at τ ¼ 0

h ω1
h S11xh S11yh S11zh S12xh S12yh S12zh L̂1

Nxh L̂1
Nyh L̂1

Nzh 1st PN-system at τ ¼ h

h ω2
h S21xh S21yh S21zh S22xh S22yh S22zh L̂2

Nxh L̂2
Nyh L̂2

Nzh 2nd PN-system at τ ¼ h

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

Here, the superscript indicates the PN system, and the
extra subscript refers to the integration step. The numerical
implementation made in Omega-CUDA allows us to solve
a large set of systems independently; this code can be
downloaded from the following git repository: https://
github.com/GonzaQuiro/Omega-CUDA.
The Omega-CUDA code is designed to integrate the full

set of initial conditions from t ¼ t0 ¼ 0 to the final time
t ¼ tf chosen by the user. However, it is important to note
that there is a stop condition in the CUDAkernel whichmust
be verified for each independent thread in order to ensure the
validity of the integration. Since thePNequations still hold at
ω ¼ ωmax ¼ 0.05, when a system reaches this limit, the
executionof this thread stops and returns the last valuebefore

reaching ωmax in time tm. Thus, this particular thread goes
between t0 and tm ≤ tf before the integration ends.

IV. SIMULATION SETUP

In this section, we will give some details concerning the
simulations and the coefficient used as indicator in the data
analysis. First, we must remember that the Eqs. (8), (9),
(11), and (12) are solved using the RKF78 method with a
tolerance ϵ ¼ 10−10 with a step size h ¼ 0.1, and assuming
the total massM ¼ 1 as is usual in the numerical practices.
The initial data stored in ic.txt file contain 80802

initial conditions, which correspond to 40401 points in
the diagrams introduced in the next section. These points

FIG. 1. This figure shows the architecture of Omega-CUDA; the gray blocks represent the folders where the files are located. For
simplicity, some headers are not included in the diagram.
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are computed using the initial conditions y and a perturba-
tion y þ δy, where δy is the initial separation in the solution
space, which is set to Oð109Þ.

On the other hand, we introduce the following Euclidean
norm in order to measure distance between the system and
its perturbation:

jjΔyðtÞjj2 ¼
X2
i¼1

½ðSixðyÞ − SixðyþδyÞÞ2 þ ðSiyðyÞ − SiyðyþδyÞÞ2 þ ðSizðyÞ − SizðyþδyÞÞ2�

þ ðL̂NxðyÞ − L̂NxðyþδyÞÞ2 þ ðL̂NyðyÞ − L̂NyðyþδyÞÞ2 þ ðL̂NzðyÞ − L̂NzðyþδyÞÞ2
þ ðωðyÞ − ωðyþδyÞÞ2: ð14Þ

In our simulations, the initial angular momentum L̂N ¼ ½0; 0; 1� and the orbital frequencyω ¼ 0.01will remain fixed, but
wewill vary the initial configurations of the BHs spin. These configurations sweep over two spin components, while the rest
remains fixed. For instance, an input file will look like

ω S1x S1y S1z S2x S2y S2z L̂Nx L̂Ny L̂Nz y

0.01 −1.0000000000 −1.000000000 1.0 0.0 −1.0 1.0 0.0 0.0 1.0 y1
0.01 −0.9999999990 −0.9999999990 1.0 0.0 −1.0 1.0 0.0 0.0 1.0 y1 þ δy
0.01 −1.0000000000 −0.9900000000 1.0 0.0 −1.0 1.0 0.0 0.0 1.0 y2
0.01 −0.9999999990 −0.9899999990 1.0 0.0 −1.0 1.0 0.0 0.0 1.0 y2 þ δy

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Now, we will introduce some indicators which are used
to make the data analysis and compare the separation
between y and y þ δy. One way to perform this task is by
using the deviation vector method in order to compute the
Lyapunov coefficients.
The exponents of Lyapunov are quantities that character-

ize the degree of separation of two infinitesimally close
trajectories; this is a method widely used to study chaos in
dynamic systems. Particularly, the maximal Lyapunov
exponent λ is an indicator of chaos in an ODE system.
The maximum exponent of Lyapunov for an orbit starting
at y and a near orbit y þ δy is defined by the equation [25],

