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The fluid-gravity correspondence documents a precise mathematical map between a class of dynamical
spacetime solutions of the Einstein field equations of gravity and the dynamics of its corresponding dual
fluid flows governed by the Navier-Stokes (NS) equations of hydrodynamics. This striking connection has
been explored in several dynamics-based approaches and has surfaced in various forms over the past four
decades. In a recent construction, it has been shown that the manifold properties of geometric duals are in
fact intimately connected to the dynamics of incompressible fluids, thus bypassing the conventional
on-shell standpoints. Following such a prescription, we construct the geometrical description that
effectively captures the dynamics of an incompressible NS fluid with respect to a uniformly rotating
frame. We propose the gravitational dual(s) described by bulk metric(s) in (pþ 2) dimensions such that the
equations of parallel transport of an appropriately defined bulk velocity vector field when projected onto
an induced timelike hypersurface require that the incompressible NS equation of a fluid relative to a
uniformly rotating frame be satisfied at the relevant perturbative order in (pþ 1) dimensions. We argue that
free fluid flows on manifold(s) described by the proposed metric(s) can be effectively considered as an
equivalent theory of nonrelativistic viscous fluid dynamics with respect to a uniform rotating frame. We
also present suggestive insights as to how spacetime rotation parameters encode information pertaining to
the inertial effects in the corresponding fluid dual.
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I. INTRODUCTION

The nonrelativistic incompressible Navier-Stokes (NS)
equation [1,2]

_v⃗þ v⃗:∇v⃗þ ∇⃗P − η∇2v⃗ ¼ 0 ð1:1Þ

and the Einstein field equations of gravity

Gab ¼
8πG
c4

Tab ð1:2Þ

are two of the most important and well-studied differential
equations in physics and mathematics. While the incom-
pressible NS equation (1.1) universally governs the

dynamics of fluids in the hydrodynamic limit, the
Einstein equation (1.2) is known to universally govern
the long-distance dynamics of gravitating systems. A
precise mathematical bridge between Eqs. (1.1) and (1.2)
and their solution spaces is well documented by the fluid-
gravity correspondence [3,4]. This striking connection
relating the dynamics of gravity to those of fluid equations
has gradually taken shape and surfaced in various forms
over the past four decades.
One of the earliest works relating the dynamics of

gravity and that of hydrodynamics appeared in the doctoral
thesis of Damour [5], wherein there are suggestions of a
connection between horizon and fluid dynamics. This work
contains an expression now known as the Damour-Navier-
Stokes (DNS) equation and it is known to govern the
geometric data on any null surface. The same equation is
also obtained in terms of coordinates adapted to a null
surface [6,7] by projecting the Einstein equations of motion
onto the null hypersurface (a similar analysis was also done
in Ref. [8] for scalar-tensor gravity theory to obtain a DNS-
like equation). Moreover, a corresponding action formu-
lation of the same was given in detail in Ref. [9]. A
connection in this regard was also obtained in the mem-
brane paradigm approach by Price and Thorne in Ref. [10].
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The membrane paradigm was applied in Ref. [11] in the
context of asymptotically AdS spacetimes to show the
dynamics of the membrane being described by the incom-
pressible NS equation. In Ref. [12] the authors obtained an
analogous DNS-type equation for both future outer trapped
horizons and dynamical horizons (which are spacelike).
One peculiarity of the DNS equation as obtained on a null
horizon is that the bulk viscosity of the horizon fluid is
negative. This makes the null horizon fluid unfit to have a
connection with ordinary fluids. However, the authors of
Ref. [12] showed that the horizon fluid on both future outer
trapped horizons and the dynamical horizons have a
positive value of the bulk viscosity. In the AdS=CFT
context, it has been shown that the dissipative behavior
of an anti–de Sitter (AdS) black hole agrees with the
hydrodynamics of the holographically dual conformal field
theory. In this approach the NS equation together with its
corrections arise under a gradient expansion of the Einstein
equations. This has been studied extensively and important
works in this regard include Refs. [13–16]. More recently,
in a cutoff surface approach by Bredberg et al. [17] it was
shown by explicit construction that for every solution of the
incompressible NS equation in (pþ 1) dimensions there is
a uniquely associated dual solution of the vacuum Einstein
equations in (pþ 2) dimensions. The metric of Ref. [17]
was extended to all orders perturbatively via gradient
expansion in Ref. [18], thus yielding higher-order correc-
tions to the NS equation as well as the incompressibility
condition. In Ref. [19] the authors generalized the cutoff
surface approach by expounding on the dynamics of the
dual field theory living on the boundary of AdS spacetime,
provided the Dirichlet boundary conditions on the r ¼ rc
cutoff surface are ensured. The authors showed that there
exists a critical radius as we go towards the horizon, beyond
which a relativistic description of the fluid living on the
cutoff surface is not valid because of the acausal propa-
gation of sound modes. Allowing for nonrelativistic scal-
ing, the authors retrieved the Ricci-flat gravitational duals
to the incompressible NS equations. In Ref. [20] the authors
provided a general approach to fluid/gravity correspon-
dence, where the base metric is no longer the flat Rindler
metric, but rather a generic static metric. The spacetime is
endowed with a general bulk stress-energy tensor and an
event horizon. This cutoff surface approach has been
applied in various cases; see Refs. [21–23]. For example,
it was extended for higher-curvature gravity theories
[24–28] as well as for the AdS [29,30] and dS [31] gravity
theories (for other theories, like black branes, see
Ref. [32]). Very recently, two of the authors of this paper
showed in Ref. [22] that an incompressible DNS-like
equation can be obtained in the cutoff surface approach.
In this case the obtained metric is a solution of the Einstein
equations of motion in the presence of a particular type of
matter. Also, a corresponding relativistic situation was
discussed extensively in Ref. [33]. Symmetries of the

vacuum Einstein equations were exploited to develop a
formalism for solution-generating transformations of the
corresponding NS fluid duals in Ref. [34]. The fluid
description on the Kerr horizon was also explored exten-
sively in Ref. [35] (see Ref. [36] for the isolated horizon
case). The correspondence was also established for general
rotating black holes yielding a Coriolis force term [37]. For
extensive reviews of the fluid-gravity correspondence, see
Refs. [3,4,38].
Having discussed the conventional approaches to this

fascinating connection relating the dynamics of gravity to
that of hydrodynamics, a novel interpretation of the same
correspondence was established in a new setting. In a recent
work by the authors of this paper [39], a new formalism was
established to understand the fluid-gravity correspondence
from a different standpoint. In the previous cutoff surface
approach the underlying physics is that there exists a
nontrivial map between the fluid side and the gravity side
constrained by their dynamical equations of motion. This
approach lays out the connection or duality between the
dynamics of the incompressible fluid and that of the
Einstein gravitational equations of motion via the conser-
vation of the Brown-York stress tensor on the gravity side.
However, fundamentally, the physics in Ref. [39] is quite
different. Here the correspondence is between an incom-
pressible fluid living in Minkowski spacetime and that of an
appropriately defined bulk velocity field in curved space-
time. We then encode the dynamics of the bulk velocity
field congruence in order to have a map between the fluid in
the Minkowski spacetime and the bulk velocity field in the
curved manifold. By dynamics, we impose that the accel-
eration of the congruence of the bulk velocity field on the
r ¼ rc timelike hypersurface is zero, i.e., the bulk velocity
congruence is parallel transported on the r ¼ rc slice. This
allows us to have a map between the dynamics on both
sides. The incompressible NS equation of the fluid is
mapped to a “free” bulk velocity congruence on the r ¼ rc
hypersurface. The essence of the physics in Ref. [39] is that
dynamics of the incompressible viscous fluid in Minkowski
spacetime can be studied as the dynamics of a “free”
parallel-transported bulk velocity field on the cutoff slice.
As a result of the projection of the parallel transport being
the analogue of the dynamics on the manifold side, all of
the dynamical degrees of freedom of the fluid are encoded
in the manifold properties of the spacetime. The constraint
of the incompressibility condition on the fluid side is shown
to naturally arise from the vanishing of the expansion
parameter corresponding to the bulk velocity field. It is for
this reason that the projection of the parallel transport
equation of the bulk velocity field on the cutoff slice is so
important in this framework. Moreover, this mapping
between the two sides bypasses the Einstein field equations
as an added advantage and hence is an off-shell duality
between the incompressible fluid dynamics and parallel
transport dynamics of a bulk velocity on the cutoff
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hypersurface. This approach to the fluid-gravity correspon-
dence is completely different from existing works in this
direction. This work [39] essentially forms the basis of the
current paper, which attempts to construct a gravitational
dual of the incompressible NS equation in a rotating frame,
the details of which are discussed in the following
paragraphs.
The notations used throughout the paper are clarified as

follows. All lowercase latin letters denote the bulk space-
time coordinate indices and run from a; b ¼ 0;…; pþ 1.
The uppercase latin letters denote the transverse coordi-
nates intrinsic to the hypersurface (i.e., the angular sector of
the metric) and they run from A;B ¼ 2;…; pþ 1 as the
labels 0 and 1 have been chosen for time and radial
coordinates, respectively.

II. OUTLINE OF THE PAPER: A BRIEF REVIEW
ON INCOMPRESSIBLE NS WITH RESPECT TO A

ROTATING FRAME AND MOTIVATION

The incompressible NS equation in an inertial frame of
reference (1.1) takes the following form in index notation:

∂ 0
τv0A þ v0C∂ 0

Cv
0
A þ ∂ 0

AP − η∂ 02v0A ¼ 0;

∂ 0
Av

0A ¼ 0; ð2:1Þ

where v0A denotes the fluid velocity with respect to an
inertial coordinate system ðτ0; fx0AgÞ. All of the derivatives
are with respect to this primed inertial coordinate system.
However, for a fluid relative to the rotating frame, inertial
effects (like the Coriolis and centrifugal forces) need to
be accounted for in the above equation when dealing with
the dynamics of the fluid. The coordinates of the fluid
element with respect to the rotating frame are designated as
ðτ; fxAgÞ. The transformations of the position vectors, the
velocities, and the accelerations of the fluid element
between the rotating frame and the inertial frame are given,
respectively, via the relations

x ¼ R · x0;

v ¼ R · v0 −Ω × x;

a ¼ R · a0 −Ω × ðΩ × xÞ − 2ðΩ × vÞ; ð2:2Þ

where Ω is the uniform angular velocity of the rotating
frame. R denotes the general time-dependent rotation
matrix about any arbitrary plane. The centrifugal accel-
eration is given via Ω × ðΩ × xÞ and the Coriolis accel-
eration via 2ðΩ × vÞ. Thus, the incompressible NS equation
relative to a uniformly rotating frame for a nonrelativistic
viscous fluid system (with no external forces) can be
written as

∂τvA þ vB∂BvA þ ∂AP − η∂2vA ¼ −2ðΩ × vÞA
− ðΩ × ðΩ × xÞÞA;

∂AvA ¼ 0; ð2:3Þ

where the Coriolis force is identified as −2ðΩ × vÞ and the
centrifugal force as −Ω × ðΩ × xÞ.
The centrifugal force term can be identified as the gra-

dient of a certain centrifugal potential (on the assumption
that the origin of the rotating coordinate system lies on the
axis of rotation) which can then be incorporated into the
dynamical fluid pressure P to identify an effective pressure
term Peff [1]. The effective pressure Peff can then be
identified as

Peff ¼ P −
1

2
jΩ × xj2: ð2:4Þ

Thus, another form of the NS equation in the rotating
frame is

∂τvA þ vC∂CvA þ ∂APeff − η∂2vA ¼ −2ðΩ × vÞA;
∂AvA ¼ 0: ð2:5Þ

The details of this derivation can be found in Refs. [1,2].
In the above we found that the NS equation can be cast in

two forms (2.3) and (2.5). Here, we attempt to construct
the gravitational duals of both of them, in the manifold-
based approach to the fluid-gravity correspondence as
established in Ref. [39]. Our main target will be to construct
metrics that will lead to the NS equations when the parallel
transport equation of a suitably chosen velocity vector is
projected on the timelike hypersurface of these metrics. We
first concentrate on finding the dual of Eq. (2.3), and then
that for Eq. (2.5). We shall observe that, although the above
two equations represent the same NS equation, the mani-
folds are distinctly different. However, the formalism of
Ref. [39] yields equivalent NS equations (with respect to
the rotating frame) for the fluid dual for both of these
distinct metrics.
The basic organization of the paper is as follows. In

Secs. IV and V, respectively, we begin by proposing two
different bulk metrics in (pþ 2) dimensions, on which we
consider the equations of the projection of the parallel
transport of an appropriately defined velocity vector field.
We then show in Secs. IVA and VA that the projection of
the parallel transport equations onto a timelike induced
hypersurface requires that the fluid-dynamical NS equa-
tions (with respect to the rotating frame) be satisfied in
(pþ 1) dimensions. In Secs. IV B and V B we then show
that the incompressibility condition of the fluid as viewed
from the rotating frame derives from a vanishing expansion
parameter θ when projected onto the same timelike induced
hypersurface. We also identify the connections between the
rotation parameter(s) on the gravity side and those in its
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fluid counterpart. In Sec. VI we provide further insight into
the construction of the two proposed bulk metrics, which
are genuinely curved backgrounds. By doing so, we show
that the present considered proposed metrics are in no way
related by a diffeomorphism of the metric presented in
Ref. [39]. Finally, in Sec. VII we discuss the consequences
of the two different gravity/metric duals we obtain for a NS
fluid (relative to a rotating frame) in this parallel transport
framework of the fluid-gravity correspondence and offer a
few concluding remarks. The computation of the inverse(s)
of the (pþ 2)-dimensional bulk metric(s), the relevant
connection coefficients, and the order-wise calculations of
the projected parallel transport equations and the expansion
parameter θ are explicitly described in Appendixes A–F.

