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The fluid-gravity correspondence documents a precise mathematical map between a class of dynamical
spacetime solutions of the Einstein field equations of gravity and the dynamics of its corresponding dual
fluid flows governed by the Navier-Stokes (NS) equations of hydrodynamics. This striking connection has
been explored in several dynamics-based approaches and has surfaced in various forms over the past four
decades. In a recent construction, it has been shown that the manifold properties of geometric duals are in
fact intimately connected to the dynamics of incompressible fluids, thus bypassing the conventional
on-shell standpoints. Following such a prescription, we construct the geometrical description that
effectively captures the dynamics of an incompressible NS fluid with respect to a uniformly rotating
frame. We propose the gravitational dual(s) described by bulk metric(s) in (p + 2) dimensions such that the
equations of parallel transport of an appropriately defined bulk velocity vector field when projected onto
an induced timelike hypersurface require that the incompressible NS equation of a fluid relative to a
uniformly rotating frame be satisfied at the relevant perturbative order in (p + 1) dimensions. We argue that
free fluid flows on manifold(s) described by the proposed metric(s) can be effectively considered as an
equivalent theory of nonrelativistic viscous fluid dynamics with respect to a uniform rotating frame. We
also present suggestive insights as to how spacetime rotation parameters encode information pertaining to
the inertial effects in the corresponding fluid dual.
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I. INTRODUCTION

The nonrelativistic incompressible Navier-Stokes (NS)
equation [1,2]

T+ B.Vi+VP—gV25 =0 (1.1)

and the FEinstein field equations of gravity
— T, (1.2)

are two of the most important and well-studied differential
equations in physics and mathematics. While the incom-
pressible NS equation (1.1) universally governs the
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dynamics of fluids in the hydrodynamic limit, the
Einstein equation (1.2) is known to universally govern
the long-distance dynamics of gravitating systems. A
precise mathematical bridge between Egs. (1.1) and (1.2)
and their solution spaces is well documented by the fluid-
gravity correspondence [3,4]. This striking connection
relating the dynamics of gravity to those of fluid equations
has gradually taken shape and surfaced in various forms
over the past four decades.

One of the earliest works relating the dynamics of
gravity and that of hydrodynamics appeared in the doctoral
thesis of Damour [5], wherein there are suggestions of a
connection between horizon and fluid dynamics. This work
contains an expression now known as the Damour-Navier-
Stokes (DNS) equation and it is known to govern the
geometric data on any null surface. The same equation is
also obtained in terms of coordinates adapted to a null
surface [6,7] by projecting the Einstein equations of motion
onto the null hypersurface (a similar analysis was also done
in Ref. [8] for scalar-tensor gravity theory to obtain a DNS-
like equation). Moreover, a corresponding action formu-
lation of the same was given in detail in Ref. [9]. A
connection in this regard was also obtained in the mem-
brane paradigm approach by Price and Thorne in Ref. [10].

Published by the American Physical Society


https://orcid.org/0000-0001-8621-1324
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.064003&domain=pdf&date_stamp=2020-09-03
https://doi.org/10.1103/PhysRevD.102.064003
https://doi.org/10.1103/PhysRevD.102.064003
https://doi.org/10.1103/PhysRevD.102.064003
https://doi.org/10.1103/PhysRevD.102.064003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

DEY, DE, and MAJHI

PHYS. REV. D 102, 064003 (2020)

The membrane paradigm was applied in Ref. [11] in the
context of asymptotically AdS spacetimes to show the
dynamics of the membrane being described by the incom-
pressible NS equation. In Ref. [12] the authors obtained an
analogous DNS-type equation for both future outer trapped
horizons and dynamical horizons (which are spacelike).
One peculiarity of the DNS equation as obtained on a null
horizon is that the bulk viscosity of the horizon fluid is
negative. This makes the null horizon fluid unfit to have a
connection with ordinary fluids. However, the authors of
Ref. [12] showed that the horizon fluid on both future outer
trapped horizons and the dynamical horizons have a
positive value of the bulk viscosity. In the AdS/CFT
context, it has been shown that the dissipative behavior
of an anti—de Sitter (AdS) black hole agrees with the
hydrodynamics of the holographically dual conformal field
theory. In this approach the NS equation together with its
corrections arise under a gradient expansion of the Einstein
equations. This has been studied extensively and important
works in this regard include Refs. [13—16]. More recently,
in a cutoff surface approach by Bredberg ef al. [17] it was
shown by explicit construction that for every solution of the
incompressible NS equation in (p + 1) dimensions there is
a uniquely associated dual solution of the vacuum Einstein
equations in (p + 2) dimensions. The metric of Ref. [17]
was extended to all orders perturbatively via gradient
expansion in Ref. [18], thus yielding higher-order correc-
tions to the NS equation as well as the incompressibility
condition. In Ref. [19] the authors generalized the cutoff
surface approach by expounding on the dynamics of the
dual field theory living on the boundary of AdS spacetime,
provided the Dirichlet boundary conditions on the r = r,
cutoff surface are ensured. The authors showed that there
exists a critical radius as we go towards the horizon, beyond
which a relativistic description of the fluid living on the
cutoff surface is not valid because of the acausal propa-
gation of sound modes. Allowing for nonrelativistic scal-
ing, the authors retrieved the Ricci-flat gravitational duals
to the incompressible NS equations. In Ref. [20] the authors
provided a general approach to fluid/gravity correspon-
dence, where the base metric is no longer the flat Rindler
metric, but rather a generic static metric. The spacetime is
endowed with a general bulk stress-energy tensor and an
event horizon. This cutoff surface approach has been
applied in various cases; see Refs. [21-23]. For example,
it was extended for higher-curvature gravity theories
[24-28] as well as for the AdS [29,30] and dS [31] gravity
theories (for other theories, like black branes, see
Ref. [32]). Very recently, two of the authors of this paper
showed in Ref. [22] that an incompressible DNS-like
equation can be obtained in the cutoff surface approach.
In this case the obtained metric is a solution of the Einstein
equations of motion in the presence of a particular type of
matter. Also, a corresponding relativistic situation was
discussed extensively in Ref. [33]. Symmetries of the

vacuum Einstein equations were exploited to develop a
formalism for solution-generating transformations of the
corresponding NS fluid duals in Ref. [34]. The fluid
description on the Kerr horizon was also explored exten-
sively in Ref. [35] (see Ref. [36] for the isolated horizon
case). The correspondence was also established for general
rotating black holes yielding a Coriolis force term [37]. For
extensive reviews of the fluid-gravity correspondence, see
Refs. [3,4,38].

Having discussed the conventional approaches to this
fascinating connection relating the dynamics of gravity to
that of hydrodynamics, a novel interpretation of the same
correspondence was established in a new setting. In a recent
work by the authors of this paper [39], a new formalism was
established to understand the fluid-gravity correspondence
from a different standpoint. In the previous cutoff surface
approach the underlying physics is that there exists a
nontrivial map between the fluid side and the gravity side
constrained by their dynamical equations of motion. This
approach lays out the connection or duality between the
dynamics of the incompressible fluid and that of the
Einstein gravitational equations of motion via the conser-
vation of the Brown-York stress tensor on the gravity side.
However, fundamentally, the physics in Ref. [39] is quite
different. Here the correspondence is between an incom-
pressible fluid living in Minkowski spacetime and that of an
appropriately defined bulk velocity field in curved space-
time. We then encode the dynamics of the bulk velocity
field congruence in order to have a map between the fluid in
the Minkowski spacetime and the bulk velocity field in the
curved manifold. By dynamics, we impose that the accel-
eration of the congruence of the bulk velocity field on the
r = r. timelike hypersurface is zero, i.e., the bulk velocity
congruence is parallel transported on the r = r.. slice. This
allows us to have a map between the dynamics on both
sides. The incompressible NS equation of the fluid is
mapped to a “free” bulk velocity congruence on the r = r,
hypersurface. The essence of the physics in Ref. [39] is that
dynamics of the incompressible viscous fluid in Minkowski
spacetime can be studied as the dynamics of a “free”
parallel-transported bulk velocity field on the cutoff slice.
As a result of the projection of the parallel transport being
the analogue of the dynamics on the manifold side, all of
the dynamical degrees of freedom of the fluid are encoded
in the manifold properties of the spacetime. The constraint
of the incompressibility condition on the fluid side is shown
to naturally arise from the vanishing of the expansion
parameter corresponding to the bulk velocity field. It is for
this reason that the projection of the parallel transport
equation of the bulk velocity field on the cutoff slice is so
important in this framework. Moreover, this mapping
between the two sides bypasses the Einstein field equations
as an added advantage and hence is an off-shell duality
between the incompressible fluid dynamics and parallel
transport dynamics of a bulk velocity on the cutoff
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hypersurface. This approach to the fluid-gravity correspon-
dence is completely different from existing works in this
direction. This work [39] essentially forms the basis of the
current paper, which attempts to construct a gravitational
dual of the incompressible NS equation in a rotating frame,
the details of which are discussed in the following
paragraphs.

The notations used throughout the paper are clarified as
follows. All lowercase latin letters denote the bulk space-
time coordinate indices and run from a,b =0, ..., p + 1.
The uppercase latin letters denote the transverse coordi-
nates intrinsic to the hypersurface (i.e., the angular sector of
the metric) and they run from A,B=2,...,p + 1 as the
labels 0 and 1 have been chosen for time and radial
coordinates, respectively.

