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Particles interacting with a prescribed quasimonochromatic gravitational wave (GW) exhibit secular
(average) nonlinear dynamics that can be described by Hamilton’s equations. We derive the Hamiltonian of
this “ponderomotive” dynamics to the second order in the GWamplitude for a general background metric.
For the special case of vacuum GWs, we show that our Hamiltonian is equivalent to that of a free particle in
an effective metric, which we calculate explicitly. We also show that already a linear plane GW pulse
displaces a particle from its unperturbed trajectory by a finite distance that is independent of the GW phase
and proportional to the integral of the pulse intensity. We calculate the particle displacement analytically
and show that our result is in agreement with numerical simulations. We also show how the Hamiltonian of
the nonlinear averaged dynamics naturally leads to the concept of the linear gravitational susceptibility
of a particle gas with an arbitrary phase-space distribution. We calculate this susceptibility explicitly to
apply it, in a follow-up paper, toward studying self-consistent GWs in inhomogeneous media within the
geometrical-optics approximation.

DOI: 10.1103/PhysRevD.102.064012

I. INTRODUCTION

Recent detection of gravitational waves (GWs) [1–9] is
strengthening the interest of the physics community in
GW–matter interactions. Linear effects of GWs have long
been studied in literature [10–12], particularly in the
context of GW dispersion in gases and plasmas [13–19].
Some authors have also explored the associated nonlinear
phenomena, such as nonlinear memory effects [20–26], the
contribution of the GW tail from backscattering off the
background curvature [20,27], and certain GW-plasma
interactions [28–44]. However, there remains another
fundamental nonlinear effect, the “ponderomotive” effect,
that is well known for electromagnetic interactions [45–49]
but has not yet received due attention in GW research. Like
the aforementioned memory effects that have been known,
the ponderomotive effect is hereditary, i.e., depends on the
whole GW-intensity profile. But unlike the known memory
effects, the ponderomotive effect is determined by the
particle-motion equations (not by the Einstein equations),
so it can be produced even by linear GWs propagating in a
flat background spacetime.
The essence of the ponderomotive effect by GWs is as

follows. Since the particle motion equations in a given
metric are nonlinear, a prescribed GW generally induces
not just quiver but also secular (average) nonlinear dynam-
ics, regardless of whether the wave itself is linear or not.
This nonlinear dynamics of particles is generally too
complicated to study analytically, but it can be made

tractable for quasimonochromatic GWs. In this case, the
particle average motion can be described by relatively
simple Hamilton’s equations, with a Hamiltonian that
depends on the GW envelope and not on the GW phase.
To the lowest order, the GW contribution to this
Hamiltonian is of the second order in the wave amplitude.
The resulting perturbations to the particle trajectories can
be significant near sources of gravitational radiation, where
the metric oscillations are substantial. These perturbations
can also be important when particles are exposed to GWs
long enough, since the ponderomotive effect is phase-
independent and cumulative (see below). Furthermore, the
ponderomotive effect is inherently related to the linear
susceptibility of matter with respect to GWs. The corre-
sponding statement for electromagnetic interactions is
known as the K-χ theorem in plasma theory [50,51] and
has also been extended to more general Hamiltonian
systems [52–55]. Hence, calculating the ponderomotive
effect readily yields not just nonlinear forces on particles
(which may or may not be significant in practice) but also
linear dispersive properties of GWs in gases and plasmas.
In this sense, the ponderomotive effect matters even in
linear theory.
Here, we calculate the ponderomotive effect by weak

GWs on neutral particles in the general case, i.e., when the
GW envelope, wave vector, polarization, and background
metric are smooth arbitrary functions of spacetime coor-
dinates. Such general calculations are not easy to do by
directly averaging the particle-motion equations, so we
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invoke variational methods that were recently developed
within plasma theory for electromagnetic interactions
[56–59]. We derive the Hamiltonian of the particle ponder-
omotive dynamics to the second order in the GW ampli-
tude. For the special case of vacuum GWs, we show that
our Hamiltonian is equivalent to that of a free particle in an
effective metric, which we calculate explicitly. We also
show that already a linear plane GW pulse displaces a
particle from its unperturbed trajectory by a finite distance
that is independent of the GW phase and proportional to the
integral of the pulse intensity. In this sense, the ponder-
omotive effect is cumulative. We calculate the particle
displacement analytically and show that our result is in
agreement with numerical simulations. We also show how
our general Hamiltonian yields the linear gravitational
susceptibility of a particle gas with an arbitrary phase-
space distribution. We calculate this susceptibility explic-
itly to apply it, in a follow-up paper, toward studying
self-consistent GWs in inhomogeneous media within the
geometrical-optics approximation.
Our paper is organized as follows. In Sec. II, we discuss

the well-known equations of the particle motion in a
prescribed metric, which we use later on. In Sec. III, we
introduce the so-called oscillation-center formalism, which
we build upon, by analogy with how this is done for
electromagnetic interactions in plasma theory. In Sec. IV,
we calculate the ponderomotive Hamiltonian and the
ensuing equations of the average motion of a point
particle. In Sec. V, we present an alternative derivation
of the same ponderomotive Hamiltonian by treating par-
ticles as semiclassical quantum waves. We also apply these
results to derive the gravitational susceptibility of a neutral
gas. In Sec. VI, we discuss the particle motion in a linear
vacuum GW pulse as an example, and we derive the total
displacement of a particle under the influence of such a
pulse. In Sec. VII, we present test-particle simulations,
which show good agreement with our analytic theory. In
Sec. VIII, we summarize our main results. Supplementary
calculations are given in appendixes. In particular,
Appendix A details the derivation of a general theorem
used in Sec. V B, and Appendix B provides the derivation
of an alternative form of the gravitational susceptibility
introduced in Sec. V E.

II. PARTICLE MOTION EQUATIONS

A. Basic equations

Let us start with reviewing the known equations
of the particle motion in a prescribed spacetime metric
gαβðxÞ. We assume units such that the speed of light
equals one (c ¼ 1), and the metric signature is assumed
to be ð−þþþÞ. Then, the action S of a particle traveling
between two fixed spacetime locations x1;2 ≐ xðτ1;2Þ is
given by

S ¼ −m
Z

τ2

τ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβuαuβ

q
dτ: ð1Þ

Here, the symbol ≐ denotes definitions, m is the particle
mass, uα ≐ dxα=dτ is the particle four-velocity, uα ≐ gαβuβ,
and the proper time τ is defined such that

uαuα ¼ −1: ð2Þ

Equation (2) serves as a constraint on the variational
principle that governs the particle motion. Deriving the
motion equations rigorously for a constrained action can be
a subtle issue. However, we can sidestep this issue by
rewriting Eq. (1) as an unconstrained action of the form

S ¼ −m
Z

τ2

τ1

dτ; ð3Þ

with dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβdxαdxβ

q
. Since this S is not quite of the

usual form
R
Lðx; dx=dσÞdσ, the resulting motion equa-

tions are not quite the standard Euler-Lagrange equations
either. However, these equations still can be derived
straightforwardly. Below, we describe two known
approaches to this problem in detail, because we will need
to refer to details of these approaches in later sections.

B. Covariant equations of motion

One way to derive the particle-motion equations from
Eq. (3) is to proceed as follows [60]. Consider a variation
xμ → xμ þ δxμ such that

δxμðτ1Þ ¼ δxμðτ2Þ ¼ 0: ð4Þ

Then the variation of S given by Eq. (3) can be written as

δS ¼ −m
Z

τ2

τ1

δdτ

¼ m
Z

τ2

τ1

1

2dτ
δðgαβdxαdxβÞ

¼ m
Z

τ2

τ1

1

2dτ

�∂gαβ
∂xμ δxμdxαdxβ þ 2gαβdxαdδxβ

�

¼ m
Z

τ2

τ1

�
1

2

∂gαβ
∂xμ uαuβ −

duμ
dτ

�
δxμdτ: ð5Þ

[Here, we have used symmetry of gαβ; we have also
integrated by parts to obtain the last equality and used
Eq. (4) to eliminate the boundary term.] Then, the require-
ment that δS ¼ 0 for all δxμ leads to the “geodesic
equation”:
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duμ
dτ

¼ 1

2

∂gαβ
∂xμ uαuβ: ð6Þ

Equation (6) can be viewed as the Euler-Lagrange
equation corresponding to the Lagrangian

