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We construct wormholes in Einstein-scalar-Gauss-Bonnet theories with a potential for the scalar field
that includes a mass term and self-interaction terms. By varying the Gauss-Bonnet coupling constant we
delimit the domain of existence of wormholes in these theories. The presence of the self-interaction
enlarges the domain of existence significantly. There arise wormholes with a single throat and wormholes
with an equator and a double throat. We determine the physical properties of these wormholes including
their mass, their size and their geometry.
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I. INTRODUCTION

In general relativity (GR) traversable Lorentzian worm-
holes need the presence of some exotic form of matter,
since the existence of such wormholes requires the energy
conditions to be violated (see e.g., [1–3].) In contrast,
alternative theories of gravity can circumvent this feature.
Here the energy conditions can be violated due to the
gravitational interaction itself. Indeed, alternative theories
of gravity can give rise to an effective stress energy tensor
that leads to violation of the energy conditions without the
need for exotic matter (see e.g., [4–13]).
A particularly attractive type of theories, where travers-

able Lorentzian wormholes arise, are the Einstein-scalar-
Gauss-Bonnet (EsGB) theories. These theories contain
higher curvature terms in the form of the Gauss-Bonnet
(GB) invariant, which arise for instance in string theories
[14–16]. In order to contribute to the equations of motions
in four spacetime dimensions, the GB term should be
coupled to a scalar field. String theories involve a dilaton
field and prescribe an exponential coupling of the dilaton
field with the GB term. However, in recent years, more
general coupling functions have been suggested [17–21].
Among the attractive features of EsGB theories is the

observation that they lead to equations of motion, that are
of second order, and thus avoid the Ostrogradski instability
and ghosts [22–24].
Already some time ago traversable wormholes were

constructed in dilatonic EsGB theories [10,11]. These
wormholes possess a single throat, connecting two asymp-
totically flat regions. At the throat a thin shell of ordinary
matter, thus matter respecting the energy conditions, is
localized. For a given equation of state, this thin shell is
determined by the Israel junction conditions [25,26]. The
latter are invoked at the throat in order to obtain regular
wormhole spactimes without curvature singularities in both
asymptotically flat regions.
The boundaries of the domain of existence of these

wormholes were shown to consist of the set of dilatonic
EsGB black holes [27], of a set of solutions with curvature
singularities and of a set of solutions with coordinate
singularities [28]. In fact, it was realized only recently,
that at this latter boundary the throat becomes degenerate
and a new type of EsGB wormhole solutions arises. These
wormholes possess an equator, that is surrounded by a
double throat [28].
The consideration of more general coupling functions of

the scalar field to the GB term brought forward the
interesting new phenomenon of curvature induced sponta-
neous scalarization of black holes [19–21,29–46]. In fact,
for an appropriate choice of coupling function, the GR
black holes remain solutions of the EsGB equations of
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motion. However, the GR black holes become unstable at
critical values of the GB coupling and develop scalar hair.
This is in contrast to the dilatonic EsGB theories with
exponential coupling function, which do not allow for GB
black hole solutions [27,47–62].
The interesting properties of black holes in nondilatonic

EsGB theories have provoked the question concerning the
properties of wormholes in these theories. Here a first study
of such EsGB wormholes with a massless scalar field has
already provided new insight [28]. In particular, numerous
coupling functions were shown to possess such wormhole
solutions, and the domain of existence of wormhole
solutions was fully mapped out for a quadratic coupling
function. Analogous to the dilatonic wormholes, the
boundary of the domain of existence is formed by EsGB
black holes, by singular solutions and by wormholes with a
degenerate throat, where the latter can also be continued to
wormhole solutions with an equator and a double throat.
Again, ordinary matter can be invoked to satisfy the
junction conditions for a thin shell of matter at the single
throat (or at the equator), yielding symmetric solutions.
Here we continue the investigation of EsGB wormholes

by taking a type of coupling function, that can give rise to a
branch of stable fundamental EsGB black holes [20,40].
We further supplement the scalar field with a mass term and
a self-interaction. For the self-interaction we employ a
potential of the form employed for nontopological solitons
and boson stars (see e.g., [63,64]). We construct the domain
of existence of these wormholes and investigate their
physical properties. In particular, we consider the effects
of the self-interaction as opposed to a mass term only. We
note that charged EsGB wormholes have also been
obtained recently [65].
The paper is organized as follows: In Sec. II we specify

the theoretical setting, presenting the action, the equations
of motion, the boundary conditions, the conditions for
throats (equators), the junction conditions, and the energy
conditions. In Sec. III we present our results, including the
profile functions of the solutions, the domain of existence
and its boundaries, an analysis of the thin shell of matter at
the throat (equator), embeddings of the throat (equator)
geometry, and the violation of the null energy condition
(NEC). In Sec. IV we present our conclusions.

