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Particles interacting with a prescribed quasimonochromatic gravitational wave (GW) exhibit secular
(average) nonlinear dynamics that can be described by Hamilton’s equations. We derive the Hamiltonian of
this “ponderomotive” dynamics to the second order in the GW amplitude for a general background metric.
For the special case of vacuum GWs, we show that our Hamiltonian is equivalent to that of a free particle in
an effective metric, which we calculate explicitly. We also show that already a linear plane GW pulse
displaces a particle from its unperturbed trajectory by a finite distance that is independent of the GW phase
and proportional to the integral of the pulse intensity. We calculate the particle displacement analytically
and show that our result is in agreement with numerical simulations. We also show how the Hamiltonian of
the nonlinear averaged dynamics naturally leads to the concept of the linear gravitational susceptibility
of a particle gas with an arbitrary phase-space distribution. We calculate this susceptibility explicitly to
apply it, in a follow-up paper, toward studying self-consistent GWs in inhomogeneous media within the

geometrical-optics approximation.
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I. INTRODUCTION

Recent detection of gravitational waves (GWs) [1-9] is
strengthening the interest of the physics community in
GW-matter interactions. Linear effects of GWs have long
been studied in literature [10-12], particularly in the
context of GW dispersion in gases and plasmas [13-19].
Some authors have also explored the associated nonlinear
phenomena, such as nonlinear memory effects [20-26], the
contribution of the GW tail from backscattering off the
background curvature [20,27], and certain GW-plasma
interactions [28-44]. However, there remains another
fundamental nonlinear effect, the “ponderomotive” effect,
that is well known for electromagnetic interactions [45-49]
but has not yet received due attention in GW research. Like
the aforementioned memory effects that have been known,
the ponderomotive effect is hereditary, i.e., depends on the
whole GW-intensity profile. But unlike the known memory
effects, the ponderomotive effect is determined by the
particle-motion equations (not by the Einstein equations),
so it can be produced even by linear GWs propagating in a
flat background spacetime.

The essence of the ponderomotive effect by GWs is as
follows. Since the particle motion equations in a given
metric are nonlinear, a prescribed GW generally induces
not just quiver but also secular (average) nonlinear dynam-
ics, regardless of whether the wave itself is linear or not.
This nonlinear dynamics of particles is generally too
complicated to study analytically, but it can be made
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tractable for quasimonochromatic GWs. In this case, the
particle average motion can be described by relatively
simple Hamilton’s equations, with a Hamiltonian that
depends on the GW envelope and not on the GW phase.
To the lowest order, the GW contribution to this
Hamiltonian is of the second order in the wave amplitude.
The resulting perturbations to the particle trajectories can
be significant near sources of gravitational radiation, where
the metric oscillations are substantial. These perturbations
can also be important when particles are exposed to GWs
long enough, since the ponderomotive effect is phase-
independent and cumulative (see below). Furthermore, the
ponderomotive effect is inherently related to the linear
susceptibility of matter with respect to GWs. The corre-
sponding statement for electromagnetic interactions is
known as the K-y theorem in plasma theory [50,51] and
has also been extended to more general Hamiltonian
systems [52-55]. Hence, calculating the ponderomotive
effect readily yields not just nonlinear forces on particles
(which may or may not be significant in practice) but also
linear dispersive properties of GWs in gases and plasmas.
In this sense, the ponderomotive effect matters even in
linear theory.

Here, we calculate the ponderomotive effect by weak
GWs on neutral particles in the general case, i.e., when the
GW envelope, wave vector, polarization, and background
metric are smooth arbitrary functions of spacetime coor-
dinates. Such general calculations are not easy to do by
directly averaging the particle-motion equations, so we
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invoke variational methods that were recently developed
within plasma theory for electromagnetic interactions
[56-59]. We derive the Hamiltonian of the particle ponder-
omotive dynamics to the second order in the GW ampli-
tude. For the special case of vacuum GWs, we show that
our Hamiltonian is equivalent to that of a free particle in an
effective metric, which we calculate explicitly. We also
show that already a linear plane GW pulse displaces a
particle from its unperturbed trajectory by a finite distance
that is independent of the GW phase and proportional to the
integral of the pulse intensity. In this sense, the ponder-
omotive effect is cumulative. We calculate the particle
displacement analytically and show that our result is in
agreement with numerical simulations. We also show how
our general Hamiltonian yields the linear gravitational
susceptibility of a particle gas with an arbitrary phase-
space distribution. We calculate this susceptibility explic-
itly to apply it, in a follow-up paper, toward studying
self-consistent GWs in inhomogeneous media within the
geometrical-optics approximation.

Our paper is organized as follows. In Sec. II, we discuss
the well-known equations of the particle motion in a
prescribed metric, which we use later on. In Sec. III, we
introduce the so-called oscillation-center formalism, which
we build upon, by analogy with how this is done for
electromagnetic interactions in plasma theory. In Sec. IV,
we calculate the ponderomotive Hamiltonian and the
ensuing equations of the average motion of a point
particle. In Sec. V, we present an alternative derivation
of the same ponderomotive Hamiltonian by treating par-
ticles as semiclassical quantum waves. We also apply these
results to derive the gravitational susceptibility of a neutral
gas. In Sec. VI, we discuss the particle motion in a linear
vacuum GW pulse as an example, and we derive the total
displacement of a particle under the influence of such a
pulse. In Sec. VII, we present test-particle simulations,
which show good agreement with our analytic theory. In
Sec. VIII, we summarize our main results. Supplementary
calculations are given in appendixes. In particular,
Appendix A details the derivation of a general theorem
used in Sec. V B, and Appendix B provides the derivation
of an alternative form of the gravitational susceptibility
introduced in Sec. V E.

II. PARTICLE MOTION EQUATIONS

A. Basic equations

Let us start with reviewing the known equations
of the particle motion in a prescribed spacetime metric
Gop(x). We assume units such that the speed of light
equals one (c = 1), and the metric signature is assumed
to be (—+++). Then, the action S of a particle traveling
between two fixed spacetime locations xj, = x(7y,) is
given by

S=-m /T2 \/ —Yapu®uldr. (1)
7

Here, the symbol = denotes definitions, m is the particle
mass, u* = dx“/dr is the particle four-velocity, u,, = ga/,uﬂ ,
and the proper time 7 is defined such that

uu* = —1. (2)

Equation (2) serves as a constraint on the variational
principle that governs the particle motion. Deriving the
motion equations rigorously for a constrained action can be
a subtle issue. However, we can sidestep this issue by
rewriting Eq. (1) as an unconstrained action of the form

S=—m /72 dr, (3)

with dr = ,/—gaﬁdx“dxﬁ . Since this S is not quite of the

usual form [ £(x,dx/dos)ds, the resulting motion equa-
tions are not quite the standard Euler-Lagrange equations
either. However, these equations still can be derived
straightforwardly. Below, we describe two known
approaches to this problem in detail, because we will need
to refer to details of these approaches in later sections.