III. SCALE INVARIANCE OF THE
FLUID-DYNAMICAL EQUATIONS

We propose two different metrics that effectively capture
the dynamics of the viscous, NS fluid system relative to a
uniformly rotating frame. Without using the Einstein field
equations, we simply project the acceleration of an appro-
priately chosen bulk velocity congruence onto a specific
chosen hypersurface for both of these metrics and demand
that it be zero. Our main results—the specific forms of the
manifolds—are obtained based on the scaling invariance of
the NS equation. Therefore, we start this section with a
discussion on this topic.
The incompressible NS equation (1.1) satisfies a well-

known scaling symmetry that is briefly stated as follows.
If the solution space ðvA; PÞ of the incompressible NS
equation is scaled down by a certain hydrodynamic
parameter ϵ as

vϵAðxA; τÞ ¼ ϵvAðϵxA; ϵ2τÞ; PϵðxA; τÞ ¼ ϵ2PðϵxA; ϵ2τÞ;
ð3:1Þ

then the NS equation remains invariant under the above
scaling transformations. A detailed derivation of the scale
invariance of the NS equation can be found in Appendix A
of Ref. [22]. The incompressible NS equation for a viscous
fluid with respect to the rotating frame [Eq. (2.3) or,
equivalently, Eq. (2.5)] also remains scale invariant if we
identify that the uniform angular velocity Ω scales as

Ωϵ
A ¼ ϵ2ΩA: ð3:2Þ

The justification of this comes from the fact that angular
velocity has dimensions of the inverse of time τ. Since for
the scale invariance τ scales as order Oðϵ−2Þ, the compo-
nents of the angular velocity scale as orderOðϵ2Þ. Thus, via
the hydrodynamic scaling ϵ we can generate a class of
solutions parametrized by ðvϵA; PϵÞ. The hydrodynamic
scalings of the dynamical variables—the constant angular
velocity components along the spatial and temporal deriv-
atives—follow as

vA ∼OðϵÞ; P ∼Oðϵ2Þ; ΩA ∼Oðϵ2Þ;
∂A ∼OðϵÞ; ∂τ ∼Oðϵ2Þ: ð3:3Þ

IV. FLUID DYNAMICS VIA PARALLEL
TRANSPORT: CHOICE I

For the proposed metric we follow the methodology
applied in Ref. [17] and lay out the metric order by order in
terms of the hydrodynamic scaling parameter ϵ.
We propose a metric of the form

ds2pþ2 ¼ gabdxadxb ¼ −rdτ2 þ 2dτdrþ dxAdxA

− 2βAfðrÞdτdxA − 2βAgðrÞdrdxA
þ ða3ðxAΩAxBΩBÞ þ a4ðδABΩAΩBδCDxCxDÞÞdτ2

−
�
2a1
rc

∂APþ 2a2∂2vA −
4

rc
fðrÞvD∂DβA

�
dxAdr

þOðϵ4Þ: ð4:1Þ
The metric is written in such a way that the first line isOðϵ0Þ
and is simply the flat Rindler metric written in ingoing
Eddington-Finkelstein coordinates, the second line isOðϵ1Þ,
the third line is Oðϵ2Þ, and the fourth line is Oðϵ3Þ. a1, a2,
a3, and a4 serve as constants whose values will be fixed later.
We impose the condition that βA scales as order ϵ1. The
present metric matches the proposed metric in Ref. [39] (in
a3 of Ref. [39] set to zero) if we set the constants a3 and a4
as well as βA equal to zero. The metric expanded to order
Oðϵ2Þ serves as the base metric upon which the perturbation
at order Oðϵ3Þ has been added. Initially, at this metric level,
the set fΩAg are just some uniform components that we
demand to scale as orderOðϵ2Þ. No identification of fΩAg at
this point can be made with the overall uniform angular
velocity components for the fluid to be described. The same
goes for the set fβAg. Similarly, at the metric level, the fields
Pðτ; xAÞ and fvAðτ; xBÞg are not to be initially identified
with the pressure perturbations and the velocity components
of the fluid. All that we require at this metric level is that the
fields Pðτ; xAÞ and fvAðτ; xBÞg scale as order Oðϵ2Þ and
Oðϵ1Þ, respectively, in terms of the hydrodynamic scaling
parameter ϵ. The analogy/correspondence will emerge only
after the formal machinery of the projection of the parallel
transport equation has been applied.
We now explain the physical interpretation behind the

construction of such a metric. We consider the effect
of the following coordinate transformation on a four-
dimensional Minkowski metric ds2 ¼ ηabdxadxb with η ≔
diagf−1;þ1;þ1;þ1g and fxag ≔ ft; x; y; zg:

t̃ ¼ t;

x̃ ¼ x cosðωtÞ þ y sinðωtÞ;
ỹ ¼ −x sinðωtÞ þ y cosðωtÞ;
z̃ ¼ z: ð4:2Þ
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Under the effect of this coordinate transformation, where ω
is a constant, the Minkowski metric becomes

ds2 ¼ −½1 − ω2ðx̃2 þ ỹ2Þ�dt̃2 þ 2ωðx̃dỹ − ỹdx̃Þdt̃
þ dx̃2 þ dỹ2 þ dz̃2: ð4:3Þ

It can be verified that in the nonrelativistic limit the
geodesic equation of motion in this manifold reduces to
the usual Newton’s laws for a free particle in a rotating
frame, incorporating both the Coriolis and centrifugal
effects. The above discussion indicates that the coeffcients
of dτdxA in our proposed metric are of the order OðϵÞ
whereas those for dτ2 are of order Oðϵ2Þ. In our proposed
metric, at this level βA is a function of ðτ; xAÞ. However, Ω
in our proposed metric is uniform and hence independent of
τ, r, and fxAg. We recall that this is just a formal analogical
way of proposing the present metric (4.1). A pertinent
question might arise as to the emergence of the extra
parameter βA in the proposed metric (4.1). It will be shown
later after the formal machinery (of parallel transport) has
been applied that fΩAg and fβAg must depend on each
other for consistency.
We assume for the moment that in Eq. (4.1) fðrÞ and

gðrÞ are smooth functions of only the radial coordinate,
with the condition that fðr ¼ rcÞ ≠ 0 and gðr ¼ rcÞ ≠ 0.
Here we also mention that r ¼ rc is the location of the
timelike hypersurface (in the bulk manifold) that we are
interested in. The location is at any finite distance between
the horizon r ¼ 0 and radial infinity. The base bulk metric
here is

gð0Þab dx
adxb ¼ −rdτ2 þ 2dτdrþ dxAdxA − 2βAfðrÞdτdxA

− 2βAgðrÞdrdxA þ ða3ðxAΩAxBΩBÞ
þ a4ðδABΩAΩBδCDxCxDÞÞdτ2; ð4:4Þ

over which the perturbation

hð3Þab dx
adxb ¼ −

�
2a1
rc

∂APþ 2a2∂2vA

−
4

rc
fðrÞvD∂DβA

�
dxAdr ð4:5Þ

to the order ϵ3 has been applied. We denote the perturbation

as hð3Þab . As a result, the base bulk metric is curved, which
can be checked by calculating the components of the
Riemann curvature tensor Ra

bcd. The fields Pðτ; xAÞ and
vAðτ; xAÞ are independent of the radial coordinate r. We

shall show that the perturbation hð3Þab in the proposed metric
contains information about all of the forcing terms in
the Navier-Stokes equation (relative to the rotating frame)
for a viscous incompressible fluid. This proposed metric
acts as the metric/gravity dual to the nonrelativistic fluid-

dynamical equations written in a rotating coordinate
system. Projecting the acceleration of the bulk fluid
congruence in this given spacetime onto the timelike
hypersurface r ¼ rc and demanding that it be zero, we
obtain the corresponding fluid-dynamical equation (and in
the process lose general covariance).

A. Parallel transport of the velocity field

All of the kinematical and dynamical quantities of
interest to us (which are defined for the entire spacetime
manifold) will be projected onto the r ¼ rc timelike
hypersurface. The projection tensor onto the hypersurface
r ¼ rc is given by

γab ¼ gab − nanb; ð4:6Þ

where na is the unit normal on this hypersurface. The
hypersurface being timelike, its unit normal satisfies
nana ¼ þ1 (spacelike unit normal). Since the base bulk
metric is of the order Oðϵ2Þ, the computation of na (on the
r ¼ rc hypersurface) yields

nτjr¼rc ¼ 0;

nrjr¼rc ¼
1ffiffiffiffi
rc

p þ 1

r3=2c

fa3ðxAΩAxBΩBÞ

þ a4ðδABΩAΩBδCDxCxDÞg
− δABβAβBðf2 þ 2rfgþ r2g2Þ þOðϵ4Þ;

fnAgjr¼rc ¼ 0: ð4:7Þ

The calculation for the components of the normal to the
hypersurface has been carried up to Oðϵ2Þ. The compo-
nents of the projection tensor [to orderOðϵ2Þ] on the r ¼ rc
slice follow as

γττ ¼ −rc þ a3ðxAΩAxBΩBÞ þ a4ðδABΩAΩBδCDxCxDÞ;
γτr ¼ 1; γτA ¼ −βAfðrcÞ;

γrr ¼ −
1

rc
−

1

r2c
fa3ðxAΩAxBΩBÞ þ a4ðδABΩAΩBδCDxCxDÞ

− δABβAβBðf2 þ 2rfgþ r2g2Þg;
γrA ¼ −βAgðrcÞ; γAB ¼ δAB: ð4:8Þ

Raising these covariant projectors via the inverse metric
tensor gab (see Appendix A), we obtain the contravariant
components of the projection tensor to the hypersurface
r ¼ rc up to the order Oðϵ2Þ as
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γττ ¼ −
1

rc
−

1

r2c
fa3ðxAΩAxBΩBÞ þ a4ðδABΩAΩBδCDxCxDÞg

þ f2ðrcÞ
r2c

δABβAβB;

γτr ¼ 0; γτA ¼ −
fðrcÞ
rc

δABβB;

γrr ¼ 0; γrA ¼ 0; γAB ¼ δAB þ f2ðrcÞ
rc

δACδBDβCβD:

ð4:9Þ

Now in the given spacetime manifold we define a bulk
velocity field as va ¼ ð1; 0; vAÞ, such that there is no flow
in the radial direction. The acceleration of the congruence

of the velocity field is given via ai ¼ vb∇bvi. We demand
that the acceleration of this congruence as projected on the
r ¼ rc timelike hypersurface be zero. The component of
the acceleration of the manifold fluid congruence on the
r ¼ rc slice is zero. This is represented by

γacvb∇bvajr¼rc ¼ 0: ð4:10Þ

It is in this sense that we are calling Eq. (4.10) a parallel
transport equation or, more correctly, the projected parallel
transport equation, i.e., the fluid congruence is “free” only
on the r ¼ rc hypersurface. Setting the free index c to τ, we
obtain the lhs of Eq. (4.10) on the hypersurface r ¼ rc of
Eq. (4.1) as

