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In this work, we revisit a toy model proposed by Camanho et al. [J. High Energy Phys. 10 (2015) 179]
and extensively study the possible existence of gravitational phase transition from AdS to dS geometries by
adding the Maxwell field as an impurity substitution. We show that the phase transitions proceed via the
bubble nucleation of spherical thin shells described by different branches of the solution which host a black
hole in the interior. In order to demonstrate the existence of the phase transition, we examine how the free
energy and temperature depend on the higher-order gravity coupling (λ) indicating the possibility of
thermalon-mediated phase transition. We observe that the phase transitions of the charged case are possible
in which the required (maximum) temperature is lower than that of the neutral case. Interestingly, we also
discover that the critical temperature and the coupling λ of the phase transitions are modified when having
the charge. Notably, our results agree with the claim that the generalized gravitational phase transition is a
generic behavior of the higher-order gravity theories even when the matter field is added.
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I. INTRODUCTION

One of the greatest challenges in physics nowadays is to
explain the positive value of the cosmological constant or,
equivalently, the energy density of the vacuum. Regarding
the positiveness of the cosmological constant, the phase
transition in gravitational physics has posed one of the
interesting subjects for decades. Indeed, phase transitions
between two competing vacua of a given theory are quite
common in physics. They occur when the free energy of the
actual vacuum becomes greater than the other due to a
variation of some parameter of the system. Phase transi-
tions between two competing vacua with different cosmo-
logical constants have been so far discussed in the context
of gravitational instantons [1,2]. In various proposed gauge
and gravity dualities, another important example of the
gravitational phase transitions is known as the Hawking-
Page transition [3]. This is the first-order phase transition
competing between thermal anti–de Sitter (AdS) space and
the Schwarzschild-AdS black hole. In addition, a number
of publications of the phase transition in context of the AdS
and dS black hole thermodynamics have been actively

studied in several aspects and various models of higher-
order gravity [4–23]. It is worth mentioning here that
pioneer works on the AdS and dS phase transition in higher
derivative gravity have been theoretically proposed in
Refs. [4,5,24].
More interestingly, in higher-order theories of gravity, a

number of recent studies have focused on thermalon-
mediated phase transitions [25–27] in many cases of
Lovelock gravity with a vacuum solution. These types of
phase transitions proceed through the nucleation of the
spherical thin-shell bubbles, so-called thermalon which is
the Euclidean sector of a static bubble. It is worth noting that
the thermalon and the techniques associated to it were first
introduced in Ref. [28]. This thin shell stays between two
regions described by different branches of the solution which
host the black hole in the interior. On the other hand, the
thermalon is a finite-temperature instanton which is consid-
ered as a thermodynamic phase and described an intermedi-
ate state. In a finite time, when the thermalon forms, it is
dynamically unstable and then expands to occupy the entire
space. Hence, this effectively changes the asymptotic struc-
ture of the spacetime. Once the cosmological constant is
fixed, it was shown in Refs. [24,26,29] that thermal AdS
space underwent a thermalon-mediated phase transition to an
asymptotically dS black hole geometry.
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It has been found that this type of gravitational phase
transition is a generalized phase transition of the Hawking-
Page mechanism in Lovelock gravity. In addition, the AdS
to dS gravitational phase transition is claimed to be a
generic behavior of the higher order of the gravitational
theories [26]. However, the inclusion of matter in this toy
model of the phase transition has not been studied yet. It is
worth to investigate the phase transition profile of the
model with the matter field.
Moreover, the Lovelock or higher-order gravity naturally

arises in string theory. Therefore, a study of the phase
transitions in this type of gravity might reveal some
interesting features of the consequences in the string theory
at low-energy regimes. In particular, it is expected that we
can gain a better understanding of the phase transition
phenomenon in the AdS=CFT correspondence paradigms.
Although the AdS=CFT is extensively studied in various
aspects and its nature is widely known, the dS=CFT
counterpart is less studied and poorly understood. For this
reason, the study of the AdS to dS phase transition in this
work may be also useful for uncovering the nature of the
dS=CFT. In the present work, we therefore revisit a toy
model proposed by Ref. [26] and extensively study the
possible existence of a gravitational phase transition from
AdS to dS geometries by adding the Maxwell field. In
addition, we also investigate the effects of the static charge
on the critical temperature and the coupling of the higher-
order gravity term, the Gauss-Bonnet term in this work,
causing the phase transition.
The content of the paper is organized as follows. In

Sec. II, we will review some basics of Lovelock gravity in
the vierbein formalism [26] with the Maxwell field that are
the starting point for the computations of the present work
and construct a junction condition of Lovelock-Maxwell
gravity. We then focus on a special case of Lovelock gravity
in which the action is reduced to Einstein-Gauss-Bonnet-
Maxwell (EGBM) gravity. In this section, we also derive
the effective potential of the thermalon EGBM gravity and
examine the thermalon solutions as well as the stability and
dynamics of the thermalon. In Sec. III, we study the
gravitational phase transition and the relevant thermody-
namic quantities in five-dimensional EGBM gravity. Here
we examine how the free energy and temperature depend
on the coupling indicating the possibility of a thermalon-
mediated phase transition. We conclude our findings in the
last section.

II. FORMALISM

A. Lovelock-Maxwell gravity action

We start with the action of the Lovelock gravity in the
vierbein formalism with inclusion of the Maxwell field in d
dimensions, and it reads [23,30]

I ¼ 1

16πGNðd − 3Þ!
�XK
k¼0

ck
d − 2k

�Z
M
Lk −

Z
∂M

Bk

�

þ
Z
M
F ∧ �F

�
; ð1Þ

where M and ∂M are the spacetime manifold and its
boundary, respectively. Note that fckg is a set of couplings
with length dimensions L2ðk−1Þ with L being a length scale
related to the customary cosmological constant Λ such that
L2 ¼ −ðd − 1Þðd − 2Þ=2Λ, and K is a positive integer
given by K ≤ ðd − 1Þ=2. In this work, all ingredients of
the Lovelock gravity in vierbein formalisms are given by

Lk ¼ ϵa1…adR
a1a2 ∧ � � � ∧ Ra2k−1a2k ∧ ea2kþ1 ∧ � � � ∧ ead ;