II. OUTLINE OF THE PAPER: A BRIEF REVIEW
ON INCOMPRESSIBLE NS WITH RESPECT TO A
ROTATING FRAME AND MOTIVATION

The incompressible NS equation in an inertial frame of
reference (1.1) takes the following form in index notation:

o)y + V€O, + O P —nd*v, =0,

It =0, (2.1)

where v/, denotes the fluid velocity with respect to an
inertial coordinate system (7/, {x"4}). All of the derivatives
are with respect to this primed inertial coordinate system.
However, for a fluid relative to the rotating frame, inertial
effects (like the Coriolis and centrifugal forces) need to
be accounted for in the above equation when dealing with
the dynamics of the fluid. The coordinates of the fluid
element with respect to the rotating frame are designated as
(z,{x}). The transformations of the position vectors, the
velocities, and the accelerations of the fluid element
between the rotating frame and the inertial frame are given,
respectively, via the relations

x=R-x,
yv=R vV -Qxux,

a=R-ad-Qx(Qxx)—-2(Qxv), (2.2)

where Q is the uniform angular velocity of the rotating
frame. R denotes the general time-dependent rotation
matrix about any arbitrary plane. The centrifugal accel-
eration is given via  x (2 x x) and the Coriolis accel-
eration via 2(Q X v). Thus, the incompressible NS equation
relative to a uniformly rotating frame for a nonrelativistic
viscous fluid system (with no external forces) can be
written as

aTUA + 7}3637}14 + 8AP - 11821)A = —2(9 X V)A
—(Qx (Qxx)),,

It =0, (2.3)
where the Coriolis force is identified as —2(€2 x v) and the
centrifugal force as — x (Q x x).

The centrifugal force term can be identified as the gra-
dient of a certain centrifugal potential (on the assumption
that the origin of the rotating coordinate system lies on the
axis of rotation) which can then be incorporated into the
dynamical fluid pressure P to identify an effective pressure
term Py [1]. The effective pressure P.; can then be
identified as

1
Peff:P—§|QXx|2. (24)
Thus, another form of the NS equation in the rotating
frame is

Devp + 10t + 0y Py — NP0y = =2(R X v),,

ot = 0. (2.5)
The details of this derivation can be found in Refs. [1,2].

In the above we found that the NS equation can be cast in
two forms (2.3) and (2.5). Here, we attempt to construct
the gravitational duals of both of them, in the manifold-
based approach to the fluid-gravity correspondence as
established in Ref. [39]. Our main target will be to construct
metrics that will lead to the NS equations when the parallel
transport equation of a suitably chosen velocity vector is
projected on the timelike hypersurface of these metrics. We
first concentrate on finding the dual of Eq. (2.3), and then
that for Eq. (2.5). We shall observe that, although the above
two equations represent the same NS equation, the mani-
folds are distinctly different. However, the formalism of
Ref. [39] yields equivalent NS equations (with respect to
the rotating frame) for the fluid dual for both of these
distinct metrics.

The basic organization of the paper is as follows. In
Secs. IV and V, respectively, we begin by proposing two
different bulk metrics in (p + 2) dimensions, on which we
consider the equations of the projection of the parallel
transport of an appropriately defined velocity vector field.
We then show in Secs. IVA and VA that the projection of
the parallel transport equations onto a timelike induced
hypersurface requires that the fluid-dynamical NS equa-
tions (with respect to the rotating frame) be satisfied in
(p + 1) dimensions. In Secs. IV B and V B we then show
that the incompressibility condition of the fluid as viewed
from the rotating frame derives from a vanishing expansion
parameter @ when projected onto the same timelike induced
hypersurface. We also identify the connections between the
rotation parameter(s) on the gravity side and those in its
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fluid counterpart. In Sec. VI we provide further insight into
the construction of the two proposed bulk metrics, which
are genuinely curved backgrounds. By doing so, we show
that the present considered proposed metrics are in no way
related by a diffeomorphism of the metric presented in
Ref. [39]. Finally, in Sec. VII we discuss the consequences
of the two different gravity/metric duals we obtain for a NS
fluid (relative to a rotating frame) in this parallel transport
framework of the fluid-gravity correspondence and offer a
few concluding remarks. The computation of the inverse(s)
of the (p + 2)-dimensional bulk metric(s), the relevant
connection coefficients, and the order-wise calculations of
the projected parallel transport equations and the expansion
parameter 6 are explicitly described in Appendixes A-F.

III. SCALE INVARIANCE OF THE
FLUID-DYNAMICAL EQUATIONS

We propose two different metrics that effectively capture
the dynamics of the viscous, NS fluid system relative to a
uniformly rotating frame. Without using the Einstein field
equations, we simply project the acceleration of an appro-
priately chosen bulk velocity congruence onto a specific
chosen hypersurface for both of these metrics and demand
that it be zero. Our main results—the specific forms of the
manifolds—are obtained based on the scaling invariance of
the NS equation. Therefore, we start this section with a
discussion on this topic.

The incompressible NS equation (1.1) satisfies a well-
known scaling symmetry that is briefly stated as follows.
If the solution space (v, P) of the incompressible NS
equation is scaled down by a certain hydrodynamic
parameter € as

v (x4, 7) = evy(ex?t, €27); Pe(x?,7) = 2P (ex?, €%1),

(3.1)

then the NS equation remains invariant under the above
scaling transformations. A detailed derivation of the scale
invariance of the NS equation can be found in Appendix A
of Ref. [22]. The incompressible NS equation for a viscous
fluid with respect to the rotating frame [Eq. (2.3) or,
equivalently, Eq. (2.5)] also remains scale invariant if we
identify that the uniform angular velocity Q scales as

Q4 = €2Q,. (3.2)
The justification of this comes from the fact that angular
velocity has dimensions of the inverse of time z. Since for
the scale invariance 7 scales as order O(e2), the compo-
nents of the angular velocity scale as order O(e?). Thus, via
the hydrodynamic scaling ¢ we can generate a class of
solutions parametrized by (v, P¢). The hydrodynamic
scalings of the dynamical variables—the constant angular
velocity components along the spatial and temporal deriv-
atives—follow as

vy~ Ole), P~ O(e?), Q, ~ O(e?),
0

9, ~ Oe), .~ O(e). (3.3)

IV. FLUID DYNAMICS VIA PARALLEL
TRANSPORT: CHOICE I

For the proposed metric we follow the methodology
applied in Ref. [17] and lay out the metric order by order in
terms of the hydrodynamic scaling parameter e.

We propose a metric of the form

a's?)+2 = g,pdx*dx" = —rde® 4 2dvdr + dx,dx*
—2Baf (r)dedx* — 2B, g(r)drdx*
+ (a3 (XAQAXBQB) +ay (5ABQAQB5CDXCXD>)d72

_ <2a1 OAP +2a,0%v, — rif(r)vDaD,BA> dx*dr

Te

+ O(e*). (4.1)

The metric is written in such a way that the first line is O(€)
and is simply the flat Rindler metric written in ingoing
Eddington-Finkelstein coordinates, the second line is O(e'),
the third line is O(e?), and the fourth line is O(e?). a;, a,,
as, and ay serve as constants whose values will be fixed later.
We impose the condition that 3, scales as order e'. The
present metric matches the proposed metric in Ref. [39] (in
az of Ref. [39] set to zero) if we set the constants a3 and ay
as well as 8, equal to zero. The metric expanded to order
O(€?) serves as the base metric upon which the perturbation
at order O(€?) has been added. Initially, at this metric level,
the set {Q4} are just some uniform components that we
demand to scale as order O(e?). No identification of {Q, } at
this point can be made with the overall uniform angular
velocity components for the fluid to be described. The same
goes for the set {3, }. Similarly, at the metric level, the fields
P(z,x") and {v,(z,xB)} are not to be initially identified
with the pressure perturbations and the velocity components
of the fluid. All that we require at this metric level is that the
fields P(z,x*) and {v,(z,xB)} scale as order O(e*) and
O(e"), respectively, in terms of the hydrodynamic scaling
parameter ¢. The analogy/correspondence will emerge only
after the formal machinery of the projection of the parallel
transport equation has been applied.

We now explain the physical interpretation behind the
construction of such a metric. We consider the effect
of the following coordinate transformation on a four-
dimensional Minkowski metric ds? = ,,dx*dx" with 5 :=
diag{—1,+1,+1,+1} and {x*} = {t,x,y,z}:

~1
Il

t’

=
|

xcos(wt) + ysin(wt),
—x sin(wt) + y cos(wt),
z. (4.2)

NS
Il
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Under the effect of this coordinate transformation, where @
is a constant, the Minkowski metric becomes

ds* = —[1 — @* (X% + 3%)|dP* + 2w(Xdy — $d%)di

+ dx% + dy* + dZ2. (4.3)
It can be verified that in the nonrelativistic limit the
geodesic equation of motion in this manifold reduces to
the usual Newton’s laws for a free particle in a rotating
frame, incorporating both the Coriolis and centrifugal
effects. The above discussion indicates that the coeffcients
of drdx” in our proposed metric are of the order O(e)
whereas those for dz? are of order O(e?). In our proposed
metric, at this level 3, is a function of (z, x*). However, Q
in our proposed metric is uniform and hence independent of
7, r, and {x"}. We recall that this is just a formal analogical
way of proposing the present metric (4.1). A pertinent
question might arise as to the emergence of the extra
parameter /3, in the proposed metric (4.1). It will be shown
later after the formal machinery (of parallel transport) has
been applied that {Q,} and {f,} must depend on each
other for consistency.

We assume for the moment that in Eq. (4.1) f(r) and
g(r) are smooth functions of only the radial coordinate,
with the condition that f(r = r.) #0 and g(r = r,) #0.
Here we also mention that » = r,. is the location of the
timelike hypersurface (in the bulk manifold) that we are
interested in. The location is at any finite distance between
the horizon r = 0 and radial infinity. The base bulk metric
here is

Qi?dx“dxh = —rdi® + 2drdr + dx,dx* — 2, f (r)drdx?
= 2Bag(r)drdx® + (a3 (x*Q,xPQp)

+ a4 (58, Qp5cpxCxP))dr?, (4.4)

over which the perturbation

2611

hfb)dx“dxb = —( 0P +2a,0%v,

c

—rif(r)vDaDﬁA>dxAdr (4.5)

to the order € has been applied. We denote the perturbation
as hfb). As a result, the base bulk metric is curved, which
can be checked by calculating the components of the
Riemann curvature tensor R%,.;. The fields P(z,x*) and

vA(z, x*) are independent of the radial coordinate r. We

shall show that the perturbation h((fb) in the proposed metric
contains information about all of the forcing terms in
the Navier-Stokes equation (relative to the rotating frame)
for a viscous incompressible fluid. This proposed metric
acts as the metric/gravity dual to the nonrelativistic fluid-

dynamical equations written in a rotating coordinate
system. Projecting the acceleration of the bulk fluid
congruence in this given spacetime onto the timelike
hypersurface r = r, and demanding that it be zero, we
obtain the corresponding fluid-dynamical equation (and in
the process lose general covariance).