γaτðvb∇bvaÞjr¼rc ¼ γττðΓτ
ττ þ 2Γτ

τAv
A þ Γτ

ABv
AvBÞ þ γrτðΓr

ττ þ 2Γr
τAv

A þ Γr
ABv

AvBÞ
γBτð∂τvB þ vA∂AvB þ ΓB

ττ þ 2ΓB
τAv

A þ ΓB
ADv

AvDÞjr¼rc : ð4:11Þ

The evaluation of Eq. (4.11) yields zero at ordersOðϵ0Þ,Oðϵ1Þ,Oðϵ2Þ, andOðϵ3Þ, which is shown in detail in Appendix C.
Hence, the projected parallel transport equation on the r ¼ rc hypersurface with the free index c ¼ τ is trivially satisfied up
to order Oðϵ3Þ.
Next, we turn our attention to the free index c ¼ r and have the following lhs of Eq. (4.10):

γarðvb∇bvaÞjr¼rc ¼ γτrðΓτ
ττ þ 2Γτ

τAv
A þ Γτ

ABv
AvBÞ þ γrrðΓr

ττ þ 2Γr
τAv

A þ Γr
ABv

AvBÞ
γArð∂τvA þ vB∂BvA þ ΓA

ττ þ 2ΓA
τBv

B þ ΓA
BCv

BvCÞjr¼rc : ð4:12Þ
Evaluating Eq. (4.12) order by order, we see that it vanishes at Oðϵ0Þ, Oðϵ1Þ, and Oðϵ3Þ. However, at Oðϵ2Þ, Eq. (4.12)
yields a quantity proportional to f2ðrcÞ

rc
þ 2fðrcÞgðrcÞ þ rcg2ðrcÞ. The details are listed in Appendix C. The imposition of

Eq. (4.10) implies

f2ðrcÞ þ 2rcfðrcÞgðrcÞ þ r2cg2ðrcÞ ¼ 0; ð4:13Þ

and as a consequence we obtain gðrcÞ ¼ − fðrcÞ
rc

, which has to be satisfied on the r ¼ rc timelike slice.
At this point we determine the covariant components of the velocity field. The contravariant components were defined as

va ¼ ð1; 0; vAÞ. The covariant components of the velocity field (lowered via the base bulk metric) are

vτ ¼ −r − fβAvA þ a3ðxAΩAxBΩBÞ þ a4ðδABΩAΩBδCDxCxDÞ þOðϵ4Þ;
vr ¼ 1 − gβAvA þOðϵ4Þ; vA ¼ −fβA þ δABvB: ð4:14Þ

We finally look at the projection of the parallel transport equation (4.10) with the free index c ¼ A. As a consequence, for
the lhs of Eq. (4.10) we obtain

γaAðvb∇bvaÞjr¼rc ¼ γτAðΓτ
ττ þ 2Γτ

τDv
D þ Γτ

CDv
CvDÞ þ γrAðΓr

ττ þ 2Γr
τDv

D þ Γr
CDv

CvDÞ
γBAð∂τvB þ vC∂CvB þ ΓB

ττ þ 2ΓB
τDv

D þ ΓB
CDv

CvDÞ: ð4:15Þ
Evaluating Eq. (4.15) order by order, we see that it vanishes at Oðϵ0Þ, Oðϵ1Þ, and Oðϵ2Þ. Evaluating the above equation on
the r ¼ rc cutoff hypersurface at Oðϵ3Þ yields (see Appendix C for details)

Oðϵ3Þ∶γaAðvb∇bvaÞjr¼rc ¼ ∂τvA þ vC∂CvA þ fðrcÞvC∂CβA þ rc
2

�
a1
rc

∂APþ a2∂2vA −
2

rc
fðrcÞvD∂DβA

�
þ fðrcÞð∂AβD − ∂DβAÞvD − a3ΩAðΩPxPÞ − a4ðδCDΩCΩDδAPxPÞ: ð4:16Þ
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The validity of Eq. (4.10) with the free index c ¼ A at order Oðϵ3Þ imposes the requirement

∂τvA þ vC∂CvA þ
�
a1
2
∂APþ a2

2
rc∂2vA

�
þ fðrcÞð∂AβD − ∂DβAÞvD − a3ΩAðΩPxPÞ − a4ðδCDΩCΩDδAPxPÞ ¼ 0:

ð4:17Þ

Having finally arrived at Eq. (4.17), we want to make a
correspondence between it and Eq. (2.3) (where v denotes
the velocity of the fluid element with respect to the rotating
frame). It is at this level that we start making the necessary
identifications between the quantities in the (pþ 2)-dimen-
sional manifold sector and the respective quantities in the
(pþ 1)-dimensional fluid dynamics sector. In order to
make this parallel evident, the following identifications
need to made. The fields Pðτ; xAÞ and fvAðτ; xBÞg in the
manifold sector [that scaled as order Oðϵ2Þ and OðϵÞ,
respectively] are indeed the pressure perturbation and
velocity field in the fluid sector. In the same way, we
identify that the component ΩA on the gravity side is
equivalent to the uniform angular velocity of the frame in
which the fluid is studied. We also identify that the uniform
angular velocity components are related to the components
fβAg via

ð∂AβB − ∂BβAÞvB ¼ −ðΩ × vÞA; ð4:18Þ

and as a result we can write

Ω ¼ ∇ × β: ð4:19Þ

Hence, we see that at the metric level the components fβAg
are not free parameters, but rather are constrained on fΩAg.
We can further constrain the functional form of β via the
fact that Eq. (2.3) represents the NS equation described in a
uniformly rotating reference frame. Hence, we demand that
the functional form of β be such that Ω is a constant vector.
One particular solution of Eq. (4.19) is

βD ¼ 1

ðp − 1Þ ϵ
A
BDΩAxB þ ϕDðτÞ; ð4:20Þ

where ϕðτÞ is any arbitrary function of τ. We then constrain
the functional form of fðrÞ on the cutoff hypersurface as
fðrcÞ ¼ −2, as a result of which gðrcÞ ¼ 2

rc
. Identifying the

constants ai in the proposed metric (4.1) as

a1 ¼ 2; a2 ¼ −2; a3 ¼ −1; a4 ¼ 1 ð4:21Þ

and the kinematic viscosity term η as η ¼ rc, Eq. (4.17)
becomes

∂τvA þ vC∂CvA þ ∂AP − η∂2vA þ 2ðϵABCΩBvCÞ
þ ΩAðΩPxPÞ − ðδCDΩCΩDδAPxPÞ ¼ 0: ð4:22Þ

It can be easily shown that the last two terms on the lhs of
Eq. (4.22) are exactly the centrifugal force component
ðΩ × ðΩ × xÞÞA. So finally our formalism of the projection
of the parallel transport equation on the timelike slice yields

∂τvA þ vC∂CvA þ ∂AP − η∂2vA þ 2ðΩ × vÞA
þ ðΩ × ðΩ × xÞÞA ¼ 0; ð4:23Þ

which is identical to Eq. (2.3).
The above Eq. (4.23) is the Navier-Stokes equation

(relative to the rotating frame) for a nonrelativistic, viscous
fluid, with the last two terms being the inertial Coriolis
and centrifugal forces, respectively, generated as a conse-
quence of the relative fluid motion described in the rotating
coordinate system. Thus, the inertial effects of the Coriolis
and centrifugal forces are codified inside the proposed
metric dual. In passing we mention that the centrifugal
force can be expressed as the gradient of a certain
centrifugal potential,

ðΩ × ðΩ × xÞÞA ¼ −∂A

�
1

2
jΩ × xj2

�
; ð4:24Þ

in order to identify the effective pressure Peff as

Peff ¼ P −
1

2
jΩ × xj2; ð4:25Þ

thus obtaining Eq. (2.5) in the process.

B. Incompressibility condition
from the expansion scalar

Now in order to quantify the incompressibility condition
of the fluid on the dual metric side we look at the deviation
tensor of the geodesic congruence of the bulk velocity
field, and then project it onto the r ¼ rc hypersurface.
Following the analogy that the incompressibility implies
density perturbations being zero over the continuum micro-
scopic scales in the fluid side, we demand that the above
relevant quantity must vanish. So we consider the tensor
field ∇bva, which is the deviation of the geodesic fluid
flow, and then we project this deviation tensor onto the
r ¼ rc timelike hypersurface. Basically, we evaluate the

GRAVITY DUAL OF NAVIER-STOKES EQUATION IN A … PHYS. REV. D 102, 064003 (2020)

064003-7



term Θ ¼ γabð∇bvaÞjr¼rc which is the expansion scalar as
seen on the timelike cutoff surface r ¼ rc. We shall see that
the vanishing of this expansion scalar necessarily implies
the incompressibility condition.
The corresponding projectors have been listed in

Eq. (4.9). Hence, by expanding we have

Θ ¼ −γττðΓτ
ττvτ þ Γr

ττvr þ ΓA
ττvAÞ

− 2γτAðΓτ
τAvτ þ Γr

τAvr þ ΓA
τAvAÞ

þ γABð∂AvB − Γτ
ABvτ − Γr

ABvr þ ΓD
ABvDÞ: ð4:26Þ

Evaluating the rhs of Eq. (4.26) reveals that it vanishes
at orders Oðϵ0Þ, Oðϵ1Þ, and Oðϵ3Þ (see Appendix E
for details). The second-order term Oðϵ2Þ implies (see
Appendix E)

Oðϵ2Þ∶∂AvA:

We impose the condition for the vanishing of the expansion
scalar as evaluated on the r ¼ rc cutoff hypersurface up to
order Oðϵ3Þ. This implies the incompressibility condition

∂AvA ¼ 0: ð4:27Þ

This is perhaps physically intuitive as the expansion scalar
contains information as to the expansion or compression of
the bulk geodesic velocity element, and its vanishing
simply translates to the incompressibility condition on
the fluid side.

V. FLUID DYNAMICS VIA PARALLEL
TRANSPORT: CHOICE II

Again taking only the hydrodynamical scaling informa-
tion from the fluid-dynamical side (3.3), we construct
another metric expanded order by order in terms of the
hydrodynamic scaling parameter ϵ. We propose a metric of
the form

ds2pþ2 ¼ gabdxadxb ¼ −rdτ2 þ 2dτdrþ dxAdxA

− 2βAfðrÞdτdxA − 2βAgðrÞdrdxA

−
�
2a1
rc

∂APeff þ 2a2∂2vA −
4

rc
fðrÞvD∂DβA

�
× dxAdrþOðϵ4Þ: ð5:1Þ

The present metric again matches the proposed metric in
Ref. [39] (in a3 of Ref. [39] set to zero) provided βA has
been set to zero. The first line is of orderOðϵ0Þ and is again
the base Rindler metric, the second line is of order Oðϵ1Þ,
and the third line is of order Oðϵ3Þ. Here we reiterate that
βAðτ; xBÞ scales as order Oðϵ1Þ and at the metric level no
concrete connection can be made between βA and the
uniform angular velocity component ΩA of the fluid side.
However, intuitively, βA can be recognized along the lines

of a “rotation” parameter of the spacetime. This has been
done in analogy with the concept of frame dragging of
inertial coordinates. If we assume for the moment that all of
the metric coefficients are independent of the τ coordinate
(i.e., the metric becomes stationary) and the [A]th angular
coordinate, then frame dragging becomes a generic feature
in such stationary spacetimes where gτ½A� ≠ 0. The square
brackets on [A] imply selecting only one angular coordinate
A out of the total p coordinates. For such a metric there will
be two conserved quantities: pτ and p½A�. The angular
velocity of a particle dropped along the radial direction with
zero conjugate momentum corresponding to the [A] angular

coordinate (p½A� ¼ 0) is dx½A�
dτ ¼ p½A�

pτ ¼ ωðr; ĀÞ ≠ 0, where Ā
refers to all of the other angular coordinates without the
single chosen [A] coordinate. So a particle dropped radially
will acquire a nonzero angular velocity. If we think
passively about the particle being described in some local
inertial frame where it is spatially at rest, then such inertial
frames should be rotating with an angular velocity ωðr; ĀÞ,
and hence we say that inertial frames are dragged in this
spacetime. It is in this sense that βA, which in general is a
function of ðτ; xAÞ, is identified as a parameter that
describes the rotation of the above-mentioned spacetime.
Similar to metric choice I, the consistency conditions on
fðrcÞ and gðrcÞ also hold for metric choice II. The same
condition holds for the location of the timelike cutoff slice
r ¼ rc. However, in Eq. (5.1) Peffðτ; xAÞ is a modification
of the field Pðτ; xAÞ as presented in Eq. (4.1). However, we
do demand that this modification be consistent with the
scaling argument, i.e., Peffðτ; xAÞ scales as order Oðϵ2Þ. At
the end of the analysis we will decide what exact modi-
fication needs to be applied to Peff so that the duality
between the manifold side and the fluid side is evident. The
base bulk metric here is

gð0Þab dx
adxb ¼ −rdτ2 þ 2dτdrþ dxAdxA − 2βAfðrÞdτdxA

− 2βAgðrÞdrdxA; ð5:2Þ

over which the perturbation

hð3Þab dx
adxb ¼ −

�
2a1
rc

∂APeff þ 2a2∂2vA

−
4

rc
fðrÞvD∂DβA

�
dxAdr ð5:3Þ

to the order ϵ3 has been applied. We denote the perturbation

as hð3Þab . As a result, the base bulk metric is curved, which
can be checked by calculating the components of the
Riemann curvature tensor Ra

bcd.

