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We present the IMRPHENOMXHM frequency domain phenomenological waveform model for the inspiral,
merger, and ringdown of quasicircular nonprecessing black hole binaries. The model extends the
IMRPHENOMXAS waveform model [G. Pratten, S. Husa, C. García-Quirós, M. Colleoni, A. Ramos-
Buades, H. Estellés, and R. Jaume, preceding paper, Phys. Rev. D 102, 064001 (2020)], which describes
the dominant quadrupole modes l ¼ jmj ¼ 2, to the harmonics ðl; jmjÞ ¼ ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þ, and
includes mode mixing effects for the (3,2) spherical harmonic. IMRPHENOMXHM is calibrated against hybrid
waveforms, which match an inspiral phase described by the effective-one-body model and post-Newtonian
amplitudes for the subdominant harmonics to numerical relativity waveforms and numerical solutions to
the perturbative Teukolsky equation for large mass ratios up to 1000.
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I. INTRODUCTION

Frequency domain phenomenological waveform models
for compact binary coalescence, such as [1–4] have become a
standard tool for gravitationalwave data analysis [5,6]. These
models describe the amplitude and phase of spherical
harmonic modes in terms of piecewise closed form expres-
sions. The low computational cost to evaluate these models
makes them particularly valuable for applications in
Bayesian inference [7,8], which typically requires millions
of waveform evaluations to accurately determine the pos-
terior distribution of the source properties measured in
observations, such as the mass, arrival time, or sky location.
Until recently the modeling of the gravitational wave

signal from such systems, and consequently gravitational
wave data analysis, have focused on the dominant l ¼
jmj ¼ 2 harmonics. For high masses or high mass ratios
this leads however to a significant loss of detection rate
[9–11], systematic bias in the source parameters (see, e.g.,
[9,12–16]), and implies a degeneracy between distance and
inclination of the binary system. As the sensitivity of
gravitational wave detectors increases, accurate and com-
putationally efficient waveform models that include sub-
dominant harmonics are required in order to not limit the
scientific scope of gravitational wave astronomy.
Recently both time domain and frequency domain

inspiral-merger-ringdown (IMR) models have been
extended to subdominant spherical harmonics, i.e., modes
other than the ð2;�2Þ modes: In the time domain this has
been done in the context of the effective-one-body (EOB)

approach [17], however EOB models are computationally
expensive and usually a reduced order model (ROM) is
constructed to accelerate evaluation [18,19] (see however
[20] for an analytical method to accelerate the inspiral).
Furthermore, the NRHYBSUR3DQ8 surrogate model [21] has
been directly built from hybrid waveforms, but is restricted
to mass ratios up to eight. For a precessing surrogate model,
calibrated to numerical relativity waveforms, see [22]. Fast
frequency domain models have previously been developed
for the nonspinning subspace [23,24], and for spinning
black holes through an approximate map from the (2,2)
harmonic to general harmonics as described in [4], which
presented the IMRPHENOMHM model, which is publicly
available as part of the LIGO Algorithm Library Suite
(LALSUITE) [25]. This approximate map is based on the
approximate scaling behavior of the subdominant harmon-
ics with respect to the (2,2) mode, the IMRPHENOMHM

model is thus only calibrated to numerical data for the (2,2)
mode. This information from numerical waveforms
enters through the IMRPHENOMD model, which is calibrated
to numerical relativity (NR) waveforms up to mass ratio
q ¼ 18.
Here we present the first frequency domain model for the

inspiral, merger and ringdown of spinning black hole
binaries, which calibrates subdominant harmonics to a
set of numerical waveforms for spinning black holes,
instead of using an approximate map as IMRPHENOMHM.
For the ð2;�2Þ modes the model is identical to
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IMRPHENOMXAS [26], which presents a thorough update of
the IMRPHENOMD model, extends it to extreme mass ratios,
drops the approximation of reducing the two spin para-
meters of the black holes to effective spin parameters, and
replaces ad-hoc fitting procedures by the hierarchical
method presented in [27].
Our modeling approach largely follows our work on

