
 

Existence and stability of relativistic fluid spheres supported by thin shells
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We propose two models for constant density relativistic perfect-fluid spheres supported by thin-shell
configurations. These models are obtained from the Schwarzschild constant density star solution: the first
via the collapse of the external layers of the fluid into a thin shell by performing a matching with the
exterior Schwarzschild solution at a matching radius smaller than the star radius; and the second via the
creation of a vacuum bubble inside the star by matching it with an interior Minkowski spacetime. Both
models are shown to satisfy both the weak and the strong energy conditions (WEC and SEC) and can have a
compactness arbitrarily close to that of a black-hole without developing singularities at the center, thus
being exceptions to the Buchdahl limit. We compute the stability regimes of the models proposed and we
show that there are combinations of the star radius R and the matching radius RΣ for which the solutions are
stable, the dominant energy condition (DEC) is satisfied, and the radius of the object is smaller than 3M,
implying that these models could be used as models for dark matter or exotic compact objects.
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I. INTRODUCTION

In an attempt to derive solutions to the Einstein’s field
equations (EFE) in general relativity (GR), one often
encounters a situation where a hypersurface separates the
whole spacetime into two regions described by two differ-
ent metric tensors, often expressed in terms of different
coordinate systems. In such a case, it is natural to ask which
conditions the two metric tensors must satisfy in order for
the two regions to be matched smoothly at the separation
hypersurface. These are called the junction conditions.
In the context of GR, the junction conditions have

been deduced long ago [1,2]. These imply that both the
induced metric across the separation hypersurface and
the extrinsic curvature must be continuous. Various soluti-
ons to the EFE have been obtained in this formalism, namely
the Schwarzschild constant density fluid star [3], the
Oppenheimer-Snyder stellar collapse [4], and the matching
between Friedmann-Lematre-Robertson-Walker spacetimes
with Vaidya (and consequently, Schwarzschild) exteriors [5].
If the extrinsic curvature is discontinuous across the

separation hypersurface, it is still possible to perform a
matching between the two spacetime regions. However,
this matching is no longer smooth: a thin shell of matter
arises at the junction radius [2,6,7]. The thermodynamics of
thin shells has been studied [8,9], having the shell’s entropy
been computed in diverse scenarios e.g., rotating shells
[10,11] and electrically charged shells [12,13]. Collisions

of shells have also been studied numerically [14].
Alternatives to the Darmois and Israel methodology have
also been proposed in this context [15].
In what concerns relativistic fluid spheres, a few well-

known results have been established. The Buchdahl theo-
rem [16] states that if the radius of a constant density
relativistic fluid sphere is smaller than a factor 9=4 of its
mass in geometrical unitsG ¼ c ¼ 1, a few problems arise.
In particular, for the Schwarzschild fluid star, this implies a
divergence in the central pressure and a coordinate singu-
larity in the gtt component of the metric. The so-called
Buchdahl limit thus imposes a restriction for physically
relevant solutions. However, Buchdahl’s limit is based on a
few assumptions, namely that the energy density of the star
is a constant, and that the fluid is isotropic. Less restrictive
bounds on the radius have been obtained in situations
with fewer assumptions, e.g., for anisotropic fluid models
[17–19], keeping the energy conditions under control.
Indeed, the energy conditions (see [20] for a brief

review), are important indicators of the physical relevance
of relativistic fluid configurations. In particular, as seen
from an observer moving in along a timelike vector field,
the weak energy condition (WEC) imposes that the average
energy density must be non-negative, whereas the strong
energy condition (SEC) stipulates that the trace of the tidal
tensor must be non-negative. Although there are well-
known situations where the energy conditions are violated
e.g., the observable effects of dark energy at cosmological
scales [21,22], satisfying the WEC and the SEC are
important steps toward the acceptance of models for
astrophysical objects.
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Another important feature of astrophysically relevant
spacetimes is their stability, at least in cosmological
timescales. Black-hole spacetimes surrounded by thin-shell
configurations were shown to present stability regimes
[23–25] under radial perturbations, see [26,27] for a
detailed description of the method. Although inconclusive,
these works predict a correlation between the stability of
thin-shell configurations and the validity of the dominant
energy condition (DEC), which allows one to predict
possible stability regimes of the models proposed.
The importance of these models stands on the increasing