B. Covariant equations of motion

One way to derive the particle-motion equations from
Eq. (3) is to proceed as follows [60]. Consider a variation
x* — x* + 6x* such that

oxt (1) = ox(r2) = 0. )

Then the variation of § given by Eq. (3) can be written as

58 = —m/fz sde

n 1
= —— 5(gupdxdx?
m\/[; 2dT (gaﬂ X X )

| Bg 7
= — | =Z sx#dxdx’ + 2g,5dxdSxP
" ll 2dr (8)6" v T 20ap v )

% (100 du
B A P —
mll (2 o Y df)éx"d‘r. (5)

[Here, we have used symmetry of g,z we have also
integrated by parts to obtain the last equality and used
Eq. (4) to eliminate the boundary term.] Then, the require-
ment that 65 =0 for all 6x* leads to the “geodesic
equation”:
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du, 10g
D aff  « Vi 6
c 200 " (6)

Equation (6) can be viewed as the Euler-Lagrange
equation corresponding to the Lagrangian
_ m a,,p
L 1) = 2 gop (x)uul = 1] (7)
The second term is constant and could be omitted, but we
have introduced it to keep L = —m on solutions [due to
Eq. (2); this is consistent with Eq. (3)] and to emphasize
parallels with the calculations in the later sections. Let us
also introduce the corresponding canonical momentum

oL
Pa= 50

= Mi, (8)

and the Hamiltonian H = p,u® — L, or

Hxp) = 5 [ Wpapy + ). (9)

where g%

is the inverse of the metric, g*g,; = 5. (In
later sections, we show how this Hamiltonian emerges
more naturally from first principles.) The corresponding

Hamilton’s equations, equivalent to Eq. (6), are

dx* OH d OH
—= , Pa _ _ —_—, (10)
dr  Jp, dr ox®
or explicitly,
ooty L0,
dr m dr 2m oxe PrPv

C. Noncovariant equations of motion

Another way to avoid dealing with the constraint (2) is to
give up covariance of the motion equations and consider
only the spatial dynamics instead [61,62]. Let us use Eq. (2)

to express u” as a function of # = x%, x¢, and
dx¢  u?
ax S U 12
v dr u (12)
Specifically, u® = u’(z, x,v), where
(u)~t = \/_gabvayb — 240sv” — goo- (13)

(Roman indices span from 1 to 3, unlike Greek indices,
which span from 0 to 3. We also use bold font to denote
three-dimensional spatial variables in the index-free form.)
From Eq. (11), one has dt/dz = u°, so S can be written
as a functional of only the spatial variables, S = f L.dt,
where L, = —m/u’. In this representation, the action is

unconstrained, so the motion equations are the usual Euler-
Lagrange equations,

d (0L oL,
dr (81}“) o OxY’ (14)

Let us also introduce the corresponding Hamiltonian
formulation. The canonical momenta are defined as p, =
OL,/0v", so p, = mu®(g,o + gu»v?), or equivalently,

dx® dx? P
Pa _m<gaOE+gabE> = Mgg,u", (15)
where we used U® = dt/dr. Therefore, these momenta are
the same as the corresponding spatial components of the
four-vector canonical momenta (8). Let us also consider
p’ = mu® and py = mgp,u* as functions of (¢,x,p) and
denote them as p°(z,x,p) and py (7, x, p) respectively,

p® = mu°, Py = mu, (16)
where the latter satisfies
H[I?X’pO(Lx’p)’p] =0. (17)

Using Eq. (2), we can find the explicit expressions for
p°(z,x,p) and py(z, x,p). In order to proceed, consider

Gab = guh _ gaogbO/gOO' (18)

Then, one can show that [62]

p’(z.x,p) = my\/ —g%, (19)

my gOa

—g% _ﬁp“’

where y = /1 + ¢*’p,p,/m*. One can further find the

Hamiltonian of the spatial motion H, = p, v — L, to be

Po(7.X,p) = — (20)

H,(1,%,p) = =po(1, X, p). (21)

The corresponding Hamilton’s equations are

& OH,  dp,  OH,
dt  9p,’ dt  ox*’

(22)

As can be checked, these equations are in agreement with
the covariant Hamilton’s equations (11).
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III. PARTICLES IN AN OSCILLATING
METRIC: BASIC CONCEPTS

A. Metric model

Let us suppose a metric in the form

g{l/)’ = g(lﬁ + h(lﬂ' (23)

Here, g, = Gop(€x) is a slow function of the spacetime
coordinates x and /4 is a quasimonochromatic perturba-
tion, i.e., can be expressed as /1,5 = h,glex, O(x)], where €
is a small parameter and the dependence on the scalar
“phase” 0 is 2z-periodic. We also assume

haﬁ < 1, <ha/j>(-) =0, (24)
where (...), denotes average over . Then, g,; can be
understood as the #-average part of the total metric,

ga/} = <ga/)’>0' (25)

We shall attribute such metric perturbation as a GW.
Note that

k, = 0,0 =V,0 (26)

can be interpreted as the local wave vector and e can be
interpreted as the geometrical-optics (GO) parameter,
which is roughly

e~AC <K 1. (27)

Here, A is the characteristic wavelength (in spacetime) and
¢ ~ [min{9g(ex), Oh(ex, ), 0A(ex)}]" is the characteris-
tic inhomogeneity scale (in spacetime) of the background
metric, GW envelope, and GW wavelength.

Note that the GW is not assumed to be linear. The
quasiperiodic functions h,s may contain multiple harmon-
ics, and any secular nonlinearity can be absorbed in the
background metric g,;. Hence, the latter can be responsible
for various nonlinear memory effects additional to the
ponderomotive effect derived in this paper. But for our
purposes, g,; does not need to be specified, so those
additional memory effects will not be articulated.

B. Oscillation-center coordinates

Let us consider the particle motion in the metric (23). We
shall assume that a particle oscillates many times while
traveling the distance #. [We shall also assume, to avoid
introducing additional parameters, that the corresponding
number of oscillations is O(e™!).] Then, its motion is
quasiperiodic in time, and one can use standard methods of
plasma theory [63] to construct new “oscillation-center”
(OC) coordinates X in which the particle dynamics is
nonoscillatory. This amounts to replacing the original

particles with OCs, or “dressed” particles, that do not
exhibit oscillations. Here, we adopt a less formal and
perhaps more intuitive approach to construct the same
transformation to the leading order in e.