λ ¼ lim
t→∞

1

t
ln

jjΔyðtÞjj
jjΔyðt0Þjj

: ð15Þ

Here, ΔyðtÞ corresponds to the vector deviation between
the orbits and jjΔyðtÞjj is the Euclidian norm given by
Eq. (14). Then a negative Lyapunov exponent is synony-
mous with stability, while a positive λ is a characteristic of
chaos [26].
In practice, there are several numerical implementations,

which can be used to compute the maximal Lyapunov
exponent [27]. One of the most extended is comparing

ln jjΔyðtÞjj
jjΔyðt0Þjj vs t; such a plot should be approximately linear,

and the slope of this curve is equal to the principal
Lyapunov exponent. The slope can be extracted just
performing a least-squares fit to the simulation data. In
our PN systems, some consideration must be taken account;

first, w ≤ wmax, and second, the norm jjδyjj ≤ 10−2 in order
to avoid the saturation problem in this method.
However, this method is too expensive computationally

speaking and cannot be applied directly in the forward
evolution since the time in which PN formalism is valid is
too short, around 70 yr. Also, the λ exponents are too small,
hindering the identification of the zones where there is a big
separation of the trajectories. So, in practice, instead of the
Lyapunov exponents, we use the ratio Q in the forward
evolution defined as (15),

QðtÞ≡ jjΔyðtÞjj
jjΔyðt0Þjj

: ð16Þ

We now define the Lyapunov time tL ≡ 1=λ as the time
scale on which nearby trajectories separate by a factor of e,
i.e.,QðtLÞ ¼ e. We then compare the Lyapunov time with a
characteristic time for the problem of coalescing compact
binaries in quasicircular orbits. In this case, the relevant
time scale is tm ¼ 2π=ωmax. Thus, if tm ≪ tL, chaos will
not affect the dynamics, whereas if tL ≥ tm, the system will
be chaotic. We numerically integrate the PN equations up to
tm and plot QðtmÞ for extremely large regions in parameter
space. Any region with QðtmÞ ≥ e yields evidence of
chaotic behavior.

V. MAIN RESULTS

A. Forward evolution

We present here the simulation results and show the main
plots of this article. As was discussed in the previous
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section, the ratio QðtmÞ (16) is plotted for different
configurations of S1x vs S1y and also S1x vs S2y. The
different regions are colored with the visible light spectrum.
The red zone in the figures are regions where jjΔyðtmÞjj is 2
or higher orders of magnitude bigger than the initial
separation jjΔyðt0Þjj, whereas the deep violet regions
represent a value of Q less than e.
The following four figures (Figs. 2 and 3) show the same

spin configurations with a different mass ratio; the initial
spins are chosen as S1 ¼ ½S1x; S1y; 1�; S2 ¼ ½1; 0;−1�.
Here, S1x; S1y and S2x; S2y always vary between ½−1; 1�,

with a separation of 0.01.
The red zones indicate that these spin configurations are

markedly far between the initial time and tωc
, which

corresponds to the validity time where the PN equations
still holds. On the other hand, some red strips can also be

observed when the ratio mass is changing. Note also that
almost all regions in the figures show chaotic behavior
since there is hardly any place with deep violet. The
situation presented above corresponds to two black holes
that do not belong to the same stellar evolution since the
spins are completely misaligned.
We now turn our attention to more symmetric situations.

For that, we restrict ourselves to an equal mass configu-
ration and just change the relative alignment between the z
component of the BHs spin as we show in the following
figure (Fig. 4),
Here, we can see a clear difference between the anti-

aligned (Fig. 4 left) and the aligned configurations (Fig. 4
right). Whereas the antialigned case is chaotic except for a
narrow band, there is a broad region in solution space with
nonchaotic behavior when the spins are aligned.