II. THEORETICAL SETTING

A. Action and equations of motion

We consider the effective action for Einstein-scalar-
Gauss-Bonnet theories,

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕ −UðϕÞ þ FðϕÞR2

GB

�
;

ð1Þ

where R is the curvature scalar, ϕ is the scalar field with the
coupling function FðϕÞ and potential UðϕÞ, and

R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2 ð2Þ

is the quadratic Gauss-Bonnet correction term.
The Einstein equations and the scalar field equation are

obtained from the variation of the action with respect to the
metric and the scalar field,

Gμ
ν ¼ Tμ

ν ; ð3Þ

∇μ∇μϕþ _FðϕÞR2
GB − _UðϕÞ ¼ 0: ð4Þ

The effective stress-energy tensor is given by the
expression,

Tμν ¼ −
1

4
gμνð∂ρϕ∂ρϕþ 2UðϕÞÞ þ 1

2
∂μϕ∂νϕ

−
1

2
ðgρμgλν þ gλμgρνÞηκλαβR̃ργ

αβ∇γ∂κFðϕÞ: ð5Þ

Here, we have defined R̃ργ
αβ ¼ ηργστRσταβ and ηργστ ¼

ϵργστ=
ffiffiffiffiffiffi−gp

, and the dot denotes the derivative with respect
to the scalar field ϕ.
To obtain static, spherically symmetric wormhole sol-

utions we assume the line element in the form,

ds2 ¼ −ef0dt2 þ ef1 ½dη2 þ h2ðdθ2 þ sin2 θdφ2Þ�; ð6Þ

with the auxiliary function h2 ¼ η2 þ η20, where η0 is a
scaling parameter. The two metric functions f0 and f1 and
the scalar field function ϕ are functions of the radial
coordinate η only.
Substitution of the above ansatz (6) for the metric and the

scalar field in the Einstein equations and in the scalar-field
equation leads to four coupled, nonlinear, ordinary differ-
ential equations (ODEs), which are analogous to those
displayed in [28], where, however, different coupling
functions FðϕÞ were chosen, and the scalar potential
was set to zero. Out of the four ODEs, three ODEs are
of second order, and one ODE is of first order. But only
three of the equations are independent. In our numerical
analysis we solve the first order and two of the second order
ODEs. We note that the field equations are invariant under
the scaling transformation,

η → χη; η0 → χη0; F → χ2F;

U → χ−2U; χ > 0; ð7Þ

which allows us to fix the parameter η0.

B. Throats, equators, and boundary conditions

In order to obtain regular asymptotically flat wormhole
solutions, we need to impose an appropriate set of
boundary conditions for the ODEs.
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Wormhole solutions possess one or more finite extrema
of the spherical radius,

RC ¼ ef1=2h: ð8Þ

In the simplest case they feature a single minimum
corresponding to their single throat. But they may also
feature a local maximum surrounded by two minima. The
local maximum then corresponds to their equator, while the
two minima represent their two throats surrounding their
equator. While wormholes with more extrema do exist in
other theories, we do not find such wormholes in the theory
considered here.
To obtain the inner boundary conditions we require the

presence of an extremum of the spherical radius at η ¼ 0.
This yields

dRC

dη

����
η¼0

¼ 0 ⇔ f01jη¼0 ¼ 0: ð9Þ

Thus we choose as one of our boundary conditions at η ¼ 0
the condition f01jη¼0 ¼ 0. In addition, we choose at η ¼ 0

any one of the three conditions,

f0jη¼0 ¼ f0c; f1jη¼0 ¼ f1c; ϕjη¼0 ¼ ϕc: ð10Þ

For simplicity we will refer to the two-dimensional surface
η ¼ 0 as center.
In order to obtain asymptotically flat solutions we

employ the boundary conditions at infinity,

f0jη¼∞ ¼ 0; f1jη¼∞ ¼ 0; ϕjη¼∞ ¼ 0: ð11Þ

Consequently, we find for a fixed value of α (see Eq. (30)) a
one parameter family of solutions.
Expansion of the functions at infinity shows, that we can

read off the mass M of the solutions as follows:

f1 ¼
2M
η

þO

�
1

η2

�
: ð12Þ

Since the solutions are symmetric, the mass has the same
value in both asymptotically flat parts of the spacetime. We
note that the wormhole solutions with a mass term in the
potential have a vanishing scalar charge due to the
exponential decay of the scalar field.