ð2Þ

Bk ¼ k
Z

1

0

dξϵa1…adθ
a1a2 ∧ Fa3a4 ∧ � � � ∧ Fa2k−1a2k

∧ ea2kþ1 ∧ � � � ∧ ead ; ð3Þ

Rab ¼ dωab þ ωa
c ∧ ωcb; ð4Þ

Fab ¼ Rab þ ðξ2 − 1Þθac ∧ θcb; ð5Þ

θab ¼ ðnaKb
c − nbKa

cÞec; ð6Þ

where Rab is the curvature two-form with ωab, the
torsionless Levi-Civita spin connection. In this work,
we use small Latin alphabets a; b; c;… for the bulk
spacetime indices and focus on five dimensions in the
latter. Moreover, ea ¼ eaμdxμ, na, and Kab are the vierbein
one-form, normal unit vector, and extrinsic curvature,
respectively. The spherically symmetric solution of the
theory in d dimensions is taken in the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ðσÞd−2; ð7Þ

where dΩ2
ðσÞd−2 is the line element of the (d − 2)-

dimensional surface of the constant curvature σ with
σ ¼ 1; 0;−1 (spherical, planar, and hyperbolic geometries,
respectively). More importantly, we will use the
normalization of the gravitational constant such that
16πGNðd − 3Þ! ¼ 1 [26,27]. The equation of motion of
the Maxwell field in the vacuum is given by

d � F ¼ 0 and dF ¼ 0; with F ¼ dA; ð8Þ

where A is the vector potential one-form. The field strength
tensor F is given by the following ansatz:
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F ¼ Q
rd−1

dt ∧ dr; ð9Þ

where Q is the electric charge. Having use all ingredients
introduced, we can write the solution of the theory by
introducing the following polynomial:

ϒ½g� ¼
XK
k¼0

ckgk ¼
M
rd−1

−
Q2

r2ðd−2Þ
; ð10Þ

g≡ gðrÞ ¼ σ − fðrÞ
r2

: ð11Þ

The parameters M and Q are related to the black
hole Arnowitt-Deser-Misner mass (M) and the electric
charge (Q) via

M ¼ Γðd
2
ÞM

ðd − 2Þ!πðd=2Þ−1 ; Q2 ¼ Q2

ðd − 2Þðd − 3Þ : ð12Þ

We refer the detail derivation of the ϒ solution in
Refs. [11–13,22].

B. Junction condition in Lovelock-Maxwell gravity

In this work, the main purpose is to study the dynamics
of the unstable spherical thin shell (thermalon) of the
Lovelock-Maxwell gravity. To do this, we first divide the
manifold of the spacetime into two regions. We focus
on the case of the timelike surface of the manifold. Then
the manifold is decomposed as M ¼ M− ∪ ðΣ × ξÞ ∪ Mþ,
where Σ is the junction hypersurface of two regions of the
manifolds and ξ ∈ ½0; 1� is interpolating for both regions.
The Mþ and M− are outer and inner regions of the
manifolds, respectively. The metric tensors f�ðrÞ are also
used to describe geometries of the outer and inner mani-
folds. One writes two different line elements of the
spacetimes that is used to describe AdS outer (þ) and
dS inner (−) spacetime as

ds2� ¼ −f�ðr�Þdt2� þ dr2�
f�ðr�Þ

þ r2�dΩ2
ðσÞ;d−2; ð13Þ

where again � correspond to outer and inner spacetimes,
respectively. In the latter, we will focus our study in five-

dimensional spacetime. This gives dΩ2
ðσÞ;d−2 ¼

d¼5
dΩ2

ðσÞ;3 and
it is defined by

dΩ2
ðσÞ;d−2¼

8>><
>>:
dθ2þ sin2θdχ2þ sin2θsin2χdϕ2∶σ¼ 1;

dθ2þdχ2þdϕ2∶σ¼ 0;

dθ2þ sinh2θdχ2þ sinh2θ sinh2χdϕ2∶σ¼−1:

ð14Þ

Next, we construct a manifold M by matching M� at their
boundaries. We choose the boundary hypersurfaces ∂M� as

∂M� ≔ fr� ¼ ajf� > 0g ð15Þ

with parameterizations of the coordinates

r� ¼ aðτÞ; t� ¼ t̃�ðτÞ; ð16Þ

where τ is comoving time of the induced line elements of
the hypersurface (Σ) which takes the same form in both of
two manifolds M� at the boundaries; it reads

ds2Σ ¼ −dτ2 þ a2ðτÞdΩ2
ðσÞ;d−2; ð17Þ

where aðτÞ is the scale factor in the comoving frame and we
will represent it as a thin-shell bubble radius in the latter.
Applying the coordinate parameterizations to the line
elements of the manifolds in Eq. (13), one finds

ds2� ¼ −f�ðaÞdt̃�ðτÞ2 þ
daðτÞ2
f�ðaÞ

þ r2�dΩ2
ðσÞ;d−2

¼ −
�
f�ðaÞ

�∂ t̃�
∂τ
�

2

−
1

f�ðaÞ
�∂a
∂τ
�

2
�
dτ2

þ a2ðτÞdΩ2
ðσÞ;d−2: ð18Þ

As mentioned earlier, the line elements of the hypersurface
must have the same form at the boundaries of the mani-
folds. Then we compare line elements in Eqs. (17) and (18),
and we obtain the following constraint:

1 ¼ f�ðaÞ
�∂ t̃�
∂τ
�

2

−
1

f�ðaÞ
�∂a
∂τ
�

2

: ð19Þ

It has been shown in detail in Refs. [27,30] that the
continuity of the junction condition across the hypersurface
in the electrovacuum case is written in terms of the
canonical momenta π�AB as

πþAB − π−AB ¼ 0: ð20Þ

We note that the capital Latin alphabets A;B;C;… are the
vierbein indices of the hypersurface Σ. The canonical
momentum πAB is derived by varying the gravitational
action of the boundary with respect to the induced metric
hAB on the hypersurface Σ, i.e., [27,30],

δI∂M ¼ −
Z
∂M

dðd−1ÞxπABδhAB; ð21Þ

where the canonical momentum πAB is given by
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πAB ¼ −
1

2

δI∂M
δeB

∧ eA

¼
XK
k¼1

kck

Z
1

0

dξKA1 ∧ FA2A3ðξÞ

∧ � � �FA2k−2A2k−1ðξÞeA2k…Ad−2AϵA1…Ad−2B; ð22Þ

with KA ¼ KA
BeB.

It has been also demonstrated in Refs. [27,30] that, for
our study case in the latter, the diagonal components of the
π�AB give the same relation between time and spatial parts
via the following constraint in the five-dimensional case
(d ¼ 5) to yield

d
dτ

ða3π�ττÞ ¼ 3a2 _aπ�φiφi
; φi ¼ φ1;φ2;φ3 ¼ θ; χ;ϕ:

ð23Þ

In addition, the (comoving) time component of the π�AB is
rewritten in the compact form as [26,27,30]

Π� ¼ π�ττ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f�ðrÞ

p
a

×
Z

1

0

dξϒ0
�
σ − ξ2f�ðaÞ þ ð1 − ξ2Þ _a2

a2

�
; ð24Þ

where ϒ0½x� ¼ dϒ½x�=dx. Furthermore, it is convenient to
define new variables, Π̃ ¼ Πþ − Π−, and the junction
conditions of the continuity across hypersurface are given by

Π̃ ¼ 0 ¼ dΠ̃
dτ

: ð25Þ

References [27,30] have derived the further compact form
of Π̃ as

Π̃ ¼
Z ffiffiffiffiffiffiffiffiffi

H−gþ
p
ffiffiffiffiffiffiffiffiffi
H−g−

p dxϒ0½H − x2�; ð26Þ

where H ¼ ðσ þ _a2Þ=a2. We will specify the Lovelock-
Maxwell gravity at K ¼ 2, and this leads to a so-called
Einstein-Gauss-Bonnet-Maxwell (EGBM) gravity in the
following. From now on, we will work on the Euclidean
signature, i.e., t → it, for studying the thermalon which
is the Euclidean sector of the spherical bubble thin shell. This
gives _a2 → − _a2 and ä → −ä.