Lðx; uÞ ¼ m
2
½gαβðxÞuαuβ − 1�: ð7Þ

The second term is constant and could be omitted, but we
have introduced it to keep L ¼ −m on solutions [due to
Eq. (2); this is consistent with Eq. (3)] and to emphasize
parallels with the calculations in the later sections. Let us
also introduce the corresponding canonical momentum

pα ≐
∂L
∂uα ¼ muα ð8Þ

and the Hamiltonian H ≐ pαuα − L, or

Hðx; pÞ ¼ 1

2m
½gαβðxÞpαpβ þm2�; ð9Þ

where gαβ is the inverse of the metric, gαμgμβ ¼ δαβ . (In
later sections, we show how this Hamiltonian emerges
more naturally from first principles.) The corresponding
Hamilton’s equations, equivalent to Eq. (6), are

dxα

dτ
¼ ∂H

∂pα
;

dpα

dτ
¼ −

∂H
∂xα ; ð10Þ

or explicitly,

dxα

dτ
¼ gαβpβ

m
;

dpα

dτ
¼ −

1

2m
∂gμν
∂xα pμpν: ð11Þ

C. Noncovariant equations of motion

Another way to avoid dealing with the constraint (2) is to
give up covariance of the motion equations and consider
only the spatial dynamics instead [61,62]. Let us use Eq. (2)
to express u0 as a function of t ≐ x0, xa, and

va ≐
dxa

dt
¼ ua

u0
: ð12Þ

Specifically, u0 ¼ u0ðt;x; vÞ, where

ðu0Þ−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gabvavb − 2g0bvb − g00

q
: ð13Þ

(Roman indices span from 1 to 3, unlike Greek indices,
which span from 0 to 3. We also use bold font to denote
three-dimensional spatial variables in the index-free form.)
From Eq. (11), one has dt=dτ ¼ u0, so S can be written
as a functional of only the spatial variables, S ¼ R

Ltdt,
where Lt ¼ −m=u0. In this representation, the action is

unconstrained, so the motion equations are the usual Euler-
Lagrange equations,

d
dt

�∂Lt

∂va
�

¼ ∂Lt

∂xa : ð14Þ

Let us also introduce the corresponding Hamiltonian
formulation. The canonical momenta are defined as pa ¼
∂Lt=∂va, so pa ¼ mu0ðga0 þ gabvbÞ, or equivalently,

pa ¼ m

�
ga0

dx0

dτ
þ gab

dxb

dτ

�
¼ mgaμuμ; ð15Þ

where we used u0 ¼ dt=dτ. Therefore, these momenta are
the same as the corresponding spatial components of the
four-vector canonical momenta (8). Let us also consider
p0 ¼ mu0 and p0 ¼ mg0μuμ as functions of ðt;x;pÞ and
denote them as p0ðt;x;pÞ and p0ðt;x;pÞ respectively,

p0 ¼ mu0; p0 ¼ mu0; ð16Þ

where the latter satisfies

H½t;x;p0ðt;x;pÞ;p� ¼ 0: ð17Þ

Using Eq. (2), we can find the explicit expressions for
p0ðt;x;pÞ and p0ðt;x;pÞ. In order to proceed, consider

σab ≐ gab − ga0gb0=g00: ð18Þ

Then, one can show that [62]

p0ðt;x;pÞ ¼ mγ
ffiffiffiffiffiffiffiffiffiffi
−g00

q
; ð19Þ

p0ðt;x;pÞ ¼ −
mγffiffiffiffiffiffiffiffiffiffi
−g00

p −
g0a

g00
pa; ð20Þ

where γ ≐
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σabpapb=m2

p
. One can further find the

Hamiltonian of the spatial motion Ht ≐ pava − Lt to be

Htðt;x;pÞ ¼ −p0ðt;x;pÞ: ð21Þ

The corresponding Hamilton’s equations are

dxa

dt
¼ ∂Ht

∂pa
;

dpa

dt
¼ −

∂Ht

∂xa : ð22Þ

As can be checked, these equations are in agreement with
the covariant Hamilton’s equations (11).
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III. PARTICLES IN AN OSCILLATING
METRIC: BASIC CONCEPTS

A. Metric model

Let us suppose a metric in the form

gαβ ¼ ḡαβ þ hαβ: ð23Þ

Here, ḡαβ ¼ ḡαβðϵxÞ is a slow function of the spacetime
coordinates x and hαβ is a quasimonochromatic perturba-
tion, i.e., can be expressed as hαβ ¼ hαβ½ϵx; θðxÞ�, where ϵ
is a small parameter and the dependence on the scalar
“phase” θ is 2π-periodic. We also assume

hαβ ≪ 1; hhαβiθ ¼ 0; ð24Þ

where h…iθ denotes average over θ. Then, ḡαβ can be
understood as the θ-average part of the total metric,

ḡαβ ¼ hgαβiθ: ð25Þ

We shall attribute such metric perturbation as a GW.
Note that

kα ≐ ∂αθ ¼ ∇αθ ð26Þ

can be interpreted as the local wave vector and ϵ can be
interpreted as the geometrical-optics (GO) parameter,
which is roughly

ϵ ∼ λ=l ≪ 1: ð27Þ

Here, λ is the characteristic wavelength (in spacetime) and
l ∼ ½minf∂ḡðϵxÞ; ∂hðϵx; θÞ; ∂λðϵxÞg�−1 is the characteris-
tic inhomogeneity scale (in spacetime) of the background
metric, GW envelope, and GW wavelength.
Note that the GW is not assumed to be linear. The

quasiperiodic functions hαβ may contain multiple harmon-
ics, and any secular nonlinearity can be absorbed in the
background metric ḡαβ. Hence, the latter can be responsible
for various nonlinear memory effects additional to the
ponderomotive effect derived in this paper. But for our
purposes, ḡαβ does not need to be specified, so those
additional memory effects will not be articulated.

B. Oscillation-center coordinates

Let us consider the particle motion in the metric (23). We
shall assume that a particle oscillates many times while
traveling the distance l. [We shall also assume, to avoid
introducing additional parameters, that the corresponding
number of oscillations is Oðϵ−1Þ.] Then, its motion is
quasiperiodic in time, and one can use standard methods of
plasma theory [63] to construct new “oscillation-center”
(OC) coordinates X in which the particle dynamics is
nonoscillatory. This amounts to replacing the original

particles with OCs, or “dressed” particles, that do not
exhibit oscillations. Here, we adopt a less formal and
perhaps more intuitive approach to construct the same
transformation to the leading order in ϵ.
Let us start by introducing the local time average

hfit ≐
R
ΔT fdtR
ΔT dt

; ð28Þ

where ΔT is much larger than the oscillation period yet
small enough such that the particle motion during this time
remains approximately periodic. Then, the particle coor-
dinates xα can be separated into the slow OC coordinates
Xα ≐ hxαit and the quiver displacements x̃αðX; VÞ with
zero time average:

xα ¼ Xα þ x̃α; hx̃αit ¼ 0: ð29Þ

Similarly, we introduce the OC velocities Vα as ΔXα=ΔT,
where ΔT is used in the same way as in Eq. (28). Then, one
finds from Eq. (28) that Vα ¼ hvαit. In particular, V0 ¼ 1.
Also note that Vα can be understood as the derivatives
of Xα with respect to the OC time X0 ≡ T, i.e., Vα ¼
dXα=dT ≡ ΔXα=ΔT. Note that as introduced here, the
“infinitesimal” OC displacements are well defined only as
averages over many oscillation cycles. (However, this
limitation can be waived if a more formal approach to
the OC dynamics is adopted [63].)
Using Eq. (28) and dt ¼ u0dτ, we find that the average

of any quasiperiodic function f over t and the correspond-
ing local average over τ satisfy

hfit ¼
R
fu0dτR
u0dτ

¼ hfu0iτ
hu0iτ

: ð30Þ

Hence, the OC velocities can be expressed as follows:

Vα ¼ h_xαit ¼
huαiτ
hu0iτ

: ð31Þ

Introducing Uα ≐ huαiτ, we get Vα ¼ Uα=U0, and

uα ¼ Uα þ ũα; hũαiτ ¼ 0: ð32Þ

Also, on an interval Δτ that includes multiple oscillations
but is smaller than the characteristic scale of the OC
motion, one has