C. Junction conditions

The solutions are symmetrically continued to the neg-
ative η range, yielding a second asymptotically flat region.
Since the derivatives of the functions f0 and ϕ do not
vanish at the center η ¼ 0, in general, we amend the
solutions by the presence of a thin shell-like distribution
of matter there. The complete solution is then determined
by invoking the junction conditions [25,26], at the jumps of

the Einstein and scalar field equations at the throat (or
equator) η ¼ 0.
The jumps in the Einstein and scalar field equations at

the center are given by

hGμ
ν − Tμ

νi ¼ sμν; h∇2ϕþ _FR2
GBi ¼ ss; ð13Þ

where sμν corresponds to the stress-energy tensor of the
matter at the center and ss represents a source term for the
scalar field. In order to satisfy the junction conditions
Eq. (13) we assume the presence of a perfect fluid with
pressure p and energy density ε, and a scalar density ρs at
the center. However, without further amendments this
would lead to negative energy densities for most of the
solutions. In order to generically obtain shells of nonexotic
matter, i. e. ε ≥ 0, we add a simple action at the center
[10,11,28],

SΣ ¼
Z

½λ1 þ 2λ0FðϕÞR̄�
ffiffiffiffiffiffi
−h̄

p
d3x; ð14Þ

where we have introduced the constants λ1 and λ0, and we
denote by h̄ab the three-dimensional induced metric at the
center and by R̄ the corresponding Ricci scalar. This leads
to the junction conditions,

8 _Fϕ0e−
3f1
2 ¼ λ1η

2
0 þ 4λ0Fe−f1 − εη20; ð15Þ

e−
f1
2 f00 ¼ λ1 þ p; ð16Þ

e−f1ϕ0 − 4
_F
η20

f00e
−2f1 ¼ −4λ0

_F
η20

e−
3f1
2 þ ρs

2
; ð17Þ

where all quantities are taken at η ¼ 0. The matter density
ε and pressure p, and the scalar density ρs are determined
via the arbitrary constants λ0 and λ1 and the functions
close to the center. We can always find a range of values
for the constants λ1 and λ0, where the matter density ε is
positive, thus allowing us to avoid any exotic matter. In the
case of vanishing pressure, i.e., for p ¼ 0, the matter
simply corresponds to dust, and therefore its equation of
state is the one of dust. In this special case we obtain
λ1 ¼ e−f1=2f00. Choosing λ0 ¼ λ1, in addition, we find
[10,11,28]

ε ¼ e−
3f1
2

η0
½ð4F þ η20e

f1Þf00 − 8 _Fϕ0�; ð18Þ

ρs ¼ 2e−f1ϕ0; ð19Þ

where again all quantities are taken at η ¼ 0.
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D. Energy conditions

In wormhole solutions the NEC,

Tμνnμnν ≥ 0 ð20Þ

must be violated, where nμ is any null vector (nμnμ ¼ 0).
Defining the null vector nμ,

nμ ¼
�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt=gηη

q
; 0; 0

	
; ð21Þ

and thus nμ ¼ ðgtt; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgηη
p ; 0; 0Þ, the NEC takes in a

spherically symmetric spacetime the form,

Tμνnμnν ¼ Tt
tntnt þ Tη

ηnηnη ¼ −gttð−Tt
t þ Tη

ηÞ: ð22Þ

Consequently the NEC holds when

−Tt
t þ Tη

η ≥ 0: ð23Þ

Alternatively, defining

nμ ¼ ð1; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt=gθθ

p
; 0Þ; ð24Þ

the NEC holds when

−Tt
t þ Tθ

θ ≥ 0: ð25Þ

For wormhole solutions these conditions must be violated
[1,10,11,28].

E. Embeddings

To visualize the wormhole geometry we consider the
isometric embedding of the equatorial plane of the sol-
utions. The equatorial plane is obtained from the line
element (6) by setting t constant, and θ ¼ π=2. This line
element is then set equal to a hypersurface in the three-
dimensional Euclidean space, yielding

ef1 ½dη2 þ ðη2 þ η20Þdφ2� ¼ dρ2 þ ρ2dφ2 þ dz2; ð26Þ

where (ρ, φ, z) represent cylindrical coordinates on the
hypersurface. We now consider ρ and z to be functions of η,

ρðηÞ ¼ ef1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ η20

q
; ð27Þ

�
dρ
dη

�
2

þ
�
dz
dη

�
2

¼ ef1 : ð28Þ

Solving for zðηÞ leads to

zðηÞ¼�
Z

η

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ef1ðη̃Þ−

�
d
dη̃

�
ef1ðη̃Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η̃2þη20

q ��
2

s
dη̃: ð29Þ

With ρðηÞ and zðηÞ we thus obtain a parametric represen-
tation of the equatorial plane (for a fixed value of the φ).