A. Parallel transport of the velocity field

All of the kinematical and dynamical quantities of
interest to us (which are defined for the entire spacetime
manifold) will be projected onto the r = r, timelike
hypersurface. The projection tensor onto the hypersurface
r =r, is given by

Yab = Yab — Nallp, (46)

where n, is the unit normal on this hypersurface. The
hypersurface being timelike, its unit normal satisfies
n“n, = +1 (spacelike unit normal). Since the base bulk
metric is of the order O(e?), the computation of n, (on the
r = r.. hypersurface) yields

n‘r’r:r(, =0,
1 1 4 B
Nelyey, = N + a7 {as(x"Q,x"Qp)
+ a4 (57, Qpdcpx©xP) }

— 5 BPuPp(f* +2rfg+ rPg®) + O(e*),

{nA}|r=rE =0. (47)

The calculation for the components of the normal to the
hypersurface has been carried up to O(e?). The compo-
nents of the projection tensor [to order O(e?)] on the r = r..
slice follow as

Ve = —Fe + as (xAQAxBQB> + a4<5ABQAQB(SCDxCxD)’

Yer = 17 YA = _ﬁAf(rC)’
1 1
Vo = = — = 5 {a(*Qux"Qp) + 44572y QpScpx x")
rC C
— SBBABs(f2 + 2rfg + )},

Yia = _ﬂAg(rc)v YaB = OaB- (4-8)

Raising these covariant projectors via the inverse metric
tensor g*” (see Appendix A), we obtain the contravariant
components of the projection tensor to the hypersurface
r = r, up to the order O(e?) as
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v = —ric——L{a3(xAQAx Qp) + a4 (57 Qs Qpdcpx©xP)}
f2(; )5ABﬁAﬁB,
pr=0, pi= LU gy
yT =0, yA=0, C B _ sAB _’_MéACéBDﬁCﬁD'
r

c

(4.9)

Now in the given spacetime manifold we define a bulk
velocity field as v* = (1,0, v*), such that there is no flow
in the radial direction. The acceleration of the congruence

|

7ar<vbvb Ua) |r=rc

of the velocity field is given via a’ = v”V,v’. We demand
that the acceleration of this congruence as projected on the
r = r, timelike hypersurface be zero. The component of
the acceleration of the manifold fluid congruence on the
r = r, slice is zero. This is represented by

Yac??Vpv?|,_, = 0. (4.10)

It is in this sense that we are calling Eq. (4.10) a parallel
transport equation or, more correctly, the projected parallel
transport equation, i.e., the fluid congruence is “free” only
on the r = r, hypersurface. Setting the free index c to 7, we
obtain the lhs of Eq. (4.10) on the hypersurface r = r,. of
Eq. (4.1) as

:}/TT(FTT+2FA1) +F§\BU v )+yr‘[(r;‘r+2r‘r UA_FFZBUAUB)
V8:(0:0% + 020,08 + T2 + 208 04 + TR 0 0P)],_, .

(4.11)

The evaluation of Eq. (4.11) yields zero at orders O(e°), O(e'), O(e?), and O(e*), which is shown in detail in Appendix C.
Hence, the projected parallel transport equation on the r = r, hypersurface with the free index ¢ = 7 is trivially satisfied up

to order O(e?).

Next, we turn our attention to the free index ¢ = r and have the following lhs of Eq. (4.10):

Yar (Ubvbva) |r=rc

Evaluating Eq. (4.12) order by order we see that it vanishes at O(e?),
rc +2f(r.)g(re) + reg*(r.). The details are listed in Appendix C. The imposition of

yields a quantity proportional tol
Eq. (4.10) implies

fre) +2r.f(r)g(re) + r2g?

and as a consequence we obtain g(r.) = —@

= V(Do + 205, 0% + T3 0" 0%) -y, (T + 207, 0" + Do o®)
}/A,(ava + UBaBUA + F?T + ZF

v + T3 0806 (4.12)

r=r.*

O(e"), and O(e*). However, at O(e?), Eq. (4.12)

(r.) =0, (4.13)

, which has to be satisfied on the r = r,. timelike slice.

At this point we determine the covariant components of the velocity field. The contravariant components were defined as
v = (1,0, v*). The covariant components of the velocity field (lowered via the base bulk metric) are

UV, = —r —fﬂA’UA -+ a3(xAQAxBQB) + a4(5ABQAQB5CDxCxD) + 0(64),

v, =1— g + O(e*),

Vs = —fPa+ Sapv”.

(4.14)

We finally look at the projection of the parallel transport equation (4.10) with the free index ¢ = A. As a consequence, for

the lhs of Eq. (4.10) we obtain

yuA(vabU“)L:r( =y (T + 27 0P + o 0 0 )+y,A(F,,+2F’Dv + IpvoP)

v8a (0,08 + 0008 + T8 + 218 vP + T8, v 0P).

(4.15)

Evaluating Eq. (4.15) order by order, we see that it vanishes at O(e”), O(e'), and O(e?). Evaluating the above equation on
the r = r. cutoff hypersurface at O(e?) yields (see Appendix C for details)

0(63) :yaA(Uhvbvu”r:rc = 0,05 + 00wy +f(”c)7fcacﬂA +% (ilaAP + ay vy — rzf(”c)UDaDﬂA)

+ f(re)(0aPp — OpPa)v”

— a3Q4(Qpx") — ay (5P QS px").

(4.16)
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The validity of Eq. (4.10) with the free index ¢ = A at order O(e®) imposes the requirement

O,va + v 0cvy + (Clzl O4P + 6122'%82%) + f(re)(0aPp — OpPa)v® — a3 Q4 (Qpx") — ay(§PQcQpS4px") = 0.

Having finally arrived at Eq. (4.17), we want to make a
correspondence between it and Eq. (2.3) (where v denotes
the velocity of the fluid element with respect to the rotating
frame). It is at this level that we start making the necessary
identifications between the quantities in the (p + 2)-dimen-
sional manifold sector and the respective quantities in the
(p + 1)-dimensional fluid dynamics sector. In order to
make this parallel evident, the following identifications
need to made. The fields P(z,x*) and {v,(z,x®)} in the
manifold sector [that scaled as order O(e?) and O(e),
respectively] are indeed the pressure perturbation and
velocity field in the fluid sector. In the same way, we
identify that the component Q, on the gravity side is
equivalent to the uniform angular velocity of the frame in
which the fluid is studied. We also identify that the uniform
angular velocity components are related to the components

{Ba} via

(OaPB = 8BﬂA)UB =—(QxV),, (4.18)
and as a result we can write
Q=Vx§. (4.19)

Hence, we see that at the metric level the components {f4 }
are not free parameters, but rather are constrained on {Qy }.
We can further constrain the functional form of f via the
fact that Eq. (2.3) represents the NS equation described in a
uniformly rotating reference frame. Hence, we demand that
the functional form of f be such that € is a constant vector.
One particular solution of Eq. (4.19) is

1
Pp = ——€ppuxP + ¢p(7),

o =1) (4.20)

where ¢(7) is any arbitrary function of z. We then constrain
the functional form of f(r) on the cutoff hypersurface as
f(r.) = =2, as aresult of which g(r,) = % Identifying the
constants a; in the proposed metric (4.1) as

a; =2, a, = =2, a3 = —1, a; =1 (4.21)

and the kinematic viscosity term # as n = r., Eq. (4.17)
becomes

(4.17)

[
8,1}A + ’UcaclJA + 3AP - 17(3‘211A + 2(€ABCgBUC>

+ QA(QPXP) - (5CDQCgD5APXP) = 0 (422)
It can be easily shown that the last two terms on the lhs of
Eq. (4.22) are exactly the centrifugal force component
(Q x (2 x x))4. So finally our formalism of the projection
of the parallel transport equation on the timelike slice yields

D + 10cvp + 04 P — 00, +2(Q x¥),

+(Qx (Qxx)), =0, (4.23)
which is identical to Eq. (2.3).

The above Eq. (4.23) is the Navier-Stokes equation
(relative to the rotating frame) for a nonrelativistic, viscous
fluid, with the last two terms being the inertial Coriolis
and centrifugal forces, respectively, generated as a conse-
quence of the relative fluid motion described in the rotating
coordinate system. Thus, the inertial effects of the Coriolis
and centrifugal forces are codified inside the proposed
metric dual. In passing we mention that the centrifugal
force can be expressed as the gradient of a certain
centrifugal potential,

1
(Qx (Qxx)), =-0,4 <§ |Q x x|2>, (4.24)
in order to identify the effective pressure P.y as

1
Peff:P—§|QXx|2, (425)

thus obtaining Eq. (2.5) in the process.

B. Incompressibility condition
from the expansion scalar

Now in order to quantify the incompressibility condition
of the fluid on the dual metric side we look at the deviation
tensor of the geodesic congruence of the bulk velocity
field, and then project it onto the r = r. hypersurface.
Following the analogy that the incompressibility implies
density perturbations being zero over the continuum micro-
scopic scales in the fluid side, we demand that the above
relevant quantity must vanish. So we consider the tensor
field V,v,, which is the deviation of the geodesic fluid
flow, and then we project this deviation tensor onto the
r = r. timelike hypersurface. Basically, we evaluate the
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term © = y**(V,, V4)|,—,, which is the expansion scalar as
seen on the timelike cutoff surface r = r.. We shall see that
the vanishing of this expansion scalar necessarily implies
the incompressibility condition.