Uα ¼ ΔXα

Δτ
¼ dXα

dτ
; ð33Þ

where, like in the case of Vα, the “infinitesimal” OC
displacements are understood as nonvanishing displace-
ments averaged over many oscillations.
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The τ-average that enters the above formulas is con-
nected with the θ-average introduced in Sec. III A via

hfiτ ¼
R
2π
0 f dτ

dθ dθR
2π
0 dθ

¼ hfΩ−1iθ
hΩ−1iθ

; ð34Þ

where Ω is the “proper frequency” given by

Ω ≐
dθ
dτ

¼ kαuα: ð35Þ

Note that Ω can be also be expressed as

Ω ¼ hΩiθ þ Ω̃; Ω̃ ¼ OðhÞ; hΩ̃iθ ¼ 0: ð36Þ

Hence,Ω−1 ¼ hΩi−1θ − Ω̃hΩi−2θ þOðh2Þ, so from Eq. (34),
one obtains

hfiτ ¼ hfiθ −
hfΩ̃θiθ
hΩiθ

þOðh2Þ; ð37Þ

which yields hΩiτ − hΩiθ ¼ Oðh2Þ. Since hΩiτ ¼ kαUα,
this leads to the following formulas, which we use later:

hΩiθ ¼ kαUα þOðh2Þ; Ω̃ ¼ kαũα þOðh2Þ: ð38Þ

C. Linear and nonlinear dynamics

Using Eq. (23), it is readily seen that [ [60], Sec. 105]

gαβ ¼ ḡαβ − hαβ þ hαγhγβ þOðh3Þ; ð39Þ

where h denotes the characteristic value of hαβ andOðh3Þ is
henceforth neglected. Note that here and further, indices in
hαβ are raised using the inverse of the background metric,
ḡαβ. Using uα ¼ gαβuβ and Eq. (11), we find

duα

dτ
¼ uβ

dgαβ

dτ
−
1

2
gαβ

∂gμν
∂xβ uμuν: ð40Þ

To the lowest order in h, one has from Eq. (39) that
gαβ ≃ ḡαβ − hαβ. Also,

∂hμν
∂xβ ≃

dhμν

dθ
∂θ
∂xβ ¼

dhμν

dθ
kβ ≃

dhμν

dτ

kβ
kλUλ ; ð41Þ

where we have substituted Eq. (35) and ignored OðϵÞ
corrections. Hence, Eq. (40) leads to

duα

dτ
≃ −Uβ

dhαβ

dτ
þ gαβkβ
2kλUλ UμUν

dhμν

dτ
: ð42Þ

This can be readily integrated, yielding Uα ≃ const and

ũα ≃ −hανUν þ hμν
kαUμUν

2kλUλ ; ð43Þ

where, within the assumed accuracy, the indices are
manipulated using the background metric.
Note that this result is only a linear approximation. If the

second and higher orders in h are retained in the equation
for uα, one finds that a particle experiences a nonvanishing
average force from a rapidly oscillating GW, if the GW is
inhomogeneous or propagates in an inhomogeneous back-
ground. In analogy with electromagnetic interactions, this
effect can be understood as the average gravitational
ponderomotive force. Our goal is to calculate this force
and to describe its effects on the particle motion by
studying the OC, or secular, dynamics.
One way to derive OC equations is by directly time-

averaging the equations for ðx; vÞ, which can be obtained
from Eq. (11). However, this approach is cumbersome
and not particularly instructive. More instructive is the
average-Lagrangian approach, which yields a manifestly
Hamiltonian form of the motion equation. (This approach is
also used to describe the dynamics of plasma particles in
intense electromagnetic waves; see Ref. [56] for an over-
view.) Below, we consider two versions of this approach. In
Sec. IV, we present a “point-particle” calculation, which is
more direct but less tractable. In Sec. V, we present a “field-
theoretical” calculation, which is less straightforward but
yields the same results more transparently and in a form
advantageous for the applications discussed in Sec. V E.

IV. OSCILLATION-CENTER DYNAMICS:
POINT-PARTICLE APPROACH

Let us express the action (1) as S ¼ R
Lτdτ (the integra-

tion limits are henceforth omitted for brevity), where1

Lτ ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβðxÞuαuβ

q
: ð44Þ

After substituting Eq. (29), one can express Lτ as a sum of
L̄τ ≐ hLτiτ, which is a slow function of the OC variables,
and L̃τ, whose local τ-average over rapid oscillations is zero.
Since L̃τ does not contribute to S at large enough τ, one
obtains

S ≃
Z

L̄τdτ: ð45Þ

A. Average action

To calculate L̄τ, we proceed as follows. From Eqs. (23)
and (32), we have

1As discussed in Sec. II A, the function Lτ is not a Lagrangian.
It is used here only as a means to calculate the value of S, which is
the same in Eqs. (1) and (3). How to infer motion equations from
this value will be discussed in Secs. IV B and IV C.
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Lτ ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðḡαβ þ hαβÞðUα þ ũαÞðUβ þ ũβ

q
Þ

¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡαβUαUβ

q ffiffiffiffiffiffiffiffiffiffiffiffi
1þ φ

p
; ð46Þ

where

φ ¼ hαβUαUβ þ 2ḡαβũðαUβÞ þ 2hαβũðαUβÞ þ ḡαβũαũβ

ḡαβUαUβ :

Hence, to the second order in h,

L̄τ ¼ L̄ð0Þ
τ

�
1þ hφiτ

2
−
hφ2iτ
8

�
; ð47Þ

L̄ð0Þ
τ ≐ −m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡαβUαUβ

q
: ð48Þ

Within the same accuracy,

hφiτ ¼ −ḡαβhũαũβiτ − hhαβũαiτUβ

− hhαβũβiτUα − hhαβiτUαUβ; ð49Þ

hφ2iτ ¼ 4UαUβhũαũβiτ þ 4UαUβUγhhαβũγiτ
þ hhαβhγδiτUαUβUγUδ; ð50Þ

where we used that to the leading (zeroth) order in h, one

has ḡαβUαUβ ≃ −1. Hence, L̄τ ¼ L̄ð0Þ
τ þ L̄ð2Þ

τ , where

2L̄ð2Þ
τ

m
¼ hũαũβiτðḡαβ þUαUβÞ
þ hhαβũγiτðδαγUβ þ δβγUα þ UαUβUγÞ

þ 1

4
hhαβhγδiτUαUβUγUδ

þ hhαβiτUαUβ: ð51Þ

The terms in the first three angular brackets are already of
order h2, so averaging over τ can be replaced with
averaging over θ. Then, using Eq. (43), we obtain

hũαũβiτ ¼ εμνγδUνUδ

�
ḡαμḡβγ þ UμUγkαkβ

4ðkλUλÞ2

−
ḡμαUγkβ

kλUλ −
ḡγβUμkα

kλUλ

�
; ð52Þ

hhαβũγiτ ¼ εαβμνUν

�
Uμkγ

2kλUλ − ḡμγ
�
; ð53Þ

hhαβhγδiτ ¼ εαβγδ; ð54Þ

where εαβγδ is given by

εαβγδ ≐ hhαβhγδiθ: ð55Þ

Also, from Eqs. (37) and (38), one has

hhαβiτ ≃ −
hhαβΩ̃iθ
kλUλ ¼ −

hhαβkγũγiθ
kλUλ

¼ εαβμνUν

kλUλ

�
kμ −

Uμkγkγ

2kλUλ

�
; ð56Þ

where we used Eq. (53) in the last step. Then, from
Eq. (51), one obtains

L̄ð2Þ
τ ¼ −εαβγδ

m
2

�
ḡβγUαUδ þ kμkμ

4ðkλUλÞ2U
αUβUγUδ

−
1

kλUλU
αUβkγUδ

�
; ð57Þ

where we have used the symmetry of εαβγδ with respect to
index permutations α ↔ β, γ ↔ δ, and ðα; βÞ ↔ ðγ; δÞ.
Finally, the OC action can be expressed as

S ≃
Z

ð−mþ L̄ð2Þ
τ Þdτ̄; ð58Þ

dτ̄ ≐
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡαβdXαdXβ

q
; ð59Þ

where we have used Eq. (33) and ignored higher order
terms.