Let us start by introducing the local time average

(=, 28)

where AT is much larger than the oscillation period yet
small enough such that the particle motion during this time
remains approximately periodic. Then, the particle coor-
dinates x* can be separated into the slow OC coordinates
X* = (x*), and the quiver displacements X*(X,V) with
zero time average:
x* = X%+ X, (x*), = 0. (29)

Similarly, we introduce the OC velocities V* as AX?*/AT,
where AT is used in the same way as in Eq. (28). Then, one
finds from Eq. (28) that V¥ = (¢%),. In particular, V° = 1.
Also note that V* can be understood as the derivatives
of X% with respect to the OC time X0=T, ie., V2=
dX?/dT = AX?/AT. Note that as introduced here, the
“infinitesimal” OC displacements are well defined only as
averages over many oscillation cycles. (However, this
limitation can be waived if a more formal approach to
the OC dynamics is adopted [63].)

Using Eq. (28) and dr = u’dz, we find that the average
of any quasiperiodic function f over ¢ and the correspond-
ing local average over 7 satisfy

_ Jfulde _ (ful),

= = ) 30
<f>t f MOdT <u0>T ( )
Hence, the OC velocities can be expressed as follows:
o _ fay )
Ve = (x%), = ) (31)
Introducing U* = (u®),, we get V¢ = U%/U°, and
u* = U+ u?, (%), = 0. (32)

Also, on an interval Az that includes multiple oscillations
but is smaller than the characteristic scale of the OC
motion, one has

AX*  dX“
U* = = , 33
At dr (33)

where, like in the case of V%, the “infinitesimal” OC
displacements are understood as nonvanishing displace-
ments averaged over many oscillations.
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The z-average that enters the above formulas is con-
nected with the #-average introduced in Sec. IIT A via

0 f@dl (e,
fle =" =, 34
V=T @, Y
where Q is the “proper frequency” given by
de
Q=—=k,u’
=k (35)

Note that € can be also be expressed as

Q=(Q),+Q, Q=0(h), (Q)y=0. (36)

Hence, Q7' = (Q);! — Q(Q);? + O(h?), so from Eq. (34),
one obtains
Q
.= tne =Ygt o). ()

which yields (Q), — (Q), = O(h?). Since (Q), = k,U?,
this leads to the following formulas, which we use later:

(Q)g = kU + O(h?), Q = k,i* + O(h?). (38)

C. Linear and nonlinear dynamics
Using Eq. (23), it is readily seen that [ [60], Sec. 105]

g =g — h* + e hP + O(h?), (39)

where & denotes the characteristic value of A,z and O(h?) is
henceforth neglected. Note that here and further, indices in
hgp are raised using the inverse of the background metric,

g*. Using u® = ¢*u; and Eq. (11), we find

dus  dg o
_ . __ 0P
dr “p dr 2 g‘l OxP Hut

(40)

To the lowest order in A, one has from Eq. (39) that
g ~ g% — h*P. Also,

on dh'* 00

A dn* kg
oxP — do oxP

~ 41
o 7 dr kU» (41)

where we have substituted Eq. (35) and ignored O(e)
corrections. Hence, Eq. (40) leads to

du® dh N 9" kg dh
2k, U FTY dr

de ~ 7 dr

(42)

This can be readily integrated, yielding U* ~ const and

k*U,U,
2k; Uﬂ ’

i~ —hU, + (43)

where, within the assumed accuracy, the indices are
manipulated using the background metric.

Note that this result is only a linear approximation. If the
second and higher orders in 4 are retained in the equation
for u®, one finds that a particle experiences a nonvanishing
average force from a rapidly oscillating GW, if the GW is
inhomogeneous or propagates in an inhomogeneous back-
ground. In analogy with electromagnetic interactions, this
effect can be understood as the average gravitational
ponderomotive force. Our goal is to calculate this force
and to describe its effects on the particle motion by
studying the OC, or secular, dynamics.

One way to derive OC equations is by directly time-
averaging the equations for (x, v), which can be obtained
from Eq. (11). However, this approach is cumbersome
and not particularly instructive. More instructive is the
average-Lagrangian approach, which yields a manifestly
Hamiltonian form of the motion equation. (This approach is
also used to describe the dynamics of plasma particles in
intense electromagnetic waves; see Ref. [56] for an over-
view.) Below, we consider two versions of this approach. In
Sec. IV, we present a “point-particle” calculation, which is
more direct but less tractable. In Sec. V, we present a “field-
theoretical” calculation, which is less straightforward but
yields the same results more transparently and in a form
advantageous for the applications discussed in Sec. V E.

IV. OSCILLATION-CENTER DYNAMICS:
POINT-PARTICLE APPROACH

Let us express the action (1) as § = [ L.dr (the 1ntegra—
tion limits are henceforth omitted for brevity), where'

L, = —my/—gop(x)u“ul. (44)

After substituting Eq. (29), one can express L, as a sum of
L, = (L,),, which is a slow function of the OC variables,
and L, whose local z-average over rapid oscillations is zero.
Since L, does not contribute to S at large enough 7, one
obtains

S~ / L.dr. (45)

A. Average action

To calculate L., we proceed as follows. From Egs. (23)
and (32), we have

'As discussed in Sec. I A, the function L, is not a Lagrangian.
Itis used here only as a means to calculate the value of S, which is
the same in Egs. (1) and (3). How to infer motion equations from
this value will be discussed in Secs. IV B and IV C.
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LT = _m\/_(gaf)’ + h(lﬂ)(Ua + ﬁa)(Uﬂ + ft/})
= —MH/ —gaﬁUaUﬁ\/ 1 + @, (46)
where

U UP + 25,50 " UP) + 20,5t UP) + §pii it
- GapUU” '

Hence, to the second order in £,

ZT _ [_,S—O) (1 + % _ <(p82>1) , (47)

LO = —m\/—g,,UUP. (48)

Within the same accuracy,

<§0>r = _gaﬂ<ﬁaﬁﬂ>r - <haﬁﬁa>rUﬁ
— (ot ) U = (hap) UUP, (49)

(9?), = AU Us(ail), + 4AU°UPU (hy5it"),
+ <haﬁhy§>TUaUﬁUyU6’ (50)

where we used that to the leading (zeroth) order in %, one
has g,,U*U” ~ —1. Hence, L, = L9+ 1P where

7 (2)
2L
m = <u uﬂ>r(gaﬂ + UaUﬂ>
+ (o) (8507 + §U“ + UUPU, )
1
+Z (haghys) U UPUTUP
+ (hyp) UUP. (51)

The terms in the first three angular brackets are already of
order h?, so averaging over 7 can be replaced with
averaging over 0. Then, using Eq. (43), we obtain

e . = UrUTk* kP
(), = EuysU U5[9 Hglr +W
Fur kP’ gyﬂ UFk®
22 (52)
2 2
Utk
hzil") = U ——73" ], 53
< aplt >7: Eapuv <2kiUl g”) ( )
<ha[)’hy5>r = 8(1/3757 (54)

where €,4,5 is given by

Eapys = <haﬂh75>6' (55)

Also, from Egs. (37) and (38), one has

<haﬁQ>9 o <haﬁk7ﬁy>9

hop)r = — =-
< (lﬁ>T k/1 U,{ k,lU/I
Eap U” Urk k7
= Kt — , 56
k,U* ( 2k, U* (56)

where we used Eq. (53) in the last step. Then, from
Eq. (51), one obtains

LY SUSUPUTU?