III. RESULTS

A. Parameters and numerics

In the following we present our results, obtained with the
coupling function FðϕÞ and the potential UðϕÞ:

FðϕÞ¼ α

2β
ð1−e−βϕ

2Þ; UðϕÞ¼ λðc2ϕ2þc4ϕ4þc6ϕ6Þ:

ð30Þ

We fix the constant β ¼ 1.5, but leave α as a free parameter.
When employing the full potential we also set λ ¼ 0.06,
c2 ¼ 1.1, c4 ¼ −2, and c6 ¼ 1, whereas in the case of a
mass term only, we retain λ ¼ 0.06, c2 ¼ 1.1, but set
c4 ¼ c6 ¼ 0. Furthermore, we set η0 ¼ 1.
The numerical integration of the system of coupled

ODEs is done with the help of COLSYS [66]. COLSYS
is an ODE solver that uses a collocation method for
boundary value ODEs together with a damped Newton
method of quasilinearization. At each iteration step the
linearized problem is solved via a spline collocation at
Gaussian points. COLSYS employs a mesh selection
procedure to adapt and refine the mesh until a prescribed
stopping criterion is reached. We typically use 103 sub-
intervals, yielding a relative error of less than 10−8 for the
solutions. Note however that close to singular solutions the
number of subintervals is increased up to 5 × 104.

B. Solutions

We exhibit in Fig. 1 the profile functions for a set of
wormholes solutions with self-interaction potential. Shown
are the metric components −gtt and gηη, the scalar field ϕ,
and the spherical radius RC vs the radial coordinate η. For
the two free parameters, the coupling constant α and the
value of the scalar field ϕc at the center, we have selected
the values (a) ðα;ϕcÞ ¼ ð0.8;−0.4Þ, a value for α close to
its minimal value; (b) ð1.1;−0.4Þ, a larger value of α;
(c) ð1.4;−0.067Þ, a value of ϕc close to the black hole limit;
(d) ð1.4;−0.95Þ, a small value of ϕc; (e) ð1.7;−1.02Þ,
another small value of ϕc; (f) ð3.0;−1.205Þ, a value for α
close to its maximal value.
The metric function −gtt is always monotonically rising

from a small value at the center to its asymptotic value.
The metric function gηη is typically not monotonic, but
exhibits a minimum at the center, from where it rises to
its maximum, before approaching its asymptotic value.
When the black hole limit is approached, however, it
becomes monotonic with its maximum at the center
approaching the black hole value of gηηð0Þ ¼ 4 [see
Fig. 1(c)]. The scalar field becomes very small as the
black hole limit is approached. But is never assumes large
absolute values. These are on the order of one or smaller.

IBADOV, KLEIHAUS, KUNZ, and MURODOV PHYS. REV. D 102, 064010 (2020)

064010-4



Of interest is also the spherical radius RC. As the black
hole limit is approached, the value of RC at the center
approaches RCð0Þ ¼ 2 [see Fig. 1(c)]. While RC is mono-
tonically increasing in the case of wormhole solutions with
a single throat, it has a maximum at the center for wormhole
solutions with an equator and a double throat.

C. Domain of existence

Wormhole solutions exist for a limited range of param-
eter values. The domain of existence of wormhole solutions
is illustrated in Fig. 2 for wormholes with mass and self-
interaction (left column) and wormholes with a mass term

only (right column). As seen in Fig. 2(a), where the
coupling constant α is shown versus the value of the
scalar field at the center ϕc, wormhole solutions arise
for a minimal value of the coupling constant α, αmin ≈ 0.76.
As α increases, the corresponding families of solutions
expand, until a critical value of α, αcr ≈ 1.02, is reached.
Further increase of α then leads to two disconnected

branches of wormhole solutions. The branches with the
smaller values of ϕc can be continued up to αmax ≈ 3.56.
The branches with the larger values of ϕc, on the other
hand, cannot be continued that far. They end at a limiting
value of αlim ≈ 1.83. The domain of existence is delimited
by solutions with cusp singularities (blue), solutions with
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FIG. 1. Metric components −gtt and gηη, scalar field ϕ, and spherical radius RC vs radial coordinate η for a set of self-interacting
wormhole solutions with parameters ðα;ϕcÞ: (a) ð0.8;−0.4Þ, (b) ð1.1;−0.4Þ, (c) ð1.4;−0.067Þ, (d) ð1.4;−0.95Þ, (e) ð1.7;−1.02Þ,
(f) ð3.0;−1.205Þ.