interest in exotic compact objects, also known as ECOs. If a
given model for a compact object features a surface radius
smaller than the light-ring radius r ¼ 3M, the object will
present a shadow and thus be indistinguishable from a
black-hole as seen from an exterior observer, with the
advantage of not presenting any singularities in the space-
time. Being poorly understood features at a fundamental
level, singularities are an important problem of black-hole
spacetimes and various models for black-hole mimickers
have been proposed [28], which can be constrained
experimentally with observations from the gravitational
wave signal [29–32].
This paper is organized as follows: in Sec. II, we

review a few well-known results for the Schwarzschild
fluid star, the thin-shell formalism, and the energy
conditions, which will be needed in the following
sections; in Sec. III A we derive the first model by
collapsing the outer-layers of the Schwarzschild interior
solution into a thin shell at a junction radius smaller than
the initial radius of the star and analyze the energy
conditions; in Sec. III B we derive the second model
by creating a spherical Minkowski vacuum inside the
Schwarzschild interior solution and again we analyze the
energy conditions; in Sec. IV we compute the stability
regimes of the previous models and verify the validity of
the DEC; and in Sec. V we conclude.

II. FRAMEWORK AND REVIEW

In this section we briefly review a few concepts needed
throughout the paper, namely the Schwarzschild interior
solution for a fluid sphere and the problems arising from the
violation of the Buchdahl limit, the junction conditions in
GR and consequent thin-shell formalism, and the energy
conditions to be considered, more specifically the WEC,
the SEC, and the DEC.

A. The Schwarzschild fluid star

Let us consider a nonrotating and spherically symmetric
sphere of incompressible relativistic perfect fluid in the
context of GR. In the usual spherical coordinates
ðt; r; θ;ϕÞ, the line element describing the interior of such
an object is

ds2 ¼ −
1

4

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2r2M
R3

r �2

dt2

þ
�
1 −

2r2M
R3

�−1
dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

for r < R, where M is the total mass of the object and R is
the radius of the object. On the other hand, the exterior
of this object is well described by the Schwarzschild
metric, i.e.,

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2þ;

þ r2ðdθ2 þ sin2 θdϕ2Þ; ð2Þ

for r > R. As the line elements provided in Eqs. (1) and (2)
are given in the same coordinates and in the limit r → R
both the metrics and their respective Lie derivatives are the
same, the junction between the two spacetime regions at the
hypersurface r ¼ R is smooth.
In the interior region, matter is described by an isotropic

perfect fluid, i.e., the stress-energy tensor Tb
a is diagonal

and can be written in the form

Tb
a ¼ diagð−ρ; p; p; pÞ; ð3Þ

where ρ is the energy density, which is a constant since
we assumed the fluid to be incompressible, and p is the
pressure, which is a function of the radial coordinate r as

pðrÞ ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2M

R3

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2M

R3

q : ð4Þ

At the surface of the object r ¼ R one verifies that
pðRÞ ¼ 0, as expected since the exterior solution is
vacuum. On the other hand, the central pressure pc can
be written in terms of the total massM and the radius of the
object R as

pð0Þ≡ pc ¼ ρ
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
− 1

: ð5Þ

At this point, the consequences of setting a radius below
the Buchdahl limit, R < 9M=4≡ Rb are visible. Take for
example the particular case R ¼ Rb. From Eq. (1), we
verify that gtt ¼ 0 at the origin, which corresponds to a
coordinate singularity. Furthermore, from Eq. (5), we
confirm that the central pressure pc diverges as R → Rb,
which implies that the coordinate singularity in gtt actually
corresponds to a curvature singularity in the Ricci scalar R.
Note also that since the denominator of the pressure in
Eq. (4) is the same quantity inside the square of gtt in
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Eq. (1), the pressure divergence and the coordinate singu-
larity will always occur at the same radii, and so we shall
refer to this feature simply as “singularity.” A further
decrease in the radius to the interval 2M < R < Rb will
move the singularity outward from the center of the sphere.
We are not interested in the region R < 2M as it is known
that in this case the object collapses into a black hole.