The corresponding projectors have been listed in
Eq. (4.9). Hence, by expanding we have

0= _7‘”(1—‘;’1}1 + thvr + FI‘?‘:”A)
=2y AT v, + T 0, +T4,04)

+ 748040 — Tipv, — g, + Thpvp).  (4.26)
Evaluating the rhs of Eq. (4.26) reveals that it vanishes
at orders O(e°), O(e'), and O(e?) (see Appendix E
for details). The second-order term (O(e?) implies (see
Appendix E)

O(e?): 0404,

We impose the condition for the vanishing of the expansion
scalar as evaluated on the » = r, cutoff hypersurface up to
order O(e?). This implies the incompressibility condition

ot =0. (4.27)
This is perhaps physically intuitive as the expansion scalar
contains information as to the expansion or compression of
the bulk geodesic velocity element, and its vanishing

simply translates to the incompressibility condition on
the fluid side.

V. FLUID DYNAMICS VIA PARALLEL
TRANSPORT: CHOICE I1I

Again taking only the hydrodynamical scaling informa-
tion from the fluid-dynamical side (3.3), we construct
another metric expanded order by order in terms of the
hydrodynamic scaling parameter . We propose a metric of
the form

a’sf7+2 = gupdx®dx? = —rdc® + 2dvdr + dx,dx*
—2Bf (r)drdx* — 2B, g(r)drdx*

2a 4
- < . 1 OpPest + 20282% - r—f(”)UDaDﬁA)
(5.1)

The present metric again matches the proposed metric in
Ref. [39] (in a5 of Ref. [39] set to zero) provided S, has
been set to zero. The first line is of order O(e°) and is again
the base Rindler metric, the second line is of order O(e'),
and the third line is of order O(e?). Here we reiterate that
Pa(z,xB) scales as order O(e') and at the metric level no
concrete connection can be made between S, and the
uniform angular velocity component €, of the fluid side.
However, intuitively, 4 can be recognized along the lines

x dxtdr + O(e*).

of a “rotation” parameter of the spacetime. This has been
done in analogy with the concept of frame dragging of
inertial coordinates. If we assume for the moment that all of
the metric coefficients are independent of the 7 coordinate
(i.e., the metric becomes stationary) and the [A]th angular
coordinate, then frame dragging becomes a generic feature
in such stationary spacetimes where g.(4) # 0. The square
brackets on [A] imply selecting only one angular coordinate
A out of the total p coordinates. For such a metric there will
be two conserved quantities: p, and pyy. The angular
velocity of a particle dropped along the radial direction with
zero conjugate momentum corresponding to the [A] angular
coordinate (ppy) = 0) is dﬁ—? = ’;[/:] = w(r,A) # 0, where A
refers to all of the other angular coordinates without the
single chosen [A] coordinate. So a particle dropped radially
will acquire a nonzero angular velocity. If we think
passively about the particle being described in some local
inertial frame where it is spatially at rest, then such inertial
frames should be rotating with an angular velocity o(r, A),
and hence we say that inertial frames are dragged in this
spacetime. It is in this sense that 4, which in general is a
function of (z,x%), is identified as a parameter that
describes the rotation of the above-mentioned spacetime.
Similar to metric choice I, the consistency conditions on
f(r.) and g(r,) also hold for metric choice II. The same
condition holds for the location of the timelike cutoff slice
r = r.. However, in Eq. (5.1) P (7, x*) is a modification
of the field P(z, x*) as presented in Eq. (4.1). However, we
do demand that this modification be consistent with the
scaling argument, i.e., Pog(7, x) scales as order O(e?). At
the end of the analysis we will decide what exact modi-
fication needs to be applied to P.s so that the duality
between the manifold side and the fluid side is evident. The
base bulk metric here is

ggob) dx4dxb = —rdz* + 2dzdr + dx,dx* — 2B, f (r)dedx?

—2B9(r)drdx*, (5.2)
over which the perturbation
() j.a 7.b 2a, 2
h,,dx*dx’ = — - OpPeir + 20,0704
4 D A
—r—f(r)v OpPa |dx*dr (5.3)

to the order € has been applied. We denote the perturbation
as hfb). As a result, the base bulk metric is curved, which
can be checked by calculating the components of the

Riemann curvature tensor R%;.;.

A. Parallel transport of the velocity field

The base part of the bulk metric proposal (5.1) (barring
the perturbation at the third order) is written to order O(e).
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The unit normal on the r = r, timelike slice is evaluated to
the first order in €. The computation yields

n, = O,L,O .
N

The tilde underneath O implies that all of the angular
components of the normal are zero. The components of the
projection tensor [to order O(¢)] on the r = r, slice are

(5.4)

Vor = ]v VA = _ﬁAf(rC)’

YA = _ﬂAg(rc)’ YaB = O4s- (5'5)

The contravariant components to order O(e) upon raising
via the metric are

f(re)

yn' =—— yrr — O, 7/‘L'A — _ 5ABﬁBv
re re

yrA — 0’ 7/AB — 5AB_

(5.6)
Again, for this proposed manifold defined via the metric
(5.1) we define a bulk velocity field as v* = (1,0, ). We
follow exactly the same algorithm as that for the metric
choice /. The relevant information about the inverse metric
components and the Christoffel symbols for the metric
choice /1 are listed in Appendix B.

Setting the free index ¢ to 7, for the metric (5.1) we
evaluate the lhs of Eq. (4.10) order by order until O(e?). We
see that the lhs vanishes at O(€?), O(e!), O(e?), and O(€?),
the details of which are shown in Appendix D. Hence, for
the choice of the metric (5.1) the projection of the parallel
transport equation on the r = r. hypersurface is trivially
validated.

Next, we look at the lhs of Eq. (4.10) for the free index
¢ = r. Evaluating, we find again that it vanishes at O(e°),
O(e'), and O(e?). However, at O(e?) we have terms
proportional to @ +2f(r)g(re) + reg*(re). We are
again presented with the same consistency condition on

f(r.) and g¢(r.) for Eq. (4.10) to be valid, i.e.,

glre) = =5

timelike slice.
The covariant components of the velocity field (lowered
via the base bulk metric) to O(e?) are

, which has to be satisfied on the r =r,

vT:—r—fﬂAvA, Uy = l_gﬁAUA’

va = —fPa + 840" (5.7)
Evaluating the lhs of Eq. (4.10) with the free index ¢ = A
reveals that it vanishes at O(e?), O(e'), and O(e?). At order
O(e?), we have

0(63) :7aA(Ubvaa>|r:rc - a‘L'UA + ’Ucac’UA

r. (a 2
+ > <r_1 OpPesr + a20%v4 — r—f(rc)UDauﬂA>

+ f(re)(0aPp — OpPa)v®. (5.8)
For Eq. (4.10) to be valid, we demand that
O,va + v 0cuy + <%8Apeff + %’”casz>
+ f(re)(0aBp — OpPa)vP = 0. (5.9)

Having arrived at Eq. (5.9), we want to make a correspon-
dence between it and Eq. (2.5). As before, we identify the
field vy(z, xB) written at the metric level as the velocity
field of the fluid that needs to be described. On the same
footing, we identify that the uniform angular velocity of the
frame in which we study the fluid system is related to the
“rotation parameter” {3, } on the gravity side via

(04Bp — OpPa)v® = —(Q xv),, (5.10)
as a result of which we can establish the analogy
Q=Vxg. (5.11)

We constrain the functional form of f(r) on the cutoff

hypersurface as f(r,) = —2, as aresult of which g(r,) = 2.

r(‘
Identifying the constants «; in the proposed metric (4.1) as

a, = 2, a, = —2, (512)
and the kinematic viscosity term # as n = r,, Eq. (4.17)

becomes

aTUA + vcach + 3APeff - 17821) + 2<€ABCQBUC) = 0
(5.13)

Thus, the correspondence with Egs. (4.22) and (2.5) will be
complete if we finalize the interpretation of P.;. We
demand that

1
P = P — 3 [xpxP () (0aP5 — OpPa)

- erABC(aBﬁC)xpePQR(aQﬂR)]' (5.14)
All the raising and lowering of the components to the
modifications (to P) are done via the Euclidean metric. The
term added to P, i.e., —3[xpxP(0ABB)(04Pp — OpPa) —
XA€ABC(8BﬂC>xP€PQR(aQﬂR)] can be
—1(Q xx)?, where x denotes the transverse coordinates
on the r = r, hypersurface, i.e., it is the position vector of
the velocity element on the cutoff hypersurface and is in

identified as
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accordance with Eq. (2.4). The term —1(Qxx)? is
identified as the centrifugal potential that needs to be
added to the dynamical pressure to provide the effective
pressure P.;. We can clearly see here that Py scales as
order O(e?).

The above Eq. (5.13) is the Navier-Stokes equation (with
respect to the rotating frame) for a nonrelativistic viscous
fluid, with the last term being the inertial Coriolis force,
2(v x Q), generated as a consequence of the relative fluid
velocity described in the rotating coordinate system. Thus,
the inertial effects of the Coriolis and centrifugal forces are
codified in the proposed metric dual.