WORMHOLES IN EINSTEIN-SCALAR-GAUSS-BONNET … PHYS. REV. D 102, 064010 (2020)

064010-5



singularities at the center (green), and scalarized EsGB
black hole solutions (black), reaching all the way up to their
bifurcation point from the Schwarzschild black hole. The
limiting solutions will be discussed further below.
For wormholes with a mass term only, the coupling

constant α is shown versus the value of the scalar field at the
center ϕc in Fig. 2(b). We immediately note, that the
domain of existence basically only consists of one part of
the domain of existence of wormholes with self-interaction.

This part more or less agrees with the right-hand side of the
domain shown in Fig. 2(a), and thus the larger values of ϕc.
Thus the effect of the self-interaction is to allow for
wormhole solutions with much smaller values of ϕc and
much larger values of the coupling constant α.
We exhibit the value of the metric function f0 at the

center, f0c, in Figs. 2(c) and 2(d), and the value of the metric
function f1 at the center, f1c, in Figs. 2(e) and 2(f), with 2(c)
and 2(e) [2(d) and 2(f)] representing wormholes with
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FIG. 2. Domain of existence of wormhole solutions for a set of fixed values of the coupling constant α. Various quantities are shown vs
the value of the scalar field at the center ϕc: (a) and (b) coupling constant α, (c) and (d) value of the metric function f0 at the center, f0c,
(e) and (f) value of the metric function f1 at the center, f1c [left column: with self-interaction, right column: with mass term only]. Also
shown are the limiting solutions, scalarized EsGB black holes (black), singular solutions (green), cusp singularities (blue), and the
degenerate wormhole solutions (red).
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(without) self-interaction. Again, we see, how the presence
of the self-interaction leads to an opening of the left-hand
boundary of the wormhole solutions with mass term only at
its leftmost point to allow a new region of solutions to be
present, where considerably smaller values of f0c and f1c
are reached andmuch higher values of the coupling constant.
In particular, we note, that in the left upper region, i.e., in

the small ϕc region present only for wormholes with self-
interaction, there are two branches of f0c and f1c for a

given value of α. The first branch starts from a cusp
singularity while the second branch ends in a cusp
singularity. In the large ϕc region, on the other hand, the
value f0c decreases without bound as the black hole limit,
and thus a horizon is approached. In contrast, the value f1c
tends towards a finite limiting black hole value, since we
are not employing Schwarzschild-like coordinates. In the
Schwarzschild limit it approaches in our isotropic coor-
dinates the value f1c ¼ 2 ln 2.
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FIG. 3. Domain of existence of wormhole solutions for a set of fixed values of the coupling constant α. Various quantities are shown vs
the value of the scalar field at the center ϕc: (a) and (b) value of the spherical radius RC at the center, rc, (c) and (d) value of the massM,
(e) and (f) value of the energy density at the center, εc [left column: with self-interaction, right column: with mass term only]. Also
shown are the limiting solutions, scalarized EsGB black holes (black), singular solutions (green), cusp singularities (blue), and the
degenerate wormhole solutions (red).
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This is consistent with the limiting values of the spherical
radius at the center, which approaches in the Schwarzschild
limit rc ¼ 2. This is seen in Fig. 3, where the value of the
spherical radius RC at the center, rc, is shown with (a) and
without (b) self-interaction, versus the value of the scalar
field at the center ϕc. We note that the leftmost part of the
domain of existence, present due to the self-interaction,
does not feature larger or smaller spherical throat radii than
those already present without self-interaction.
The chosen scaling corresponds to a mass of the limiting

Schwarzschild black hole of M ¼ 1. This is seen in
Figs. 3(c) and 3(d), where the mass M of the wormhole
solutions is shown versus the value of the scalar field at the
center ϕc. We note, that the overall variation of the mass is
moderate. In the region due to self-interaction, however, the
mass can get bigger than in the remaining domain of
existence. Thus the presence of the self-interaction not only
increases the domain of existence but also allows for larger
values of the mass. This is, in fact, analogous to the effect of
the self-interaction for boson stars [63,64].
Finally, in Figs. 3(e) and 3(f) we exhibit the matter

energy density ε in the thin shell at the center, Eq. (18),
assuming dust and choosing λ1 ¼ λ2. Already for this

simple choice there is quite a large range of wormhole
solutions, where we find positive values for ε. The addi-
tional set of wormholes due to the self-interaction have all
positive values of the matter energy density ε. Thus these
wormholes are constituted by physically allowed matter,
that is respecting the energy conditions.
In Figs. 2 and 3 we also exhibit the line (red), where the

throat becomes degenerate, i.e., where the minimum of RC
turns into a saddle point. The wormholes to the left of this
line possess a single throat located at the center. The
wormholes to the right of this line possess an equator at
the center that is surrounded by a throat on each side. The
geometry of these solutions is discussed further below.
This region with wormholes with equators is basically
unchanged by the presence of the self-interaction.