B. Junction conditions and thin shells

Let Σ be a spacelike hypersurface that separates the
spacetime V into two regions, Vþ and V−. Let us consider
that the metric gþab, expressed in coordinates xaþ, is the
metric in region Vþ and the metric g−ab, expressed in
coordinates xa−, is the metric in region V−, where the latin
indexes run from 0 to 3. Let us assume that a set of
coordinates yα can be defined in both sides of Σ, where
greek indexes run from 0 to 2. See Fig. 1 for a schematic
representation.
The projection vectors from the 4-dimensional regions

V� to the 3-dimensional hypersurface Σ are eaα ¼ ∂xa=∂yα.
We define na to be the unit spacelike normal vector on Σ
pointing in the direction from V− to Vþ. Let l denote the
proper distance or time along the geodesics perpendicular
to Σ and choose l to be zero at Σ, negative in the region V−,
and positive in the region Vþ. The displacement from Σ
along the geodesics parametrized by l is dxa ¼ nadl, and
na ¼ ∂al. The metric gab of the whole spacetime can then
be written as

gab ¼ gþabΘðlÞ þ g−abΘð−lÞ; ð6Þ

where ΘðlÞ is the Heaviside distribution function, whose
derivative is given by the Dirac delta function Θ0ðlÞ ¼ δðlÞ.
For the spacetime regions V� to be matched smoothly

at Σ, two junction conditions must be satisfied. These are
the continuity of the induced metric hαβ and the extrinsic
curvature Kαβ,

hαβ ¼ gabeaαebβ; ð7Þ

Kαβ ¼ eaαebβ∇anb; ð8Þ

where ∇a denotes a covariant derivative. Defining the
jump of a given quantity X across the hypersurface Σ
as ½X� ¼ XþjΣ − X−jΣ, the junction conditions can be
written as

½hαβ� ¼ ½Kαβ� ¼ 0; ð9Þ

The first of these conditions comes from the fact that when
one takes the derivative of the metric gab, written in the
distribution formalism, with respect to xa, terms propor-
tional to δðlÞwill arise. When one computes the Christoffel
symbols, these terms must vanish because otherwise the
Christoffel symbols would depend on products of the form
ΘðlÞδðlÞ, which are not defined in the distribution formal-
ism and thus the formalism would cease to be valid. On the
other hand, the second junction condition assures that no
δðlÞ terms are present in the stress-energy tensor Tab in the
field equations.
Note that the second junction condition is not mandatory

because it does not give rise to terms of the form ΘðlÞδðlÞ,
and therefore if this condition is violated we can still
perform the matching with a thin shell of matter at the
hypersurface Σ. The stress-energy tensor Sab of the
resultant thin shell can be written as

Sαβ ¼ −
1

8π
ð½Kαβ� − ½K�hαβÞ; ð10Þ

where K is the trace of the extrinsic curvature Kαβ.

Furthermore, writing Sβα ¼ diagðσ; pt; ptÞ, the surface
energy density σ and the transverse pressure pt of the thin
shell can be obtained.
The induced metric hαβ of the hypersurface Σ can be

obtained from Eq. (7) and its line element takes the
general form

ds2Σ ¼ −dτ2 þ RΣðτÞ2ðdθ2 þ sin2 θdϕ2Þ; ð11Þ

in standard spherical coordinates, where τ denotes the
proper time coordinate of the hypersurface and RΣ is the
radius at which this hypersurface stands, i.e., the matching
radius between the two spacetimes V�. In the following
sections, we will denote derivatives with respect to τ with
an over dot ( ·).

C. Weak, strong, and dominant energy conditions

In the context of GR, the stress-energy tensor describing
a given matter distribution, e.g., a fluid sphere like the
Schwarzschild star from Sec. II A or a thin shell from
Sec. II B, is expected to satisfy a few properties. In
particular, for physically relevant configurations, one
expects the energy density to be positive and dominant

FIG. 1. Schematic Representation of the spacetime V divided
into two regions V� by a spherical hypersurface Σ in red. xa�
denote the coordinate systems defined in V�, respectively, yα
denotes the coordinate system defined on Σ, and na is the
spacelike unit vector normal to Σ.
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over pressure. These properties are known as the energy
conditions.