B. Covariant equations of motion

Using Eq. (58), the OC motion equations are obtained as
follows. First, note that

δS ¼ −m
Z

δdτ̄|fflfflfflfflfflffl{zfflfflfflfflfflffl}
δS1

þ
Z

δL̄ð2Þ
τ dτ̄|fflfflfflfflfflffl{zfflfflfflfflfflffl}

δS2

þ
Z

L̄ð2Þ
τ δdτ̄|fflfflfflfflfflffl{zfflfflfflfflfflffl}
δS3

: ð60Þ

The first integral in Eq. (60) is calculated as in Eq. (5),

δS1 ¼ m
Z �

1

2

∂ḡαβ
∂Xμ U

αUβ −
dUμ

dτ̄

�
δXμdτ̄: ð61Þ

The second integral in Eq. (60) is as usual,

δS2 ¼
Z �∂L̄ð2Þ

τ

∂Xμ −
d
dτ̄

�∂L̄ð2Þ
τ

∂Uμ

��
δXμdτ̄: ð62Þ

The third integral in Eq. (60) is [cf. Eq. (5)]

DEEPEN GARG and I. Y. DODIN PHYS. REV. D 102, 064012 (2020)

064012-6



δS3 ¼ m
Z �

1

2

∂ḡαβ
∂Xμ U

αUβδXμ þUμ
dδXμ

dτ̄

�
L̄ð2Þ
τ dτ̄

¼ δS4 −
Z

dL̄ð2Þ
τ

dτ̄
UμδXμdτ̄; ð63Þ

where

δS4 ¼ m
Z �

1

2

∂ḡαβ
∂Xμ U

αUβ −
dUμ

dτ̄

�
L̄ð2Þ
τ δXμdτ̄: ð64Þ

To the zeroth order in h, OCs travel along geodesics of
the unperturbed metric. Thus, the expression in parentheses

in Eq. (64) is oðh0Þ and L̄ð2Þ
τ ¼ Oðh2Þ. Therefore, δS4 ¼

oðh2Þ and will be neglected. Then, from δS ¼ 0 and
Eqs. (61)–(63), one obtains the following equation:

m

�
1

2

∂ḡαβ
∂Xμ U

αUβ −
dUμ

dτ̄

�
þ ∂L̄ð2Þ

τ

∂Xμ −
d
dτ̄

�∂L̄ð2Þ
τ

∂Uμ

�

¼ dL̄ð2Þ
τ

dτ̄
Uμ: ð65Þ

Let us introduce the new time τ̂ via dτ̂=dτ̄ ¼ 1þ ζ,
where ζ ¼ Oðh2Þ is yet to be defined. Then,

m
�
1

2

∂ḡαβ
∂Xμ W

αWβ −
dWμ

dτ̂

�
þ ∂L̄ð2Þ

τ

∂Xμ

−
d
dτ̂

�∂L̄ð2Þ
τ

∂Wμ

�
¼ mC; ð66Þ

where Wα ≐ dXα=dτ̂ and

C ≃Wμ
d
dτ̂

�
ζ þ L̄ð2Þ

τ

m

�
− 2ζ

�
1

2

∂ḡαβ
∂Xμ W

αWβ −
dWμ

dτ̂

�
:

Like in Eq. (64), the expression in the second pair
of parentheses is oðh0Þ and ζ ¼ Oðh2Þ, so the second term
is oðh2Þ and is, therefore, negligible. Then, adopting

ζ ¼ −L̄ð2Þ
τ =m, or

dτ̂=dτ̄ ¼ 1 − L̄ð2Þ
τ =m; ð67Þ

allows one to neglect the whole C. In this case, Eq. (66) can
be viewed as an Euler–Lagrange equation

d
dτ̂

� ∂L
∂Wμ

�
¼ ∂L

∂Xμ ð68Þ

that corresponds to the following Lagrangian [cf. Eq. (7)]:

LðX;WÞ ¼ m
2
½ḡαβðXÞWαWβ − 1� þ L̄ð2Þ

τ ðX;WÞ: ð69Þ

Let us also introduce the OC canonical momentum

Pα ≐
∂L
∂Wα ¼ mḡαβWβ þ ∂L̄ð2Þ

τ

∂Wα ð70Þ

and the OC Hamiltonian H ≐ PαWα − L. Since L̄ð2Þ
τ is

small, a general theorem [ [64], Sec. 40] yields that

H ¼ Hð0Þ þHð2Þ; Hð2Þ ¼ −L̄ð2Þ
τ ð71Þ

to the first nonvanishing order in the perturbation. The
function Hð0Þ is the unperturbed Hamiltonian, i.e.,

Hð0ÞðX;PÞ ¼ 1

2m
½ḡαβðXÞPαPβ þm2�; ð72Þ

and one can adopt the lowest-order approximation Wα ≃
ḡαβPβ=m when evaluating L̄ð2Þ

τ . This leads to

Hð2Þ ¼εαβγδ

2m

�
ḡβγT αδþ

kμkμ

4ðkλPλÞ2
T αβT γδ−

T αβ

kλPλ
kγPδ

�
; ð73Þ

where we have introduced

T αβ ≐ PαPβ: ð74Þ
The OC motion equations corresponding to the
Hamiltonian (71) are

dXα

dτ̂
¼ ∂HðX;PÞ

∂Pα
;

dPα

dτ̂
¼ −

∂HðX;PÞ
∂Xα : ð75Þ

C. Noncovariant equations of motion

Let us also derive these equations in a noncovariant form
that, in particular, will be useful in Sec. V D. Using Eq. (33)
for U0, one can rewrite the OC action (45) as S ¼ R

L dT,
with L ≐ L̄τ=U0, and consider S as a functional of XðTÞ.
Like in Sec. II C, the variational principle for the spatial
dynamics is unconstrained, so L can be understood as the
spatial Lagrangian. This leads to the usual Euler-Lagrange
equations,

d
dT

� ∂L
∂Va

�
¼ ∂L

∂Xa : ð76Þ

The spatial Lagrangian can be explicitly written as

L ¼ Lð0Þ −Φ, where Lð0ÞT ¼ −mðU0Þ−1 and (cf. Sec. II C)

ðU0Þ−1 ≐
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡ00 − 2ḡ0aVa − ḡabVaVb

q
; ð77Þ

Φ ≐ −L̄ð2Þ
τ =U0: ð78Þ

The corresponding OC canonical momenta are
Pa ≐ ∂L=∂Va, and the corresponding OC Hamiltonian is
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H≐PaVa−L. Then [cf. Eqs. (17) and (21)], HðT;X;PÞ ¼
−P0ðT;X;PÞ þOðh2Þ, where P0 solves

Hð0ÞðT;X;P0ðT;X;PÞ;PÞ ¼ 0; ð79Þ

or explicitly [cf. Eq. (20)],

P0ðT;X;PÞ ¼ −
mγ̄ffiffiffiffiffiffiffiffiffiffi
−ḡ00

p −
ḡ0a

ḡ00
Pa; ð80Þ

where γ̄≐
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̄abPaPb=m2

p
and σ̄ab≐ ḡab− ḡa0ḡb0=ḡ00.

Using the same theorem [[64], Sec. 40] as the one used
in Sec. IV B, one finds

HðT;X;PÞ ¼ −P0ðT;X;PÞ þΦðT;X;PÞ; ð81Þ

and one can adopt P0 ¼ mU0 when evaluating Φ, so

Φ ¼ εαβγδ

2P0

�
ḡβγT αδ þ

kμkμ

4ðkλPλÞ2
T αβT γδ −

T αβ

kλPλ
kγPδ

�
P0¼P0

:

ð82Þ
The corresponding Hamilton’s equations are

dXa

dT
¼ ∂H

∂Pa
;

dPa

dT
¼ −

∂H
∂Xa : ð83Þ

According to Eq. (81), −P0 serves as the free-motion OC
Hamiltonian, and Φ serves as the interaction Hamiltonian
in the OC representation, or the ponderomotive energy.
Similar terms in electromagnetic wave-particle interactions
are often called ponderomotive potentials; however,
remember that Φ depends not only on T and X but on
P too, so it is not a potential per se but a more general part
of the OC Hamiltonian.

V. OSCILLATION-CENTER DYNAMICS:
FIELD-THEORETICAL APPROACH

The calculations above are somewhat ad hoc, and the
final results [e.g., Eq. (82)] are not particularly transparent.
Here, we propose an alternative derivation of these results
that, hopefully, makes themmore understandable. The form
of the equations derived below will also be advantageous
for the discussion in Sec. V E.