FIG. 2. The figures show the same initial spin configurations with a mass m1 ¼ 0.7, m2 ¼ 0.3 in the left figure, and m1 ¼ 0.5,
m2 ¼ 0.5 in the right one. In both plots, we “sweep” over S1x and S1y, keeping the remaining components fixed.

FIG. 3. These figures show the same previous initial configuration assuming m1 ¼ 0.4, m2 ¼ 0.6 and m1 ¼ 0.3, m2 ¼ 0.7,
respectively.
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FIG. 5. Plots for the spin configurations S1 ¼ ½S1x; S2y; 1�, S2 ¼ ½0;−1;−1� for the right plot and S1 ¼ ½S1x; S2y;−1�, S2 ¼ ½0;−1;−1�
for the left.

FIG. 6. In the left figure, S1 ¼ ½S1x; S2y; 0�, S2 ¼ ½1; 0; 0�, and the right figure is started with S1 ¼ ½S1x; S2y; 0�, S2 ¼ ½−1; 0; 0�.

FIG. 4. These figures show the separation between two between two trajectories. The initial spin configurations are S1 ¼ ½S1x; S2y; 1�,
S2 ¼ ½0; 0;−1� for the right plot and S1 ¼ ½S1x; S2y;−1�, S2 ¼ ½0; 0;−1� for the left.
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FIG. 8. Q coefficient for one spinning black hole. On the left, we plot the configuration S1 ¼ ½S1x; S1y; 0�, S2 ¼ 0. On the right, we plot
a rotation around the point (0, 0) for the previous configuration S1z ¼ 0, where the perturbations are aligned with the S1x; S1y direction.

FIG. 7. In both figures S2 ¼ 0, with the initial orientation of S1z aligned (left figure) or antialigned (right figure) with Lz.

FIG. 9. These plots showQ vs t and vs jtj for the two configurations shown in the previous table. The left plot correspond to a forward
integration of the i.c. 1 and 2 staring from ω ¼ 0.01 to ωmax, while the right plot is a backward integration in time starting from the
i.c. at tm.
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A similar situation arises when the spins are not strictly
perpendicular to the plane of motion but their z components
are parallel or antiparallel. (See Fig. 5).
Finally, and for completeness, we show two configura-

tions (Fig. 6) where the spins are perpendicular to the
orbital angular momentum.

B. One spinning black hole

In this subsection, we explore the presence of chaos
when one of the BHs has no spin (see Fig. 7).
It is possible to note similar patterns, with chaotic

regions, when the S1z component is equal to zero (see
Fig. 8 left).
We give some remarks.
(i) The nonspinning binary system is not expected to be

chaotic. This is difficult to see around the origin of
the right Fig. 8 since the parameter space is very
dense. To explicitly show the stability of the non-
spinning situation, we blow up the region near the
origin, where one can clearly see in the right Fig. 8
that it is stable around the origin.

(ii) The system of ODEs is axially symmetric when
only one spin is present; i.e., one can rotate the
coordinate system around LN and evolve an equiv-
alent system. However, the same is not true for a
perturbation of the initial configuration since the
tangent space of the initial configuration breaks the
axial symmetry. This can be seen in the left Fig. 8,
where the perturbation is assumed to be in a given
fixed direction.

(iii) Is is then clear that if the perturbation is aligned with
the initial spin direction, then we should recover the
axial symmetry in the Q factor. This is precisely
what is found, and it is also shown in the right Fig. 8.

(iv) The one spinning binary system exhibits chaotic
behavior when the initial spin is antialigned or
perpendicular to LN [28]. Since the evolution
equations are very similar to the 2PN counterpart,
we conclude that the 3.5PN equation of the angular
frequency ω is responsible for this chaotic behavior.