— —¢ @ gﬂrUaUﬁ + ”7”
L) 4(k,U*)

1
7 UaUﬁkYUﬂ , (57)

where we have used the symmetry of g,4,5 with respect to
index permutations a <> f, y <> 68, and (a,f3) <> (7,6).
Finally, the OC action can be expressed as

S~ / (=m + L%)dz, (58)

d7 = |/ —GupdXdX?, (59)

where we have used Eq. (33) and ignored higher order
terms.

B. Covariant equations of motion

Using Eq. (58), the OC motion equations are obtained as
follows. First, note that

5 = —m / 5dz + / SLPdz + / LPsdz. (60)
58, 88, 083

The first integral in Eq. (60) is calculated as in Eq. (5),

1 090p du
= __ ¥ gayh — K ) sxrdz. 1
88, m/ <2 X Ueu & )5 dz.  (61)

The second integral in Eq. (60) is as usual,

— - X+ dz. 2
5S2 / |: ” z ( ” >:| oXHdz (6 )

The third integral in Eq. (60) is [cf. Eq. (5)]
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lc’)g % doX* (2)
58; = L UUPSX! 4+ U, —— |L:"dz
= / <2 ox" AT )
dL()
=68, — (63)
where

19945
884 = — =L yeyr
4 m/ <2 ox*

To the zeroth order in /&, OCs travel along geodesics of
the unperturbed metric. Thus, the expression in parentheses
in Eq. (64) is o(h°) and L'” = O(h?). Therefore, 65, =
o(h?) and will be neglected. Then, from 55 =0 and
Eqgs. (61)-(63), one obtains the following equation:

- 7 (2) 7 (2)
" l@gaﬂ UeUp — du, n OL; _d OL;
2 OXH dr ox# dz \ OUH
dL®?
=" U. 65
U (65)

du,)\ -
——_”)Liz)axmf. (64)
dr

A

Let us introduce the new time % via dz/d7 =1+,
where ¢ = O(h?) is yet to be defined. Then,

104 aw,\ oL?

Q a ﬂ

m(zaXﬂWW dz >+3X"
d (oL?

where W* = dX“/dz and

7 (2)
d LY 10Gap aw
) o yaws — 8
C=Wu iz < ) ¢ (2 X" dz

Like in Eq. (64), the expression in the second pair
of parentheses is o(h") and { = O(h?), so the second term
is o(hz) and is, therefore, negligible. Then, adopting

C——L /m or

d2/dz =1-L /m, (67)

allows one to neglect the whole C. In this case, Eq. (66) can
be viewed as an Euler-Lagrange equation

d /0L oL
a (awu> = o (68)

that corresponds to the following Lagrangian [cf. Eq. (7)]:

LX.W) = [gaﬁ< X)Wews — 1]+ L (X, W).  (69)

Let us also introduce the OC canonical momentum

oL W oL
= m
awe ~ Mdap awe

and the OC Hamiltonian H = P,W? — L. Since L'” is
small, a general theorem [ [64], Sec. 40] yields that

P, = (70)

H=HO"+H®  H®=_[P (71)

to the first nonvanishing order in the perturbation. The
function H is the unperturbed Hamiltonian, i.e.,

HO(X,P) = im (77 (X) PPy + m?], (72)

and one can adopt the lowest-order approximation W% ~

g*’P4/m when evaluating L% This leads to

afiyd k, k" T
HO=E g Tt T T,s——%Lkps|, (73
2 |90 T iy e T, el )+ (73)
where we have introduced
Ta/i PaP/)’ (74)

The OC motion equations
Hamiltonian (71) are

corresponding to the

dX* OH(X,P) dP, _ JH(X,P)
¢ opr, dz X«

(75)

C. Noncovariant equations of motion

Let us also derive these equations in a noncovariant form
that, in particular, will be useful in Sec. V D. Using Eq. (33)
for U, one can rewrite the OC action (45) as S = f LdT,
with L = L,/U°, and consider S as a functional of X(7).
Like in Sec. II C, the variational principle for the spatial
dynamics is unconstrained, so L can be understood as the
spatial Lagrangian. This leads to the usual Euler-Lagrange

equations,
d /oL oL
dr (avu> T axe (76)

The spatial Lagrangian can be explicitly written as

L=LO — &, where L'” = —m(U%"! and (cf. Sec. T1C)
(W) = /=00 = 200,V = G V°V". (77)
@=L /0. (78)

The corresponding OC canonical momenta are

P, =0L/0V?, and the corresponding OC Hamiltonian is
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H=P,V*—L. Then [cf. Egs. (17) and 21)], H(T, X, P) =
—Py(T, X, P) + O(h?), where P, solves

HO(T,X,Py(T,X,P),P) =0, (79)

or explicitly [cf. Eq. (20)],

m 7—/ goa

where 7=1/1+6P,P,/m* and &% =g —g0g°/5%.
Using the same theorem [[64], Sec. 40] as the one used
in Sec. IV B, one finds

Po(T, X, P) - -

P, (80)

H(T.X,P) = —Py(T.X,P) + O(T,.X,P), (81)

and one can adopt P = mU°® when evaluating @, so

gPre k, k* T
D= |Gy Tos +—2——TosT 5 ——L kP
Sp0 |Iprt as + AP A T ip, —
(82)
The corresponding Hamilton’s equations are
dx* oH dp,  OH (83)
dr — or,’ dr — ox*

According to Eq. (81), —P serves as the free-motion OC
Hamiltonian, and ® serves as the interaction Hamiltonian
in the OC representation, or the ponderomotive energy.
Similar terms in electromagnetic wave-particle interactions
are often called ponderomotive potentials; however,
remember that @ depends not only on 7 and X but on
P too, so it is not a potential per se but a more general part
of the OC Hamiltonian.

V. OSCILLATION-CENTER DYNAMICS:
FIELD-THEORETICAL APPROACH

The calculations above are somewhat ad hoc, and the
final results [e.g., Eq. (82)] are not particularly transparent.
Here, we propose an alternative derivation of these results
that, hopefully, makes them more understandable. The form
of the equations derived below will also be advantageous
for the discussion in Sec. VE.