D. Limits

In Figs. 4(a) and 4(b) we exhibit the mass M of the
wormhole solutions versus the spherical radius rc at the
center for a set of fixed values of the coupling constant α,
again with 4(a) and without 4(b) self-interaction. In these
diagrams the sets of limiting solutions are clearly visible.
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FIG. 4. (a) and (b) mass M vs spherical radius rc at the center for fixed values of the coupling constant α; (c) and (d) scaled coupling
constant α=M2 vs scaled spherical radius rc=M at the center for the same set of α values [left column: with self-interaction, right column:
with mass term only]. Also shown are the limiting solutions, scalarized EsGB black holes (solid black) [Schwarzschild black holes
(dotted black)], singular solutions (green), cusp singularities (blue), and the degenerate wormhole solutions (red).
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The solid blue curve represents the end points of regular
wormhole solutions, where cusp singularities are encoun-
tered. The solid green curve forms the boundary where
singularities at the center arise. The solid black curve
represents the limit where scalarized EsGB black holes
are encountered, where rc represents the horizon radius.
We illustrate these limits with examples below. We have
also indicated (dotted black) the lineM ¼ rc=2, correspond-
ing to Schwarzschild black holes with horizon radius rc.
Figures 4(c) and 4(d) are diagrams for the corresponding

scaled quantities. Here the scaled coupling constant α=M2 is
shown versus the scaled spherical radius rc=M at the center,
to provide a dimensionless representation of the domain of
existence. These diagrams again illustrate the huge effect of
the self-interaction, increasing the domain of existence vastly,
in particular, when the scaled quantities are considered.
We now turn to the discussion of the boundary of the

domain of existence. Solutions with cusp singularities form
the largest part of the boundary. The emergence of cusp
singularities is related to the determinant that is encoun-
tered upon diagonalization of the set of second order ODEs
with respect to the second derivatives of the functions (see
also [28,67,68]). This determinant may possess a node at

some value η⋆ of the radial coordinate. Since diagonaliza-
tion involves division by the determinant, the equations of
motion are then no longer regular at η⋆, but feature a cusp
singularity.
We demonstrate how such cusp singularities form in

Figs. 5(a) and 5(b), where we show for the metric function
f1 (a) and the scalar function ϕ (b) the first derivative f1;η
and ϕ;η versus the radial coordinate η for the coupling
constant α ¼ 1.0 and two values of the scalar field at the
center ϕc: for ϕc ¼ −0.5179 the second derivatives f1;ηη
and ϕ;ηη develop a jump at some value η⋆ (blue curves),
whereas for ϕc ¼ −0.1612 the second derivatives f1;ηη and
ϕ;ηη diverge at some value η⋆ (red curves). The second
derivatives f1;ηη and ϕ;ηη diverge at η⋆, when the determi-
nant behaves as ðη − η⋆Þg with g < 1. In contrast, when the
determinant behaves as ðη − η⋆Þ, a jump of f1;ηη and ϕ;ηη

arises. Associated with these jumps/divergences are diver-
gences of the curvature scalar R and the GB scalar RGB, as
seen in Figs. 5(c) and 5(d), where the curvature scalar R (c)
and the GB scalar RGB (d) are shown for the same solutions.
In Figs. 6(a)–6(d) we consider the part of the boundary,

where a singularity is approached at the center. In this case
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FIG. 5. Boundary of the domain of existence (examples with self-interaction): emergence of a cusp singularity at some value η⋆: the
first derivative of the metric function f1 (a) and of the scalar field function ϕ (b) for α ¼ 1.1 and two values of the scalar field at the
center ϕc: f1;ηη and ϕ;ηη develop a jump at some η⋆ (blue, ϕc ¼ −0.5179), f1;ηη and ϕ;ηη diverge at some η⋆ (red, ϕc ¼ −0.1612); scalar
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GB (d) vs radial coordinate η for the same solutions.
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the scalar field ϕ goes to zero at the center, ϕc → 0, while
its second order derivative diverges to minus infinity at the
center, ϕ0ð0Þ → −∞. At the same time the value of the
metric function f0 diverges to minus infinity at the center,
f0t → −∞. Since ϕc → 0, this part of the boundary resides
on the vertical axis in all plots where ϕc is shown on the
horizontal axis.