C. The Einstein-Gauss-Bonnet-Maxwell gravity

In this subsection, we focus on the EGBM theory to
analyze the gravitational phase transition in the next
section. The EGBM gravity is a reduction form of the
Lovelock-Maxwell gravity at K ¼ 2. One finds

I ¼
XK¼2

k¼0

ck
d − 2k

�Z
M
Lk −

Z
∂M

Bk

�
þ
Z
M
F ∧ �F

¼
Z

ddx

�
−εΛ

ðd − 1Þðd − 2Þ
L2

þ Rþ λL2

ðd − 3Þðd − 4Þ ðR
2 − 4RabRab þ RabcdRabcdÞ

�

−
1

4

Z
ddxF abF ab −

Z
∂M

dðd−1Þx
ffiffiffiffiffiffi
−h

p �
K þ 2λL2

ðd − 3Þðd − 4Þ
�
J − 2

�
RAB −

1

2
hABR

�
KAB

��
; ð27Þ

where J ≡ hABJAB is the trace of JAB which is built up from
KAB as

JAB ¼ 1

3
ð2KKACKC

B þ KCDKCDKAB

− 2KACKCDKDB − K2KABÞ ð28Þ

and RAB is the Ricci tensor (intrinsic curvature) of the
hypersurface Σ. More importantly, we note that the co-
efficients ck of the Lovelock theory for the Gauss-Bonnet
gravity case are given by

c0 ¼
1

L2
; c1 ¼ 1; c2 ¼ λL2: ð29Þ

Here we have identified the cosmological constant (Λ) of
the theory as

Λ ¼ εΛ
ðd − 1Þðd − 2Þ

2L2
; ð30Þ

where εΛ ¼ �1 is the sign of the bare cosmological
constant and we use the εΛ ¼ þ1 (de Sitter) of the bare
cosmological constant in this work. The solution of the
polynomial, ϒ½g� in the EGBM theory is given by

ϒ½g� ¼ −
1

L2
þ gþ λL2g2 ¼ M

rd−1
−

Q2

r2ðd−2Þ
: ð31Þ

One finds the solutions of g from the above equation as
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g� ≡ g�ðrÞ

¼ −
1

2λL2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ

�
1þ L2

�
M
rd−1

−
Q2

r2ðd−2Þ

��s !
:

ð32Þ

Therefore, the solutions of the line elements for inner and
outer manifolds in Eq. (18) are given by [7,11]

f� ≡ f�ðrÞ

¼ σþ r2

2λL2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ

�
1þL2

�
M
rd−1

−
Q2

r2ðd−2Þ

��s !
:

ð33Þ

Superficially, one might encounter the naked singularity
solutions from the fþ. However, we have provided the
expression of the critical value of the charge jQcj in
Eq. (76), and we have also restricted our study for
jQj < jQcj that can avoid the naked singularity. Next,
we turn to construct the junction condition of EGBM
gravity. One recalls the compact form of the comoving time
component of the canonical momenta, given by Π ¼ πττ
in Eq. (24) as [26,27,30]

Π� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f�ðaÞ

p
a

Z
1

0

dξϒ0
�
σ − ξ2f�ðaÞ þ ð1 − ξ2Þ _a2

a2

�

¼ 2

3
λL2g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H − g�

p
þ 4

3
HλL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H − g�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H − g�

p
;

ð34Þ

where the following definitions have been used to perform
the above integration:

Hða; _aÞ ¼ σ þ _a2

a2
; ð35Þ

gðaÞ ¼ σ − fðaÞ
a2

; ð36Þ

ϒ0½x� ¼ dϒ½x�
dx

¼ 1þ 2λL2x: ð37Þ

The junction condition of the EGBM gravity in Eq. (20)
implies

Π̃ ¼ Πþ − Π− ¼ 0; ð38Þ

which is assumed that

Π2þ ¼ Π2
−: ð39Þ

Substituting the results of Π� in Eq. (34) in the junction
condition (39), we find

− _a2 ¼ adþ1

12λL2

ðgþð2gþλL2 þ 3Þ2 − g−ð2g−λL2 þ 3Þ2Þ
ðMþ −M−Þ − ðQ2þ −Q2

−Þ=ad−3
þ σ;

ð40Þ

where we have used the following identity in the
denominator:

g� þ λL2g2� ¼ 1

L2
þM�
ad−1

−
Q2

�
a2ðd−2Þ

: ð41Þ

The result of the junction condition equation in Eq. (40)
is rewritten in terms of kinetic and effective potential
energies as

1

2
_a2 þ VðaÞ ¼ 0: ð42Þ

Then the effective potential VðaÞ of the junction condition
equation is given by

VðaÞ ¼ adþ1

24λL2

ðgþð2gþλL2þ 3Þ2− g−ð2g−λL2þ 3Þ2Þ
ðMþ−M−Þ− ðQ2þ−Q2

−Þ=ad−3
þ σ

2
:

ð43Þ

Moreover, one always can reduce the power of the g�
functions via the following identities:

g3� ¼ g�
λL2

�
M�
ad−1

−
Q2

�
a2ðd−2Þ

− g� þ 1

L2

�
;

g2� ¼ 1

λL2

�
M�
ad−1

−
Q2

�
a2ðd−2Þ

− g� þ 1

L2

�
: ð44Þ

Using the power reductions of g�, one rewrite the effective
potential VðaÞ in Eq. (43) at the first order of g� as

VðaÞ ¼ adþ1

24λL2½ðMþ −M−Þ − ðQ2þ −Q2
−Þ=ad−3�

×

�
ð1þ 4λÞgþ 4ð2þ gλL2Þ

�
M
ad−1

−
Q2

a2ðd−2Þ

��				þ
−

þ σ

2
; ð45Þ

where the symbol ½O�jþ− is defined by

½O�jþ− ≡Oþ −O−: ð46Þ

We continue to evaluate the derivative of the effective
potential V 0ðaÞ, and it reads
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V 0ðaÞ¼ ad