A. Semiclassical particle model

Let us consider a particle as a quantum wave. Since we
are not interested in spin effects, we shall assume that this
wave is governed by the Klein-Gordon equation,

gαβ∇α∇βψ −m2ψ ¼ 0 ð84Þ

(assuming units such that ℏ ¼ 1), for it is a simple enough
equation that leads to Eq. (11) in the classical limit, as

discussed below. Since this equation is linear and has real
coefficients, the scalar state function ψ can be assumed real
or complex. We choose the latter for simplicity. (The other
choice leads to the same final results up to notation.) Then,
the corresponding action is S ¼ R

L d4x, where L is the
Lagrangian density given by

L ¼
ffiffiffiffiffiffi−gp
2m

ðgαβ∂αψ
�∂βψ −m2jψ j2Þ ð85Þ

and g ≐ det gαβ. Let us represent the wave function in the
Madelung form, ψ ¼ aeiϑ (where a and ϑ are real), and
assume the semiclassical (i.e., GO) limit, in which p ≐ ∇ϑ
is much larger than ∇a. Then, L can be approximated as

L ¼ −IðxÞHðx;∇ϑÞ; ð86Þ

where I ≐ a2
ffiffiffiffiffiffi−gp

and H is given by Eq. (9). There are
two motion equations that flow from here. One is
δS½I ; ϑ�=δI ¼ 0, which leads to

Hðx;∇ϑÞ ¼ 0: ð87Þ

This can be recognized as a Hamilton-Jacobi equation [64],
withH serving as the Hamiltonian; hence, it readily leads to
Eq. (10) for point particles. The other motion equation is
δS½I ; ϑ�=δϑ ¼ 0, which leads to

∂
∂xα

�
IðxÞ ∂Hðx; pÞ

∂pα

�
¼ 0: ð88Þ

Equation (88) is understood as a continuity equation that
represents the action conservation for Klein-Gordon waves,
i.e., particle conservation. For more details on linear GO as
a field theory, see for example, Refs. [65–67].

B. Semiclassical OC model

Now, let us consider how a semiclassical particle is
affected by metric oscillations produced by a GW. To do
that, let us represent the Hamiltonian as

H ≃Hð0Þ þHð1Þ þHð2Þ; ð89Þ

where HðnÞ ¼ OðhnÞ and higher-order terms are neglected.
Then using Eqs. (9) and (39), we find that Hð0Þ is given by
Eq. (72) and

Hð1Þ ¼ −
1

2m
hαβpαpβ; ð90Þ

Hð2Þ ¼ 1

2m
hαγhγβpαpβ: ð91Þ

Then, like in Sec. III C, the particle action can be
approximated as S ¼ R

L̄ d4x. Here, L̄ ¼ hLix serves as
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the Lagrangian density of the slow motion and, under the
GO approximation adopted in Sec. III A, it can also be
written as L̄ ¼ hLiθ.
The remaining calculation is similar to that in

Refs. [54,55], where it was studied how adiabatic propa-
gation of a general linear wave (in our case, a semiclassical
particle) is affected by a general quasiperiodic modulation
(in our case, a GW) of the general underlying medium (in
our case, a background metric). For completeness, we also
rederive the corresponding general L̄ in Appendix A and
show that

L̄ ¼ −ĪHðx;∇ϑ̄Þ; ð92Þ

where Ī ≐ hIiθ, ϑ̄ ≐ hϑiθ, and

H ¼ Hð0Þ þ hHð2Þiθ −
kμ
2

∂
∂Pμ

�hHð1Þ2iθ
kλUλ

�
: ð93Þ

Here, all HðnÞ are evaluated on ðx; PÞ, P ≐ ∇ϑ̄, and

UλðX;PÞ ≐ ∂Hð0ÞðX;PÞ
∂Pλ

; ð94Þ

or in our case specifically,

UλðX;PÞ ¼ ḡλαðXÞPα=m: ð95Þ

The functionH is introduced here anew but it is, in fact, the
same function as in Eq. (71). Indeed, let us express it as
H ¼ Hð0Þ þHð2Þ, whereHð0Þ is given by Eq. (72) andHð2Þ
is inferred from Eq. (93) to be

Hð2Þ ¼ εαβγδ

2m

�
ḡβγT αδ −

kμ
4

∂
∂Pμ

�
T αβT γδ

kλPλ

��
; ð96Þ

with εαβγδ given by Eq. (55) and T αβ given by Eq. (74).
A direct calculation shows that Eq. (96) is equivalent
to Eq. (73).
Like in the case of the original system (Sec. VA), the

corresponding motion equations are as follows:

Hðx;∇ϑ̄Þ ¼ 0; ð97Þ

∂
∂xα

�
ĪðxÞ ∂Hðx; PÞ

∂Pα

�
¼ 0: ð98Þ

Equation (97) can be recognized as a Hamilton-Jacobi
equation in which H serves as a Hamiltonian. Hence, it
readily leads to the same Hamilton’s equations that we
derived earlier, Eq. (75). Equation (98) is a continuity
equation that represents the action conservation of the
waves governed by the Lagrangian density (92), i.e., OC
conservation. We shall revisit this equation in Sec. V D.

C. Noncovariant representation

Since Hð2Þ is small, Eq. (97) indicates that at a given
ðT;X;PÞ, the value of P0 remains close to P0ðT;X;PÞ that
is defined via Eq. (79). By Taylor-expandingHðX;PÞ in P0

around P0ðT;X;PÞ, one obtains

HðX;PÞ ¼ Hð2ÞðT;X;P0ðT;X;PÞ;PÞ
þ U0ðT;X;PÞ½P0 − P0ðT;X;PÞ�; ð99Þ

where we have introduced [cf. Eq. (94)]

U0ðT;X;PÞ ≐
�∂HðX;PÞ

∂P0

�
P0¼P0ðT;X;PÞ

¼ U0ðT;X;PÞ þOðh2Þ: ð100Þ

Up to Oðh4Þ, Eq. (99) can also be expressed as

HðX;PÞ ≃ U0ðT;X;PÞ½P0 þ HðT;X;PÞ�; ð101Þ

where H ≐ −P0 þΦ and

ΦðT;X;PÞ ¼ Hð2ÞðT;X;P0ðT;X;PÞ;PÞ
U0ðT;X;PÞ : ð102Þ

This agrees with Eq. (77) [in conjunction with Eq. (71)] and
Eq. (81). Hamilton’s equations corresponding to the
approximate Hamiltonian (101) are as follows:

dT
dτ̂

¼ ∂H
∂P0

¼ U0; ð103Þ

dXa

dτ̂
¼ ∂H

∂Pa
¼ U0

∂H
∂Pa

; ð104Þ

dP0

dτ̂
¼ −

∂H
∂T ¼ −U0

∂H
∂T ; ð105Þ

dPa

dτ̂
¼ −

∂H
∂Xa ¼ −U0

∂H
∂Xa ; ð106Þ

where we used that, according to Eqs. (97) and (101),

P0 þ Hðt;X;PÞ ¼ 0: ð107Þ

Let us substitute Eq. (103) into Eqs. (104) and (106). Then,
one arrives exactly at Hamilton’s equations (83), with H
serving as the Hamiltonian of the spatial OC dynamics.
Using Eq. (96), one finds that

Φ ¼ εαβγδ

2P0

�
ḡβγT αδ −

kμ
4

∂
∂Pμ

�
T αβT γδ

kλPλ

��
P0¼P0

: ð108Þ

This formula is in agreement with Eq. (82) that we derived
earlier within a different approach.
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D. Interaction action

Using S ¼ R
L̄ d4x [where x ¼ ðt;xÞ], Eq. (92) for L̄,

Eq. (101) for H, and P0 ¼ ∂tϑ̄, one can write

S ¼ −
Z

N½∂tϑ̄þ Hðx;∇ϑ̄Þ� ffiffiffiffiffiffi
−ḡ

p
d4x; ð109Þ

where ḡ ≐ det ḡαβ, ∇ ≐ ∂x, and N ≐ ĪU0=
ffiffiffiffiffiffi
−ḡ

p
, or

explicitly,

NðxÞ ≐ ĪðxÞU0½x;∇ϑ̄ðxÞ�ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞp : ð110Þ

[Note that x in Eq. (109) is a dummy integration variable
and can just as well be replaced with X.] As flows from
Eq. (98), N satisfies a continuity equation,

1ffiffiffiffiffiffi
−ḡ

p ∂ð ffiffiffiffiffiffi
−ḡ

p
NÞ

∂t þ∇ · ðNVÞ ¼ 0; ð111Þ

where V ≐ ∂H=∂P is the OC velocity [cf. Eq. (83)].
This means that N is the OC density, possibly up to
some constant factor C. To calculate this factor, let us
consider the point-particle limit, Nðt;xÞ ¼ Cδ½x;XðtÞ�,
where δðx0;x00Þ ≐ δðx0 − x00Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ḡðt;x0Þp
is the general-

ized delta function [68]. Then, one can show [69] that S
given by Eq. (109) becomes

S ¼ C
Z �

Pa
dXa

dT
− HðT;X;PÞ

�
dT: ð112Þ

[This can beviewed as a step towards an alternative derivation
of Eq. (83), which readily flow from Eq. (112).] By
comparing Eq. (112) with the canonical action of a point
object with phase-space coordinates ðX;PÞ [64], one finds
that C ¼ 1.
Let us express the OC action as S ¼ Sð0Þ þ Sð2Þ, where