For 1.41 ≤ α ≤ 1.56 the wormhole solutions (with fixed
α) converge pointwise to the Schwarzschild black hole with
unit mass. With decreasing jϕcj the deviation from the
Schwarzschild black hole decreases on an increasing
interval. In the limit ϕc → 0 the wormholes coincide with
the Schwarzschild black hole except at the center. The
derivative of the scalar field ϕ0ð0Þ at the center remains
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FIG. 6. Boundary of the domain of existence (examples with self-interaction): (a)–(b) convergence towards Scharzschild black hole
solutions: scalar curvature R (a) and Gauss-Bonnet term R2

GB (b) vs radial coordinate η for α ¼ 1.5 and several values of ϕc; (c)–(d)
emergence of a curvature singularity at the center: scalar curvature R (c) and Gauss-Bonnet term R2

GB (d) vs radial coordinate η for
α ¼ 1.1 and several values of ϕc; (e) convergence towards scalarized EsGB black hole solutions: metric functions gtt and grr of two
solutions vs Schwarzschild radial coordinate r (red: α ¼ 1.409, ϕc ¼ −0.022) and (blue: α ¼ 1.366, ϕc ¼ −0.359); (f) set of limiting
scalarized (fundamental) EsBG black hole solutions: the mass 2M, and spherical horizon radius RH vs the value of the scalar field at the
center ϕc.

IBADOV, KLEIHAUS, KUNZ, and MURODOV PHYS. REV. D 102, 064010 (2020)

064010-10



finite in this limit, but its second order derivative diverges.
We demonstrate this limiting behaviour for a family of
wormhole solutions with fixed α ¼ 1.5 and ϕc ¼ −0.0312,
−0.0031 and −0.0002. In Figs. 6(a) and 6(b) we show the
curvature invariants R (a) and R2

GB (b) versus the radial
coordinate η close to the center. The black dots mark the
values of the curvature invariants at the center. We observe
that no curvature singularity emerges.
However, when α > 1.56 the limiting behavior changes.

In this case the limit ϕc → 0 is characterized by a diverging
derivative of the scalar field at the center, ϕ0ð0Þ → −∞, and
curvature singularities. This is shown in Figs. 6(c) and 6(d)
where the curvature invariants R (c) and R2

GB (d) are plotted
versus the radial coordinate η for a family of wormhole
solutions with fixed value of α ¼ 1.7 and ϕc ¼ −0.00365,
−0.00277, −0.00196.
Interestingly, the singular limits to the Schwarzschild

black hole are characterized by a throat at the center,
whereas the limits to curvature singularities are character-
ized by an equator.
In Fig. 6(e) we show the metric functions gtt and grr and

the scalar field function ϕ for two (self-interacting)

wormhole solutions close to the black hole limit (with
α ¼ 1.409, ϕc ¼ −0.022 and α ¼ 1.366, ϕc ¼ −0.359).
For comparison we exhibit the (fundamental) EsGB black
hole solutions for the same values of α and ϕc, and thus
demonstrate the approach of the wormhole solutions to the
EsGB black hole boundary. Figure 6(f) shows the mass 2M,
and the spherical horizon radius RH of the branch of (self-
interacting fundamental) EsGB black holes versus the value
of the scalar field at the center ϕc. These EsGB black holes
branch off from the Schwarzschild solution at α ¼ ≈1.41,
where ϕc ¼ 0.

E. Embedding diagrams and energy conditions

We visualize the geometry of a typical single wormhole
in Fig. 7(a), where we have chosen for the coupling
constant the value α ¼ 1.7 and for the scalar field at the
center ϕc ¼ −0.0121. Figure 7(b) shows the geometry of a
typical wormhole with an equator and a double throat,
obtained with the parameter choice α ¼ 1.7 and ϕc ¼
−0.03. The equator and the throats are clearly visible in the
figure. Both solutions belong to the same family (α ¼ 1.7)
of self-interacting wormholes. As ϕc is increased, the single
throat (minimum) at the center first turns into a degenerate
throat (saddle point) at a critical value of ϕc, and then
becomes an equator (maximum), concealed by a throat
(minimum) on each side.
In Fig. 8 we exhibit the quantities ð−Tt

t þ Tη
ηÞ=N (a) and

ð−Tt
t þ Tθ

θÞ=N (b) with N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTt

tÞ2 þ ðTr
rÞ2 þ 2ðTθ

θÞ2
q

versus the radial coordinate η for several values of the
coupling constant α and the scalar field at the center ϕc.
ðα;ϕcÞ ¼ and ð0.8;−0.4Þ, ð1.1;−0.4Þ, ð1.4;−0.067Þ,
ð1.4;−0.95Þ, ð1.7;−1.02Þ, ð3.0;−1.205Þ. When − Tt

t þ
Tη
η and −Tt

t þ Tθ
θ are negative, the NEC is violated.