1. The weak energy condition

The WEC states that the average energy density as seen
from an observer moving along a timelike vector field va

must be positive. This corresponds to a condition on the
stress-energy tensor Tab of the form:

Tabvavb ≥ 0: ð12Þ

For the particular case in which matter can be described
by an isotropic perfect fluid, i.e., the stress energy tensor
can be written in the form given in Eq. (3), then the
WEC becomes

ρ ≥ 0; ρþ p ≥ 0: ð13Þ

These results must be valid for any stress-energy tensor
independently of its dimension, i.e., similar conditions arise
for the stress-energy tensor Sab of a thin shell in the forms
σ ≥ 0 and σ þ pt ≥ 0.

2. The strong energy condition

The SEC is more of a geometrical property instead of a
matter-related one. Effectively, it states that the trace of the
tidal tensor, i.e., the Ricci tensor Rab, must be non-negative
as measured by any observers moving along the same
timelike vector field va. This corresponds to a condition on
the stress-energy tensor Tab and its trace T of the form�

Tab −
1

2
Tgab

�
vavb ≥ 0: ð14Þ

Again, considering that the matter distribution can be well
modeled by an isotropic perfect fluid, the stress-energy
tensor Tab is given by Eq. (3) and we obtain

ρþ p ≥ 0; ρþ 3p ≥ 0: ð15Þ

Similarly, for the stress-energy tensor Sab of a thin shell
these conditions become σ þ pt ≥ 0 and σ þ 2pt ≥ 0.
Note that the SEC does not imply the WEC as the
positiveness of the energy density is no longer required,
and thus these two conditions must be checked
independently.

3. The dominant energy condition

The DEC imposes that matter moves along timelike or
null world lines. In other words, for an observer moving
along an arbitrary future-directed timelike vector field va,
the measured matter’s momentum density −Ta

bv
b must also

be future-directed and it must not be a spacelike vector
field. In the particular case in which matter is described by

an perfect fluid, i.e., the stress-energy tensor is written in
the form given in Eq. (3), the DEC becomes

ρ ≥ 0; ρ ≥ jpj: ð16Þ

For a thin shell with a stress energy tensor Sab, these
conditions become σ ≥ 0 and σ ≥ jptj. Furthermore, com-
paring Eqs. (16), (13), and (15), note that the DEC implies
the WEC, but it does not imply the SEC.

III. STATIC CONFIGURATIONS

In this section we are interested in obtaining static fluid
configurations supported by thin shells. The method to
compute these solutions is as follows: we start by defining
the metrics that describe the interior and the exterior
spacetimes, i.e., the metric g�ab. Using Eq. (7), we compute
the induced metrics h�αβ as seen from the spacetimes V�.
Since the induced metric must be continuous from the first
of Eq. (9), we equal both h�αβ to the general form of hαβ
described by the line element in Eq. (7). This will provide
constraints between the proper-time coordinates τ� and the
matching radii R�

Σ ¼ RΣ. Afterwards, we compute the
extrinsic curvature from Eq. (8) subjected to these con-
straints and we insert the results into Eq. (10). In general,
the stress-energy tensor Sαβ resultant from this calculation
will depend on proper-time derivatives of RΣ. As we are
interested in static solutions, we impose _RΣ ¼ R̈Σ ¼ 0, and
we obtain the surface energy density σ and the transverse
pressure pt.
Although infinitesimally thick, thin-shell configurations

have been shown to arise as a very good approximation to
describe thick-domain walls [33,34]. Furthermore, objects
featuring thin shells (known as gravastars) have been
proposed as alternative endpoints of gravitational collapse
in GR [35]. Generally, one could think of these thin-shell
configurations as approximations for the layers of a fluid
object where the density and pressure radial profiles change
rapidly e.g., following a different equation of state.