B. Incompressibility condition
from the expansion scalar

We proceed as before and calculate the term ® =
7“*(Vy,)|,—,. . which is the expansion scalar as seen on
the timelike cutoff surface r = r,. for the manifold defined
by Eq. (5.1). The corresponding projectors have been listed
in Eq. (5.6). Hence, expanding, we have

0 =y (d4vy + 1T%, + fPpoPT?, =T, + gppoPT7,
_FanUD +fﬂDFan)|r=rc' (515)

Neglecting terms of order greater than O(e?), the above
Eq. (5.15) simplifies as

1
0= 7 (F;:/Uf + F‘;‘rvr + F?TUA)

c

+ (2@5“%3) (T v, + T, +TEwp)

+ 84 (0avp — Thpve = Thpv, + Tigop). (5.16)
Evaluating the rhs of Eq. (4.26) reveals that it vanishes at
orders O(e?), O(e'), and O(e?) (see Appendix E for a
derivation). The second-order term (O(e?) implies (see
Appendix F)

O(€?): ~ 00", (5.17)
We impose the condition for the vanishing of the expansion
scalar as evaluated on the r = r, cutoff hypersurface up to
order O(e?). This implies the incompressibility condition

D40 = 0. (5.18)

VI. CONSTRUCTION OF THE PROPOSED
METRICS: A DIFFERENT INTERPRETATION

Now we will construct our two proposed metrics by a
coordinate transformation on their respective base bulk

metrics over which the perturbation at O(e*) has been
added to incorporate the forcing terms. About any event
P in the manifold we employ the following coordinate
transformations:

X =xt+ A8,
T=r1,
;:r’ (61)

where 5'253) is a 3 indexed component with b and ¢ taking
values of either 7 or r. We impose that

6 =5 (20up + axPy =2 (100 ) (62

for the metric choice / [Eq. (4.1)] and

a 2
5253) =§'® <r—1 OpPest + ay0%vp — r—f(r)vDaD/}B>

c

(6.3)

for the metric choice /1 [Eq. (5.1)] such that the event P is
taken to be the origin of both coordinate systems and where
A is simply a constant that shall be fixed in due course. So
applying these coordinate transformations on the initial
base metric(s) (which are genuinely curved) does not
change the overall structure of the spacetime. This is
because the change in the Riemann curvature tensor
R%,., due to these coordinate transformations occurs at
O(e*). As a result, for the first metric we have

dx® = dx*

{5“( 83P+a282v3——f( r) DaDﬁBﬂdr

+0(> €Y. (6.4)
Similarly, for the second metric we have

dx® = dx®
e

Imposing the above transformations (6.1) on the base
metric written to the second order (4.4), we have

eff + aZa Up — *f( ) DaDﬂB):| dr
(6.5)
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~2 —
dsp+2 -

—Fd? + 2didF + dx o d¥ — 2B, f (F)dzdx* — 23, g(F)dFdx™

+ (a3()?AQAXBQB) + 04(5ABQAQB(3CDX‘C5C‘D))d%2
= —rdt® + 2drdr + dx,dx* — 2B, f (r)drdx* — 2B, 9(r)drdx*
+ (a3(xAQAxBQB) + (14(5ABQA§235CDXCXD))d72

re

2 4
+ /1( @ 0P +2a,0%v, — r—f(r)vDaD/)’A>dxAdr + O(e*).

(6.6)

Imposing the above transformations (6.1) on the base metric written to the first order (5.2), we have

dsy ., = =Fd7T* 4 2didF + diydi* — 2P, f(F)dzdx* — 2p,g(F)dFdx"
= —rd7* + 2dzdr + dx,dx* — 2B, f (r)drdx* — 2P, g(r)drdx*

re

+ /1<2a1 OpPest + 20,0705 — rif(r)vDaDﬂA>dxAdr + O(e*).

Setting the value of 4= —1, we obtain our proposed
metrics up to O(e?). So the effect of the forcing terms
via the perturbation hfb) at order O(e) present in the
proposed metrics (4.1) and (5.1) can be thought of as the
forces felt by observers moving in the spacetime defined by
the base bulk metric, i.e., Egs. (4.4) and (5.2), respectively,
undergoing trajectories defined via Eq. (6.1). Hence, at
least at the structural level, the original spacetimes (4.1) and
(5.1) and the spacetimes (4.4) and (5.2), respectively, as
observed by an observer following the trajectory (6.1) are
inherently not different from each other at least to order
O(e).

We mention that the base bulk metric (4.4), for the
proposed metric (4.1), is a genuinely curved manifold as
evident from the calculation of the curvature components.
The nonzero components, up to order O(e'), of R%,.,; of the

base metric up to order O(e') are evaluated to be

1"Ba rf"Ba rf"Ba
R4 = s Rpy=-— s Rip=-— ’
2 2 2
5ABﬁ f// f//ﬁ f”ﬂ
A _ B T _ A T — _ A
R rer D) ’ RArr_ 7 RrAr 7
(6.8)

This is also the case for the base metric (5.2). So, in general,
even up to O(e'), the Riemann curvature tensor has
nonvanishing components. Therefore, both base bulk
metrics (4.4) and (5.2), unlike that in Ref. [39], are curved.
This is a very crucial difference between the earlier
proposal and the present one. In this regard, it is worth
mentioning that on the fluid side a simple set of coordinate
transformations allows us to transform between the NS
equation written in the inertial coordinates and the uni-
formly rotating noninertial coordinates. Therefore, one can
expect that a similar argument can be applied to construct

(6.7)

the metric for the rotating case. Hence it can be thought that
a simple coordinate transformation on the proposed metric
in Ref. [39] may provide the metric dual to the fluid seen
from the rotating frame. In that respect, the base metric
should be flat in both situations. But, unfortunately, this is
not the case. As we mentioned above, the base metrics in
the present discussion are curved in nature, so a coordinate
transformation cannot connect them with the metric pre-
sented in Ref. [39]. This clearly shows that on the gravity
side the idea is not so simple. Hence, the obtention of the
gravity dual of the fluid equation in a rotating frame needs
special attention. In addition, we found that the parameter
that is connected to the intrinsic rotation of the spacetime
(i.e., B4) provides the rotational effect on the fluid side.
This shows a clear correspondence  between
the parameters on both sides and, interestingly, the non-
vanishing of B, guarantees the nonflatness of the base
metrics. Hence, we feel that the analysis done here adds a
nontrivial contribution to the subject of the fluid-gravity
correspondence.

VII. DISCUSSIONS AND OUTLOOK

We summarize our calculations as follows. We have
proposed two bulk metrics in (p + 2) dimensions such that
the base bulk metrics that act as the background are
genuinely curved manifolds. To the zeroth order in the
hydrodynamic parameter ¢, the background is essentially
the flat Rindler spacetime for both spacetimes. To this

background is added the perturbation hfb) at O(e*) which
contains the information about both the pressure P(z, x*)
and velocity v, (7, x?) fields. The perturbation contains all
of the “forcing” terms, i.e., the forces due to pressure
gradients and the viscous effect. We then chose a bulk
velocity vector field contained in this bulk spacetime
defined as v = (1,0, v*). Our basic formalism involves
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the fact that this appropriately chosen bulk velocity has no
component of its acceleration on the r = r. timelike
hypersurface as evident from Eq. (4.10). This relation is
what we call as the projection of the parallel transport
equation. We looked at the projection of this parallel
transport equation on a specific, safely chosen r = r,
timelike hypersurface such that the location of the slice
is away from the horizon (at r = 0) and r — oo, as shown
in Eq. (4.10). We demanded that the projected parallel
transport equation onto the r = r, hypersurface is consis-
tent to order O(e?) [since the metric has been constructed to
O(e?)]. This implies that the incompressible NS equation
(relative to the rotating frame) is valid at O(e?) along with
the consistency conditions on f(r.) and g¢(r.) being
generated at O(e?). The relevant centrifugal force is
generated at order O(e®) (via the parallel transport for-
malism) in the computation of the Christoffel connection
component I'4.. Similarly, the Coriolis force is generated
via the component I'4;. We then showed that demanding a
vanishing expansion scalar for the bulk velocity field
defined in the spacetime (as seen from the r = r. slice)
leads to the incompressibility condition for the viscous
fluid as observed from the rotating frame. Finally, we come
up with a systematic method of constructing the proposed
metrics (4.1) and (5.1) via a coordinate transformation on
the base bulk metrics.

In our previous work [39], we proposed a metric dual to
the incompressible nonrelativistic NS equation that con-
tained (within the metric) all information about the forcing
terms, i.e., the forces of the pressure gradient and the
viscous effects. In that work, it was shown that the
dynamics of a viscous, non-relativistic incompressible fluid
in the Minkowski spacetime (described by the NS equation)
is equivalent to the dynamics of a free fluid (described by
the projected parallel transport equation) residing in a
manifold with the proposed metric. The present work is
an extension based on the formalism proposed in the earlier
paper [39]. However, here the two proposed metrics are
distinctly different, along with the fact that the base bulk
metric(s) are no longer flat [Egs. (4.4) and (5.2)]. Similarly,
there are additional terms that occur in the perturbation at
order O(e?) for the two proposed metrics. The present two
metrics carry all the information about the forcing terms
along with the inertial centrifugal and Coriolis forces. This
is because of the analogy that needs to be setup between the
dynamics of an incompressible viscous fluid (as viewed
from a rotating frame) with that of a free bulk fluid (being
parallel transported along its own geodesic integral curves)
residing on a manifold given by the proposed two metrics
(4.1) and (5.1). When the fluid is to be described in a
rotating coordinate system, then the metric is no longer
diagonal in structure but rather involves cross terms
between the temporal and spatial coordinates. On the dual
metric side the effect of rotation is induced by the “rotation
parameter” {34} which causes the base bulk metric to no

longer be flat. The projected parallel transport equation of
the appropriately chosen bulk velocity field on the r = r,
timelike slice generates the fluid dynamical equation which
includes the Coriolis and centrifugal forces. The forcing

terms of pressure and viscosity are encoded in hfb) of the
proposed metrics.