A. Parallel transport of the velocity field

The base part of the bulk metric proposal (5.1) (barring
the perturbation at the third order) is written to order OðϵÞ.
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The unit normal on the r ¼ rc timelike slice is evaluated to
the first order in ϵ. The computation yields

na ¼
�
0;

1ffiffiffiffi
rc

p ; 0
∼

�
: ð5:4Þ

The tilde underneath 0 implies that all of the angular
components of the normal are zero. The components of the
projection tensor [to order OðϵÞ] on the r ¼ rc slice are

γττ ¼ −rc; γτr ¼ 1; γτA ¼ −βAfðrcÞ;

γrr ¼ −
1

rc
; γrA ¼ −βAgðrcÞ; γAB ¼ δAB: ð5:5Þ

The contravariant components to order OðϵÞ upon raising
via the metric are

γττ ¼ −
1

rc
; γτr ¼ 0; γτA ¼ −

fðrcÞ
rc

δABβB;

γrr ¼ 0; γrA ¼ 0; γAB ¼ δAB: ð5:6Þ

Again, for this proposed manifold defined via the metric
(5.1) we define a bulk velocity field as va ¼ ð1; 0; vAÞ. We
follow exactly the same algorithm as that for the metric
choice I. The relevant information about the inverse metric
components and the Christoffel symbols for the metric
choice II are listed in Appendix B.
Setting the free index c to τ, for the metric (5.1) we

evaluate the lhs of Eq. (4.10) order by order untilOðϵ3Þ. We
see that the lhs vanishes atOðϵ0Þ,Oðϵ1Þ,Oðϵ2Þ, andOðϵ3Þ,
the details of which are shown in Appendix D. Hence, for
the choice of the metric (5.1) the projection of the parallel
transport equation on the r ¼ rc hypersurface is trivially
validated.
Next, we look at the lhs of Eq. (4.10) for the free index

c ¼ r. Evaluating, we find again that it vanishes at Oðϵ0Þ,
Oðϵ1Þ, and Oðϵ3Þ. However, at Oðϵ2Þ we have terms

proportional to f2ðrcÞ
rc

þ 2fðrcÞgðrcÞ þ rcg2ðrcÞ. We are
again presented with the same consistency condition on
fðrcÞ and gðrcÞ for Eq. (4.10) to be valid, i.e.,

gðrcÞ ¼ − fðrcÞ
rc

, which has to be satisfied on the r ¼ rc
timelike slice.
The covariant components of the velocity field (lowered

via the base bulk metric) to Oðϵ2Þ are

vτ ¼ −r − fβAvA; vr ¼ 1 − gβAvA;

vA ¼ −fβA þ δABvB: ð5:7Þ

Evaluating the lhs of Eq. (4.10) with the free index c ¼ A
reveals that it vanishes atOðϵ0Þ,Oðϵ1Þ, andOðϵ2Þ. At order
Oðϵ3Þ, we have

Oðϵ3Þ∶γaAðvb∇bvaÞjr¼rc ¼ ∂τvA þ vC∂CvA

þ rc
2

�
a1
rc

∂APeff þ a2∂2vA −
2

rc
fðrcÞvD∂DβA

�
þ fðrcÞð∂AβD − ∂DβAÞvD: ð5:8Þ

For Eq. (4.10) to be valid, we demand that

∂τvA þ vC∂CvA þ
�
a1
2
∂APeff þ

a2
2
rc∂2vA

�
þ fðrcÞð∂AβD − ∂DβAÞvD ¼ 0: ð5:9Þ

Having arrived at Eq. (5.9), we want to make a correspon-
dence between it and Eq. (2.5). As before, we identify the
field vAðτ; xBÞ written at the metric level as the velocity
field of the fluid that needs to be described. On the same
footing, we identify that the uniform angular velocity of the
frame in which we study the fluid system is related to the
“rotation parameter” fβAg on the gravity side via

ð∂AβB − ∂BβAÞvB ¼ −ðΩ × vÞA; ð5:10Þ

as a result of which we can establish the analogy

Ω ¼ ∇ × β: ð5:11Þ

We constrain the functional form of fðrÞ on the cutoff
hypersurface as fðrcÞ ¼ −2, as a result of which gðrcÞ ¼ 2

rc
.

Identifying the constants ai in the proposed metric (4.1) as

a1 ¼ 2; a2 ¼ −2; ð5:12Þ

and the kinematic viscosity term η as η ¼ rc, Eq. (4.17)
becomes

∂τvA þ vC∂CvA þ ∂APeff − η∂2vþ 2ðϵABCΩBvCÞ ¼ 0:

ð5:13Þ

Thus, the correspondence with Eqs. (4.22) and (2.5) will be
complete if we finalize the interpretation of Peff . We
demand that

Peff ¼ P −
1

2
½xDxDð∂AβBÞð∂AβB − ∂BβAÞ

− xAϵABCð∂BβCÞxPϵPQRð∂QβRÞ�: ð5:14Þ

All the raising and lowering of the components to the
modifications (to P) are done via the Euclidean metric. The
term added to P, i.e., − 1

2
½xDxDð∂AβBÞð∂AβB − ∂BβAÞ −

xAϵABCð∂BβCÞxPϵPQRð∂QβRÞ� can be identified as
− 1

2
ðΩ × xÞ2, where x denotes the transverse coordinates

on the r ¼ rc hypersurface, i.e., it is the position vector of
the velocity element on the cutoff hypersurface and is in
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accordance with Eq. (2.4). The term − 1
2
ðΩ × xÞ2 is

identified as the centrifugal potential that needs to be
added to the dynamical pressure to provide the effective
pressure Peff . We can clearly see here that Peff scales as
order Oðϵ2Þ.
The above Eq. (5.13) is the Navier-Stokes equation (with

respect to the rotating frame) for a nonrelativistic viscous
fluid, with the last term being the inertial Coriolis force,
2ðv ×ΩÞ, generated as a consequence of the relative fluid
velocity described in the rotating coordinate system. Thus,
the inertial effects of the Coriolis and centrifugal forces are
codified in the proposed metric dual.

B. Incompressibility condition
from the expansion scalar

We proceed as before and calculate the term Θ ¼
γabð∇bvaÞjr¼rc , which is the expansion scalar as seen on
the timelike cutoff surface r ¼ rc for the manifold defined
by Eq. (5.1). The corresponding projectors have been listed
in Eq. (5.6). Hence, expanding, we have

Θ ¼ γabð∂avb þ rΓτ
ab þ fβDvDΓτ

ab − Γr
ab þ gβDvDΓr

ab

− ΓD
abvD þ fβDΓD

abÞjr¼rc : ð5:15Þ

Neglecting terms of order greater than Oðϵ3Þ, the above
Eq. (5.15) simplifies as

Θ ¼ 1

rc
ðΓτ

ττvτ þ Γr
ττvr þ ΓA

ττvAÞ

þ
�
2
fðrcÞ
rc

δABβB

�
ðΓτ

τAvτ þ Γr
τAvr þ ΓD

τAvDÞ

þ δABð∂AvB − Γτ
ABvτ − Γr

ABvr þ ΓD
ABvDÞ: ð5:16Þ

Evaluating the rhs of Eq. (4.26) reveals that it vanishes at
orders Oðϵ0Þ, Oðϵ1Þ, and Oðϵ3Þ (see Appendix E for a
derivation). The second-order term Oðϵ2Þ implies (see
Appendix F)

Oðϵ2Þ∶ ∼ ∂AvA: ð5:17Þ

We impose the condition for the vanishing of the expansion
scalar as evaluated on the r ¼ rc cutoff hypersurface up to
order Oðϵ3Þ. This implies the incompressibility condition

∂AvA ¼ 0: ð5:18Þ

VI. CONSTRUCTION OF THE PROPOSED
METRICS: A DIFFERENT INTERPRETATION

Now we will construct our two proposed metrics by a
coordinate transformation on their respective base bulk

metrics over which the perturbation at Oðϵ3Þ has been
added to incorporate the forcing terms. About any event
P in the manifold we employ the following coordinate
transformations:

x̃A ¼ xA þ λξAð3Þbc r;

τ̃ ¼ τ;

r̃ ¼ r; ð6:1Þ

where ξAð3Þbc is a 3 indexed component with b and c taking
values of either τ or r. We impose that

ξAð3Þbc ¼ δAB
�
a1
rc

∂BPþ a2∂2vB −
2

rc
fðrÞvD∂DβB

�
ð6:2Þ

for the metric choice I [Eq. (4.1)] and

ξAð3Þbc ¼ δAB
�
a1
rc

∂BPeff þ a2∂2vB −
2

rc
fðrÞvD∂DβB

�
ð6:3Þ

for the metric choice II [Eq. (5.1)] such that the event P is
taken to be the origin of both coordinate systems and where
λ is simply a constant that shall be fixed in due course. So
applying these coordinate transformations on the initial
base metric(s) (which are genuinely curved) does not
change the overall structure of the spacetime. This is
because the change in the Riemann curvature tensor
Ra

bcd due to these coordinate transformations occurs at
Oðϵ4Þ. As a result, for the first metric we have

dx̃a ¼ dxa

þ λ

�
δAB

�
a1
rc

∂BPþ a2∂2vB −
2

rc
fðrÞvD∂DβB

��
dr

þOð≥ ϵ4Þ: ð6:4Þ

Similarly, for the second metric we have

dx̃a ¼ dxa

þ λ

�
δAB

�
a1
rc

∂BPeff þ a2∂2vB −
2

rc
fðrÞvD∂DβB

��
dr

þOð≥ ϵ4Þ: ð6:5Þ

Imposing the above transformations (6.1) on the base
metric written to the second order (4.4), we have
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ds̃2pþ2 ¼ −r̃dτ̃2 þ 2dτ̃dr̃þ dx̃Adx̃A − 2βAfðr̃Þdτ̃dx̃A − 2βAgðr̃Þdr̃dx̃A
þ ða3ðx̃AΩAx̃BΩBÞ þ a4ðδABΩAΩBδCDx̃Cx̃DÞÞdτ̃2

¼ −rdτ2 þ 2dτdrþ dxAdxA − 2βAfðrÞdτdxA − 2βAgðrÞdrdxA
þ ða3ðxAΩAxBΩBÞ þ a4ðδABΩAΩBδCDxCxDÞÞdτ2

þ λ

�
2a1
rc

∂APþ 2a2∂2vA −
4

rc
fðrÞvD∂DβA

�
dxAdrþOðϵ4Þ: ð6:6Þ

Imposing the above transformations (6.1) on the base metric written to the first order (5.2), we have

ds̃2pþ2 ¼ −r̃dτ̃2 þ 2dτ̃dr̃þ dx̃Adx̃A − 2βAfðr̃Þdτ̃dx̃A − 2βAgðr̃Þdr̃dx̃A
¼ −rdτ2 þ 2dτdrþ dxAdxA − 2βAfðrÞdτdxA − 2βAgðrÞdrdxA