A. Semiclassical particle model

Let us consider a particle as a quantum wave. Since we
are not interested in spin effects, we shall assume that this
wave is governed by the Klein-Gordon equation,

9N Ny —mPy =0 (84)

(assuming units such that 2 = 1), for it is a simple enough
equation that leads to Eq. (11) in the classical limit, as

discussed below. Since this equation is linear and has real
coefficients, the scalar state function y can be assumed real
or complex. We choose the latter for simplicity. (The other
choice leads to the same final results up to notation.) Then,
the corresponding action is § = [ Rd*x, where & is the
Lagrangian density given by

& = 2= (9" 0uy Dy — m|y?) (85)

and g = det g,4. Let us represent the wave function in the
Madelung form, y = ae' (where a and 9 are real), and
assume the semiclassical (i.e., GO) limit, in which p = V3§
is much larger than Va. Then, 8 can be approximated as

Q= —Z(x)H(x, V). (86)

where 7 = a?,/=g and H is given by Eq. (9). There are
two motion equations that flow from here. One is
8S[Z,9]/6Z = 0, which leads to

H(x,V9) = 0. (87)

This can be recognized as a Hamilton-Jacobi equation [64],
with H serving as the Hamiltonian; hence, it readily leads to
Eq. (10) for point particles. The other motion equation is
8S[Z,9]/69 = 0, which leads to

aia {I(x) %;‘;p)} ~ 0. (88)

Equation (88) is understood as a continuity equation that
represents the action conservation for Klein-Gordon waves,
i.e., particle conservation. For more details on linear GO as
a field theory, see for example, Refs. [65-67].

B. Semiclassical OC model

Now, let us consider how a semiclassical particle is
affected by metric oscillations produced by a GW. To do
that, let us represent the Hamiltonian as

H~HO + HO 4 g, (89)
where H") = O(h") and higher-order terms are neglected.

Then using Eqgs. (9) and (39), we find that H(® is given by
Eq. (72) and

1
HY = — _—_ pop , 90
5 H Papy (90)
H? — i h* hP 91
- m y papﬁ- ( )

Then, like in Sec. IIIC, the particle action can be
approximated as S = [Rd*x. Here, & = (8), serves as
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the Lagrangian density of the slow motion and, under the
GO approximation adopted in Sec. II[ A, it can also be
written as & = ().

The remaining calculation is similar to that in
Refs. [54,55], where it was studied how adiabatic propa-
gation of a general linear wave (in our case, a semiclassical
particle) is affected by a general quasiperiodic modulation
(in our case, a GW) of the general underlying medium (in
our case, a background metric). For completeness, we also
rederive the corresponding general & in Appendix A and
show that

Q= -TH(x,V8), (92)

where Z = (Z),, 9 = (9),, and

=~

3o (o) o

Here, all H™ are evaluated on (x,P), P =V3§, and

oH (X, P)
MX,P)=—— 2, 4
WX, p) == (94)
or in our case specifically,
UA(X. P) = “(X)Py/m. (95)

The function H is introduced here anew but it is, in fact, the
same function as in Eq. (71). Indeed, let us express it as
H = HO + H?, where H is given by Eq. (72) and H?)
is inferred from Eq. (93) to be

aprs k o (T..T.
@8 |z w9 (Zapr
H m [gﬂy a 46P,,< P, )] (96)

with €%7% given by Eq. (55) and T ap given by Eq. (74).
A direct calculation shows that Eq. (96) is equivalent
to Eq. (73).

Like in the case of the original system (Sec. VA), the
corresponding motion equations are as follows:

H(x,VI) =0, (97)
% [ﬂx) %}‘;Pq —0. (98)

Equation (97) can be recognized as a Hamilton-Jacobi
equation in which H serves as a Hamiltonian. Hence, it
readily leads to the same Hamilton’s equations that we
derived earlier, Eq. (75). Equation (98) is a continuity
equation that represents the action conservation of the
waves governed by the Lagrangian density (92), i.e., OC
conservation. We shall revisit this equation in Sec. V D.

C. Noncovariant representation
Since H®) is small, Eq. (97) indicates that at a given
(T, X, P), the value of P, remains close to Py(7, X, P) that
is defined via Eq. (79). By Taylor-expanding H(X, P) in P
around Py(7T, X, P), one obtains
H(X,P) = HO(T,X,Py(T,X,P),P)
+UT, X, P)[Py— Po(T, X, P)], (99)

where we have introduced [cf. Eq. (94)]

UO(T, X, P) - |:87_((X’P):|
OPy | py—Py(rX.P)
= U(T, X, P) + O(h2). (100)
Up to O(h*), Eq. (99) can also be expressed as
H(X,P) ~U(T,X,P)[Py + H(T, X, P)], (101)
where H = —P( 4+ ® and
(T, X,Py(T, X,P),P
@(T,X,P):H (T, X, Po(T. X, P), P) (102)

U%(7,X,P)

This agrees with Eq. (77) [in conjunction with Eq. (71)] and
Eq. (81). Hamilton’s equations corresponding to the
approximate Hamiltonian (101) are as follows:

c(ll_i _ g_;io — . (103)

dj(: _ g;'i _ 051:1’ (104)

d(;o _ _2_7; N _uog_l;’ (105)
d(f%a _ _3)7; _ 05;61’ (106)

where we used that, according to Eqgs. (97) and (101),

Py+H(t,X,P)=0. (107)
Let us substitute Eq. (103) into Egs. (104) and (106). Then,
one arrives exactly at Hamilton’s equations (83), with H
serving as the Hamiltonian of the spatial OC dynamics.
Using Eq. (96), one finds that

gatrs ki, @ (TosT,s
O =5 g, Ty—2 2 (20 . (108
2P0 [gﬁy “ 46Pﬂ< kP, >]PP (108)
0o—"ro

This formula is in agreement with Eq. (82) that we derived
earlier within a different approach.
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D. Interaction action

Using S = f@d“x [where x = (¢,x)], Eq. (92) for &,
Eq. (101) for H, and Py, = 0,9, one can write

- / N9,8 + H(x, V) V=5d%x,  (109)

where g=detg,; V=05, and N =IU°/\/=7,
explicitly,

(110)

[Note that x in Eq. (109) is a dummy integration variable
and can just as well be replaced with X.] As flows from
Eq. (98), N satisfies a continuity equation,

1 9(y/=gN)
V=g ot

where V =0H/0OP is the OC velocity [cf. Eq. (83)].
This means that N is the OC density, possibly up to
some constant factor C. To calculate this factor, let us
consider the point-particle limit, N(z,x) = C5[x, X ()],
where §(x’,x") =6(x' —x")/y/—g(t,X") is the general-
ized delta function [68]. Then, one can show [69] that S
given by Eq. (109) becomes

dx“
S=C P,——
[l

[This can be viewed as a step towards an alternative derivation
of Eq. (83), which readily flow from Eq. (112).] By
comparing Eq. (112) with the canonical action of a point
object with phase-space coordinates (X, P) [64], one finds
that C = 1.