A. Model 1: Exterior thin shell

In this section, we shall take a Schwarzschild star
described by the interior and exterior metrics provided in
Eqs. (1) and (2), respectively, with a radius R greater than
the Buchdahl limit, and perform a matching between the
two at a junction radius RΣ < R. As the extrinsic curvature
Kab is no longer continuous across Σ, a thin shell will arise
at the junction radius, see Fig. 2.
Since we have taken the radius of the star to be greater

than the Buchdahl limit, R > Rb, this implies from the
results of Sec. II A that the pressure p of the interior fluid is
finite and monotonically decreasing throughout the whole
interior solution, and also that no singularities are present,
independently of the junction radius.
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As can be seen from Eq. (10), as we vary the junction
radius, and consequently the jump of the extrinsic curva-
ture, the stress-energy tensor Sab of the thin shell will
change, and both the surface energy density σ and trans-
verse pressure pt of the thin shell will depend on the

junction radius. In Fig. 3 we plot the normalized density
Mσ and the normalized surface pressure Mpt as a function
of the junction radius RΣ for different values of the star
radius R. We avoid writing the explicit dependencies of σ
and pt in the junction radius RΣ due to their size.
Regardless of the value of the junction radius, we verify

that σ > 0, as expected since we are collapsing the outer
layers of the star in the thin shell, and also pt > 0.
Consequently, both the WEC and the SEC, given in
Eqs. (13) and (15) respectively, are automatically satisfied,
see Fig. 4.
These results imply that we can perform the matching

between the two spacetimes arbitrarily close to the
Schwarzschild radius R ¼ 2M and obtain a model for an
incompressible and isotropic relativistic fluid sphere that
does not develop singularities, thus being an exception to
the Buchdahl’s limit, and that still satisfies both the WEC
and the SEC.
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FIG. 3. Normalized density Mσ and normalized surface pressure Mpt for the model depicted in Fig. 2 as a function of the junction
radius RΣ for different star radii R. As expected, both σ and pt vanish when RΣ ¼ R, thus recovering a smooth matching between the two
spacetime regions.

FIG. 2. Schematic representation of model 1: a thin shell (solid
blue) separates the interior Schwarzschild spacetime (light gray)
from the exterior Schwarzschild spacetime (white) at a radius RΣ
smaller than the radius of the star R (dashed red).
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FIG. 4. Parameter space of R and RΣ for the model depicted in Fig. 2. In the left panel we plotMðσ þ prÞ, positive where the WEC is
satisfied, whereas in the right panel we plot Mðσ þ 2prÞ, positive where the SEC is satisfied. Both the WEC and the SEC are satisfied
regardless of the junction radius RΣ as long as R > Rb.
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B. Model 2: Interior thin shell

Let us now consider an alternative approach to the
problem. Again, take a Schwarzschild star described by
the interior and exterior metrics given in Eqs. (1) and (2),
respectively, but now we let the radius of the star be smaller
than the Buchdahl limit, i.e., R < Rb. According to the
results from Sec. II A, this implies that we will have a
singularity in the interior fluid region at some radius Rd. To
overcome this problem, let us create a “vacuum bubble” in
the central region of the star, described by the Minkowski
metric

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð17Þ

and perform a matching between the Minkowski spacetime
and the interior Schwarzschild spacetime at a given
matching radius RΣ, see Fig. 5.
If we choose an adequate value for RΣ, i.e., greater than

the radius for which the singularity occurs, RΣ > Rd, then
this feature is effectively removed from the model. From
Eqs. (4) and (1), we verify that

Rd ¼ 3R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4R
9M

r
: ð18Þ

As a consequence, the pressure p is again finite and
monotonically decreasing in the outwards radial direction
inside the fluid region.
Similarly to the previous model, due to Eq. (10) the

surface density σ and the transverse pressure pt of the thin
shell will depend on the junction radius RΣ. These
dependencies are again very lengthy so we chose not to
write them explicitly. In Fig. 6 we plot the normalized
energy density Mσ and the normalized surface pressure
Mpt as a function of the junction radius RΣ for different
values of the star radius R.
Independently of the radius RΣ, we verify that σ > 0,

which is again an expected result as this would correspond
to collapsing the inner layers of the star outward into a thin
shell. However, pt can be negative for some choices of R
and RΣ, resulting in a consequent violation of both the
WEC and the SEC for some regions of the parameter space,
see Fig. 7.
These results show a smooth separation between the