IMRPHENOMXAS, with some adaptations to the pheno-
menology of subdominant modes, as first summarized in
Sec. II. As for IMRPHENOMXAS we construct closed form
expressions for the amplitude and phase of each spherical
harmonic mode in three frequency regimes, which corre-
spond to the inspiral, ringdown, and an intermediate
regime. In the inspiral and ringdown the model can be
based on the perturbative frameworks of post-Newtonian
theory [28] and black hole perturbation theory [29]. The
intermediate regime, which models the highly dynamical
and strong field transition between the physics of the
inspiral and ringdown still eludes a perturbative treatment.
An essential goal of frequency domain phenomenological
waveform models is computational efficiency. To this end,
an accompanying paper [30] presents techniques to further
accelerate the model evaluation following [31].
We model the complete observable signal, from the

inspiral phase to the merger and ringdown to the remnant
Kerr black hole, but we restrict our work to the quasicir-
cular (i.e., noneccentric) and nonprecessing part of the
parameter space of astrophysical black hole binaries in
general relativity, which is 3D and given by mass ratio
q ¼ m1=m2 ≥ 1 and the dimensionless spin components χi
of the two black holes which are orthogonal to the
preserved orbital plane,

χi ¼
S⃗i · L⃗

m2
i jL⃗j

; ð1:1Þ

where S⃗1;2 are the spins (intrinsic angular momenta) of

the two individual black holes, L⃗ is the orbital angular
momentum, andm1;2 are the masses of the two black holes.
We also define the total mass M ¼ m1 þm2, and the
symmetric mass ratio η ¼ m1m2=M2. An approximate
map from the nonprecessing to the precessing parameter
space [2,32,33] can then be used to extend the model to
include the leading precession effects.
The paper is organized as follows. In Sec. II we collect

some preliminaries: our conventions, notes on waveform
phenomenology which motivate our modeling approach,
and a brief description of our plan of fitting numerical data.
In Sec. III we briefly describe our input dataset of hybrid
waveforms, and the underlying numerical relativity and
perturbative Teukolsky waveforms. The construction
of our model is discussed in Secs. IV–VI for the inspiral,
intermediate region, and ringdown respectively. The accu-
racy of the model is evaluated in Sec. VII, and we conclude
with a summary and discussion in Sec. VIII. Appendix A

discusses the conversion from spheroidal to spherical-
harmonic modes. In Appendix B we describe our method
to test tetrad conventions in multimode waveforms. Some
technical details of our LALSUITE [25] implementation are
presented in Appendix C. Details regarding the rescaling of
the inspiral phase are presented in Appendix D, and
Appendix E summarizes post-Newtonian results on the
Fourier domain amplitude.

II. PRELIMINARIES

A. Conventions

Our waveform conventions are consistent with those
chosen for the IMRPHENOMXAS model in [26] and our
catalogue of multimode hybrid waveforms [34], which we
introduce in Sec. III. We use a standard spherical coordinate
system ðr; θ;ϕÞ and spherical harmonics Y−2

lm of spin-
weight −2 (see, e.g., [35]). The black holes orbit in the
plane θ ¼ π=2. Due to the absence of spin-precession
the spacetime geometry exhibits equatorial symmetry,
i.e., the northern hemisphere θ < π=2 is isometric to the
southern hemisphere θ > π=2, and in consequence the
same holds for the gravitational-wave signal.
The gravitational-wave strain h depends on an inertial

time coordinate t, the angles θ;ϕ in the sky of the source, and
the source parameters ðη; χ1; χ2Þ. We can write the strain in
terms of the polarizations as h ¼ hþðt; θ;φÞ − ih×ðt; θ;φÞ,
or decompose it into spherical harmonic modes hlm as

hðt; θ;φÞ ¼
X4;l

l¼2;m¼−l
hlmðtÞ−2Ylmðθ;φÞ: ð2:1Þ

The split into polarizations (i.e., into the real and imaginary
parts of the time domain complex gravitational wave strain)
is ambiguous due to the freedom to perform tetrad rotations,
which corresponds to the freedom to choose an arbitrary
overall phase factor. As discussed in detail in [34,36] and in
Appendix B, only two inequivalent choices are consistent
with equatorial symmetry, and for simplicity we adopt the
convention that for large separations (i.e., at low frequency)
the time domain phases satisfy

Φlm ≈
m
2
Φ22: ð2:2Þ

This differs from the convention of Blanchet et al. [37] by
overall factors of ð−1Þð−iÞm in front of the hlm modes. In
Appendix Bwe discuss how to test a given waveformmodel
for the tetrad convention that is used.
The equatorial symmetry of nonprecessing binaries

implies

hlmðtÞ ¼ ð−1Þlh�l−mðtÞ; ð2:3Þ
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it is thus sufficient to model just one spherical harmonic for
each value of jmj.
We adopt the conventions of the LIGO Algorithms