Let us express the OC action as § = S© + §@), where
S©) is the action of a “free” OC and S describes the OC
interaction with a GW, which is of the second order in /.
Specifically, we have

+V-(NV) =0, (111)

H(T.X.P)|dT.  (112)

— [ MO8+ Hy(x VBTGt (113)

__ / N®y=Fd'x. (114)

It can also be convenient to rewrite S explicitly as a
bilinear functional of #,,. To do this, let us rewrite @ as

1 1
Q=-- EaﬂyéAaﬂyé =—3 <haﬁAaﬂy5hy5>

5 5 (115)

and accordingly,

2) = % / NePrPA 5 57/—gd*x. (116)
The linear coefficient A,;,; that enters these formulas is
specific up to any tensor that is antisymmetric with respect
to index permutations a <> f3, y <> 8, or (a,f) <> (v, 9).
Let us define A,4,5 such that it be symmetric with respect to
all these permutations. Then,

O (ToyTys
k,— | =210 117
#apy< k*P; >:|P0=P0’ (17)

(118)

1
Aoprs = ~ 2P0 |:Qaﬁy5 -

Ouprs= Ty a5+ JasT py + Jay T ps+ psT ay) py—p,-

The significance of Eq. (116) and the physical meaning of
Aqpys is explained below.

E. Gravitational susceptibility

Letus now consider the action Sy of the “gas + spacetime”
system,

SZ—SEH+Z

Here, Sgy is the Einstein-Hilbert action [60], the summation
index n denotes contributions from individual particles,
and Sgl =3, St? is the total interaction action. Using
Eq. (116), the latter can also be expressed as

)+ 8] = Spu + S8 + ZS,, .

5@

gas —

1 -
2/ ePX 1y 57/—Gd*x, (119)

KXaprs = /Aa/j},&(x,P)F(x, P)dP, (120)

where F is the OC phase-space distribution normalized
to the OC density, [ F(x,P)dP = N(x). This can be used
to calculate, both conveniently and systematically, self-
consistent metric oscillations in a particle gas from the
least-action principle 6Sy = 0. In particular, equations for
hqp (equivalent to the linearized Einstein equations) can be

derived from 6Sy/dh,s = 0. Since SELO> are independent of

h s ONE obtains

0 (SEH + 1/8“/’75Xaﬂy5\/—_§d4x> =0. (121)
5haﬂ 2
Within the linear approximation, the OC distribution F is a
prescribed function. (In plasma theory, such distribution is
commonly called f.) Then, X 4,5 is prescribed too, and one
readily obtains a self-contained linear equation for /. Such
calculations will be presented in a follow-up paper. Related
calculations for electromagnetic waves are given, for exam-
ple, in Refs. [56-59].
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Note that X5 serves in Eq. (121) as the gravitational
susceptibility. Correspondingly, Az, is the per-particle
gravitational susceptibility, or gravitational polarizability.
Remarkably, these linear response functions emerge from a
nonlinear (second-order) ponderomotive energy (115), in
which sense ponderomotive effects are never actually
negligible in linear theory. (The fundamental connection
between the ponderomotive energy and the linear response
function is known as the K-y theorem [50-52]; see also
Refs. [53-55,70].) Also note that the gravitational suscep-
tibility can be rewritten as follows:

k-OpF dp
Xoaprs = / (m T o1 s+ FJ aﬁy5> m, (122)
0T 6T ys) ™
J(l/)’)/ﬁ - 87203/5 B 'lg:)_o T(lﬂTr(S - POQaﬂyﬁ' (123)

(For the derivation and an alternative representation of
Japys» see Appendix B.) Here, the integrand is evaluated at
Py = Py(P) (80) and the parametrization k, = (—®, k) is
assumed, as usual.

Finally, note the following. Although we assumed,
throughout the paper, that k, is real and that particles
are not resonant to a wave [here, this implies F(x,P) =0
where @ = k - V], our Egs. (121)—(123) are not actually
restricted to this case. Our gravitational susceptibility can
be extended to complex k, via analytic continuation as
usual [71], and resonant particles can be systematically
introduced using the formalism from Ref. [70] such that the
final answer is not affected. For example, Eq. (121)
correctly describes the kinetic Jeans instability as one of
GW modes, as will be shown in a follow-up paper. (An
alternative, nonrelativistic approach to the kinetic Jeans
instability can be found in Ref. [72].)

VI. EXAMPLE: GRAVITATIONAL
PONDEROMOTIVE EFFECTS IN VACUUM

A. Effective metric

As a special case, let us consider a linear GW pulse in
vacuum. Then, the dispersion relation is k,k* = 0, and we
also assume the Lorenz gauge h*k; = 0. As seen from

Eq. (73), H® is simplified then and is given by

@ ePré
H = gﬂ},Tms.

o (124)

[As a reminder, £7° is given by Eq. (55).] By substituting
Eq. (124) into Eq. (71) and using Eq. (72) for HO), one
finds that
H=— (G P,Py + m?) (125)
m al p s

G = g + by, (126)

Since & depends only on X and not on P, it can be
considered as the effective metric seen by a particle in a
GW, or more precisely, the OC metric. [In principle, H can
always be brought to the form (125), but in the general case,
G depends on P, in which case it cannot be considered
simply as a metric.]

B. Motion equations and conservation laws

For example, let us assume that our background metric
Gap is the Minkowski metric” 1,5 = % = diag{—1,1,1,1}
and the perturbation is expressed in the transverse traceless
(TT) gauge,

0 0 0 O
0 hy he O
hap = N , (127)
0 he hy O
0 0 0 O

where we have assumed that the spatial wave vector is
parallel to the x* axis. Along with the vacuum dispersion
relation, this implies k, = (-, 0,0, w). Also notice that
hayh}//} = (hi + h%)fluﬁ’ (128)
where we have introduced the transverse part of the
Minkowski metric, 7,5 = 7% = diag{0,1,1,0}. Then,
OV =y + g, q= (K +hi) (129)
Let us also assume that @ = const and the GW pulse is
one-dimensional, i.e., its envelope depends only on ¢ and x*
but not on x! or x2. In vacuum, such envelope can depend
on x only through the wave phase 6(x). This special case is
tractable also without the OC formalism, but the OC
formalism makes the solution particularly straightforward.
Indeed, in this case, one has

9q __ %4

— e /
or~ ax, 1

(130)

and P, is conserved. (Here and further, | denotes compo-

nents parallel to k and | denotes components perpendicular
to k.) Also, Egs. (75) yield

X, P, X, Py

=1 +qO)—, L1
@ a0l & m

(131)

*According to the Einstein equations, a linear perturbation
hgp entails a nonlinear modification of the background metric
(for example, see Ref. [73]), which then can cause additional
memory effects (for example, see Refs. [24-26]). We are not
concerned with such effects here or in Sec. VII. These sections
are intended only to illustrate applications of the OC formalism
for prescribed g
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by _ _dby o

P i —%Piq’(e). (132)
Note that Eq. (132) implies
Py + P = const. (133)
Since Q = dO(X)/d? can be written as
- dx* k
Q= kg =5, P
= Z(<Py+ PP = (Po+ P, (134)

it also remains constant, according to Eq. (133). Then,
Eq. (132) can be integrated, yielding that the parallel
momentum P is given by

A [0)]
Py =P —-—=Piq(0),

135
2m€ (135)

where P = P(%,) is the initial momentum and 7 is the initial
moment of time. Also, Eq. (134) for Q yields

A

Q:a)}?(—l-f—ﬂ“), (136)

where 7 is the initial Lorentz factor and ﬁ is the initial velocity
normalized to c,

p=-" pE— (137)

3
3|~

Using Eq. (133), one also finds AP, = —AP|. A similar
calculation for a charge interacting with a one-dimensional

vacuum electromagnetic pulse is discussed in Ref. [74]; see
also Sec. 47 in Ref. [60].