We can hence gain some new perspectives on the
dynamical structure of the incompressible NS fluid equa-
tions relative to a rotating coordinate system. We can
rewrite them in the ¥ = ma form,

Ov4 +1vP0pvy = —0uP +3n0%vy — (Q X (@ x X)),

—-2(Q xv),, (7.1)
where the lhs is the total derivative for the velocity of the
fluid element relative to the rotating system. The rhs
contains the regular forcing terms due to pressure and
viscosity along with the additional inertial centrifugal and
Coriolis forces due to the system being described in a
rotating frame. As is evident from Eq. (4.16), these forcing
terms along with the inertial forces essentially arise from
the evaluation of the relevant Christoffel symbols for the
metrics (4.1) and (5.1). In our previous paper [39], all of the

forcing terms were built inside the perturbation hfb). In this

paper, for the metric choice / the pressure and viscous

forces are generated from thb). The centrifugal force is

generated through the metric component gg) . The Coriolis
force is generated from the rotation parameter (7, x*) that
shows its effect in the metric at order O(e). So if we were to
“switch off” this perturbation of the fields by putting
P(z,x*) = 0 and v4(r,x*) =0, then we would have a
“forcing-free” fluid as described relative to a rotating
coordinate system, i.e.,

Ova +1P0pvy = (@ x (@ xx)), —2(R@xV),. (7.2)
Similarly, for the metric choice I/ the dynamical pressure

(along with the centrifugal forces) and the viscous forces

are incorporated in hfh) of the metric. The Coriolis force is

again generated from the rotation parameter f(z,x%) at
order O(e) in the metric. Hence, the correspondence is
that of a viscous incompressible fluid residing in a flat
spacetime being dynamically equivalent to the geodesic
flow of a free fluid (appropriately defined) in a curved
manifold defined via Eq. (4.1) or Eq. (5.1). This actually in
a sense parallels the interpretation where the dynamics of a
particle interacting in a static gravitational field is locally
indistinguishable from an equivalent accelerated frame,
which has been expounded in Sec. 3.3 of Ref. [40].
Hence, we have observed that the two metrics in this
paper account for all of the forcing as well as the inertial
terms of the NS equation. Hence, the behavior of a free
fluid in the proposed metrics can be considered as an
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equivalent theory of nonrelativistic viscous fluid dynamics
relative to a uniformly rotating frame. As a result, a strong
parallel can be drawn between this present analysis and the
equivalence principle of gravity where an appropriate
accelerated frame can locally mimic gravity. Thus, the
duality presented here can be a dictionary between calcu-
lations on both the sides. Any calculation that may be hard
to extract on the fluid side (of the incompressible viscous
flow in the rotating frame) of the NS equation can be
reflected by a calculation for a free fluid in the proposed
metric spacetime (which incorporates both the effects of the
forcing and the inertial effects), or vice versa. As a
suggestive interpretation these metrics can be thought of
as a complete geometrical description of the NS equation
with respect to the rotating frame.

As a consequence of the projection of the parallel
transport equation on the induced timelike hypersurface,
we can obtain the NS equation. In fact, any corresponding
alteration to the NS equation (relative to the rotating frame)
at one’s convenience can be supplemented with corre-
sponding term(s) on the metric side, and the present
algorithm would yield one’s chosen equation. That is,
one can add corrections to the NS equation and construct
the dual metric easily. So the question naturally arises as to
why we are fixated on the NS equation written in the
rotating frame in our analysis. This is simply because we
are within the purview of the nonrelativistic regime and the
hydrodynamic limit(e — 0). In this regime, the incom-
pressible NS equation is universally the hydrodynamic
limit to essentially any fluid system. Any corrections that
can be thought of as coming from either kinetic theory the
theory of strongly coupled fluids will necessarily get scaled
away in this limit. We have hence constructed/formulated
two metric duals to a viscous fluid system viewed from a
uniformly rotating frame in this particular limit and singled
out the NS equation as a consequence of parallel transport
on these curved manifolds.

At this point we again stress that in the present analysis
the Einstein equation has not been used to derive the
correspondence between fluid dynamics and gravitational
dynamics. In most of the earlier interpretations of fluid/
gravity correspondence [13-17,21-36] the Einstein equa-
tion played a pivotal role. The holographic approach to
fluid/gravity correspondence, where the Einstein equation
was interpreted as the NS equation on a timelike slice, is
actually one of the possible ways to describe this corre-
spondence. There is absolutely no requirement that the
Einstein equation has to be used to connect the dynamics of
both of these sectors. In our analysis we have shown this
correspondence using the parallel transport equation as our
guiding principle. Hence, our approach can be designated
as an off-shell approach to fluid/gravity correspondence.
The authors of Ref. [20] generalized the result of Ref. [17]
by describing the dynamics of the fluid on the cutoff
surface. They considered a general curved static metric

rather than the flat Rindler metric, but kept the induced
surface r = r. flat. By performing a set of scale trans-
formations and Lorentz transformations, they obtained the
seed metric for the relativistic fluid dual on the cutoff
surface. However, our approach is based on the projection
of the parallel transport equation on the r = r. surface.
Moreover, in our case the r = r, surface is not flat because
of the introduction of the rotation parameters /4. Our work
differs from their cutoff-surface-based approach again in
the sense that ours is an off-shell analysis. However, we
have not been able to consider the duality of the metric with
a relativistic dual fluid.

We now mention some points that we perceive are the
apparent benefits of such an off-shell approach to fluid/
gravity duality and thereby may provide possible future
directions.

(1) The first point is the possibility of constructing an
action for the fluid system from such a setup. The
idea is as follows. The dynamics of the fluid are
encoded in the manifold properties of the considered
spacetime(s) which are a priori not required to be
solutions of the Einstein equations. Using the duality
between the fluid side and the manifold side via the
projection of the parallel transport equations, the
fluid system can be considered to be a collection of
particles that are parallel transported on the r = r,
hypersurface of the proposed spacetime(s). For such
a fluid particle the action can be written as
A= [\/=guu‘u’dl, where u®=dx"/d} is the
velocity of the fluid particle and g, is the metric of
our proposed spacetimes. However, we do need to
find a relation between u? and »*, and then the
action of the fluid particle can be expressed in
terms of »4. Extremizing such an action written
for such a collection of fluid particles parallel
transported on the r = r. slice in the proposed
spacetimes might yield the required NS equation.
In this way, an action principle of the NS equation
may be constructed.

(2) As aclassical correspondence, we have shown in our
analysis the map between classical fluid-dynamical
equations and the equations of the projected parallel
transport of an appropriately defined bulk fluid
velocity on the r = r, timelike slice of the given
spacetime(s). However, there is a difficulty that arises
when we try to have a quantum theory on both sides.
In the on-shell approaches to fluid/gravity correspon-
dence, we do have a quantum theory of the fluid.
However, a quantum theory of gravity is as of yet in
progress. Our off-shell approach may help to bypass
this problem as we have not used the Einstein
equations. On the fluid side, we have a many-body
interacting theory of the fluid living in Minkowski
spacetime. The analogous quantum theory on the
manifold side in our approach is that of quantizing a
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collection of “free” or parallel-transported fluid par-
ticles in the background of the r = r,. timelike slice of
the proposed spacetime(s). This is basically semi-
classical gravity where the background remains
classical and we quantize matter fields in this back-
ground. Hence, the quantum theories on both sides
can be related, bypassing the issues pertaining to
quantum gravity.

(3) Another way in which this off-shell approach may
help is in uncovering the microscopic degrees of
freedom of the thermodynamic aspects of gravity.
Our present formalism of fluid/gravity duality im-
plies that all of the degrees of freedom (d.o.f.) of the
fluid are possibly encoded in the manifold properties
of the concerned proposed spacetime(s). Therefore,
working knowledge of the microstructure of the
fluid and hence its thermodynamics may help us to
understand those of gravity. Moreover, it is now well
known that one can associate quantities like entropy
density and temperature with an arbitrary null
hypersurface [41]. The null hypersurface does not
need to be a solution to the Einstein equations.
However, a proper origin of these quantities from the
underlying microscopic structure of the spacetime is
missing. Our off-shell approach to fluid/gravity
duality may help to elucidate the microscopic
d.o.f. of the gravity side since we have a mapping
between the fluid and gravity sides. Previous ap-
proaches to fluid/gravity correspondence like the
cutoff-surface method have explicitly used the Ein-
stein field equations. Hence, we understand that in
such approaches the d.o.f. of the fluid are encoded in
the spacetimes that are required to be solutions to the
Einstein equations. But as the thermodynamic enti-
ties can be assigned with an arbitrary null hyper-
surface and are related to the manifold properties
which as such are not required to be solutions of the
Einstein equations, it may be much more relevant to
have an off-shell duality approach to identify the
d.o.f. of the manifold. In this regard our present
approach may shed some light on the thermody-
namical origins of gravity.

In Ref. [39] we added a correction at order O(e?®) to
the base flat Rindler metric that incorporated all of the
forcing terms such that the demand of the projection of
the parallel transport equation on the r = r, slice yielded
the NS equation at O(e?). Demanding that the projection
of the expansion scalar on the r = r,. slice vanish gave us
the incompressibility condition at order O(e?). It would
definitely be interesting to construct the metric to all
orders (as was done in Ref. [18]), such that we would
also in our case retrieve the NS equation and the
incompressibility condition along with the necessary
corrections at higher orders. The basis of the construction

of the metric in Ref. [18] to the nth order is as follows.
Using the parallel of the hydrodynamic expansion of the
fluid, the authors of Ref. [18] constructed the bulk
expansion of the metric via a gradient expansion to all
orders in e. Demanding Ricci flatness to all orders (which
is a partial differential equation), the gradient expansion
imposes a hierarchy between the derivatives which
converts the partial differential equation into a series
of coupled ordinary differential equations. Assuming that
the metric has been written to order ¢"~!, the authors

added a new term g(a';,) at order €”", as a result of which the

Ricci tensor at order ¢ is R"”) = 6R" + R""), where R")
is the nonlinear contribution from the metric written until

order ¢"~! and 5R<a';,) is the linearized contribution at order

€" that contains only the r derivatives. Demanding
R('IZ) = 5R("b) +R(’Z) =0, the Ricci flatness condition is

a a a

then integrated to find the corrections to the metric at
order €" to the preexisting one written until order "~
There are integrability conditions that need to be satistied
for these equations to be integrated. It turns out that the
conservation of the Brown-York stress tensor on the
r = r, slice at order €¢" ensures the validity of the integra-
bility conditions. Mapping it onto the dual fluid side, this
conservation yields the NS equation along with its correc-
tions for all odd orders, while the conservation yields the
incompressibility condition along with its corrections for
all even orders.