Library [25] for the Fourier transform,

h̃ðfÞ ¼
Z

∞

−∞
hðtÞe−i2πftdt: ð2:4Þ

With these conventions the time domain relations between
modes (2.3) that express equatorial symmetry can be
converted to the Fourier domain, where they read

h̃lmðfÞ ¼ ð−1Þlh̃�l−mð−fÞ: ð2:5Þ

The definitions above then also imply that h̃lmðfÞ (with
m > 0) is concentrated in the negative frequency domain
and h̃l−mðfÞ in the positive frequency domain. For the
inspiral, this can be checked against the stationary phase
approximation (SPA), see, e.g., [38].
As we construct our model in the frequency domain, it is

convenient to model h̃l−m, which is nonzero for positive
frequencies. The mode h̃lm, defined for negative frequen-
cies, can then be computed from (2.5). We model the
Fourier amplitudes Almðf > 0Þ, which are non-negative
functions for positive frequencies, and zero otherwise, and
the Fourier domain phases Φlmðf > 0Þ, defined by

h̃l−mðfÞ ¼ AlmðfÞe−iΦlmðfÞ: ð2:6Þ

The contribution to the gravitational wave polarizations
of both positive and negative modes and for positive
frequencies is then given by

h̃þðfÞ ¼
1

2
ðYl−m þ ð−1ÞlY�

lmÞh̃l−mðfÞ; ð2:7Þ

h̃×ðfÞ ¼
i
2
ðYl−m − ð−1ÞlY�

lmÞh̃l−mðfÞ: ð2:8Þ

If we are only interested in the contribution of just
one mode for positive frequencies then the polarizations
read as:

h̃l;mþ ðfÞ ¼ 1

2
ð−1ÞlY�

lmh̃l−mðfÞ; ð2:9Þ

h̃l;m× ðfÞ ¼ −
i
2
ð−1ÞlY�

lmh̃l−mðfÞ; ð2:10Þ

h̃l;−mþ ðfÞ ¼ 1

2
Yl−mh̃l−mðfÞ; ð2:11Þ

h̃l;−m× ðfÞ ¼ i
2
Yl−mh̃l−mðfÞ: ð2:12Þ

For the l ¼ 2;�2modes these equations correspond to our
IMRPHENOMXAS model [26].

In Appendix C we discuss conventions which are specific
to our LALSUITE implementation, in particular how to specify
a global rotation, and the time of coalescence.

B. Perturbative waveform phenomenology:
Inspiral and ringdown

The phenomenology of the oscillating subdomi-
nant modes jmj > 0 is largely similar to the dominant
modes l ¼ jmj ¼ 2, which has been discussed in detail in
[26,39]—with some important exceptions that lead to both
simplifications and complications when modeling these
modes, as opposed to modeling l ¼ jmj ¼ 2.
The main simplification is that at low frequencies post-

Newtonian theory, combined with the stationary phase
approximation, predicts an approximate relation between
the phases Φlm of different harmonics, which with our
choice of tetrad takes the simple form of Eq. (2.2). This
approximation is not exact, and becomes less accurate for
higher frequencies. We have studied this in detail in
[34,36], and in [34] we find that for comparable mass
binaries we can neglect the error of the approximation (2.2)
before a binary system reaches its minimal energy circular
orbit (MECO) as defined in [40]. As in our IMRPHENOMXAS

model, we will use the MECO to guide the choice of
transition frequency between the inspiral and intermediate
frequency regions. In the mass ratio range where we have
numerical relativity data (q ≤ 18) it is thus not necessary to
model the inspiral phase, but we can use the scaling relation
(2.2), as has been done in [4].
For the time domain amplitude, approximate scaling

relations have been discussed in [41,42], and in the frequency
domain they have been used in the IMRPHENOMHMmodel [4].
Unlike for the phase, however, even in the inspiral the errors
are too large for our purposes, and wewill need to model the
amplitude for each spherical harmonic in a similar way as for
IMRPHENOMXAS, including in the inspiral.
Rotations in the orbital plane by an angle φ transform the

spherical harmonic modes as

hlm → hlmeimφ: ð2:13Þ

Interchange of the two black holes thus corresponds to a
rotation by φ ¼ π, and modes with odd m vanish for equal
black hole systems. A problem can arise in regions of the
parameter space where the amplitude is close to zero, even
in the inspiral, as discussed in [17,34]: For black holes with
very similar masses, the amplitude can be very small, with
the sign depending on the mass ratio, spins, and the
frequency—which can lead to sign changes with frequency.
In such cases the amplitude does become oscillatory, and
the approximate relation (2.2) can not be expected to be
satisfied. This happens in particular for the ð2;�1Þ modes.
We do not currently model the amplitude oscillations, and
thus for a certain region of parameter space our model does
not properly capture the correct waveform phenomenology.
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This region does depend on the frequency, but roughly
corresponds to very similar masses and antialigned spins,
for a particular example for the ð2;�1Þ modes see Fig. 1.
However, as phenomenon happens precisely when the
amplitude of the ð2;�1Þ modes is very small, this is not
expected to be a significant effect for the current generation
of detectors.
During the inspiral and merger, gravitational wave