region where the energy conditions are satisfied from the
region where they are violated. Curiously, the line that
separates the two regions corresponds exactly to RΣ ¼ Rd
in Eq. (18). This implies that as long as we perform the
matching at a radius RΣ large enough to remove the
singularity from the interior solution, the stress-energy
tensor of the thin shell will automatically satisfy both the
WEC and the SEC. Therefore, we obtain another model for
an incompressible and isotropic relativistic fluid configu-
ration for which the radius can be arbitrarily close to
the Schwarzschild radius R ¼ 2M without developing
singularities.

IV. STABILITY ANALYSIS

A. Dynamical thin-shell framework

In the previous sections, as we were looking for static
thin-shell configurations, we have imposed the equilibrium
conditions _RΣ ¼ R̈Σ ¼ 0 before computing the surface
energy density σ and the surface pressure pt of the shell.

FIG. 5. Schematic representation of model 2: a thin shell (solid
blue) separates the interior Minkowski spacetime (white) from
the interior Schwarzschild spacetime (light gray) at a radius RΣ
smaller than the radius of the star R (dashed red).
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FIG. 6. Normalized density Mσ and absolute value of the normalized surface pressure Mpt for the model depicted in Fig. 5 as a
function of the junction radius RΣ for different star radii R. As expected, both σ and pt vanish when RΣ ¼ 0 for R > Rb. However, when
R ¼ Rb, we verify that pt diverges at the origin. Furthermore, for R ¼ 2M, we have pt < 0 (the solid red line plots the absolute value of
this quantity) and it diverges at RΣ ¼ 2M.

JOÃO LUÍS ROSA and PEDRO PIÇARRA PHYS. REV. D 102, 064009 (2020)

064009-6



Here, we are interested in studying the stability of these
systems, and thus we shall drop these assumptions and
consider the framework of dynamical thin shells [26,27].

1. Equation of motion for the thin shell

In comparison with the previous approach, the main
difference arising from dropping the staticity assumption
is that a dependency in the proper-time derivatives of the
matching radius, _RΣ and R̈Σ appears in the induced metric
hαβ, the extrinsic curvature Kαβ, and consequently in the
stress-energy tensor of the thin shell Sαβ. In particular, the
equation for the surface energy density σ, i.e., the (0,0)
component of the stress-energy tensor of the thin shell
given in Eq. (10), becomes a function of _RΣ. This allows
us to deduce an equation of motion for the thin shell in
the form

_RΣ þ VðRΣÞ ¼ 0; ð19Þ

where VðRΣÞ is the thin-shell potential, written in terms of
the metrics g�ab and the mass of the thin shellms ¼ 4πσR2

Σ as

VðRΣÞ ¼ FðRΣÞ −
�
ms

2RΣ

�
2

−
�
GðRΣÞRΣ

ms

�
2

; ð20Þ

where the functions FðRΣÞ and GðRΣÞ are respectively the
average and the symmetric of the half of the jump of the
inverse metric components g�rr across the hypersurface Σ:

FðRΣÞ ¼
1

2

�
1

g−rr
þ 1

gþrr

�
; ð21Þ

GðRΣÞ ¼
1

2

�
1

g−rr
−

1

gþrr

�
: ð22Þ

The stability problem of a thin shell is thus similar to that
of the stability of a particle moving in a one-dimensional
potential. We expand the potential in a Taylor series around
the equilibrium radius for the static solutions computed
previously, RΣ ¼ R0, from which we can immediately
verify that VðR0Þ ¼ 0. Furthermore, as RΣ ¼ R0 is an
equilibrium state, we know that V 0ðR0Þ ¼ 0, where a prime
denotes a derivative with respect to the junction radius RΣ,
which can also be verified taking the derivative of Eq. (20).
Assuming small radial perturbations, i.e., jRΣ − R0j ≪ 1,
we are left with a potential given by

VðRΣÞ ¼
1

2
V 00ðR0ÞðRΣ − R0Þ2 þOð3Þ; ð23Þ

to the leading order in RΣ − R0. The stability regimes for a
thin-shell configuration are now evident: the system will be
stable whenever V 00ðR0Þ > 0 and unstable otherwise. The
term V 00ðRΣÞ, being a second derivative of the potential
given in Eq. (20), will depend on radial derivatives of the
surface energy density σ, which must be computed using
the stress-energy tensor conservation equation.