Now we step back to see if it is possible in our present
scheme to have a bulk construction of the metric to all
orders in ¢, such that the projection of the parallel transport
equation of an appropriately defined velocity field in this
(bulk constructed to all orders) metric spacetime gives the
NS equation along with its corrections. However, we have
to build the metric with certain restrictions. Identifying
these restrictions is nontrivial, and until now we have not
been able to find them. Since we aim to present an off-shell
description, it is not desirable to use any information from
the Einstein equations. One such natural way of construct-
ing the higher-order metric of Ref. [39] is via coordinate
transformations. We have seen that the metric written to the
third order in € in Ref. [39] was generated by coordinate
transformations on the base flat Rindler metric. Our goal is
to construct the higher-order terms in the metric via such

diffeomorphism transformations. We calculate 6951), which
is the fourth-order contribution to the metric due to the
application of the coordinate transformation x“ — x“ +
E®a(x) on the €*-order seed metric. Hence, one needs to
find the diffeomorphism vector £&4)(x) by taking the Lie
variation of the metric i.e., 595:},) = £:49ap constrained by
certain conditions on the choice of the metric coeffcients.

We shall state these conditions in a moment.. As a result,
we have the following equations:
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Sgy) = 20,0,
Sgiy) = —rd, & 4 9,er,
8oy = 0,84,

59541‘) _ _5(4);"’
sgW =0,
54\ =o0. (7.3)

Because of the fact that we do not have boundary con-
ditions prescribed for the components 59%) on the r =r,

timelike slice (as for the r = const surface dr = 0 for any
value of g,,), we can set the constraint that 69%) =0.1In
fact, this constraint needs to be extended to all orders such

that 5g§2) = 0 and hence the g,, components are actually
those of the metric components generated to the third order
in €. That is, to all orders in the metric construction, we
impose that

9rr = 1,

g”A = (ﬂaAP + azasz +%6AU2> . (74)

rC c

9rr = 07

Now the above set of equations (7.3) need to be solved

for &% with the boundary conditions that (Sgg), 5g£4>,

and 59242 all vanish on the r = r. timelike slice. This

fixes the integration constants upon the solution of
Eq. (7.3). Now once we have solved for 5(4)”, we can
apply the coordinate transformation x* — x¢ + &4 (x)
on the metric written to the third order in € to generate
the fourth-order correction to the metric. After this, we
apply our machinery of the projection of the parallel
transport equation of the bulk velocity field on the r = .
slice and generate the NS equation. The process can be
iterated to construct the metric to the nth order in e via
coordinate transformations on the metric written to the
€"~! order. The projected parallel transport equation of
the bulk velocity field for the metric written to all orders
in € corresponds to the NS equation along with the higher
order corrections.

Another possible way to construct the metric to higher
orders may be via the metric compatibility condition i.e.,
V.95 =0. The idea is similar to that presented in

Ref. [18]. We shall add a correction to the metric 5951';2
to the preconstructed metric written until order ¢"~!. Since
the condition is satisfied until our €"~!-order metric, we
choose the corrections at €” order such that the following is
satisfied:

(Vags)"™ + V. (597) =0, (7.5)

where (V/,ZE,C)("> is the nth-order contribution due to the
metric written until order €"! and V, ((5g§;;>) is the
contribution due to 592?. This yields

n ~ n i(0 n i(0 n
0,(695)) = (Vugpe)™ + T (89)) + Tie (893)). (7.6)

which can be integrated to find the corrections to the metric.
Next, with the imposition of the projection of the parallel
transport equation of »* on the r = r, slice the higher-order
corrections to the NS equation can be found. Then, from 6,
the corrections to the incompressibility condition can also
be evaluated. A thorough investigation into this issue is
required and we are certainly looking into it. Hence,
nothing can be concretely stated right now. The work is
in progress and will be reported in due time. In addition, we
mention that this off-shell construction of the metric to all
orders for the initial choice of the metrics (4.1) and (5.1)
will be nontrivial since the base metrics in both cases are
not Rindler flat, but rather genuinely curved spacetimes. As
of now, we do not know which of the two procedures is
correct, but we are looking into this. We certainly aim to
report our investigations pertaining to these issues in the
near future.

Finally, we mention that the above formalism can be
extended to yield the Damour NS equation for a viscous
fluid relative to a rotating frame if we modify the proposed
metric by adding a certain term to h;b) for both of the
metrics. The term at order O(e®) that does the job is
—%GAUZ. Following the exact same formalism outlined

here, the rotating Damour NS equation has the form

1
(9va -+ ’Ucach + Easz + GAPeff — 77821}

+ 2(€ABCQB1}C) = 0 (77)

Overall, we hope that the present discussion will shed
more light on the subject of fluid-gravity correspondence as
it provides a new method of investigation.

APPENDIX A: THE INVERSE METRIC
AND THE CHRISTOFFEL SYMBOLS
OF METRIC CHOICE I

We evaluate the inverse metric corresponding to Eq. (4.1)
as a perturbation series over the flat metric gggat)dx“ dxb =
—rdt* + 2drdr + dx,dx*, with the perturbation identi-
fied as H,,dx*dxt==2p,f(r)dvdx*—=2B,9(r)drdx* +
{az(x*QuxBQp) +ay (548, QS pxCxP) }dr? - (Zr—LZ‘aAP—I—

2a,0*v,—2f(r)vP0pp,)dx"dr. The perturbation contains

re
terms of order O(¢), O(e?), and O(e?). The inverse metric is
written as a perturbation series over the flat Rindler base
metric,
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g = g**© — H + H*H’ — HYHYHY + O(H*), (A1)
where all of the raising has been performed via the flat base metric. We list below the inverse metric up to order O(e?):
g* = 8" BaPp + O(e*), (A2)

g =14 (rd® + f9)8*papp + O(e*), (A3)

2
QTA = 95ABﬂB + 548 (ﬁ OgP + 0232”3 - r_f(”)”DaDﬁB) + <2f92 + r93)5A35CDﬁBﬁCﬂD + 0(65)’ (A4)

re

g'=r+ (f2 + ”292 + 2rf9)5ABﬂAﬁB —das (XAQAXBQB) —dy (5ABQAQB5CDXCXD) + 0(64)a (AS)

2
gt = (f +rg)8*8pg + rs*® (? OpP + ay0%vg — r_f(r)”DaDﬁB> + (2f*g+3rfg* + g )5* B8P ppppp
— 98" ylas (x"QpxCQy) + a4 (5P QQpSpx”x?)] + O(%), (A6)

gt =% + (rg* + 21 9)5' 5P ppp + O(e*). (A7)

In the same vein, we calculate the Christoffel symbols up to order O(e?):

Di =5+ 5 (i + F9)3" s + O(eY), (A8)

LG = =3 (3 + F'9)5" By + O), (A9)

P = 3 7P+ 5 G + P Bchn ~ 3905+ 5 F"BeDsa — 0uPs) + OE). (AI0)
7, = =g 95" Bapp + O(e*). (ALl1)

T5y = —3 PP Bebn + 5 PO Be(Daa — Dua) + O(E). (A12)

Cip = —5 90ufs + Ouba) + Oc), (A13)

[ = D43 (P4 P 2000 Bafy — 5 (¥ 2,070) + 046719, Qp60px2)] + O(),  (Al4)
D= =5 =3 (P rof + r? + F0)5"% s + O(e"), (A15)

1 1 1
Doy = 31 Ba 45 (FPF + PEF +20f F9)Ba6" Bube =2 90Pr + 5 (2 + 1) Be(Duba = DaPn)

1
+ a3 Q (Qpx®) + a4 (87°QpQp54px") — Ef/ﬁA{aS (x°QexPQp) + ay (6P QQpIppx"xC2)} 4 O(€%),  (A16)

T} = =(fd + rgq )" Baps + O(e), (A17)
1 1 1 1
I, = _Ef/ﬂA 5 (f'rg® + [ f9)PaS" P + EgaTﬂA + 5 (fg+ rg®)55CBc(0pPa — 0aPs) + O(e), (A18)
1
L = _E(f +19)(0aPs + 9pPa) + O(e*), (A19)
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A
FTT_

| =

(f + rg)8""py + 56 <r

a

aBP + a232113 - %f(r)vDaDﬁB>

3 1
=+ <f29 =+ 5 rf @ + 5 r293) SB5LBpPcpp — f5*20.Pp

g
- 55ABﬂB [a3(x“QcxPQp) + a4(6PQQpEpex"x?)]

— a3 Qp(QpxP) — ay(6PQQpxY) + O(€), (A20)
A 1, AB 1 g (@ 2 2 D
Iz = _E(f +9)5%" Bg —55 (TaBP + a,0%vp —7f(”)7) aDﬂB)
= (174370 + 305+ 1'70)8 5P By = 3670, + OE), (a21)
1
Dy = S F + raf )9 Bapc +L 5 (0cs ~ pbc) + O), (A22)
I = —g5*8pp — (rg*g + 2f 99 )58 Bppcpp + O(€), (A23)
1
I = — 5f’95ACﬁBﬁc + géAC(acﬂB — dpPc) + O(e*), (A24)
1
e = — <fg + 3 ”92> PP (9pPc + OcPp) + O(e). (A25)

APPENDIX B: THE INVERSE METRIC AND
THE CHRISTOFFEL SYMBOLS
OF METRIC CHOICE 1I

In the same way, we evaluate the inverse metric cor-
responding to Eq. (5.1) as a perturbation series over the flat
metric gﬁ) dx*dx® = —rdr®> + 2drdr + dx,dx*, with the
perturbation identified as H ,,dx“dx” = =2, f (r)drdx"—
2Bx9(r)drdx" — (@ OpPesi +2a,0°04 — 1+ f(r)vPOpfa) X
dx“dr. The perturbation contains terms of order O(e') and
|

O(e?). In fact, all of the calculations of the inverse metric
components as well as the Christoffel connection compo-
nents for metric choice /7 [Eq. (5.1)] can be retrieved from
the calculations performed for metric choice I [Eq. (4.1)]
by setting a3 =0, a, =0, and replacing P(z,x*) by
P (7, x*). Hence, we list out only the nontrivial changes,
and the remaining components are identical to the ones
computed in Appendix A. The changes to be made in the
inverse metric components are

2
gt = g5"Bpp + 58 <? OpPesi + a,0%vp — r_f(r)vDaDﬂB) + 2f G + rg’)8*B5Ppppcpn + O(€), (B1)

c

g7 =r+ (2 + g+ 2rf9)6" " Baps + O(), (B2)
a 2
g = (f +rg)5*8pp + ro*” (r—l OpPess + a0%v — r—f(”)UDaD/}B>
+ (229 +3rf g + r*¢) V5P Bppcpp + O(€). (B3)
Similarly, the changes to be made in the Christoffel connection components are
ro1
i =5 +5 (P + 20 +2r19)6" fafis + O(€*), (B4)
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= —”fﬁA +3 (fzf/ + PG + 2rf f9) a5 Brpc

gaTﬂA +3 (f2 + rf9)85Pc(9pfa — OaPs) + O(€).