Inspection of the figures shows that the NEC is indeed
violated, as it must be. The violation always occurs in the
inner regions of the wormhole spacetimes.

(a) (b)

FIG. 7. Embeddings of the equatorial plane (examples with
self-interaction): (a) single throat wormhole with coupling con-
stant α ¼ 1.7 and value of the scalar field at the center
ϕc ¼ −0.0121; (b) double throat wormhole with α ¼ 1.7
and ϕc ¼ −0.03.
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FIG. 8. Violation of the energy conditions (examples with self-interaction): Combinations of stress-energy tensor ð−Tt
t þ Tη

ηÞ=N (a)

and ð−Tt
t þ Tθ

θÞ=N (b) with N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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vs radial coordinate η showing regions of NEC violation for several values

of the coupling constant α and the scalar field at the center ϕc.
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IV. CONCLUSIONS

EsGB theories have very attractive properties. In par-
ticular, they allow for several types of interesting compact
solutions. Like GR, they possess black hole solutions
[19–21,27,29–62]. However, these black hole solutions
may carry gravitational scalar hair. Depending on the
coupling function to the GB term, the scalar hair of the
black holes can arise due to curvature induced spontaneous
scalarization.
Besides black holes EsGB theories allow for wormhole

solutions, since their effective stress energy tensor provides
for violation of the energy conditions via the gravitational
sector [10,11,28]. While previously wormhole solutions in
EsGB theories were obtained for massless scalar fields, we
have here considered wormholes in the presence of a mass
term and a sextic self-interaction, inspired by boson stars.
Moreover, we have employed a type of coupling function
allowing for curvature induced spontaneously scalarized
black holes.
We have mapped out the domain of existence of these

wormhole solutions, varying theGBcoupling constantα. The
boundary of the domain of existence consists mostly of
solutions where a cusp singularity is encountered. Here the
second derivative of some functions either has a jump or
diverges. Consequently, also the curvature scalars diverge. A
small part of the boundary is provided by solutions, where
singularities are encountered at the center of the configura-
tions. Here the scalar field vanishes at the center, while its
second order derivative diverges along with one of the metric
functions. Some part of this boundary is characterized by
curvature singularities. The remaining part of the boundary is
constituted by the set of scalarizedEsGBblack holes, together
with the marginally stable Schwarzschild black hole.
The domain of existence is significantly increased by the

presence of the self-interaction as compared to the case
with a mass term only. This is similar to the case of boson
stars, where the sextic self-interaction allows for a much
larger set of solutions, which, in particular, possess much
higher masses [63,64]). Here the sextic self-interaction also
leads to more massive wormholes in the new region in
parameter space available due to the self-interaction.
Most of the wormholes possess a single throat at the

center. However, there is a small region in parameter space,
present already for a mass term only (and also for vanishing

mass), where the wormholes develop a maximum at the
center surrounded by a minimum on each side. In this case,
the wormhole solutions possess an equator, that is con-
nected to each asymptotically flat region via a throat.
At the center, a shell of ordinary matter like, for instance,

dust can be invoked to obtain solutions that are regular in
both asymptotically flat regions and symmetric with respect
to coordinate inflection, η → −η. The junction conditions
[25,26] can be satisfied with ordinary matter, and there is
no need for any type of exotic matter to obtain regular
symmetric wormhole solutions. This is different from GR,
where exotic matter is needed to obtain the necessary
violation of the energy conditions.
Although we invoke the junction conditions when we

obtain the wormhole solutions, our procedure is not a
typical cut and paste procedure, since the throats (equators)
arise naturally in these wormhole solutions. We invoke the
junction conditions only to achieve that both asymptoti-
cally flat regions are free of singularities. It would certainly
be of great interest to find wormhole solutions, that would
be smooth throughout, without the need for a thin shell of
matter at the center. While the present model does not allow
for such smooth wormholes, it is quite conceivable that
they might be generated by other coupling functions or
scalar potentials.
Nevertheless it will be interesting to investigate all these

wormhole solutions and their properties further. Since
wormholes represent compact objects, that can mimic
black holes to some extent, the next objectives will be
to study the (possible) lightrings of these objects [69,70]
and to investigate the (possible) presence of echoes
[71–73]. These objectives have recently already been
addressed for a further type of compact solutions, that
EsGB theories allow for, namely particlelike solutions
[67,68]. It should certainly be interesting to also extend
these particlelike solutions to the case of a nonvanishing
scalar field potential, as has been done here for the
wormhole solutions [28].
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