2. Conservation of the stress-energy tensor

The conservation equation for the stress-energy tensor of
the thin shell is given by the expression

eaα∇aSαβ ¼ ½Tabeaβn
b�: ð24Þ

In the static cases considered before, the surface energy
density σ and the surface pressure pt of the thin shell did
not vary, and thus the conservation equation was automati-
cally satisfied. In the dynamical framework, the conserva-
tion equation is an extra constraint one must take into
consideration. Equation (24) can be written in the form
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FIG. 7. Parameter space of R and RΣ for the model depicted in Fig. 5. In the left panel we plotMðσ þ ptÞ, positive where the WEC is
satisfied, whereas in the right panel we plotMðσ þ 2ptÞ, positive where the SEC is satisfied. Both the WEC and the SEC are satisfied as
long as RΣ > Rd.
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σ0 ¼ −
2

RΣ
ðσ þ ptÞ þ Ξ; ð25Þ

where Ξ corresponds to the discontinuity in the momentum
flux across the shell and can be written in terms of the
metric components and their derivatives evaluated at the
static solution r ¼ R0 in the general form

Ξ ¼ 1

8πRΣ

"�
g0rr
grr

−
g0tt
gtt

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

grr
þ _RΣ

s #
: ð26Þ

The conservation equation is particularly useful in this
framework to rewrite the radial derivatives of the surface
energy density arising in V 00ðRΣÞ, i.e., σ0ðRΣÞ and σ00ðRΣÞ in
terms of σ and p. Finally, one uses the definition of surface
pressure pt, i.e., the (1,1) component of Eq. (10) to obtain
an expression for V 00ðRΣÞ written solely in terms of the
junction radius RΣ and the star radius R.

B. Analysis of the results

1. Stability regimes

The stability regimes for the models proposed can be
obtained by computing the second derivative of the
potential provided in Eq. (20) and verifying in which
regions of the parameter space of RΣ and R it is positive. As
the forms of this potential and its derivatives are extremely
long, we choose not to write their explicit forms. Instead, in
Fig. 8 we plot V 00ðRΣÞ in the parameter space considered.
In both cases, one verifies that there exist combinations

of the parametersRΣ and R for which the solutions obtained
are stable. However, the stability regions are clearly differ-
ent from the regions where the WEC and the SEC are
satisfied (see Figs. 4 and 7). For the first model we verify
that given a value for the star radius R, the solutions will be

stable whenever the matching radius RΣ is greater than some
critical value, which is RΣ ∼ 2.1M for R ∼ Rb. Interestingly,
there is an extra stability region valid for any value of the star
radius R > Rb, corresponding to a matching radius near the
Schwarzschild radius, i.e. RΣ ∼ 2M. For the second model,
we verify that the solutions will be stable mostly everywhere
except for a limited region of the parameter space close to
the divergence line RΣ ¼ Rd.
These results imply that for the first model we can obtain

solutions for stable relativistic spheres supported by thin
shells with a compactness arbitrarily close to that of a
black-hole without violating both the WEC and the SEC for
any initial star radius R. On the other hand, for the second
model, there is a small region of the parameter space
near RΣ ≳ 2M for which not only the solution obtained is
stable but also the radius of the resultant object can be
arbitrarily close to the Schwarzschild radius. However,
these solutions become unstable if one considers a match-
ing radius RΣ < 2M.
Furthermore, for both of the models proposed, these

results imply the existence of a wide variety of stable
configurations with radii smaller than the light-ring radius
3M. These correspond to solutions presenting shadows
and thus they model objects that are indistinguishable
from black-holes as seen from exterior observers, with the
advantage of not having neither singularities or event
horizons. Consequently, they constitute viable models for
ECOs (in particular, black-hole mimickers) and dark matter.