Sð0Þ is the action of a “free” OC and Sð2Þ describes the OC
interaction with a GW, which is of the second order in h.
Specifically, we have

Sð0Þ ¼
Z

N½∂tϑ̄þH0ðx;∇ϑ̄Þ� ffiffiffiffiffiffi
−ḡ

p
d4x; ð113Þ

Sð2Þ ¼ −
Z

NΦ
ffiffiffiffiffiffi
−ḡ

p
d4x: ð114Þ

It can also be convenient to rewrite Sð2Þ explicitly as a
bilinear functional of hμν. To do this, let us rewrite Φ as

Φ ≐ −
1

2
εαβγδAαβγδ ≡ −

1

2
hhαβAαβγδhγδi ð115Þ

and accordingly,

Sð2Þ ¼ 1

2

Z
NεαβγδAαβγδ

ffiffiffiffiffiffi
−ḡ

p
d4x: ð116Þ

The linear coefficient Aαβγδ that enters these formulas is
specific up to any tensor that is antisymmetric with respect
to index permutations α ↔ β, γ ↔ δ, or ðα; βÞ ↔ ðγ; δÞ.
Let us defineAαβγδ such that it be symmetric with respect to
all these permutations. Then,

Aαβγδ ¼ −
1

4P0

�
Qαβγδ − kμ

∂
∂Pμ

�
T αβT γδ

kλPλ

��
P0¼P0

; ð117Þ

Qαβγδ≐ ðḡβγT αδþ ḡαδT βγþ ḡαγT βδþ ḡβδT αγÞP0¼P0
: ð118Þ

The significance of Eq. (116) and the physical meaning of
Aαβγδ is explained below.

E. Gravitational susceptibility

Let us now consider the actionSΣ of the “gas + spacetime”
system,

SΣ ¼ SEH þ
X
n

½Sð0Þn þ Sð2Þn � ¼ SEH þ Sð2Þgas þ
X
n

Sð0Þn :

Here, SEH is the Einstein-Hilbert action [60], the summation
index n denotes contributions from individual particles,

and Sð2Þgas ≐
P

n S
ð2Þ
n is the total interaction action. Using

Eq. (116), the latter can also be expressed as

Sð2Þgas ¼ 1

2

Z
εαβγδXαβγδ

ffiffiffiffiffiffi
−ḡ

p
d4x; ð119Þ

Xαβγδ ≐
Z

Aαβγδðx;PÞFðx;PÞdP; ð120Þ

where F is the OC phase-space distribution normalized
to the OC density,

R
Fðx;PÞdP ¼ NðxÞ. This can be used

to calculate, both conveniently and systematically, self-
consistent metric oscillations in a particle gas from the
least-action principle δSΣ ¼ 0. In particular, equations for
hαβ (equivalent to the linearized Einstein equations) can be

derived from δSΣ=δhαβ ¼ 0. Since Sð0Þn are independent of
hμν, one obtains

δ

δhαβ

�
SEH þ 1

2

Z
εαβγδXαβγδ

ffiffiffiffiffiffi
−ḡ

p
d4x

�
¼ 0: ð121Þ

Within the linear approximation, the OC distribution F is a
prescribed function. (In plasma theory, such distribution is
commonly called f0.) Then,Xαβγδ is prescribed too, and one
readily obtains a self-contained linear equation for hαβ. Such
calculations will be presented in a follow-up paper. Related
calculations for electromagnetic waves are given, for exam-
ple, in Refs. [56–59].
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Note that Xαβγδ serves in Eq. (121) as the gravitational
susceptibility. Correspondingly, Aαβγδ is the per-particle
gravitational susceptibility, or gravitational polarizability.
Remarkably, these linear response functions emerge from a
nonlinear (second-order) ponderomotive energy (115), in
which sense ponderomotive effects are never actually
negligible in linear theory. (The fundamental connection
between the ponderomotive energy and the linear response
function is known as the K-χ theorem [50–52]; see also
Refs. [53–55,70].) Also note that the gravitational suscep-
tibility can be rewritten as follows:

Xαβγδ ¼
Z �

k ·∂PF
ω−k ·V

T αβT γδþFJαβγδ

�
dP

4ðP0Þ2 ; ð122Þ

Jαβγδ ≐
∂ðT αβT γδÞ

∂P0

−
ḡ00

P0
T αβT γδ − P0Qαβγδ: ð123Þ

(For the derivation and an alternative representation of
Jαβγδ, see Appendix B.) Here, the integrand is evaluated at
P0 ¼ P0ðPÞ (80) and the parametrization kα ¼ ð−ω;kÞ is
assumed, as usual.
Finally, note the following. Although we assumed,

throughout the paper, that kα is real and that particles
are not resonant to a wave [here, this implies Fðx;PÞ ¼ 0
where ω ¼ k · V], our Eqs. (121)–(123) are not actually
restricted to this case. Our gravitational susceptibility can
be extended to complex kα via analytic continuation as
usual [71], and resonant particles can be systematically
introduced using the formalism from Ref. [70] such that the
final answer is not affected. For example, Eq. (121)
correctly describes the kinetic Jeans instability as one of
GW modes, as will be shown in a follow-up paper. (An
alternative, nonrelativistic approach to the kinetic Jeans
instability can be found in Ref. [72].)

VI. EXAMPLE: GRAVITATIONAL
PONDEROMOTIVE EFFECTS IN VACUUM

A. Effective metric

As a special case, let us consider a linear GW pulse in
vacuum. Then, the dispersion relation is kαkα ¼ 0, and we
also assume the Lorenz gauge hαβkβ ¼ 0. As seen from
Eq. (73), Hð2Þ is simplified then and is given by

Hð2Þ ¼ εαβγδ

2m
ḡβγT αδ: ð124Þ

[As a reminder, εαβγδ is given by Eq. (55).] By substituting
Eq. (124) into Eq. (71) and using Eq. (72) for Hð0Þ, one
finds that

H ¼ 1

2m
ðGαβPαPβ þm2Þ; ð125Þ

Gαβ ≐ ḡαβ þ εαμνβḡμν: ð126Þ

Since Gαβ depends only on X and not on P, it can be
considered as the effective metric seen by a particle in a
GW, or more precisely, the OC metric. [In principle,H can
always be brought to the form (125), but in the general case,
Gαβ depends on P, in which case it cannot be considered
simply as a metric.]

B. Motion equations and conservation laws

For example, let us assume that our background metric
ḡαβ is the Minkowski metric2 ηαβ ¼ ηαβ ¼ diagf−1; 1; 1; 1g
and the perturbation is expressed in the transverse traceless
(TT) gauge,

hαβ ¼

0
BBB@

0 0 0 0

0 hþ h× 0

0 h× hþ 0

0 0 0 0

1
CCCA ; ð127Þ

where we have assumed that the spatial wave vector is
parallel to the x3 axis. Along with the vacuum dispersion
relation, this implies kα ¼ ð−ω; 0; 0;ωÞ. Also notice that

hαγhγβ ¼ ðh2þ þ h2−Þη̂αβ; ð128Þ

where we have introduced the transverse part of the
Minkowski metric, η̂αβ ¼ η̂αβ ≐ diagf0; 1; 1; 0g. Then,

Gαβ ¼ ηαβ þ qη̂αβ; q ≐ hh2þ þ h2×iθ: ð129Þ

Let us also assume that ω ¼ const and the GW pulse is
one-dimensional, i.e., its envelope depends only on t and x3

but not on x1 or x2. In vacuum, such envelope can depend
on x only through the wave phase θðxÞ. This special case is
tractable also without the OC formalism, but the OC
formalism makes the solution particularly straightforward.
Indeed, in this case, one has

∂q
∂T ¼ −

∂q
∂Xk

¼ −ωq0ðθÞ ð130Þ

and P⊥ is conserved. (Here and further, k denotes compo-
nents parallel to k and ⊥ denotes components perpendicular
to k.) Also, Eqs. (75) yield

dX⊥
dτ̂

¼ ½1þ qðθÞ�P⊥
m

;
dXk
dτ̂

¼ Pk
m

; ð131Þ

2According to the Einstein equations, a linear perturbation
hαβ entails a nonlinear modification of the background metric
(for example, see Ref. [73]), which then can cause additional
memory effects (for example, see Refs. [24–26]). We are not
concerned with such effects here or in Sec. VII. These sections
are intended only to illustrate applications of the OC formalism
for prescribed gαβ.
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dPk
dτ̂