C. Backward evolution

The systems used to make all the plots shown in the
previous subsection evolve from zero to tm, the time where
the stop condition ωmax ¼ 0.05 is reached. However, we
can learn more about the dynamics of the PN equations by
taking the final state of each configuration, and integrating
backwards in time. The main idea is to show that for those
systems with higher values of Q, it is not possible to
determine exactly which initial state in the past yields the
present configuration.
Consider the following initial conditions taken from the

left Fig. 2:

Variables i.c. 1 i.c. 1 at tm i.c. 2 i.c. 2 at tm

ω 0.01 0.0500019587 0.01 0.0500012263
S1x 0.2 0.0657547554 −0.2 0.4349953815
S1y 0.08 0.9695664717 −0.08 −0.8451547904
S1z 1.0 0.3194012666 1.0 0.3780111087
S2x 1.0 0.6891034679 1.0 −0.0399506652
S2y 0.0 −1.2349582589 0.0 1.4013884549
S2z −1.0 0.0038091043 −1.0 0.1857803617
L̂Nx 0.0 0.2084716645 0.0 0.3886283754

L̂Ny 0.0 0.4508028070 0.0 −0.8345210881
L̂Nz 1.0 0.8679380129 1.0 0.3905669460

These initial conditions have the same spin module, but
they were chosen from two different regions. In the last
table, the i.c is ordered from highest to lowestQ from left to
right, respectively.
Now, we will perturb S1x; S1y, and S1z by 10−9 simulta-

neously in order to emulate an indeterminacy in the
measurement of S1. Then, we evolve back in time and
compute the Q factor; the results of these simulations are
shown in the following figure (Fig. 9):
We interpret the red plot on the right in the following

way: taking any initial time in the past, for example, t ≈
17000 (around 65 yr.), two very different configurations at
that time yield the same final configuration at time tm. On
the other hand, the blue plot appears have evolved from
essentially a unique configuration 65 years ago. Note the
quotientQ is higher in the chaotic zone (i.c. 1) than i.c. 2 as
is expected. This indicates that it is possible to find a data
width where all these conditions arrive essentially at the
same final state, that is, the same final point is in the
solution space.
Finally, we run a long simulation of the i.c. 1 in order to

compute the Lyapunov exponent. The result of this sim-
ulation is shown in the following figure (Fig. 10):

FIG. 10. This figure shows lnðQÞ vs jtj, the orange curve
corresponds to the least-squares fit to the simulation data. The
slope of this curve is equal to the principal Lyapunov
exponent 0.25 × 10−6.
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In the last figure, we go back around 7750 years, and
how can we see, the slope of the orange curve gives a
positive value λ ¼ 0.25 × 10−6, indicating the presence of
chaos in the system. Although this value seems small,
because there is no stop condition, in a backward evolution
it is possible to go back to longer times; so if we go back a
few million of years, a small λ will become highly relevant
and would lead to a large separation between y and the
perturbation y þ δy. In others words, the chaotic behavior
will be more noticeable.

VI. FINAL REMARKS

In this article, we have studied the coalescence of
spinning BHs in the adiabatic regime searching for the
presence of chaos. Any chaotic behavior in this regime is
passed on to the final inspiral period, and it can greatly
reduce the possibility of detection even with templates that
include spin effects. We thus focused on the stability of the
spins in the binary system.
Using a numerical algorithm, we have performed many

simulations in order to sweep the solution space for
different mass ratios. We study the presence of chaos using

the Lyapunov exponent. In particular, the Lyapunov time tL
is defined and compared with tm, the maximum time of the
computation associated with ωmax.
Our simulations show the existence of a large number of

situations where the solution space contains chaos. As a
matter of fact, only very symmetric situations with aligned
spins do not exhibit chaotic behavior. Although the spin
correlations of black hole binaries are not completely
known at this time [29], it is very likely that massive
amounts of points in the parameter space will be needed to
provide the templates in order to detect weak sources of
gravitational radiation.
Another important observation can be made by integrat-

ing the PN equations backwards in time for a long period.
Since one finds positive Lyapunov coefficients for certain
spin configurations, it then follows that there exists a wide
range of BH spin configurations in the past which will
reach the same spin configuration at tm. This fact becomes
relevant when trying to reconstruct the initial spin con-
figuration of the BH binary at a distant past from the
knowledge of the detected gravitational wave and final spin
location of the remnant.
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