C. Secular displacement
The above equations indicate that a particle in a GW
pulse experiences a secular displacement AZ from its
unperturbed trajectory,

A, =AX, —P A%/m, (138)

just like a point charge does in an electromagnetic
pulse [60][Sec. 47]. [The symbols A denote the changes
of the corresponding quantities between 7, - —oo and
% > 4o00. Assuming w > 0, this corresponds to 6(%,) —
+o0o0 and (%) — —oo, since in this case Q < 0.] From
Eq. (131), together with Eq. (135) for P| and (136) for Q,
one obtains

_ 9B Q[ BV
AZ) B’ Ay =5 <1—B|) . (140)

Here, Q is a dimensionless integral proportional to the
integral of the GW intensity,

Qi/oo q(0)do ~ q .0t ,, (141)

q. is the characteristic value of ¢, and ¢, is the character-
istic length of the GW pulse. Note that a long enough pulse
can cause a substantial displacement even at small ¢,.. Also,

Ax, AX
0.091
0.061

0.03r1

Az,
0.031

0.021

0.011

T
25 50 75 100 125 150
FIG. 1. Numerical comparison of the particle and OC dynamics
in a quasimonochromatic GW: blue—particle dynamics as pre-
dicted by Eq. (11); red—the OC dynamics as predicted by Eq. (75);
black dashed-AZ, and AZ| predicted by Eq. (140). The GW
propagates along the z axis in vacuum with the Minkowski
background metric. Spacetime scales are measured in units
™', sothe GW wave vectoris k, = (—1,0,0, 1). The perturbation
metric is given by Eq. (127), with h,.=h, = a(0)/2,
a(@) = 0.1[sech(ed + 13) — sech(ef + 7)]sin @, 0 = k,x*, and
€ = 0.1 serves as the small GO parameter (Sec. III A). The initial
velocity is #®(z = 0) = (/2. 1,0, 0). Shown are (a) the transverse
displacements relative to the unperturbed trajectory, Ax(z) and
AX[#(r)]; (b) the longitudinal displacements relative to the
unperturbed trajectory, Az(z) and AZ[#(7)]; (c) the strength of
the metric perturbation at the particle location, a[f(r)]. The
function 2(z) is calculated by numerical integration of Eq. (67),
but in fact, the difference between 7 and 7 is negligible for
these figures.
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AZ| 2 0; thus, the gravitational ponderomotive effect
displaces a particle away from the GW source. Finally,
note that AZ vanishes in the frame where ﬁ 1 = 0; however,

a relative displacement for objects with different B is
generally nonzero.

VII. NUMERICAL SIMULATIONS

In order to test our OC theory, we have numerically
solved the OC Hamilton’s equations [Eq. (75)] and com-
pared the results with the corresponding numerical solu-
tions of the first-principle equations [Eq. (11)]. Figure 1
shows the comparison for a linear vacuum GW pulse like
those discussed in Sec. VI. We also compare the total particle
displacement AZ from its unperturbed trajectory with the
analytic expressions (140). Figure 2 shows a similar com-
parison for an arbitrary nonvacuum GW pulse. (In this case,
particle trapping is possible [75,76], so there is no general
analytic expression for AZ to compare with.) In both cases,
the OC theory demonstrates good agreement with first-
principle modeling of the particle dynamics. Numerical
simulations for other GW profiles, polarizations, wave
vectors, and initial conditions have also been done (not
shown) and demonstrate good agreement with the theory
as well.

Finally, as a general comment on test-particle simula-
tions in a prescribed GW, notice the following [77].

Ax, AX
0.12} @
0.081
0.041
—] T
Az, AZ
024} (b)
0.161
0.081
] ' ' ' * — T
25 50 75 100 125 150
a
0.151 (C)
0 —W‘W—
; ; ; ; ; - T

25 50 75 100 125 150

FIG. 2. Same as Fig. 1 but for nonvacuum dispersion and
polarization, namely, k, = (=1,0,0,1/2) and hag = 8pa(6)/2.

For certain initial conditions and GW polarization, the
effect of the wave can be obscured by the coordinate effects
in the chosen gauge. For example, the coordinates of a
particle that is at rest in the TT gauge remain constant.
However, the distance between two such particles can
nevertheless change.

VIII. CONCLUSIONS

Here, we study the nonlinear secular dynamics of
particles in prescribed quasimonochromatic GWs in a
general background metric and for general GW dispersion
and polarization. We show that this ‘“ponderomotive”
dynamics can be described by Hamilton’s equations (75),
and we derive the corresponding Hamiltonian H to the
second order in the GW amplitude. We find that H =
H +H® where HO is given by Eq. (72) and H? is
given by Eq. (73), or equivalently, Eq. (96). For the special
case of vacuum GWs, we show that our Hamiltonian H is
equivalent to that of a free particle in an effective metric
(126). We also show that already a linear plane GW pulse
displaces a particle from its unperturbed trajectory by a
finite distance that is independent of the GW phase
and proportional to the integral of the pulse intensity.
We calculate the particle displacement analytically
[Eq. (140)] and show that our result is in agreement with
numerical simulations of the particle motion in a prescribed
metric. We also show how the Hamiltonian of the nonlinear
averaged dynamics naturally leads to the concept of the
linear gravitational susceptibility of a particle gas with an
arbitrary phase-space distribution. This can be understood
as a manifestation of the so-called K-y theorem known
from plasma physics. We calculate the gravitational
susceptibility explicitly [Eq. (122)] to apply it, in a
follow-up paper, toward studying self-consistent GWs
in inhomogeneous media within the geometrical-optics
approximation.
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APPENDIX A: FIELD-THEORETICAL
CALCULATION OF THE OC HAMILTONIAN