24λL2ðMþ−M− − ðQ2þ−Q2
−Þ=ad−3Þ

×

�
ð1þdÞð1þ4λÞg− ðd−17þ2ðd−5ÞλL2gÞ M

ad−1

þ2ð5d−22þ2ð2d−7ÞλL2gÞ Q2

a2ðd−2Þ

�				þ
−

þ a3ð3−dÞðQ2þ−Q2
−Þ

24λL2ðMþ−M− − ðQ2þ−Q2
−Þ=ad−3Þ2

×

�
ð1þ4λÞgþ4ð2þλL2gÞ

�
M
ad−1

−
Q2

a2ðd−2Þ

��				þ
−
:

ð47Þ

To eliminate g0, we have used the following identities:

g0 ¼ 1

ϒ0½g�
�
ð1 − dÞM

ad
− 2ð2 − dÞ Q2

a2d−3

�
; ð48Þ

ϒ0½g� ¼ 1þ 2λL2g: ð49Þ

We note that if we drop the static charge, i.e., Q� ¼ 0,
the effective potential and its derivative convert to the same
forms as the neutral case given in Refs. [27,31], i.e.,

VðaÞ ¼Q�→0 adþ1

24λL2½ðMþ −M−Þ�

×

�
ð1þ 4λÞgþ 4ð2þ gλL2Þ M

ad−1

�				þ
−
þ σ

2
; ð50Þ

V 0ðaÞ ¼Q�→0 ad

24λL2ðMþ −M−Þ
�
ð1þ dÞð1þ 4λÞg

− ðd − 17þ 2ðd − 5ÞλL2gÞ M
ad−1

�				þ
−
: ð51Þ

It is worth noting here that the wormhole solution in
EGBM gravity has been studied in Ref. [32] considering
Qþ ¼ −Q−. This is so since the radial direction in one of
the asymptotic regions is opposite to the other. However, in
our case, we have made the assumption that there is no
charge at the boundary (bubble) and the continuity of
the (electric) static charge across the hypersurface is
governed by

Q ¼ Qþ ¼ Q−: ð52Þ

Having used the above continuity equation, the effective
potential of the thermalon dynamics and its derivative
become

VðaÞ ¼ adþ1

24λL2ðMþ −M−Þ
�
ð1þ 4λÞgþ 4ð2þ λL2gÞ

×

�
M
ad−1

−
Q2

a2ðd−2Þ

��				þ
−
þ σ

2
; ð53Þ

V 0ðaÞ ¼ ad

24λL2ðMþ −M−Þ
�
ð1þ dÞð1þ 4λÞg

− ðd − 17þ 2ðd − 5ÞλL2gÞ M
ad−1

þ 4ð2d − 7ÞλL2g
Q2

a2ðd−2Þ

�				þ
−
: ð54Þ

We close this subsection by discussing the effect of the
Maxwell field (static charge) on the thermalon effective
potential displaying in Fig. 1. One sees that the inclusion of
the static charge does not change the shape of the effective
potential except the existence of the potential. Increasing of
the static charge makes the existence of the potential closer
to the thermalon position as shown in Fig. 1. In addition,
setting Q ¼ 0, we precisely reproduce the effective poten-
tial of the thermalon in the neutral case as done in Ref. [27].

D. Thermalon dynamics of EGBM gravity
and its stability

We have derived the effective potential of the thermalon
and its derivative in the previous section for the EGBM
gravity. Now we are going to work out the thermalon
solutions as well as investigating the stability and dynamics
of the thermalon. We first consider the solutions of the
thermalon configuration by imposing Vða⋆Þ¼0¼V 0ða⋆Þ,
where a⋆ is the location of the thermalon. Solving those
two equations, one obtains the solutions ofM� in terms of
g⋆�, a⋆, λ, L, d, and Q as

FIG. 1. The figure displays the shapes of the effective potential
of the thermalon in various values of the charge Q with
λ ¼ 0.015, a⋆ ¼ 1, L ¼ 1, d ¼ 5, and σ ¼ 1.
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Mþðg⋆−; a⋆; λ; L2;Q2Þ≡M⋆þ ¼ 1

4λL2ða2⋆ðd − 1Þ þ 2ðd − 5ÞλL2σÞ ½a
dþ1⋆ ðd − 1Þð1þ 4λÞð3þ 2λL2g⋆−Þ

þ 4ad−1⋆ ðdþ 1Þð1þ 4λÞλL2σ þ 4a5−d⋆ ð5d − 13þ 2ðd − 3ÞλL2g⋆−ÞλL2Q2

þ 16a3−d⋆ ð2d − 7Þλ2L4Q2σ�; ð55Þ

M−ðg⋆þ; a⋆; λ; L2;Q2Þ≡M⋆
− ¼ 1

4λL2ða2⋆ðd − 1Þ þ 2ðd − 5ÞλL2σÞ ½a
dþ1⋆ ðd − 1Þð1þ 4λÞð3þ 2λL2g⋆þÞ

þ 4ad−1⋆ ðdþ 1Þð1þ 4λÞλL2σ þ 4a5−d⋆ ð5d − 13þ 2ðd − 3ÞλL2g⋆þÞλL2Q2

þ 16a3−d⋆ ð2d − 7Þλ2L4Q2σ�: ð56Þ
Here we used g⋆� ≡ g�ða⋆Þ. Then, we will solve for the solution of the functions g⋆� ¼ g�ða⋆Þ in terms of a⋆, λ, L, d, andQ
via the ϒ½g�� functions. One finds

−
1

L2
þ g⋆þ þ λL2ðg⋆þÞ2 ¼ C1g⋆− þ C2 ð57Þ

and

−
1

L2
þ g⋆− þ λL2ðg⋆−Þ2 ¼ C1g⋆þ þ C2; ð58Þ

where the coefficients C1;2 are given by

C1 ¼
4a2ð3−dÞ⋆ ðd − 3ÞλL2Q2 þ a2⋆ðd − 1Þð1þ 4λÞ

2a2⋆ðd − 1Þ þ 4ðd − 5ÞλL2σ
; ð59Þ

C2 ¼
ð1þ 4λÞð3a2⋆ðd − 1Þ þ 4ðdþ 1ÞλL2σÞ þ 8a2ð2−dÞ⋆ ðd − 3ÞλL2Q2ð2a2⋆ þ 3λL2σÞ

4λL2ða2⋆ðd − 1Þ þ 2ðd − 5ÞλL2σÞ : ð60Þ

Solving the above two equations simultaneously, we obtain
the solutions of g⋆� as

g⋆þ¼−ð1þC1Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4λ−2C1−3C21þ4C2λL2

p
2λL2

; ð61Þ

g⋆−¼
−ð1þC1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4λ−2C1−3C21þ4C2λL2

p
2λL4

: ð62Þ

We note that g⋆− has a good behavior (stable) for λ → 0,
while g⋆þ gives an infinite value (unstable) for λ → 0. In
addition, we need to study the phase transition between two
manifolds of the spacetime, i.e., AdS (outer, þ) to dS
(inner, −), and then the condition g⋆þ ≠ g⋆− is necessary.
To study the stability of the thermalon, we consider the

bubble dynamics at the thermalon solutions at a ¼ a⋆ and
expand the junction condition in Eq. (38) up to the first
order as