þ λ

�
2a1
rc

∂APeff þ 2a2∂2vA −
4

rc
fðrÞvD∂DβA

�
dxAdrþOðϵ4Þ: ð6:7Þ

Setting the value of λ ¼ −1, we obtain our proposed
metrics up to Oðϵ3Þ. So the effect of the forcing terms

via the perturbation hð3Þab at order Oðϵ3Þ present in the
proposed metrics (4.1) and (5.1) can be thought of as the
forces felt by observers moving in the spacetime defined by
the base bulk metric, i.e., Eqs. (4.4) and (5.2), respectively,
undergoing trajectories defined via Eq. (6.1). Hence, at
least at the structural level, the original spacetimes (4.1) and
(5.1) and the spacetimes (4.4) and (5.2), respectively, as
observed by an observer following the trajectory (6.1) are
inherently not different from each other at least to order
Oðϵ3Þ.
We mention that the base bulk metric (4.4), for the

proposed metric (4.1), is a genuinely curved manifold as
evident from the calculation of the curvature components.
The nonzero components, up to orderOðϵ1Þ, of Ra

bcd of the
base metric up to order Oðϵ1Þ are evaluated to be

Rr
rAr ¼

f00βA
2

; Rr
Aτr ¼ −

rf00βA
2

; Rr
τAr ¼ −

rf00βA
2

;

RA
rτr ¼

δABβBf00

2
; Rτ

Aτr ¼ −
f00βA
2

; Rτ
τAr ¼ −

f00βA
2

:

ð6:8Þ

This is also the case for the base metric (5.2). So, in general,
even up to Oðϵ1Þ, the Riemann curvature tensor has
nonvanishing components. Therefore, both base bulk
metrics (4.4) and (5.2), unlike that in Ref. [39], are curved.
This is a very crucial difference between the earlier
proposal and the present one. In this regard, it is worth
mentioning that on the fluid side a simple set of coordinate
transformations allows us to transform between the NS
equation written in the inertial coordinates and the uni-
formly rotating noninertial coordinates. Therefore, one can
expect that a similar argument can be applied to construct

the metric for the rotating case. Hence it can be thought that
a simple coordinate transformation on the proposed metric
in Ref. [39] may provide the metric dual to the fluid seen
from the rotating frame. In that respect, the base metric
should be flat in both situations. But, unfortunately, this is
not the case. As we mentioned above, the base metrics in
the present discussion are curved in nature, so a coordinate
transformation cannot connect them with the metric pre-
sented in Ref. [39]. This clearly shows that on the gravity
side the idea is not so simple. Hence, the obtention of the
gravity dual of the fluid equation in a rotating frame needs
special attention. In addition, we found that the parameter
that is connected to the intrinsic rotation of the spacetime
(i.e., βA) provides the rotational effect on the fluid side.
This shows a clear correspondence between
the parameters on both sides and, interestingly, the non-
vanishing of βA guarantees the nonflatness of the base
metrics. Hence, we feel that the analysis done here adds a
nontrivial contribution to the subject of the fluid-gravity
correspondence.

VII. DISCUSSIONS AND OUTLOOK

We summarize our calculations as follows. We have
proposed two bulk metrics in (pþ 2) dimensions such that
the base bulk metrics that act as the background are
genuinely curved manifolds. To the zeroth order in the
hydrodynamic parameter ϵ, the background is essentially
the flat Rindler spacetime for both spacetimes. To this

background is added the perturbation hð3Þab at Oðϵ3Þ which
contains the information about both the pressure Pðτ; xAÞ
and velocity vAðτ; xBÞ fields. The perturbation contains all
of the “forcing” terms, i.e., the forces due to pressure
gradients and the viscous effect. We then chose a bulk
velocity vector field contained in this bulk spacetime
defined as va ¼ ð1; 0; vAÞ. Our basic formalism involves
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the fact that this appropriately chosen bulk velocity has no
component of its acceleration on the r ¼ rc timelike
hypersurface as evident from Eq. (4.10). This relation is
what we call as the projection of the parallel transport
equation. We looked at the projection of this parallel
transport equation on a specific, safely chosen r ¼ rc
timelike hypersurface such that the location of the slice
is away from the horizon (at r ¼ 0) and r → ∞, as shown
in Eq. (4.10). We demanded that the projected parallel
transport equation onto the r ¼ rc hypersurface is consis-
tent to orderOðϵ3Þ [since the metric has been constructed to
Oðϵ3Þ]. This implies that the incompressible NS equation
(relative to the rotating frame) is valid at Oðϵ3Þ along with
the consistency conditions on fðrcÞ and gðrcÞ being
generated at Oðϵ2Þ. The relevant centrifugal force is
generated at order Oðϵ3Þ (via the parallel transport for-
malism) in the computation of the Christoffel connection
component ΓA

ττ. Similarly, the Coriolis force is generated
via the component ΓA

τB. We then showed that demanding a
vanishing expansion scalar for the bulk velocity field
defined in the spacetime (as seen from the r ¼ rc slice)
leads to the incompressibility condition for the viscous
fluid as observed from the rotating frame. Finally, we come
up with a systematic method of constructing the proposed
metrics (4.1) and (5.1) via a coordinate transformation on
the base bulk metrics.
In our previous work [39], we proposed a metric dual to

the incompressible nonrelativistic NS equation that con-
tained (within the metric) all information about the forcing
terms, i.e., the forces of the pressure gradient and the
viscous effects. In that work, it was shown that the
dynamics of a viscous, non-relativistic incompressible fluid
in theMinkowski spacetime (described by the NS equation)
is equivalent to the dynamics of a free fluid (described by
the projected parallel transport equation) residing in a
manifold with the proposed metric. The present work is
an extension based on the formalism proposed in the earlier
paper [39]. However, here the two proposed metrics are
distinctly different, along with the fact that the base bulk
metric(s) are no longer flat [Eqs. (4.4) and (5.2)]. Similarly,
there are additional terms that occur in the perturbation at
order Oðϵ3Þ for the two proposed metrics. The present two
metrics carry all the information about the forcing terms
along with the inertial centrifugal and Coriolis forces. This
is because of the analogy that needs to be setup between the
dynamics of an incompressible viscous fluid (as viewed
from a rotating frame) with that of a free bulk fluid (being
parallel transported along its own geodesic integral curves)
residing on a manifold given by the proposed two metrics
(4.1) and (5.1). When the fluid is to be described in a
rotating coordinate system, then the metric is no longer
diagonal in structure but rather involves cross terms
between the temporal and spatial coordinates. On the dual
metric side the effect of rotation is induced by the “rotation
parameter” fβAg which causes the base bulk metric to no

longer be flat. The projected parallel transport equation of
the appropriately chosen bulk velocity field on the r ¼ rc
timelike slice generates the fluid dynamical equation which
includes the Coriolis and centrifugal forces. The forcing

terms of pressure and viscosity are encoded in hð3Þab of the
proposed metrics.
We can hence gain some new perspectives on the

dynamical structure of the incompressible NS fluid equa-
tions relative to a rotating coordinate system. We can
rewrite them in the F ¼ ma form,

∂τvA þ vD∂DvA ¼ −∂APþ η∂2vA − ðΩ × ðΩ × xÞÞA
− 2ðΩ × vÞA; ð7:1Þ

where the lhs is the total derivative for the velocity of the
fluid element relative to the rotating system. The rhs
contains the regular forcing terms due to pressure and
viscosity along with the additional inertial centrifugal and
Coriolis forces due to the system being described in a
rotating frame. As is evident from Eq. (4.16), these forcing
terms along with the inertial forces essentially arise from
the evaluation of the relevant Christoffel symbols for the
metrics (4.1) and (5.1). In our previous paper [39], all of the

forcing terms were built inside the perturbation hð3Þab . In this
paper, for the metric choice I the pressure and viscous

forces are generated from hð3Þab . The centrifugal force is

generated through the metric component gð2Þττ . The Coriolis
force is generated from the rotation parameter βðτ; xAÞ that
shows its effect in the metric at orderOðϵÞ. So if we were to
“switch off” this perturbation of the fields by putting
Pðτ; xAÞ ¼ 0 and vAðτ; xAÞ ¼ 0, then we would have a
“forcing-free” fluid as described relative to a rotating
coordinate system, i.e.,

∂τvA þ vD∂DvA ¼ ðΩ × ðΩ × xÞÞA − 2ðΩ × vÞA: ð7:2Þ

Similarly, for the metric choice II the dynamical pressure
(along with the centrifugal forces) and the viscous forces

are incorporated in hð3Þab of the metric. The Coriolis force is
again generated from the rotation parameter βðτ; xAÞ at
order OðϵÞ in the metric. Hence, the correspondence is
that of a viscous incompressible fluid residing in a flat
spacetime being dynamically equivalent to the geodesic
flow of a free fluid (appropriately defined) in a curved
manifold defined via Eq. (4.1) or Eq. (5.1). This actually in
a sense parallels the interpretation where the dynamics of a
particle interacting in a static gravitational field is locally
indistinguishable from an equivalent accelerated frame,
which has been expounded in Sec. 3.3 of Ref. [40].
Hence, we have observed that the two metrics in this

paper account for all of the forcing as well as the inertial
terms of the NS equation. Hence, the behavior of a free
fluid in the proposed metrics can be considered as an
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equivalent theory of nonrelativistic viscous fluid dynamics
relative to a uniformly rotating frame. As a result, a strong
parallel can be drawn between this present analysis and the
equivalence principle of gravity where an appropriate
accelerated frame can locally mimic gravity. Thus, the
duality presented here can be a dictionary between calcu-
lations on both the sides. Any calculation that may be hard
to extract on the fluid side (of the incompressible viscous
flow in the rotating frame) of the NS equation can be
reflected by a calculation for a free fluid in the proposed
metric spacetime (which incorporates both the effects of the
forcing and the inertial effects), or vice versa. As a
suggestive interpretation these metrics can be thought of
as a complete geometrical description of the NS equation
with respect to the rotating frame.
As a consequence of the projection of the parallel

transport equation on the induced timelike hypersurface,
we can obtain the NS equation. In fact, any corresponding
alteration to the NS equation (relative to the rotating frame)
at one’s convenience can be supplemented with corre-
sponding term(s) on the metric side, and the present
algorithm would yield one’s chosen equation. That is,
one can add corrections to the NS equation and construct
the dual metric easily. So the question naturally arises as to
why we are fixated on the NS equation written in the
rotating frame in our analysis. This is simply because we
are within the purview of the nonrelativistic regime and the
hydrodynamic limit(ϵ → 0). In this regime, the incom-
pressible NS equation is universally the hydrodynamic
limit to essentially any fluid system. Any corrections that
can be thought of as coming from either kinetic theory the
theory of strongly coupled fluids will necessarily get scaled
away in this limit. We have hence constructed/formulated
two metric duals to a viscous fluid system viewed from a
uniformly rotating frame in this particular limit and singled
out the NS equation as a consequence of parallel transport
on these curved manifolds.
At this point we again stress that in the present analysis

the Einstein equation has not been used to derive the
correspondence between fluid dynamics and gravitational
dynamics. In most of the earlier interpretations of fluid/
gravity correspondence [13–17,21–36] the Einstein equa-
tion played a pivotal role. The holographic approach to
fluid/gravity correspondence, where the Einstein equation
was interpreted as the NS equation on a timelike slice, is
actually one of the possible ways to describe this corre-
spondence. There is absolutely no requirement that the
Einstein equation has to be used to connect the dynamics of
both of these sectors. In our analysis we have shown this
correspondence using the parallel transport equation as our
guiding principle. Hence, our approach can be designated
as an off-shell approach to fluid/gravity correspondence.
The authors of Ref. [20] generalized the result of Ref. [17]
by describing the dynamics of the fluid on the cutoff
surface. They considered a general curved static metric

rather than the flat Rindler metric, but kept the induced
surface r ¼ rc flat. By performing a set of scale trans-
formations and Lorentz transformations, they obtained the
seed metric for the relativistic fluid dual on the cutoff
surface. However, our approach is based on the projection
of the parallel transport equation on the r ¼ rc surface.
Moreover, in our case the r ¼ rc surface is not flat because
of the introduction of the rotation parameters βA. Our work
differs from their cutoff-surface-based approach again in
the sense that ours is an off-shell analysis. However, we
have not been able to consider the duality of the metric with
a relativistic dual fluid.
We now mention some points that we perceive are the

apparent benefits of such an off-shell approach to fluid/
gravity duality and thereby may provide possible future
directions.
(1) The first point is the possibility of constructing an

action for the fluid system from such a setup. The
idea is as follows. The dynamics of the fluid are
encoded in the manifold properties of the considered
spacetime(s) which are a priori not required to be
solutions of the Einstein equations. Using the duality
between the fluid side and the manifold side via the
projection of the parallel transport equations, the
fluid system can be considered to be a collection of
particles that are parallel transported on the r ¼ rc
hypersurface of the proposed spacetime(s). For such
a fluid particle the action can be written as
A ¼ R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gabuaub
p

dλ, where ua ¼ dxa=dλ is the
velocity of the fluid particle and gab is the metric of
our proposed spacetimes. However, we do need to
find a relation between ua and vA, and then the
action of the fluid particle can be expressed in
terms of vA. Extremizing such an action written
for such a collection of fluid particles parallel
transported on the r ¼ rc slice in the proposed
spacetimes might yield the required NS equation.
In this way, an action principle of the NS equation
may be constructed.