1 2
s = 5 (f +rg)5*2pp + §5AB (% OpPest + ay0%vp — r—f(r>UD31)ﬁB>
3 1
+ (fzg + 5 rfg* + 5 7293> B8 LBpppp — 5220, pp + O(€),
1 2
F?r =—3 (f’ + 9)5AB,3 *5AB <r1 OpPes + 0232113 - rf(r)vDaDﬁB>

1 1
- <f92 + 3 rg’ + Ef'rg2 + f/f9> SB5LBpppp — 595A331ﬂ3 + O(&).

APPENDIX C: PROJECTED PARALLEL TRANSPORT EQUATION (4.10) UP TO O(e?)

ORDER FOR METRIC CHOICE 1

We first consider the projected parallel transport equation with the free index ¢ = 7 [Eq. (4.11)],

}/ar(vbvbva”r:rC = }/TT(FTT + 217 AU + I_‘TBU v ) + yrr(r‘% + 2Fr UA + F,rABUAUB)
X 7p:(0,08 + vA0, 08 + T8 + 2B 04 + T8 04 0P).

At the following orders of the hydrodynamic expansion parameter, we have the rhs as

o@): -r I8+ =0,
O(e): y 2t 427y 4 Qi) L Opay 4 W(rE0) = o,

0(62): }/E—g)(rggz) + ZF;(Q])’UA + FZ(g),UA,UB) + }’E«?(ng ) +2r ‘E‘ )1) + F ( ) A B)
+ g (8 4 2rf0t) 2 (1) = 0,
O(e?): yg) (F:@ + 21";22) A+ FZ%)UA v8) + yg) (Ff) + 21";22) A+ Fg(é)v“‘ vB)
£ AN 420800 4 T80 0) 4R 4T ) = .
Next, we consider the projected parallel transport equation with the free index ¢ = r [Eq. (4.12)],

ya,(vbvbv")bzn = (T + 2T, 0% + T 50408) + 7, (Th, + 2T 0 + T g0 05)
X Y ar (0,04 + vBOgvA + T4 + 2408 + Ty 08 0C).

Expanding them order by order in terms of the hydrodynamic scaling parameter ¢, we obtain the rhs as
T 1 A
O(): TR —— (") =0,
rL‘

O(e"): y (e 427ty 4y D () 2ot 40 (050 = o,
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O(e2): YW@ oA 4 0 pApB) 4y D oA 4 DA y8)
+ yg (e 2r o) ) ()

(F2(re) + 2ref (ro)g(re) + r2g?). (€9)

B ZrC
O(e?): 9 (l—i?) + 21“;(42) A + FZ(;)WA vB) + ) (FZS) + 21“;(42) v + F:‘(l;)v’q v®)
+rp (82 4205 oA 1 5 vAoP) + 2 (0 20 o) = 0. (C10)

In a similar fashion, we consider the projection of the parallel transport equation on the r = r, cutoff hypersurface with the
free index ¢ = A, i.e., Eq. (4.15),

7aA(UbvbDa)|r:r‘, = VrA( + 21—‘TD” + I_‘CDU v ) + yrA(Frr + 21—‘rDU + 1—‘CDU ”D)
X 74 (0,08 + vCOvB + T8 + 2B 0P + T8, v 0P). (C11)

Expanding the above equation order by order in terms of €, we have the corresponding set
O(eo): 5ABF§‘L' = 0, (C12)
O(e'): = f(r)BaTe = glr)BaTh” + 84T + 2000 0P) =0, (C13)
O): 7 () +20000P) + 7 (e 2r7)0P)
+ 4T84 20502 4 TED vC0P) = 0, (C14)
O@): 7 (T + 2055 0P + T 0 P) 47, (T + 205 0P 4 T vCoP)
+ pp(0:0% 4+ vC0c0” + re?) + 2FfL()2)vD + Fgg)vcvl)) = 0;va + v0cvp + f(re)v Ocha
r. f(a 2
+ (rlaAP + a0 vy — rf(”c)UDaDﬂA> + f(re)(0aPp = OpPa)v® — azQa(Qpx")

2 c
- 04(5CDQCgD5APXP). (CIS)

APPENDIX D: PROJECTED PARALLEL TRANSPORT EQUATION (4.10)
UP TO O(e*) ORDER FOR METRIC CHOICE II

We first consider the projected autoparallel equation with the free index ¢ = 7 [Eq. (4.11)],

yar(vbvbva”r:rt. = J/‘L'T( T 217 Av + I—‘IBU v ) + yr‘r(rzr + 2Fr vt + FABUAUB)
X 70,08 + vA0, 08 + T8 + 28,04 + T8 040D D1
TA AD

At the following orders of the hydrodynamic expansion parameter, we have the rhs as
0(e"): —r T2 4110 — 0, (D2)
O = o0 4 20 00) 4+ () 4+ 1) = (f(re ) () = 0, (D3)

O(€2)_rc<rf(2)+zrf()A+rA UU) ( )+2F(>A+F()AB)
— Fr)ppTE) + 23 0h) =0, (D4)
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O(): = r(T) 4 20 D0t 4 T3 04 0B) + (00 4 20 P oA 4 Ty v40P)
— f(re)Bp(TER 4 2r50 A 4 TEO 4,0y — g, (D5)

Next, we consider the projected parallel transport equation with the free index ¢ = r [Eq. (4.12)],

Yar(VPV 09| = 1o (D% + 20 07 + T 02 08) + y,, (T, + 2T, 0% + T g o)
X}/Arav +UB(93U +F +2FA’UB+FA BC_ D6
B

Expanding them order by order in terms of the hydrodynamics scaling parameter €, we obtain the rhs as

T 1 A
O0(e*): T — — () = o, (D7)
rC

T T 1 A A
Oe): = () +20707) = — (P + 2000 = (9(re)ps) (Ter”) = 0, (D8)

c

T T T 1 4 4 A
O(e?): (T2 4 2 A 4 T pApB) - — (T 2070 4 T A pB)

re

— glr BT 4+ 2TB08) = L 5P () 4 2o f(r)a(r) + ). (D9)

T T 1 r r r
o) ) + 2FT( oA T vt oP) = — () 2000t 4 T o)

— g(r)Bg(TE? 4 2r8Wpa L 7B 40y — 0, (D10)

In a similar fashion, we consider the projection of the parallel transport equation on the r = r, cutoff hypersurface with the
free index ¢ = A, i.e., [Eq. (4.15)],

Yaa(VPVo0") o, = 7ea (T + 202500 + TEp 0 0P) + y,u (Tr 4 20075 0P + Tpv©o?)
X 74 (0,08 + vCOcvP + T8 + 2B 0P + T8, v 0P). (D11)

Expanding the above equation order by order in terms of ¢, we have the corresponding set
O(GO)Z 5ABF§‘L' = 0, (D12)
O€): = frapale” = g(r)Balee” + 845U + 205" 0P) = 0, (D13)

O(2): — f(r)BaTn +2r,§)>v> g(r >ﬂA< 4 o0,
+ 8,p(TE2 4+ 20800 4 PO ycDy =, (D14)

O@): = f(r)pa(Te? + 200 o + T 0 0P) = g(r)Ba(Te) + 20705 0P + TepvCo?)
+ S,5(0,08 + 0008 +Ff,(3)+2rfl())vD+FCS)>vCUD):6,11A—|—v Oy

+% (al OpPesr + a20%v, — 2f(”c)UDaDﬂA)
r, re
— f(re)0Ba + f(re)(Oafp — OpPa)v®. (D15)
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APPENDIX E: CALCULATION OF THE EXPANSION SCALAR O (4.26)
UP TO O(e*) ORDER FOR CHOICE I

The expansion scalar as derived on the cutoff hypersurface r = r. has the following form:

0 = -y (I%v, + v, + Thva) + =27 (T v, + Ty, + T 0,4)

expression 1

expression 2

+7AB(8AUB - ZXBUT_FZBUr"i_F?BUD)' (El)

expression 3

Evaluating “expression 1” from Eq. (E1) with the relevant I"’s obtained in Appendix A, we find its leading order to be
O(e*). Similarly, the leading-order contribution in “expression 2 occurs at O(e*). The leading-order behavior of
“expression 3” occurs at O(€?), and it is equivalent to 94" and vanishes at O(e?).

APPENDIX F: CALCULATION OF THE EXPANSION SCALAR O (5.16)
UP TO O(e*) ORDER FOR CHOICE II

The “expansion parameter” as derived on the cutoff hypersurface » = r,. has the following form:

1
0= - (Chv, +Th0, + TAT,) + <2
C

f—(rrC) 5ABﬁB> (TLyv, + T, + T 0y)

expression 1

expression 2

+ 80,05 — Tgv, — v, + Tp0p). (F1)

expression 3

Evaluating “expression 1”7 from Eq. (F1) with the relevant I"’s obtained in Appendix A, we find its leading order to be
O(e*). Similarly, the leading-order contribution in “expression 2” occurs at O(e*). The leading-order behavior of
“expression 3” occurs at O(e?), and it is equivalent to 940" and vanishes at O(e?).
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