Π̃≈ Π̃⋆þ
∂Π̃⋆
∂H

_a2

a2⋆
þ∂Π̃⋆

∂a ða−a⋆Þþ
1

2

∂2Π̃⋆
∂a2 ða−a⋆Þ2þ���:

ð63Þ

At a ¼ a⋆, one finds

Π̃⋆ ¼ 0 ¼ ∂Π̃⋆
∂a : ð64Þ

The junction condition above can be rewritten as

1

2
_a2 þ VeffðaÞ ¼ 0 and ä ¼ −V 0

effðaÞ; ð65Þ

where _a is the derivative with respect to Euclidean time τ,
i.e., _a≡ daðτÞ=dτ and

VeffðaÞ¼
1

2
k̃ða−a⋆Þ2; k̃¼1

2
a2⋆
�∂Π̃⋆
∂H
�−1∂2Π̃⋆

∂a2 : ð66Þ

It has been shown in Refs. [30,31] that the sign of k̃ variable
demonstrates the stability of the thermalon at a ¼ a⋆. The
thermalon configuration will be stable if k̃ is greater than
zero. On the other hand, k̃ < 0 gives the thermalon is
unstable. Here we have expanded the junction condition and
examined the stability of the effective potential around the
thermalon location a⋆, in which this technique is analogous
to the effective Hooke’s constant. Having used the formula in
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Eq. (66), we need the thermalon to expand and then give the
phase transition of the bulk spacetime. This means that
k̃ < 0. With jQj < jQcj and jQj ¼ jQcj limits, we have
checked numerically, and we found k̃ < 0 for all λ > 0
where Qc is the critical charge [see the expression of Qc in
Eq. (76) and its implication in Sec. III A]. One may
conclude, in this case, that the effective charge Q does
not change the stability of the thermalon configuration. This
can be depicted by the shapes of the potential in the various
positive values of the coupling, λ > 0 in Fig. 2. We find that
there are no local minima at the thermalon configuration at
a⋆ ¼ 1. The thermalon position locates on the top of the
potential and it is unstable. At this point, the thermalon
expands, then reaches the asymptotic region in a finite time,
and, therefore, changes the AdS to dS geometries of the
whole spacetime.
Furthermore, we consider the expansion of the bubble

thermalon escaping to infinity. Considering the matching
condition Π̃ and keeping the first order of the 1=H
expansion, we find (see [27] for a detailed derivation in
the neutral case, Q ¼ 0)

H ≈
1

2ðMþ −M−Þ
�
ad−1

Z
gþ

g−

ϒ½x�dx −
�
gþ

�
Mþ −

Q2

ad−3

�
− g−

�
M− −

Q2

ad−3

���
: ð67Þ

At a → ∞ limit, this givesH → ∞. In addition, we observe
that H → ∞ is a bit slower than the neutral case.

III. GRAVITATIONAL PHASE TRANSITION

A. Thermalon configurations, horizons,
and Nariai bound

We come to the crucial part of this work before moving
forward to the gravitational phase transition with the
relevant thermodynamics quantities. The thermalon (bub-
ble) location a⋆ needs to ensure that it lies between the
black hole radius ðrBÞ inside the bubble and the cosmo-
logical horizon ðrCÞ. One can solve for fðrHÞ ¼ 0 in the
function of M⋆

− to obtain

f−ðrHÞ ¼ 0 ⇒ g−ðrHÞ ¼
σ

r2BH
; ð68Þ

where rH is the radius of the existent horizons of the
spacetime. The above equation gives

ϒ−

�
σ

r2H

�
¼ M⋆

−

rd−1H
−

Q2

r2ðd−2ÞH

; ð69Þ

where the expression of the M⋆
− ≡M⋆

−ðg⋆�; a⋆; λ; L2;Q2Þ
is given by Eq. (56). More importantly, we will focus our
study of the AdS to dS gravitational transition in d ¼ 5 and
σ ¼ 1 (spherical geometry). Setting f−ðrHÞ ¼ 0, the (de
Sitter branch, inner spacetime) horizons rH can be obtained
from the following equation:

r6H − L2r4H þ L2ðM⋆
− − λL2Þr2H − L2Q2 ¼ 0: ð70Þ

Having rescaled r2H → u, we find that the above equation
reduces to a cubic equation of a variable u. In order to
obtain three real solutions of the cubic equation, it requires
the discriminant of the cubic equation to be less than zero.
Using the standard technique, the positive solutions of
Eq. (70) for the horizons of the inner spacetime are given by

rH;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

3
þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4

3
− ðM�

− − λL2Þ
q

ffiffiffi
3

p sin

2
641
3
arcsin

0
B@ 3

ffiffiffi
3

p
q

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L4

3
− ðM�

− − λL2Þ
q �3

1
CA
3
75

vuuuut ; ð71Þ

FIG. 2. The figure displays the shapes of the effective potential
of the thermalon in various values of the coupling λ with a⋆ ¼ 1,
L ¼ 1, d ¼ 5, σ ¼ 1, and Q ¼ 0.5. We found that there are no
local minima of the effective potential at the thermalon position
(a⋆ ¼ 1) for any positive values of the λ coupling. The thermalon
is always unstable and gives the phase transition from AdS to dS
spacetimes.
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rH;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

3
−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4

3
− ðM�

− − λL2Þ
q

ffiffiffi
3

p sin

2
641
3
arcsin

0
B@ 3

ffiffiffi
3

p
q

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L4

3
− ðM�

− − λL2Þ
q �3

1
CAþ π

3

3
75

vuuuut ; ð72Þ

rH;3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

3
þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4

3
− ðM�

− − λL2Þ
q

ffiffiffi
3

p cos

2
641
3
arcsin

0
B@ 3

ffiffiffi
3

p
q

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L4

3
− ðM�

− − λL2Þ
q �3

1
CAþ π

6

3
75

vuuuut ; ð73Þ

where we have defined a new function

q ¼ −
2L6

3
þ L2ðM�

− − λL2Þ
3

− L2Q2: ð74Þ

More importantly, the real positive values of rH in Eqs. (71)–(73) must satisfy the following conditions:

Δ ¼ 1

4

�
−
2L6

3
þ L2ðM�

− − λL2Þ
3

− L2Q2

�
2

þ 1

27

�
ðM�

− − λL2Þ − L4

3

�
3

< 0: ð75Þ

In addition, a critical charge, Qc, is determined by setting Δ ¼ 0 and it reads

jQcj ¼
L2

3
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
−2þ 9

L2
ðM⋆

− − λL2Þ þ 2

�
1 −

3

L2
ðM⋆

− − λL2Þ
�
3=2
�s
; ð76Þ

with

λ >
3M⋆

− − L2

3L2
: ð77Þ

To confirm the condition of the horizons, we also did a
numerical demonstration of the existence of the horizon in
Fig. 3 for nonextremal and extremal cases. It is well known
for the charged solutions of the static spherical symmetry
(σ ¼ 1) at the event horizon of the black hole (rB) that if
jQcj < Q, there are two horizons covering the singularity
and the extremal black hole has a single event horizon for
jQcj ¼ Q. On the other hand, if jQcj > Q, the spacetime
reveals the naked singularity. Next, we consider the
smallest radius of the (inner) de Sitter EGBM black hole,
rS. According to Eq. (33), the smallest radius is the solution
of the equation

ð1þ 4λÞr6S þ 4λL2M⋆
−r4S − 4λL2Q2 ¼ 0: ð78Þ

The solution of the rS corresponds to the curvature
singularity or Cauchy horizon. The appearance of charge
Q in the solutions makes the study of horizons more
complicated. However, it has been shown in Ref. [33] that
for the cosmological horizon (rC) exists in the de Sitter
spacetime (Λ≡ 6=L2 > 0) and the Cauchy horizon is
covered by the event horizon (rS < rB) with the following
range of parameters:

M⋆
−

L2
−
1

3
< λ <

M⋆
−

L2
: ð79Þ

More importantly, there is the existence of the horizons in
the EGBM gravity with de Sitter spacetime. These have
been proven in Ref. [34] that for d ¼ 5, σ ¼ 1, and
Λ≡ 6=L2 > 0, there are three types of the horizons as

FIG. 3. The figure shows the existence of the event horizon and
cosmological horizon for nonextremal (jQj < jQcj) and extremal
(jQj ¼ jQcj) cases. The dashed and solid lines represent three
(inner, outer, and cosmological horizons) and two (degenerated
and cosmological horizons) horizons for nonextremal and ex-
tremal metric in Eq. (33), respectively, with λ ¼ 1, M ¼ 1.2,
L ¼ 1, and Q ¼ 0.001.
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inner, black hole, and cosmological horizons. The types of
horizons depend on the ranges of the mass and charge
parameters [14,33,34]. In the present work, we limit our
study to the nonextremal black hole case due to the
complicated relation between the mass function M⋆

− and
the charge Q in Eq. (56). Therefore, one can identify the
radius of the outer, inner event, and cosmological horizons
from the solutions in Eqs. (71)–(73) as

rB;out ¼ rH;1; rB;in ¼ rH;2; rC ¼ rH;3: ð80Þ

The expressions of the above equations speculate that the
thermalon position always lies between the event horizon
and the cosmological horizon: rB;in < rB;out < a⋆ < rC. To
demonstrate the above speculation, we therefore plot all
horizons and the thermalon configuration shown in Fig. 4
as a function of the thermalon radius with jQj < jQcj. One
can see clearly that the outer (red line) and inner (green
line) charged black hole event horizons are jointed
smoothly and always covered by the thermalon radius
(black line), while the cosmological horizon (blue line) is
the largest radius and covers all horizons. The plot results in
Fig. 4 are reproduced as found in Refs. [26,27,31] when
Q ¼ 0 is taken into account. For EGBM gravity with the
positive (bare) cosmological constant, in addition, our
results are confirmed by Ref. [15], and it has been shown
numerically that the event horizon is always covered by the
cosmological horizon. Moreover, all ranges of the relevant
parameters in the plots are numerically checked, and they
are obeyed the condition in Eq. (79). It is interesting to see
the case that the outer event horizon becomes larger until

reaching the thermalon configuration and the cosmological
horizon at some point. This point is called the Nariai bound,
and it is given by aNariai ¼

ffiffiffiffiffiffiffiffiffi
3=Λ

p ¼ L=
ffiffiffi
2

p
[10,16] for the

neutral case. Interestingly, the Nariai bound for the charge
case is given by

aðQÞ
Nariai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L6 þ L2N þN 2

6N

s
;

N ¼


L6 − 54L2Q2 þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3L4Q2ð27Q2 − L4Þ

q �1=3
:

ð81Þ

According to our results displayed in Fig. 4, we discovered
that the Nariai bound of the charge case with a small charge
is very close to the neutral one. We will see in the latter that
the gravitational phase transition will take place, and it is
satisfied by the Nariai bound.

B. Thermodynamics quantities and critical phenomena
of AdS to dS phase transition

Next, we proceed further to quantify the relevant
thermodynamics quantities for studying the phase transi-
tion. In order to investigate the thermal AdS to dS black
hole phase transition as done in Refs. [25–27,31] for
the neutral model, we shall take a short overview of the
mechanisms of the gravitational phase transition in the
literature. The initial thermal AdS (outer geometry) will
decay and transit to the black hole inside the dS spacetime
(inner geometry) via the thermalon mediation. Let us first
clarify the precise meanings of the bubble and thermalon in
order to avoid any confusion in the latter. On the one hand,
the dynamics (expansion or contraction) in this scenario is
always referred to as the (thin-shell) bubble. On the other
hand, the thermodynamic phase of the bubble is meant by
the word “thermalon.” This means that the thermalon is the
Euclidean sector of the static bubble.
Precisely, an initial thermal stage is AdS geometry which

will decay to dS geometry mediated by the thermalon. In
this sense, the bubble must expand. Such expansion is a
purely dynamical process determined by the right-hand
side of Eq. (42) in the Lorentzian sector. Note that the
Euclidean thermalon potential has the opposite sign of that
of the bubble effective potential [26,27]. Once the bubble
has been formed, it will either expand or contract due to
small metric fluctuations. When it expands, the dS phase in
the interior will expand, eventually reaching the cosmo-
logical horizon. At that point, an observer in the interior of
the cosmological horizon will measure the thermodynamics
of a dS space. At the end, the boundary of a whole
spacetime is changed from AdS to dS geometries; i.e.,
the cosmological constant changes from negative to pos-
itive values. Therefore, the observer inside the cosmologi-
cal horizon can measure the thermodynamics quantities of
the dS spacetime. One may conclude that the thermalon