(2) As a classical correspondence, we have shown in our
analysis the map between classical fluid-dynamical
equations and the equations of the projected parallel
transport of an appropriately defined bulk fluid
velocity on the r ¼ rc timelike slice of the given
spacetime(s). However, there is a difficulty that arises
when we try to have a quantum theory on both sides.
In the on-shell approaches to fluid/gravity correspon-
dence, we do have a quantum theory of the fluid.
However, a quantum theory of gravity is as of yet in
progress. Our off-shell approach may help to bypass
this problem as we have not used the Einstein
equations. On the fluid side, we have a many-body
interacting theory of the fluid living in Minkowski
spacetime. The analogous quantum theory on the
manifold side in our approach is that of quantizing a
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collection of “free” or parallel-transported fluid par-
ticles in the background of the r ¼ rc timelike slice of
the proposed spacetime(s). This is basically semi-
classical gravity where the background remains
classical and we quantize matter fields in this back-
ground. Hence, the quantum theories on both sides
can be related, bypassing the issues pertaining to
quantum gravity.

(3) Another way in which this off-shell approach may
help is in uncovering the microscopic degrees of
freedom of the thermodynamic aspects of gravity.
Our present formalism of fluid/gravity duality im-
plies that all of the degrees of freedom (d.o.f.) of the
fluid are possibly encoded in the manifold properties
of the concerned proposed spacetime(s). Therefore,
working knowledge of the microstructure of the
fluid and hence its thermodynamics may help us to
understand those of gravity. Moreover, it is now well
known that one can associate quantities like entropy
density and temperature with an arbitrary null
hypersurface [41]. The null hypersurface does not
need to be a solution to the Einstein equations.
However, a proper origin of these quantities from the
underlying microscopic structure of the spacetime is
missing. Our off-shell approach to fluid/gravity
duality may help to elucidate the microscopic
d.o.f. of the gravity side since we have a mapping
between the fluid and gravity sides. Previous ap-
proaches to fluid/gravity correspondence like the
cutoff-surface method have explicitly used the Ein-
stein field equations. Hence, we understand that in
such approaches the d.o.f. of the fluid are encoded in
the spacetimes that are required to be solutions to the
Einstein equations. But as the thermodynamic enti-
ties can be assigned with an arbitrary null hyper-
surface and are related to the manifold properties
which as such are not required to be solutions of the
Einstein equations, it may be much more relevant to
have an off-shell duality approach to identify the
d.o.f. of the manifold. In this regard our present
approach may shed some light on the thermody-
namical origins of gravity.

In Ref. [39] we added a correction at order Oðϵ3Þ to
the base flat Rindler metric that incorporated all of the
forcing terms such that the demand of the projection of
the parallel transport equation on the r ¼ rc slice yielded
the NS equation at Oðϵ3Þ. Demanding that the projection
of the expansion scalar on the r ¼ rc slice vanish gave us
the incompressibility condition at order Oðϵ2Þ. It would
definitely be interesting to construct the metric to all
orders (as was done in Ref. [18]), such that we would
also in our case retrieve the NS equation and the
incompressibility condition along with the necessary
corrections at higher orders. The basis of the construction

of the metric in Ref. [18] to the nth order is as follows.
Using the parallel of the hydrodynamic expansion of the
fluid, the authors of Ref. [18] constructed the bulk
expansion of the metric via a gradient expansion to all
orders in ϵ. Demanding Ricci flatness to all orders (which
is a partial differential equation), the gradient expansion
imposes a hierarchy between the derivatives which
converts the partial differential equation into a series
of coupled ordinary differential equations. Assuming that
the metric has been written to order ϵn−1, the authors

added a new term gðnÞab at order ϵn, as a result of which the

Ricci tensor at order ϵn is RðnÞ
ab ¼ δRðnÞ

ab þ R̂ðnÞ
ab , where R̂

ðnÞ
ab

is the nonlinear contribution from the metric written until

order ϵn−1 and δRðnÞ
ab is the linearized contribution at order

ϵn that contains only the r derivatives. Demanding

RðnÞ
ab ¼ δRðnÞ

ab þ R̂ðnÞ
ab ¼ 0, the Ricci flatness condition is

then integrated to find the corrections to the metric at
order ϵn to the preexisting one written until order ϵn−1.
There are integrability conditions that need to be satisfied
for these equations to be integrated. It turns out that the
conservation of the Brown-York stress tensor on the
r ¼ rc slice at order ϵn ensures the validity of the integra-
bility conditions. Mapping it onto the dual fluid side, this
conservation yields the NS equation along with its correc-
tions for all odd orders, while the conservation yields the
incompressibility condition along with its corrections for
all even orders.
Now we step back to see if it is possible in our present

scheme to have a bulk construction of the metric to all
orders in ϵ, such that the projection of the parallel transport
equation of an appropriately defined velocity field in this
(bulk constructed to all orders) metric spacetime gives the
NS equation along with its corrections. However, we have
to build the metric with certain restrictions. Identifying
these restrictions is nontrivial, and until now we have not
been able to find them. Since we aim to present an off-shell
description, it is not desirable to use any information from
the Einstein equations. One such natural way of construct-
ing the higher-order metric of Ref. [39] is via coordinate
transformations. We have seen that the metric written to the
third order in ϵ in Ref. [39] was generated by coordinate
transformations on the base flat Rindler metric. Our goal is
to construct the higher-order terms in the metric via such

diffeomorphism transformations. We calculate δgð4Þab , which
is the fourth-order contribution to the metric due to the
application of the coordinate transformation xa → xa þ
ξð4ÞaðxÞ on the ϵ3-order seed metric. Hence, one needs to
find the diffeomorphism vector ξð4ÞaðxÞ by taking the Lie

variation of the metric i.e., δgð4Þab ¼ £ξð4Þgab constrained by
certain conditions on the choice of the metric coeffcients.
We shall state these conditions in a moment.. As a result,
we have the following equations:
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δgð4Þrr ¼ 2∂rξ
ð4Þτ;

δgð4Þrτ ¼ −r∂rξ
ð4Þτ þ ∂rξ

ð4Þr;

δgð4ÞrA ¼ ∂rξ
ð4Þ
A ;

δgð4Þττ ¼ −ξð4Þr;

δgð4ÞτA ¼ 0;

δgð4ÞAB ¼ 0: ð7:3Þ

Because of the fact that we do not have boundary con-

ditions prescribed for the components δgð4Þra on the r ¼ rc
timelike slice (as for the r ¼ const surface dr ¼ 0 for any

value of gra), we can set the constraint that δgð4Þra ¼ 0. In
fact, this constraint needs to be extended to all orders such

that δgðnÞra ¼ 0 and hence the gra components are actually
those of the metric components generated to the third order
in ϵ. That is, to all orders in the metric construction, we
impose that

grr ¼ 0; grτ ¼ 1;

grA ¼
�
a1
rc

∂APþ a2∂2vA þ a3
rc

∂Av2
�
: ð7:4Þ

Now the above set of equations (7.3) need to be solved

for ξð4Þa with the boundary conditions that δgð4Þττ , δg
ð4Þ
τA ,

and δgð4ÞAB all vanish on the r ¼ rc timelike slice. This
fixes the integration constants upon the solution of
Eq. (7.3). Now once we have solved for ξð4Þa, we can
apply the coordinate transformation xa → xa þ ξð4ÞaðxÞ
on the metric written to the third order in ϵ to generate
the fourth-order correction to the metric. After this, we
apply our machinery of the projection of the parallel
transport equation of the bulk velocity field on the r ¼ rc
slice and generate the NS equation. The process can be
iterated to construct the metric to the nth order in ϵ via
coordinate transformations on the metric written to the
ϵn−1 order. The projected parallel transport equation of
the bulk velocity field for the metric written to all orders
in ϵ corresponds to the NS equation along with the higher
order corrections.
Another possible way to construct the metric to higher

orders may be via the metric compatibility condition i.e.,
∇agbc ¼ 0. The idea is similar to that presented in

Ref. [18]. We shall add a correction to the metric δgðnÞab
to the preconstructed metric written until order ϵn−1. Since
the condition is satisfied until our ϵn−1-order metric, we
choose the corrections at ϵn order such that the following is
satisfied:

ð d∇agbcÞðnÞ þ∇aðδgðnÞbc Þ ¼ 0; ð7:5Þ

where ð d∇agbcÞðnÞ is the nth-order contribution due to the

metric written until order ϵn−1 and ∇aðδgðnÞbc Þ is the

contribution due to δgðnÞab . This yields

∂rðδgðnÞbc Þ ¼ ð ˆ∇agbcÞðnÞ þ Γið0Þ
ba ðδgðnÞic Þ þ Γið0Þ

ca ðδgðnÞbi Þ; ð7:6Þ

which can be integrated to find the corrections to the metric.
Next, with the imposition of the projection of the parallel
transport equation of va on the r ¼ rc slice the higher-order
corrections to the NS equation can be found. Then, from θ,
the corrections to the incompressibility condition can also
be evaluated. A thorough investigation into this issue is
required and we are certainly looking into it. Hence,
nothing can be concretely stated right now. The work is
in progress and will be reported in due time. In addition, we
mention that this off-shell construction of the metric to all
orders for the initial choice of the metrics (4.1) and (5.1)
will be nontrivial since the base metrics in both cases are
not Rindler flat, but rather genuinely curved spacetimes. As
of now, we do not know which of the two procedures is
correct, but we are looking into this. We certainly aim to
report our investigations pertaining to these issues in the
near future.
Finally, we mention that the above formalism can be

extended to yield the Damour NS equation for a viscous
fluid relative to a rotating frame if we modify the proposed
metric by adding a certain term to hð3Þab for both of the
metrics. The term at order Oðϵ3Þ that does the job is
− 2

rc
∂Av2. Following the exact same formalism outlined

here, the rotating Damour NS equation has the form

∂τvA þ vC∂CvA þ 1

2
∂Av2 þ ∂APeff − η∂2v

þ 2ðϵABCΩBvCÞ ¼ 0: ð7:7Þ

Overall, we hope that the present discussion will shed
more light on the subject of fluid-gravity correspondence as
it provides a new method of investigation.