¼ −
dP0

dτ̂
¼ −

ω

2m
P2⊥q0ðθÞ: ð132Þ

Note that Eq. (132) implies

P0 þ Pk ¼ const: ð133Þ

Since Ω̄ ≐ dθðXÞ=dτ̂ can be written as

Ω̄ ¼ kα
dXα

dτ̂
¼ kα

m
GαβPβ

¼ ω

m
ð−η00P0 þ η33PkÞ ¼

ω

m
ðP0 þ PkÞ; ð134Þ

it also remains constant, according to Eq. (133). Then,
Eq. (132) can be integrated, yielding that the parallel
momentum Pk is given by

Pk ¼ P̂k −
ω

2mΩ̄
P2⊥qðθÞ; ð135Þ

where P̂ ≐ Pðτ̂0Þ is the initial momentum and τ̂0 is the initial
moment of time. Also, Eq. (134) for Ω̄ yields

Ω̄ ¼ ωγ̂ð−1þ β̂kÞ; ð136Þ

where γ̂ is the initial Lorentz factor and β̂ is the initial velocity
normalized to c,

γ̂ ≐ −
P̂0

m
; β̂ ≐

P̂
mγ̂

: ð137Þ

Using Eq. (133), one also finds ΔP0 ¼ −ΔPk. A similar
calculation for a charge interacting with a one-dimensional
vacuum electromagnetic pulse is discussed in Ref. [74]; see
also Sec. 47 in Ref. [60].

C. Secular displacement

The above equations indicate that a particle in a GW
pulse experiences a secular displacement Δl from its
unperturbed trajectory,

Δl⊥ ≐ ΔX⊥ − P̂⊥Δτ̂=m; ð138Þ

Δlk ≐ ΔXk − P̂kΔτ̂=m; ð139Þ

just like a point charge does in an electromagnetic
pulse [60][Sec. 47]. [The symbols Δ denote the changes
of the corresponding quantities between τ̂0 → −∞ and
τ̂ → þ∞. Assuming ω > 0, this corresponds to θðτ̂0Þ →
þ∞ and θðτ̂Þ → −∞, since in this case Ω̄ < 0.] From
Eq. (131), together with Eq. (135) for Pk and (136) for Ω̄,
one obtains

Δl⊥ ¼ Qβ̂⊥
ωð1 − β̂kÞ

; Δlk ¼
Q
2ω

�
β̂⊥

1 − β̂k

�
2

: ð140Þ

Here, Q is a dimensionless integral proportional to the
integral of the GW intensity,

Q ≐
Z

∞

−∞
qðθÞdθ ∼ qcωlp; ð141Þ

qc is the characteristic value of q, and lp is the character-
istic length of the GW pulse. Note that a long enough pulse
can cause a substantial displacement even at small qc. Also,

x X

z Z

a

FIG. 1. Numerical comparison of the particle and OC dynamics
in a quasimonochromatic GW: blue–particle dynamics as pre-
dicted by Eq. (11); red–the OC dynamics as predicted by Eq. (75);
black dashed–Δlx and Δlk predicted by Eq. (140). The GW
propagates along the z axis in vacuum with the Minkowski
background metric. Spacetime scales are measured in units
ω−1, so theGWwavevector is kα ¼ ð−1; 0; 0; 1Þ. The perturbation
metric is given by Eq. (127), with hþ ¼ h× ¼ aðθÞ=2,
aðθÞ ¼ 0.1½sechðϵθ þ 13Þ − sechðϵθ þ 7Þ� sin θ, θ ¼ kαxα, and
ϵ ¼ 0.1 serves as the small GO parameter (Sec. III A). The initial
velocity is uαðτ ¼ 0Þ ¼ ð ffiffiffi

2
p

; 1; 0; 0Þ. Shown are (a) the transverse
displacements relative to the unperturbed trajectory, ΔxðτÞ and
ΔX½τ̂ðτÞ�; (b) the longitudinal displacements relative to the
unperturbed trajectory, ΔzðτÞ and ΔZ½τ̂ðτÞ�; (c) the strength of
the metric perturbation at the particle location, a½θðτÞ�. The
function τ̂ðτÞ is calculated by numerical integration of Eq. (67),
but in fact, the difference between τ̂ and τ is negligible for
these figures.
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Δlk ≥ 0; thus, the gravitational ponderomotive effect
displaces a particle away from the GW source. Finally,
note that Δl vanishes in the frame where β̂⊥ ¼ 0; however,
a relative displacement for objects with different β̂ is
generally nonzero.

VII. NUMERICAL SIMULATIONS

In order to test our OC theory, we have numerically
solved the OC Hamilton’s equations [Eq. (75)] and com-
pared the results with the corresponding numerical solu-
tions of the first-principle equations [Eq. (11)]. Figure 1
shows the comparison for a linear vacuum GW pulse like
those discussed in Sec.VI.We also compare the total particle
displacement Δl from its unperturbed trajectory with the
analytic expressions (140). Figure 2 shows a similar com-
parison for an arbitrary nonvacuum GW pulse. (In this case,
particle trapping is possible [75,76], so there is no general
analytic expression for Δl to compare with.) In both cases,
the OC theory demonstrates good agreement with first-
principle modeling of the particle dynamics. Numerical
simulations for other GW profiles, polarizations, wave
vectors, and initial conditions have also been done (not
shown) and demonstrate good agreement with the theory
as well.
Finally, as a general comment on test-particle simula-

tions in a prescribed GW, notice the following [77].

For certain initial conditions and GW polarization, the
effect of the wave can be obscured by the coordinate effects
in the chosen gauge. For example, the coordinates of a
particle that is at rest in the TT gauge remain constant.
However, the distance between two such particles can
nevertheless change.

VIII. CONCLUSIONS

Here, we study the nonlinear secular dynamics of
particles in prescribed quasimonochromatic GWs in a
general background metric and for general GW dispersion
and polarization. We show that this “ponderomotive”
dynamics can be described by Hamilton’s equations (75),
and we derive the corresponding Hamiltonian H to the
second order in the GW amplitude. We find that H ¼
Hð0Þ þHð2Þ, where Hð0Þ is given by Eq. (72) and Hð2Þ is
given by Eq. (73), or equivalently, Eq. (96). For the special
case of vacuum GWs, we show that our Hamiltonian H is
equivalent to that of a free particle in an effective metric
(126). We also show that already a linear plane GW pulse
displaces a particle from its unperturbed trajectory by a
finite distance that is independent of the GW phase
and proportional to the integral of the pulse intensity.
We calculate the particle displacement analytically
[Eq. (140)] and show that our result is in agreement with
numerical simulations of the particle motion in a prescribed
metric. We also show how the Hamiltonian of the nonlinear
averaged dynamics naturally leads to the concept of the
linear gravitational susceptibility of a particle gas with an
arbitrary phase-space distribution. This can be understood
as a manifestation of the so-called K-χ theorem known
from plasma physics. We calculate the gravitational
susceptibility explicitly [Eq. (122)] to apply it, in a
follow-up paper, toward studying self-consistent GWs
in inhomogeneous media within the geometrical-optics
approximation.
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APPENDIX A: FIELD-THEORETICAL
CALCULATION OF THE OC HAMILTONIAN

Here, we present a detailed field-theoretical derivation
of the general OC Hamiltonian of a semiclassical particle
that oscillates in a low-amplitude “modulating” wave. The
calculation is similar to that in Ref. [54] (see also Ref. [55]),
but the starting point is somewhat different, so we shall
restate the whole argument. Suppose a semiclassical
particle with quantum phase ϑ and action density I.
Assume that the particle Lagrangian density L is given
by Eq. (86) and the Hamiltonian H has the form

x X

z Z

a

FIG. 2. Same as Fig. 1 but for nonvacuum dispersion and
polarization, namely, kα ¼ ð−1; 0; 0; ffiffiffi

2
p Þ and hαβ ¼ δαβaðθÞ=2.
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Hðx; pÞ ¼ H̄ðx; pÞ þ H̃ðx; pÞ; ðA1Þ

H̄ðx; pÞ ≐ hHðx; pÞiθ; hH̃ðx; pÞiθ ¼ 0; ðA2Þ

where H̃ðx; pÞ ¼ H̃½ϵx; p; θðxÞ� is small (cf. Sec. III A) and
the average over the modulating-wave phase θ is taken at
fixed momentum p ≐ ∇ϑ. (We assume units such that
ℏ ¼ 1.) Using

ϑ ¼ ϑ̄þ ϑ̃; ϑ̄ ≐ hϑiθ; ðA3Þ

I ¼ Ī þ Ĩ ; Ī ≐ hIiθ; ðA4Þ

we obtain the following formula for L:

L ¼ −ðĪ þ ĨÞ½H̄ðx; Pþ p̃Þ þ H̃ðx; Pþ p̃Þ�; ðA5Þ

where P ≐ ∇ϑ̄ and p̃ ≐ ∇ϑ̃. Taylor-expanding H̄ and H̃ in
p̃ ¼ OðH̃Þ and neglecting terms of the third and higher
orders in H̃, we obtain

L ≃ −Ī H̄−Ī
∂H̄
∂Pα

p̃α −
Ī
2

∂2H̄
∂Pα∂Pβ

p̃αp̃β − Ī H̃

− Ī
∂H̃
∂Pα

p̃α − Ĩ H̄−Ĩ
∂H̄
∂Pα

p̃α − Ĩ H̃; ðA6Þ

where all functions are evaluated at ðx; PÞ. From the part of
Eq. (87) that is linear in the modulating-wave amplitude,
one has

H̃ þ p̃λUλ ¼ 0; Uλ ≐ ∂H̄=∂Pλ; ðA7Þ

so the two last terms on the right-hand side on Eq. (A6)
mutually cancel out. [The definition of Uλ given here is in
agreement with Eq. (94) within the assumed accuracy.]
Then, the average Lagrangian density, L̄ ≐ hLiθ, is given
by L̄ ¼ −ĪH, where

H ¼ H̄ þ 1

2

∂2H̄
∂Pα∂Pβ

hp̃αp̃βiθ þ
�∂H̃
∂Pα

p̃α

	
θ

: ðA8Þ

Just like H in Eq. (86) serves as a Hamiltonian for a
particle, H serves as a Hamiltonian for the particle OC.
The oscillating part of the particle phase is quasiperiodic

in θ, so ϑ̃ ¼ ϑ̃½ϵx; θðxÞ�. Then, p̃α ≃ kα∂θϑ̃, where kα ≐∇αθ is the wave vector of the modulating wave.
Equation (A7) gives ∂θϑ̃ ≃ −H̃=ðkλUλÞ, so

p̃α ≃ −
kαH̃
kλUλ : ðA9Þ

By substituting this into Eq. (A8), we then obtain

H ≃ H̄ þ ∂2H̄
∂Pα∂Pβ

kαkβhH̃2iθ
2ðkλUλÞ2 −

kα
kλUλ

�∂H̃
∂Pα

H̃

	
θ

¼ H̄ þ kα
2

�
kβ

∂Uβ

∂Pα

hH̃2iθ
ðkλUλÞ2 −

1

kλUλ

∂hH̃2iθ
∂Pα

�

¼ H̄ −
kα
2

∂
∂Pα

�hH̃2iθ
kλUλ

�
; ðA10Þ

where we have used ∂2H̄=∂Pα∂Pβ ¼ ∂Uβ=∂Pα. For H of
the form (89), this readily leads to Eq. (93).

APPENDIX B: DERIVATION OF THE
GRAVITATIONAL SUSCEPTIBILITY

Here, we derive an explicit formula for the gravitational
susceptibility Xαβγδ of a particle gas from Eqs. (117) and
(119). By combining the latter equations, one obtains

Xαβγδ ¼ −
Z

dP
F
4P0

�
Qαβγδ − kμ

∂
∂Pμ

�
T αβT γδ

kρPρ

��
P0¼P0

¼ ðX1 þ X2 þ X3Þαβγδ; ðB1Þ

where we have introduced [assuming the parametrization
kα ¼ ð−ω;kÞ]

ðX1Þαβγδ ≐ −
Z

dP
F
4P0

Qαβγδ; ðB2Þ

ðX2Þαβγδ ≐ −
ω

4

Z
dP

F
P0

� ∂
∂P0

�
T αβT γδ

kρPρ

��
P0¼P0

; ðB3Þ

ðX3Þαβγδ ≐
ka
4

Z
dP

F
P0

� ∂
∂Pa

�
T αβT γδ

kρPρ

��
P0¼P0

¼ ka
4

Z
d4PδðP0−P0Þ

F
P0

∂
∂Pa

�
T αβT γδ

kρPρ

�
: ðB4Þ

The latter equality permits taking the corresponding
integral by parts. (Remember that the derivative ∂=∂Pμ

is taken at fixed Pν≠μ, which are independent only in the
four-dimensional momentum space.) Specifically, one
obtains
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ðX 3Þαβγδ ¼ −
ka
4

Z
d4Pδ0ðP0 − P0Þ

�
−
∂P0

∂Pa

�
F
P0

T αβT γδ

kρPρ
−
ka
4

Z
d4PδðP0 − P0Þ

∂
∂Pa

�
F
P0

�
T αβT γδ

kρPρ

≃ −
ka
4

Z
d4Pδ0ðP0 − P0Þ

FVa

P0

T αβT γδ

kρPρ
−
ka
4

Z
dP

∂
∂Pa

�
F
P0

��
T αβT γδ

kρPρ

�
P0¼P0

¼
Z

d4PδðP0 − P0Þk · V
F
4P0

∂
∂P0

�
T αβT γδ

kρPρ

�
−
ka
4

Z
dP
P0

� ∂F
∂Pa

−
F
P0

∂P0

∂Pa

��
T αβT γδ

kρPρ

�
P0¼P0

¼
Z

dP
4P0

�
ðk · VÞF ∂

∂P0

�
T αβT γδ

kρPρ

�
− ka

� ∂F
∂Pa

−
F
P0

∂P0

∂Pa

��
T αβT γδ

kρPρ

��
P0¼P0

; ðB5Þ

where we have used −∂P0=∂Pa ≃ V [see Eqs. (81) and (83)]. Then, notice that

kρPρ ¼ kρPρ ¼ P0ðk · V − ωÞ; ðB6Þ

so the sum of Eqs. (B3) and (B5) can be written as follows:

ðX2 þ X3Þαβγδ ¼
Z

dP
4P0



F
P0

�
kρPρ

∂
∂P0

�
T αβT γδ

kρPρ

�
þ k0

T αβT γδ

kρPρ

�
−
�
ka

∂F
∂Pa

−
F
P0

ka
∂P0

∂Pa

��
T αβT γδ

kρPρ

��
P0¼P0

:

Notice that ∂ðkρPρÞ=∂P0 ¼ k0, so the whole expression in the square brackets is simply ∂ðT αβT γδÞ=∂P0. Also,

∂P0

∂Pa
¼ ∂

∂Pa
ðḡ00P0 þ ḡ0bPbÞ ¼ ḡ00

∂P0

∂Pa
þ ḡ0a ≃ ḡ0a − ḡ00Va; ðB7Þ

ka
∂P0

∂Pa
¼ ḡ0aka − ḡ00kaVa ¼ k0 − ḡ00k0 − ḡ00kaVa ¼ k0 þ ḡ00ðω − k · VÞ ¼ k0 −

ḡ00

P0
kρPρ: ðB8Þ

Then, the above equation can be written as follows:

ðX2 þ X3Þαβγδ ¼
Z

dP
4P0

�
F
P0

∂ðT αβT γδÞ
∂P0

−
�
ka

∂F
∂Pa

þ ḡ00kρPρ
F

ðP0Þ2
��

T αβT γδ

kρPρ

��
P0¼P0

¼
Z

dP
4ðP0Þ2

k · ∂PF
ω − k · V

ðT αβT γδÞP0¼P0
þ
Z

dP
4ðP0Þ2 F

�∂ðT αβT γδÞ
∂P0

−
ḡ00

P0
T αβT γδ

�
P0¼P0

: ðB9Þ

Together with Eqs. (B1) and (B2), this leads to

Xαβγδ ¼
Z

dP
4ðP0Þ2

�
k · ∂PF
ω − k · V

T αβT γδ þ FJαβγδ

�
P0¼P0

; ðB10Þ

where

Jαβγδ ≐
∂ðT αβT γδÞ

∂P0

−
ḡ00

P0
T αβT γδ − P0Qαβγδ ¼

∂ðT αβT γδÞ
∂P0

− ðP0Þ2
�

T αβT γδ

m2 þ σ̄abPaPb
þQαβγδ

�
: ðB11Þ

Here, the tensor σ̄ab ≐ ḡab − ḡa0ḡb0=ḡ00 (same as in Sec. IV C) is introduced by analogy with σab in Eq. (18), and one can
further substitute

∂ðT αβT γδÞ
∂P0

¼ δ0αPβPγPδ þ Pαδ
0
βPγPδ þ PαPβδ

0
γPδ þ PαPβPγδ

0
δ: ðB12Þ
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