FIG. 4. A plot of an outer rB (red), an inner rB (green), rC
(blue), and a⋆ (black) as functions of a⋆ for λ ¼ 0.20, L ¼ 1,
d ¼ 5, σ ¼ 1, and Q ¼ 0.025. We observe that the bubble
location a⋆ is always found between the event horizons rB;in
and rB;out and the cosmological horizon rC, until the outer event

and cosmological horizons meet at the point where aðQÞ
Nariai ¼

0.7062 given by Eq. (81). This point is called the Nariai bound.
For the neutral model, it is given by aNariai ¼

ffiffiffiffiffiffiffiffiffi
3=Λ

p ¼ L=
ffiffiffi
2

p ¼
0.7074 with L ¼ 1 [10,16].
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changes the solutions from one branch to another via the
phase transition. More importantly, it has been shown that a
reversible process for AdS to dS phase transition does not
occur; see more detailed discussions in Refs. [26,27,31,35].
For example, a so-called reentrant phase transition process
happening in the study of black hole thermodynamics
[36,37] is not possible. The main purpose of this work is to
investigate the phase transition profile of this scenario by
including the static charge.
In general, the initial state of the gravitational phase

transition in this work is the thermal AdS space with the
static charge and requires the grand canonical ensemble to
describe the thermodynamical system. In this particular
case, the charge is not conserved during the process. Bear in
mind that it is not necessarily incorrect, since the electrical
potential Φ can be kept fixed at infinity [8,38]. However,
this is not the case in the present study in which we consider
keeping the charge fixed. By fixing the charge, the
thermodynamical system can be basically reduced and
described using the canonical ensemble [8,37,38]. It has
been proven and demonstrated in Ref. [27] (see [30] for a
detailed derivation) that, in the canonical ensemble includ-
ing the bulk (both inner and outer manifolds) and the
surface actions, the Euclidean action of the thermalon
configuration (IE) is related to the inverse Hawking
temperature (βþ), mass (Mþ) of the external observer in
the asymptotic thermal AdS, and the entropy of the dS
black hole. It reduces to a simple and compact form as

IE ¼ βþMþ þ S: ð82Þ

It is worth mentioning the decay channel in the present
work. Here there are two vacua in our model. Precisely, the
initial state is thermal AdS space, while the final one is
black hole in dS spaces. The thermal AdS is initially in the
false vacuum state or metastable state and then decays into
a black hole inside dS space (true vacuum) via quantum
tunneling or jumping over the wall of the quasiparticle state
called the thermalon, also known as the Euclidean sector of
the bubbles. In this work, the decay mechanism proceeds
through nucleation of the bubbles or the thermalon of true
vacuum (dS) inside the false vacuum (thermal AdS). The
study of this process has been proposed in Refs. [25,27],
and it was shown that the probability of the decay, P, of
the thermalon effectively jumping from AdS to dS branch
solutions is governed by P ∝ e−IE with IE being the
Euclidean action difference between initial thermal AdS
and the thermalon (bubble state). Therefore, the system will
end up in the stable dS black hole after the thermalon
expansion reaching the asymptotically dS region in a
finite time.
Having used the on-shell regularization method by

subtracting the thermal AdS space (outer branch solution)
contribution as argued in Refs. [26,27,31] for the neutral
model, this leads to the (Gibbs) free energy in the canonical

ensemble with the fixed charge of the thermalon configu-
ration. It reads [26,27,37]

F ¼ Mþ þ TþS; ð83Þ

where Tþ ¼ 1=βþ is the Hawking temperature. In the
latter, the free energy of the thermalon is compared to the
thermal AdS space where the thermal AdS space is set to
zero (FAdS ¼ 0) because it was considered to be the
background subtraction [26,27,31,35]. Before we go fur-
ther to quantify the relevant thermodynamics variables, it is
worth noting that there are former five free parameters in
the theory of the neutral case, i.e., M�, T�, and a⋆.
By using four conditions, there are two equations

Vða⋆Þ ¼ 0 ¼ V 0ða⋆Þ from the configurations of the ther-
malon, Hawking temperature condition to avoid canonical
singularity at the horizon, T ¼ f0ðrBÞ=4π, and the match-
ing temperature of the thermal circle at the thermalon
configuration βþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþða⋆Þ

p ¼ β−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f−ða⋆Þ

p
. Notice that the

subindex ⋆ means that it is the static value. We discovered
that there are only free parameters and choose Tþ ¼ 1=βþ.
But the inclusion of the vacuum static charge in this work
gives an additional free parameterQ. The Hawking temper-
ature Tþ is given by

Tþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþða⋆Þ
f−ða⋆Þ

s
T−; ð84Þ

where the T− is the Hawking temperature of the inner dS
black hole in EGBM gravity, and it is determined with d
dimensions and general spatial curvature σ by [39]

T− ¼
�X2
k¼0

ðd − 1 − 2kÞσck
�
σ

r2B

�
k−1

− ðd − 3Þ Q2
c

r2d−6B

�

×

�
4πrB

X2
k¼0

kck

�
σ

r2B

�
k−1
�
−1
: ð85Þ

The entropy S is given by [39]

S ¼ 4π
X2
k¼0

kck
d − 2k

�
σ

r2B

�
k−1

: ð86Þ

We note that the entropy of the charged black hole has the
same form as the neutral black hole [26,27,31]. In addition,
the mass parameter M⋆

− is given by Eq. (55). Having used
the outer event horizon in Eq. (71) and substituted into
Eqs. (55), (84), and (86), we obtain all building blocks of
the thermodynamics quantities as a function of the ther-
malon radius, and we are ready to study the thermalon
properties and the gravitational phase transitions in the
thermodynamics phase space.
The free energy in Eq. (83) plays the crucial role for

investigating the phase transition. The behavior of the free

GRAVITATIONAL ADS TO DS PHASE TRANSITION IN … PHYS. REV. D 102, 064008 (2020)

064008-11



energy is very interesting and is influenced by both the
coupling λ and the charge Q. Note that a cusp structure for
the given values of the coupling λ and the charge Q
indicates the lowest value of the free energy F which is
lower than the thermal AdS space (FAdS ¼ 0; in this work,
it is zero as mentioned earlier) at the same temperature.
Then the thermalon will jump to the dS branch solution and
change the boundary from AdS to dS asymptotics resulting
in the discontinuity (cusp) of the free energy F at the
maximum temperature of the physical branch solutions.
This leads to the zeroth-order phase transition; see [26,35]
for a detailed discussion. To investigate the AdS to dS
phase transition, we consider Fig. 5, displaying free energy
F of the thermalon configuration as a function of the
temperature T ¼ β−1þ for several values of the coupling λ
with the fixed value of the charge Q. We have used L ¼ 1,
σ ¼ 1, d ¼ 5, and Q ¼ 0.15. From right to left: λ ¼ 0.05
(cyan), λ ¼ 0.10 (pink), λ ¼ 0.25 (blue), λ ¼ 0.65 (green),
and λ ¼ 1.20 (red). More importantly, for each value of the
λ coupling of the T vs F phase diagram in Fig. 5, we point
out that the upper branch beyond the cusp is unphysical
branch solutions where it corresponds to Πþ ¼ −Π−