APPENDIX A: THE INVERSE METRIC
AND THE CHRISTOFFEL SYMBOLS

OF METRIC CHOICE I

We evaluate the inverse metric corresponding to Eq. (4.1)

as a perturbation series over the flat metric gðflatÞab dxadxb ¼
−rdτ2 þ 2dτdrþ dxAdxA, with the perturbation identi-
fied as Habdxadxb¼−2βAfðrÞdτdxA−2βAgðrÞdrdxA þ
fa3ðxAΩAxBΩBÞþa4ðδABΩAΩBδCDxCxDÞgdτ2−ð2a1rc

∂APþ
2a2∂2vA− 4

rc
fðrÞvD∂DβAÞdxAdr. The perturbation contains

terms of orderOðϵÞ,Oðϵ2Þ, andOðϵ3Þ. The inverse metric is
written as a perturbation series over the flat Rindler base
metric,
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gab ¼ gabð0Þ −Hab þHacHb
c −HaiHk

iH
b
k þOðH4Þ; ðA1Þ

where all of the raising has been performed via the flat base metric. We list below the inverse metric up to order Oðϵ3Þ:

gττ ¼ g2δABβAβB þOðϵ4Þ; ðA2Þ

gτr ¼ 1þ ðrg2 þ fgÞδABβAβB þOðϵ4Þ; ðA3Þ

gτA ¼ gδABβB þ δAB
�
a1
rc

∂BPþ a2∂2vB −
2

rc
fðrÞvD∂DβB

�
þ ð2fg2 þ rg3ÞδABδCDβBβCβD þOðϵ5Þ; ðA4Þ

grr ¼ rþ ðf2 þ r2g2 þ 2rfgÞδABβAβB − a3ðxAΩAxBΩBÞ − a4ðδABΩAΩBδCDxCxDÞ þOðϵ4Þ; ðA5Þ

grA ¼ ðf þ rgÞδABβB þ rδAB
�
a1
rc

∂BPþ a2∂2vB −
2

rc
fðrÞvD∂DβB

�
þ ð2f2gþ 3rfg2 þ r2g3ÞδABδCDβBβCβD

− gδABβB½a3ðxPΩPxQΩQÞ þ a4ðδCDΩCΩDδPQxPxQÞ� þOðϵ5Þ; ðA6Þ

gAB ¼ δAB þ ðrg2 þ 2fgÞδACδBDβCβD þOðϵ4Þ: ðA7Þ

In the same vein, we calculate the Christoffel symbols up to order Oðϵ3Þ:

Γτ
ττ ¼

1

2
þ 1

2
ðrg2 þ fgÞδABβAβB þOðϵ4Þ; ðA8Þ

Γτ
τr ¼ −

1

2
ðg2 þ f0gÞδABβAβB þOðϵ4Þ; ðA9Þ

Γτ
τA ¼ 1

2
f0βA þ 1

2
ðrg2f0 þ f0fgÞβAδCDβCβD −

1

2
g∂τβA þ 1

2
fgδBCβCð∂BβA − ∂AβBÞ þOðϵ5Þ; ðA10Þ

Γτ
rr ¼ −g0gδABβAβB þOðϵ4Þ; ðA11Þ

Γτ
rA ¼ −

1

2
f0g2βAδCDβCβD þ 1

2
g2δBCβCð∂BβA − ∂AβBÞ þOðϵ5Þ; ðA12Þ

Γτ
AB ¼ −

1

2
gð∂AβB þ ∂BβAÞ þOðϵ4Þ; ðA13Þ

Γr
ττ ¼

r
2
þ 1

2
ðf2 þ r2g2 þ 2rfgÞδABβAβB −

1

2
½a3ðxAΩAxBΩBÞ þ a4ðδABΩAΩBδCDxCxDÞ� þOðϵ4Þ; ðA14Þ

Γr
τr ¼ −

1

2
−
1

2
ðf0f þ rgf0 þ rg2 þ fgÞδABβAβB þOðϵ4Þ; ðA15Þ

Γr
τA ¼ 1

2
rf0βA þ 1

2
ðf2f0 þ r2g2f0 þ 2rf0fgÞβAδBCβBβC −

r
2
g∂τβA þ 1

2
ðf2 þ rfgÞδBCβCð∂BβA − ∂AβBÞ

þ a3ΩAðΩDxDÞ þ a4ðδPQΩPΩQδABxBÞ −
1

2
f0βAfa3ðxCΩCxDΩDÞ þ a4ðδCDΩCΩDδPQxPxQÞg þOðϵ5Þ; ðA16Þ

Γr
rr ¼ −ðfg0 þ rgg0ÞδABβAβB þOðϵ4Þ; ðA17Þ

Γr
rA ¼ −

1

2
f0βA −

1

2
ðf0rg2 þ f0fgÞβAδBCβBβC þ 1

2
g∂τβA þ 1

2
ðfgþ rg2ÞδBCβCð∂BβA − ∂AβBÞ þOðϵ5Þ; ðA18Þ

Γr
AB ¼ −

1

2
ðf þ rgÞð∂AβB þ ∂BβAÞ þOðϵ4Þ; ðA19Þ

DEY, DE, and MAJHI PHYS. REV. D 102, 064003 (2020)

064003-16



ΓA
ττ ¼

1

2
ðf þ rgÞδABβB þ r

2
δAB

�
a1
rc

∂BPþ a2∂2vB −
2

rc
fðrÞvD∂DβB

�

þ
�
f2gþ 3

2
rfg2 þ 1

2
r2g3

�
δABδCDβBβCβD − fδAB∂τβB

−
g
2
δABβB½a3ðxCΩCxDΩDÞ þ a4ðδCDΩCΩDδPQxPxQÞ�

− a3δABΩBðΩDxDÞ − a4ðδCDΩCΩDxAÞ þOðϵ5Þ; ðA20Þ

ΓA
τr ¼ −

1

2
ðf0 þ gÞδABβB −

1

2
δAB

�
a1
rc

∂BPþ a2∂2vB −
2

rc
fðrÞvD∂DβB

�

−
�
fg2 þ 1

2
rg3 þ 1

2
f0rg2 þ f0fg

�
δABδCDβBβCβD −

1

2
gδAB∂τβB þOðϵ5Þ; ðA21Þ

ΓA
τB ¼ 1

2
ðff0 þ rgf0ÞδACβBβC þ f

2
δACð∂CβB − ∂BβCÞ þOðϵ4Þ; ðA22Þ

ΓA
rr ¼ −g0δABβB − ðrg2g0 þ 2fgg0ÞδABδCDβBβCβD þOðϵ5Þ; ðA23Þ

ΓA
rB ¼ −

1

2
f0gδACβBβC þ g

2
δACð∂CβB − ∂BβCÞ þOðϵ4Þ; ðA24Þ

ΓA
BC ¼ −

�
fgþ 1

2
rg2

�
δADβDð∂BβC þ ∂CβBÞ þOðϵ5Þ: ðA25Þ

APPENDIX B: THE INVERSE METRIC AND
THE CHRISTOFFEL SYMBOLS

OF METRIC CHOICE II

In the same way, we evaluate the inverse metric cor-
responding to Eq. (5.1) as a perturbation series over the flat

metric gð0Þab dx
adxb ¼ −rdτ2 þ 2dτdrþ dxAdxA, with the

perturbation identified as Habdxadxb ¼ −2βAfðrÞdτdxA−
2βAgðrÞdrdxA − ð2a1rc

∂APeff þ 2a2∂2vA − 4
rc
fðrÞvD∂DβAÞ×

dxAdr. The perturbation contains terms of order Oðϵ1Þ and

Oðϵ3Þ. In fact, all of the calculations of the inverse metric
components as well as the Christoffel connection compo-
nents for metric choice II [Eq. (5.1)] can be retrieved from
the calculations performed for metric choice I [Eq. (4.1)]
by setting a3 ¼ 0, a4 ¼ 0, and replacing Pðτ; xAÞ by
Peffðτ; xAÞ. Hence, we list out only the nontrivial changes,
and the remaining components are identical to the ones
computed in Appendix A. The changes to be made in the
inverse metric components are

gτA ¼ gδABβB þ δAB
�
a1
rc

∂BPeff þ a2∂2vB −
2

rc
fðrÞvD∂DβB

�
þ ð2fg2 þ rg3ÞδABδCDβBβCβD þOðϵ5Þ; ðB1Þ

grr ¼ rþ ðf2 þ r2g2 þ 2rfgÞδABβAβB þOðϵ4Þ; ðB2Þ

grA ¼ ðf þ rgÞδABβB þ rδAB
�
a1
rc

∂BPeff þ a2∂2vB −
2

rc
fðrÞvD∂DβB

�
þ ð2f2gþ 3rfg2 þ r2g3ÞδABδCDβBβCβD þOðϵ5Þ: ðB3Þ

Similarly, the changes to be made in the Christoffel connection components are

Γr
ττ ¼

r
2
þ 1

2
ðf2 þ r2g2 þ 2rfgÞδABβAβB þOðϵ4Þ; ðB4Þ
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Γr
τA ¼ 1

2
rf0βA þ 1

2
ðf2f0 þ r2g2f0 þ 2rf0fgÞβAδBCβBβC

−
r
2
g∂τβA þ 1

2
ðf2 þ rfgÞδBCβCð∂BβA − ∂AβBÞ þOðϵ5Þ; ðB5Þ

ΓA
ττ ¼

1

2
ðf þ rgÞδABβB þ r

2
δAB

�
a1
rc

∂BPeff þ a2∂2vB −
2

rc
fðrÞvD∂DβB

�

þ
�
f2gþ 3

2
rfg2 þ 1

2
r2g3

�
δABδCDβBβCβD − fδAB∂τβB þOðϵ5Þ; ðB6Þ

ΓA
τr ¼ −

1

2
ðf0 þ gÞδABβB −

1

2
δAB

�
a1
rc

∂BPeff þ a2∂2vB −
2

rc
fðrÞvD∂DβB

�

−
�
fg2 þ 1

2
rg3 þ 1

2
f0rg2 þ f0fg

�
δABδCDβBβCβD −

1

2
gδAB∂τβB þOðϵ5Þ: ðB7Þ

APPENDIX C: PROJECTED PARALLEL TRANSPORT EQUATION (4.10) UP TO O(ϵ3)
ORDER FOR METRIC CHOICE I

We first consider the projected parallel transport equation with the free index c ¼ τ [Eq. (4.11)],

γaτðvb∇bvaÞjr¼rc ¼ γττðΓτ
ττ þ 2Γτ

τAv
A þ Γτ

ABv
AvBÞ þ γrτðΓr

ττ þ 2Γr
τAv

A þ Γr
ABv

AvBÞ
× γBτð∂τvB þ vA∂AvB þ ΓB

ττ þ 2ΓB
τAv

A þ ΓB
ADv

AvDÞ: ðC1Þ

At the following orders of the hydrodynamic expansion parameter, we have the rhs as

Oðϵ0Þ∶ − rcΓ
τð0Þ
ττ þ Γrð0Þ

ττ ¼ 0; ðC2Þ

Oðϵ1Þ∶ γð0Þττ ðΓτð1Þ
ττ þ 2Γτð0Þ

τA vAÞ þ γð0Þrτ ðΓrð1Þ
ττ þ Γrð0Þ

τA vAÞ þ γð1ÞBτ ðΓBð0Þ
ττ Þ ¼ 0; ðC3Þ

Oðϵ2Þ∶ γð0Þττ ðΓτð2Þ
ττ þ 2Γτð1Þ

τA vA þ Γτð0Þ
AB vAvBÞ þ γð0Þrτ ðΓrð2Þ

ττ þ 2Γrð1Þ
τA vA þ Γrð0Þ

AB vAvBÞ
þ γð1ÞBτ ðΓBð1Þ

ττ þ 2ΓBð0Þ
Aτ vAÞ þ γð2Þττ ðΓτð0Þ

ττ Þ ¼ 0; ðC4Þ

Oðϵ3Þ∶ γð0Þττ ðΓτð3Þ
ττ þ 2Γτð2Þ

τA vA þ Γτð1Þ
AB vAvBÞ þ γð0Þrτ ðΓrð3Þ

ττ þ 2Γrð2Þ
τA vA þ Γrð1Þ

AB vAvBÞ
þ γð1ÞBτ ðΓBð2Þ

ττ þ 2ΓBð1Þ
Aτ vA þ ΓBð0Þ

AD vAvDÞ þ γð2Þττ ðΓτð1Þ
ττ þ Γτð0Þ

τA vAÞ ¼ 0: ðC5Þ

Next, we consider the projected parallel transport equation with the free index c ¼ r [Eq. (4.12)],

γarðvb∇bvaÞjr¼rc ¼ γτrðΓτ
ττ þ 2Γτ

τAv
A þ Γτ

ABv
AvBÞ þ γrrðΓr

ττ þ 2Γr
τAv

A þ Γr
ABv

AvBÞ
× γArð∂τvA þ vB∂BvA þ ΓA

ττ þ 2ΓA
τBv

B þ ΓA
BCv

BvCÞ: ðC6Þ

Expanding them order by order in terms of the hydrodynamic scaling parameter ϵ, we obtain the rhs as

Oðϵ0Þ∶ Γτð0Þ
ττ −

1

rc
ðΓrð0Þ

ττ Þ ¼ 0; ðC7Þ

Oðϵ1Þ∶ γð0Þτr ðΓτð1Þ
ττ þ 2Γτð0Þ

τA vAÞ þ γð0Þrr ðΓrð1Þ
ττ þ 2Γrð0Þ

τA vAÞ þ γð1ÞBr ðΓBð0Þ
ττ Þ ¼ 0; ðC8Þ
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Oðϵ2Þ∶ γð0Þτr ðΓτð2Þ
ττ þ 2Γτð1Þ