2. Validity of the DEC

The analysis of dynamical thin shells in black-hole
spacetimes has been done and provided interesting results
[23,24]. In particular, it has been shown that all stable thin-
shell configurations in these backgrounds satisfy the DEC,
even when its validity is not imposed a priori. Thus, one
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could expect that our static models would be unstable
against radial perturbations whenever the DEC is violated.
In Fig. 9, we plot the validity regions of the DEC, i.e., we

plot Mðσ − jptjÞ, for both of the models proposed in
Secs. III A and III B. For both models, we verify that there
are regions of the parameter space for which the DEC is
violated, even if the WEC and the SEC are satisfied. A
comparison between Fig. 8 and Fig. 9 reveals something
unexpected. In both of the models, there are regions of the
parameter space of RΣ and R for which the DEC is violated
but the solutions remains stable nevertheless.

3. Implications for GW physics

The fact that the models proposed do not present event
horizons has important implications to the physics of
gravitational waves. In particular, there will be effects on
the GW signal if the object resultant from a coalescence of
two compact objects is one of the models proposed, or if
one of this objects is present in a coalescing binary.
The ringdown phase of the GW signal is dominated by

the frequencies of the proper oscillation modes of the
resultant object, known as the quasinormal modes, or
QNMs. There frequencies are well known for black holes.
If the resultant object from the coalescence is not a black-
hole but some ECO instead, these frequencies will differ
and will be potentially detectable via GW spectroscopy.
Furthermore, the absence of an event horizon will allow for
a GW to be reflected inside the object and consequently re-
emitted, giving rise to periodic structures in the ringdown
called echoes [31,32]. A perturbative analysis of these
models allows one to extract their proper oscillation
frequencies as well as the echoes structure.
On the other hand, it is well-known that the tidal Love

numbers of black-holes vanish identically [36]. However,
the same is not true for horizonless objects such as neutron

stars [37] or horizonless ECOs with and without thin shells
[29]. These tidal effects, more precisely tidal deformability
and tidal heating, appear as a fifth-order post-Newtonian
correction on the phase of the GW waveform, thus being
potentially detectable.

V. CONCLUSIONS

In this work, we have used the junction conditions and
the thin-shell formalism in GR to construct two models for
relativistic fluid spheres supported by thin-shell configu-
rations. These models can present a compactness arbitrarily
close to that of a black hole without developing singular-
ities, thus being exceptions to the Buchdahl theorem.
Furthermore, we have analyzed the validity of both the
WEC and the SEC and verified that they are satisfied.
In the first model, we have shown that if we perform the

matching between the Schwarzschild interior and exterior
solutions for a junction radius smaller than the radius of the
star, it is possible to contract the object below the Buchdahl
limit while keeping the energy density constant in the
interior solution, and the resultant thin shell at the junction
radius will satisfy the WEC and the SEC. For the second
model, we have shown that there are regions in the
parameters space where the WEC and the SEC are violated,
but this corresponds to the same parameter region for which
singularities exist. If the junction radius is chosen to be
greater than the radius at which this problem arises, the
singularities are removed and the WEC and the SEC are
automatically satisfied.
The stability of these objects was also analyzed and we

have verified that stable solutions with a radius smaller than
the radius of the light-ring, i.e., R < 3M, exist. In particu-
lar, for the first model we have shown that stable solutions
with a compactness arbitrarily close to that of a black hole
exist for any initial star radius R, whereas for the second
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model there exist combinations of the parameters RΣ and R
for which the solutions are stable and present radii
arbitrarily close to the Schwarzschild radius. We also show
that the validity of the DEC is not a necessary condition for
the stability of the second model.
The models proposed in this work correspond to objects

presenting a shadow and consequently indistinguishable
from black-holes as seen from an exterior observer.
Although these solutions should be regarded as toy models,
they can thus provide important insights for relevant
candidates for dark matter and ECOs. Furthermore, it is

expected that the continuous increase in the sensitivity of the
gravitational wave observatories will allow for the direct
detection of both the oscillation modes of the objects
resultant from binary coalescences as well as gravitational
echoes and tidal effects[32], which could be compared with
the ones predicted by a perturbative analysis of these models.
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