solutions of the Vða⋆Þ ¼ 0 ¼ V 0ða⋆Þ conditions, while
the lower branch is the physical solutions Πþ ¼ Π−; see
more discussions in Ref. [31]. We notice that for various

ranges of temperatures the free energy at the maximum
temperature of the (physical) branch is negative (i.e., less
than the free energy of the thermal AdS, FAdS ¼ 0),
implying the possibility of a thermalon-mediated phase
transition [26,31,35]. Note that interpolating the cusp
structures of the free energy at the maximum temperature
of the physical solution corresponds to the curve of the
Nariai bound of the dS branch solution [31]. Additionally,
we observe that the range of temperatures over which these
transitions emerge increases as the coupling λ is given
smaller with a small charge required. Moreover, thermalon-
mediated phase transitions are possible over a wide range of
temperatures for smaller values of the coupling λ, and the
condition in Eq. (79) is still valid. However, for the given
charge value Q ¼ 0.15 in Fig. 5, the phase transition is not
possible for the coupling λ≳ 0.65; see the green and red
lines where the cusp structures of the free energy occur for
F ≥ 0. In contrast of the study of the AdS to dS phase
transition in the neutral case, the phase transition takes
place for the critical value of the coupling with λ ¼ 1.138
[26]. Including the charge, however, we find that there is no
phase transition (i.e., the free energy is greater than zero)
for the critical value of the coupling λ ¼ 1.138. We then
extensively study by comparing the plot of the free energy
F of the thermalon configuration vs the temperature
T ¼ β−1þ between the charge and the neutral models with
L ¼ 1, σ ¼ 1, and d ¼ 5. The red line shows F vs T of a
charged case with λ ¼ 0.05 and Q ¼ 0.15, while the

FIG. 5. The figure displays free energy F of the thermalon
configuration as a function of the temperature T ¼ β−1þ for several
values of the coupling λ. We have used L ¼ 1, σ ¼ 1, d ¼ 5, and
Q ¼ 0.175. From right to left: λ ¼ 0.05 (cyan), λ ¼ 0.10 (pink),
λ ¼ 0.25 (blue), λ ¼ 0.65 (green), and λ ¼ 1.20 (red). For each
value of the coupling λ, the upper branch beyond the cusp is
unphysical where it corresponds to Πþ ¼ −Π− solutions, while
the lower branch is the physical solutions of Πþ ¼ Π−.

FIG. 6. The figure displays free energy F of the thermalon
configuration as a function of the temperature T ¼ β−1þ . We have
used L ¼ 1, σ ¼ 1, d ¼ 5, and λ ¼ 0.05. The red line shows F vs
T of a charged case with Q ¼ 0.15, while the dashed blue line
indicates F vs T of a neutral case with Q ¼ 0.
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dashed blue line indicates F vs T of a neutral case with
λ ¼ 0.05 andQ ¼ 0. It is worth noting from Fig. 6 that the
phase transitions of the charged case, Q ≠ 0, are possible
in which the required maximum temperature of the
physical branch is lower than that of the neutral case,
Q ¼ 0. However, it is expected that in the planar σ ¼ 0
and hyperbolic σ ¼ −1 geometries the thermal properties
and the phase transition profiles might be different. These
interesting topics are worth further investigating, and we
will leave these topics for our future works. Interestingly,
we notice that the critical (maximum) temperature and
coupling λ of the phase transitions are modified when
adding the charge. We have also checked that at a fixed
value of λ the critical temperature of the phase transition
decreases when the charge gradually increases followed
by a condition jQj < jQcj. This phenomenon is similar to
the physical situation in condensed matter physics, i.e.,
adding a charge as an impurity substitution. For instance,
the conventional superconductivity is a single normal
impurity with a small concentration. Increasing the
size of the impurity in a fixed-size host superconductor
gives a decreasing critical temperature of the host
superconductor [40–42].

IV. CONCLUSION

In this work, we have revisited the toy model of the AdS
to dS phase transition in higher-order gravity proposed by
Ref. [26]. Notice that the gravitational phase transition for
the neutral case in the vacuum solutions has been exten-
sively studied in the literature. It was proposed that the
thermalon, the Euclidean spherical thin shell, plays a
crucial role of the phase transition as already mentioned
in Sec. III. In other words, the thermalon changes the
branches of the solutions from one branch to another via the
thermal phase transition. This phenomenon is a generali-
zation of the Hawking-Page phase transition, and it is
expected to be a generic behavior of the phase transition in
higher-order gravity. We then extend the study of the AdS
to dS phase transition by adding the Maxwell field as an
impurity substitution for investigating the profile of the
phase transition in this framework. We therefore focus on
five-dimensional EGBM gravity in this work. The junction
condition in the EGBM theory is also constructed, and this
leads to the effective potential of the thermalon in the
nonextremal case (jQj < jQcj). We found that the inclusion
of the Maxwell field (the static charge) does not change the
dynamics and stability of the thermalon as shown in Sec. II
except the existence of the effective potential. As expected,
we found that there are three horizons of the interior space

existing in this scenario, i.e., outer event, inner event, and
cosmological horizons. The thermalon radius is always
located between outer event and cosmological horizons.
In addition to the study of phase transition in the

thermodynamic phase space, the behaviors of the
(Gibbs) free energy (F) vs temperature (Tþ) exhibit a
possibility of the phase transition with the presence of the
static charge. The phase transition takes place when the free
energy is lower than the thermal AdS space (FAdS ¼ 0) at
the maximum temperature of the (physical) branch sol-
utions. This leads to the thermalon transition from the AdS
to dS branch solutions. Comparing to the neutral case, we
found that the inclusion of the static charge affects the
critical higher-order coupling λ and the maximum value of
the temperature of the phase transitions. For a fixed value of
the charge jQj < jQcj, the critical (maximum) temperature
and the coupling λ of the thermalon transition are lower
than the neutral case. When fixing a value of λ, the
maximum temperature of the physical branch decreases
if the static charge increases. According to the results
presented in this work, we conclude that the inclusion of the
Maxwell field (static charge) in the gravitational phase
transition behaves in the same way as that of the impurity
substitution in condensed matter physics as the zeroth-
order phase transition. Moreover, adding a matter field in
higher-order gravity does not change the profile of the
phase transition. Our results agree with the claim that
the gravitational AdS to dS phase transition is a generic
transition mechanism of the theories of higher-order
gravity.
Based on our analysis, inclusion of more complex fields,

e.g., adding matter fields, might gain a deeper under-
standing of the dS=CFT structure. Some existing fields in
string theory might reveal rich phenomena and new features
of the gravitational phase transition; for instance, the three-
form field is one of these interesting substitutions, and it is
worth further investigating.
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