Here, we present a detailed field-theoretical derivation
of the general OC Hamiltonian of a semiclassical particle
that oscillates in a low-amplitude “modulating” wave. The
calculation is similar to that in Ref. [54] (see also Ref. [55]),
but the starting point is somewhat different, so we shall
restate the whole argument. Suppose a semiclassical
particle with quantum phase 9§ and action density Z.
Assume that the particle Lagrangian density & is given
by Eq. (86) and the Hamiltonian H has the form
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H(x, p) = H(x, p) + H(x, p), (A1)

H(x,p) = (H(x.p))y=0.  (A2)

(H(x.p))o:
where H(x, p) = Hlex, p,0(x)] is small (cf. Sec. IIl A) and
the average over the modulating-wave phase 0 is taken at

fixed momentum p = V9. (We assume units such that
h =1.) Using

I=9+9, 9=(9), (A3)
I=1+Z, TI=(I), (A4)

we obtain the following formula for &:
R=—-Z+DHxP+p)+Hx,P+p), (A5

where P = V9 and p = V9. Taylor-expanding A and H in
p = O(H) and neglecting terms of the third and higher
orders in H, we obtain

- OH 7 O*H

-ITH-TI ————Paps—IH
o= op, P« 20p,0p, P
20 )
- —IH-T IH A
apa aPap(l ’ ( 6)

where all functions are evaluated at (x, P). From the part of
Eq. (87) that is linear in the modulating-wave amplitude,
one has

H+p,Ut =0 4= OH/0P,, (A7)
so the two last terms on the right-hand side on Eq. (A6)
mutually cancel out. [The definition of U* given here is in
agreement with Eq. (94) within the assumed accuracy.]
Then, the average Lagrangian density, & = (), is given
by Q = —TH, where

_ 1 0°H OH
=H A+ -— (PP . A
H +28P,,8P/, <pap/)’> <apapa>9 ( 8)

Just like H in Eq. (86) serves as a Hamiltonian for a
particle, 'H serves as a Hamiltonian for the particle OC.

The oscillating part of the particle phase is quasiperiodic
in 6, so 9 = J[ex,O(x)]. Then, p, =~ k,0,9, where k, =
V,0 is the wave vector of the modulating wave.
Equation (A7) gives 0,9 ~ —H/(k;U%), so

k, H
kU4

pa = - (Ag)

By substituting this into Eq. (A8), we then obtain

PR Kk, k. [ OH -
~ H —
Rl 5p 0P, 206007~ U <apa >9
3 k(l 8Uﬁ <[:12>6' 1 8<FI2>9
— H _— —_
3 {kﬂ P, (k,U'2 kU’ 0P, }

3 ka 0 <I:12>9
"= op, (kﬁw)’ (A10)

where we have used 0*H/0P,0P; = OU’ /OP,. For H of
the form (89), this readily leads to Eq. (93).

APPENDIX B: DERIVATION OF THE
GRAVITATIONAL SUSCEPTIBILITY

Here, we derive an explicit formula for the gravitational
susceptibility X4, of a particle gas from Eqs. (117) and
(119). By combining the latter equations, one obtains

0 (TyTy
roP, \ kP, )|, o

(B1)

Xaﬁy& = - / dP4PO |:Qaﬁ’y5

= (X + X% + X3) 45

where we have introduced [assuming the parametrization
k(l = (_0)’ k) ]

F
(Xl)(zﬂy(s == / dpm Qaﬂy(‘i? (B2)

8 T{ziTﬁ
(A== [P [ ( / )} . (B
Prd P 0P, \ kP, )|p p

k, F [0 (TyTy,s
(3) s = /dPPO [8P ( kP, ) | py—rp,

kg [, F 0 (TyT,

The latter equality permits taking the corresponding
integral by parts. (Remember that the derivative 9/0P,
is taken at fixed P,,,, which are independent only in the
four-dimensional momentum space.) Specifically, one
obtains
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kg P P, FTaﬁTy(; k, 4 0 (F TaﬂT},é
(X3) apys = Z/dp5(Po Po)( ap, ) PO WP, Z/dp5(Po PO)a—Pa po WP,

FVeT ;7 F\ (Ts7T
&= ka / d*Ps'(Py — Py) 1T K / dpP — el
4 PO kK’P, ) » _p
o—ro

FV* )
4 P kP, oP,

F 0 (TyT k, {dP (OF F 0P\ (T T
— 4 _ v Y (Lt _Fa [ EE (O YT ap? ys
= /d P5(Py—Py)k V4P0 9P, < kP, ) 4 / = (apa po aPﬂ)( P, >P0=Po
dp 0 (TuT s OF  F 0P\ (T 4T 5
= [ —|(k-V)F— )=k = — oo 4 B
/4PO {( V) 5P0< k’P, ) a(@Pa F’OaPa>< k’P, P0=Po’ (BS)

where we have used —0P,/0P, ~V [see Egs. (81) and (83)]. Then, notice that

kP, =k,P’ = POk -V —w), (B6)

so the sum of Egs. (B3) and (B5) can be written as follows:

dP ( F & (TuyT,s T T s OF F 0P (T 47T s
X, - X — [ =) |pp L[y 0 a3l e Sl ap” v _
(%24 X3)apys / 4P0{P° [k , ap0< kP, )H kP, “aop, " P % ap, kP, ] ) py=p,

Notice that d(k*P,) /0Py = k°, so the whole expression in the square brackets is simply O(7 447 ,5)/OPy. Also,

P9 ] 0P o o
P = 5P (gOOF)0 4 gObe> — gOO 8P0 + g()a g9011 _ OOVa’ (B7)
aPO —0a =00 a 0 =00 -00 a 0 -00 0 goo P
k“aP: k,— g%k, Ve =k’ — %%y — g%k, Ve =k + g (a)—k‘V):k——POkP[,. (B8)

Then, the above equation can be written as follows:

o dP F a(TaﬁTy(S) 8F —00 » F TaﬁTy(S
(Xz + X?a)aﬂ}/ﬁ - /W |:E aPO —— | k, aPa + gk P/) (P0)2 kﬂp/} Py=P,
AP k-0pF dP 10T T ys) ™
= | —5——— (T 47T F 2 — T T . B
/ 4P —k - v TaTr)rr, + / 4(P0)? { 9Py PO e, )

Together with Egs. (B1) and (B2), this leads to

dP [ k-0pF
X = T .7 FJ , B10
apys /4(P°)2 <a) K.y il + aﬂya) - (B10)
where
0T oyTys) G T 47T 5) T opT s
Japrs = ~or, . ETaﬂTyé - P05 = “or, = — (PY)? m +5%p P, 5ab;an + Qupys |- (B11)

Here, the tensor 5% = g% — 505”0 /g% (same as in Sec. IV C) is introduced by analogy with ¢?” in Eq. (18), and one can
further substitute

8(70:/3775)

S5 = 04PyP Py + PuS)P, Py + PoPyd)Ps + PoPyP, 5. (B12)
0
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