τA vA þ Γτð0Þ
AB vAvBÞ þ γð0Þrr ðΓrð2Þ

ττ þ 2Γrð1Þ
τA vA þ Γrð0Þ

AB vAvBÞ
þ γð1ÞBr ðΓBð1Þ

ττ þ 2ΓBð0Þ
Aτ vAÞ þ γð2Þrr ðΓrð0Þ

ττ Þ

¼ −
1

2rc
δCDβCβDðf2ðrcÞ þ 2rcfðrcÞgðrcÞ þ r2cg2Þ; ðC9Þ

Oðϵ3Þ∶ γð0Þτr ðΓτð3Þ
ττ þ 2Γτð2Þ

τA vA þ Γτð1Þ
AB vAvBÞ þ γð0Þrr ðΓrð3Þ

ττ þ 2Γrð2Þ
τA vA þ Γrð1Þ

AB vAvBÞ
þ γð1ÞBr ðΓBð2Þ

ττ þ 2ΓBð1Þ
Aτ vA þ ΓBð0Þ

AD vAvDÞ þ γð2Þrr ðΓrð1Þ
ττ þ 2Γrð0Þ

τA vAÞ ¼ 0: ðC10Þ

In a similar fashion, we consider the projection of the parallel transport equation on the r ¼ rc cutoff hypersurface with the
free index c ¼ A, i.e., Eq. (4.15),

γaAðvb∇bvaÞjr¼rc ¼ γτAðΓτ
ττ þ 2Γτ

τDv
D þ Γτ

CDv
CvDÞ þ γrAðΓr

ττ þ 2Γr
τDv

D þ Γr
CDv

CvDÞ
× γBAð∂τvB þ vC∂CvB þ ΓB

ττ þ 2ΓB
τDv

D þ ΓB
CDv

CvDÞ: ðC11Þ

Expanding the above equation order by order in terms of ϵ, we have the corresponding set

Oðϵ0Þ∶ δABΓB
ττ ¼ 0; ðC12Þ

Oðϵ1Þ∶ − fðrcÞβAΓτð0Þ
ττ − gðrcÞβAΓrð0Þ

ττ þ δABðΓBð1Þ
ττ þ 2ΓBð0Þ

τD vDÞ ¼ 0; ðC13Þ

Oðϵ2Þ∶ γð1ÞτA ðΓτð1Þ
ττ þ 2Γτð0Þ

τD vDÞ þ γð1ÞrA ðΓrð1Þ
ττ þ 2Γrð0Þ

τD vDÞ
þ δABðΓBð2Þ

ττ þ 2ΓBð1Þ
τD vD þ ΓBð0Þ

CD vCvDÞ ¼ 0; ðC14Þ

Oðϵ3Þ∶ γð1ÞτA ðΓτð2Þ
ττ þ 2Γτð1Þ

τD vD þ Γτð0Þ
CD vCvDÞ þ γð1ÞrA ðΓrð2Þ

ττ þ 2Γrð1Þ
τD vD þ Γrð0Þ

CD vCvDÞ
þ δABð∂τvB þ vC∂CvB þ ΓBð3Þ

ττ þ 2ΓBð2Þ
τD vD þ ΓBð1Þ

CD vCvDÞ ¼ ∂τvA þ vC∂CvA þ fðrcÞvC∂CβA

þ rc
2

�
a1
rc

∂APþ a2∂2vA −
2

rc
fðrcÞvD∂DβA

�
þ fðrcÞð∂AβD − ∂DβAÞvD − a3ΩAðΩPxPÞ

− a4ðδCDΩCΩDδAPxPÞ: ðC15Þ

APPENDIX D: PROJECTED PARALLEL TRANSPORT EQUATION (4.10)
UP TO O(ϵ3) ORDER FOR METRIC CHOICE II

We first consider the projected autoparallel equation with the free index c ¼ τ [Eq. (4.11)],

γaτðvb∇bvaÞjr¼rc ¼ γττðΓτ
ττ þ 2Γτ

τAv
A þ Γτ

ABv
AvBÞ þ γrτðΓr

ττ þ 2Γr
τAv

A þ Γr
ABv

AvBÞ
× γBτð∂τvB þ vA∂AvB þ ΓB

ττ þ 2ΓB
τAv

A þ ΓB
ADv

AvDÞ: ðD1Þ

At the following orders of the hydrodynamic expansion parameter, we have the rhs as

Oðϵ0Þ∶ − rcΓ
τð0Þ
ττ þ Γrð0Þ

ττ ¼ 0; ðD2Þ

Oðϵ1Þ∶ − rcðΓτð1Þ
ττ þ 2Γτð0Þ

τA vAÞ þ ðΓrð1Þ
ττ þ Γrð0Þ

τA vAÞ − ðfðrcÞβBÞðΓBð0Þ
ττ Þ ¼ 0; ðD3Þ

Oðϵ2Þ − rcðΓτð2Þ
ττ þ 2Γτð1Þ

τA vA þ Γτð0Þ
AB vAvBÞ þ ðΓrð2Þ

ττ þ 2Γrð1Þ
τA vA þ Γrð0Þ

AB vAvBÞ
− fðrcÞβBðΓBð1Þ

ττ þ 2ΓBð0Þ
Aτ vAÞ ¼ 0; ðD4Þ
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Oðϵ3Þ∶ − rcðΓτð3Þ
ττ þ 2Γτð2Þ

τA vA þ Γτð1Þ
AB vAvBÞ þ ðΓrð3Þ

ττ þ 2Γrð2Þ
τA vA þ Γrð1Þ

AB vAvBÞ
− fðrcÞβBðΓBð2Þ

ττ þ 2ΓBð1Þ
Aτ vA þ ΓBð0Þ

AD vAvDÞ ¼ 0: ðD5Þ

Next, we consider the projected parallel transport equation with the free index c ¼ r [Eq. (4.12)],

γarðvb∇bvaÞjr¼rc ¼ γτrðΓτ
ττ þ 2Γτ

τAv
A þ Γτ

ABv
AvBÞ þ γrrðΓr

ττ þ 2Γr
τAv

A þ Γr
ABv

AvBÞ
× γArð∂τvA þ vB∂BvA þ ΓA

ττ þ 2ΓA
τBv

B þ ΓA
BCv

BvCÞ: ðD6Þ

Expanding them order by order in terms of the hydrodynamics scaling parameter ϵ, we obtain the rhs as

Oðϵ0Þ∶ Γτð0Þ
ττ −

1

rc
ðΓrð0Þ

ττ Þ ¼ 0; ðD7Þ

Oðϵ1Þ∶ − ðΓτð1Þ
ττ þ 2Γτð0Þ

τA vAÞ − 1

rc
ðΓrð1Þ

ττ þ 2Γrð0Þ
τA vAÞ − ðgðrcÞβBÞðΓBð0Þ

ττ Þ ¼ 0; ðD8Þ

Oðϵ2Þ∶ ðΓτð2Þ
ττ þ 2Γτð1Þ

τA vA þ Γτð0Þ
AB vAvBÞ − 1

rc
ðΓrð2Þ

ττ þ 2Γrð1Þ
τA vA þ Γrð0Þ

AB vAvBÞ

− gðrcÞβBðΓBð1Þ
ττ þ 2ΓBð0Þ

Aτ vAÞ ¼ −
1

2rc
δCDβCβDðf2ðrcÞ þ 2rcfðrcÞgðrcÞ þ r2cg2Þ; ðD9Þ

Oðϵ3Þ∶ ðΓτð3Þ
ττ þ 2Γτð2Þ

τA vA þ Γτð1Þ
AB vAvBÞ − 1

rc
ðΓrð3Þ

ττ þ 2Γrð2Þ
τA vA þ Γrð1Þ

AB vAvBÞ

− gðrcÞβBðΓBð2Þ
ττ þ 2ΓBð1Þ

Aτ vA þ ΓBð0Þ
AD vAvDÞ ¼ 0: ðD10Þ

In a similar fashion, we consider the projection of the parallel transport equation on the r ¼ rc cutoff hypersurface with the
free index c ¼ A, i.e., [Eq. (4.15)],

γaAðvb∇bvaÞjr¼rc ¼ γτAðΓτ
ττ þ 2Γτ

τDv
D þ Γτ

CDv
CvDÞ þ γrAðΓr

ττ þ 2Γr
τDv

D þ Γr
CDv

CvDÞ
× γBAð∂τvB þ vC∂CvB þ ΓB

ττ þ 2ΓB
τDv

D þ ΓB
CDv

CvDÞ: ðD11Þ

Expanding the above equation order by order in terms of ϵ, we have the corresponding set

Oðϵ0Þ∶ δABΓB
ττ ¼ 0; ðD12Þ

Oðϵ1Þ∶ − fðrcÞβAΓτð0Þ
ττ − gðrcÞβAΓrð0Þ

ττ þ δABðΓBð1Þ
ττ þ 2ΓBð0Þ

τD vDÞ ¼ 0; ðD13Þ

Oðϵ2Þ∶ − fðrcÞβAðΓτð1Þ
ττ þ 2Γτð0Þ

τD vDÞ − gðrcÞβAðΓrð1Þ
ττ þ 2Γrð0Þ

τD vDÞ
þ δABðΓBð2Þ

ττ þ 2ΓBð1Þ
τD vD þ ΓBð0Þ

CD vCvDÞ ¼ 0; ðD14Þ

Oðϵ3Þ∶ − fðrcÞβAðΓτð2Þ
ττ þ 2Γτð1Þ

τD vD þ Γτð0Þ
CD vCvDÞ − gðrcÞβAðΓrð2Þ

ττ þ 2Γrð1Þ
τD vD þ Γrð0Þ

CD vCvDÞ
þ δABð∂τvB þ vC∂CvB þ ΓBð3Þ

ττ þ 2ΓBð2Þ
τD vD þ ΓBð1Þ

CD vCvDÞ ¼ ∂τvA þ vC∂CvA

þ rc
2

�
a1
rc

∂APeff þ a2∂2vA −
2

rc
fðrcÞvD∂DβA

�
− fðrcÞ∂τβA þ fðrcÞð∂AβD − ∂DβAÞvD: ðD15Þ
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APPENDIX E: CALCULATION OF THE EXPANSION SCALAR Θ (4.26)
UP TO O(ϵ3) ORDER FOR CHOICE I

The expansion scalar as derived on the cutoff hypersurface r ¼ rc has the following form:

Θ ¼ −γττðΓτ
ττvτ þ Γr

ττvr þ ΓA
ττvAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expression 1

þ −2γτAðΓτ
τAvτ þ Γr

τAvr þ ΓA
τAvAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expression 2

þ γABð∂AvB − Γτ
ABvτ − Γr

ABvr þ ΓD
ABvDÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expression 3

: ðE1Þ

Evaluating “expression 1” from Eq. (E1) with the relevant Γ’s obtained in Appendix A, we find its leading order to be
Oðϵ4Þ. Similarly, the leading-order contribution in “expression 2” occurs at Oðϵ4Þ. The leading-order behavior of
“expression 3” occurs at Oðϵ2Þ, and it is equivalent to ∂AvA and vanishes at Oðϵ3Þ.

APPENDIX F: CALCULATION OF THE EXPANSION SCALAR Θ (5.16)
UP TO O(ϵ3) ORDER FOR CHOICE II

The “expansion parameter” as derived on the cutoff hypersurface r ¼ rc has the following form:

Θ ¼ 1

rc
ðΓτ

ττvτ þ Γr
ττvr þ ΓA

ττṽAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
expression 1

þ
�
2
fðrcÞ
rc

δABβB

�
ðΓτ

τAvτ þ Γr
τAvr þ ΓA

τAṽAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
expression 2

þ δABð∂AṽB − Γτ
ABvτ − Γr

ABvr þ ΓD
ABṽDÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expression 3

: ðF1Þ

Evaluating “expression 1” from Eq. (F1) with the relevant Γ’s obtained in Appendix A, we find its leading order to be
Oðϵ4Þ. Similarly, the leading-order contribution in “expression 2” occurs at Oðϵ4Þ. The leading-order behavior of
“expression 3” occurs at Oðϵ2Þ, and it is equivalent to ∂AvA and vanishes at Oðϵ3Þ.
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