emission is dominated by the direct emission due to the
binary dynamics. As the final black hole relaxes toward a
stationary Kerr black hole, the gravitational wave emission
is eventually dominated by a superposition of quasinormal
modes before the late time polynomial tail falloff sets in
(for an overview see, e.g., [29,43]). As is common in
waveform modeling targeting applications in GW data
analysis, we neglect the late-time power-law tail falloff, and
focus our description of the ringdown on the quasinormal
mode (QNM) emission, where the strain can be written as a
sum of exponentially damped oscillations,

hðt; θ;φÞ ≈
X
lmn

almneiðωlmntÞþϕlmn−2Ylmðθ;ϕÞ; ð2:14Þ

where the complex frequencies ωlmn are functions of the
black hole spin and mass and their real and imaginary parts
define the ringdown and damping frequencies as

flmring ¼ ReðωlmÞ; flmdamp ¼ jImðωlmÞj: ð2:15Þ

The functions −2Ylmðθ;ϕÞ are the spheroidal harmonics of
spin weight −2 [44,45]. The amplitude parameters almn
and phase offsets ϕlmn will in general have to be fitted to
numerical relativity data.
It has long been known that representing the spheroidal

harmonic ringdown modes can result in mode mixing for
modes with approximately the same real part of the
ringdown frequency ωlmn [46–48]. This happens in par-
ticular for modes with the same value of m, where then
values with larger l are much weaker, and do not show the
usual exponential amplitude drop, but a more complicated
phenomenology. In our case this happens for the (3,2)
mode. In this work we will model mixing only between two
modes, specifically the (3,2) with the (2,2), as these are the
two most strongly coupled modes (the coupling of the (3,2)
mode to other m ¼ 2 modes is in fact suppressed). While
for the modes that do not show mixing it is sufficient to
model their spherical harmonics, for the (3,2) we will
model the spheroidal harmonic, and then transform to the
spherical harmonic basis, as discussed in Sec. VI. For a
recent nonspinning model of mode-mixing see [24].
A key challenge of accurately modeling multimode

waveforms is to preserve the relative time and phase
difference between the individual modes, say as measured
at the peaks of the modes. In the frequency domain time
shifts are encoded in a phase term that is linear in
frequency: the Fourier transformation of a time shifted
function hτ ¼ hðt − τÞ will be given by h̃τ ¼ h̃e−i2πfτ. In
GW data analysis the quality of a model is typically
evaluated in terms of how well two waveforms match,
up to time shifts and global rotations, e.g., in terms of match
integrals. Adding a linear term in the phase leaves such
match integrals invariant. In order to improve the con-
ditioning of the model calibration it has thus been common
for phenomenological frequency domain models to subtract
the linear part in frequency before calibrating the model to
improve the conditioning of numerical fits, and then add
back a linear in frequency term at the end, which approx-
imately aligns the waveforms in time, e.g., by approxi-
mately aligning the amplitude peak at a certain time. This
strategy has also been followed in our construction of the
IMRPHENOMXAS model, i.e., for the l ¼ jmj ¼ 2 modes,
whereas for the other modes we directly model a given
alignment in time.
More specifically, our strategy of aligning the different

spherical harmonic modes in time and phase has been the
following: our hybrid waveforms are aligned in time and
phase such that the peak of the l ¼ jmj ¼ 2modes of ψ4 in
the time domain is located at t ¼ 0, and the corresponding
phase Φ22ðψ4; t ¼ 0Þ ¼ 0, which corresponds to a time
Δt ¼ 500M before the end of the waveform. For modes
with odd m this leaves an ambiguity of a phase shift by
multiples of π. We do not use the odd-m modes of the
numerical waveforms to resolve this ambiguity in order not
to depend on the poor quality of many odd-m datasets, and

FIG. 1. Relative amplitude of the (2,1) mode respect to the (2,2)
mode as a function of the spins. The top row shows the amplitude
ratio for a frequency ofMf ¼ 0.001 while the bottom one shows
it for Mf ¼ 0.02. Left-side panels refer to a q ¼ 1.2 binary and
right-side ones to a q ¼ 1.35 one. There exists a region (blue
diagonal) where the amplitude of the 21 mode tends to zero. This
diagonal moves toward the bottom-right corner of the plot as one
increases the mass ratio and typically disappears for q≳ 2.
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simply require a smooth transition of the inspiral phase into
the merger-ringdown. This ambiguity in the phase will be
harmless, as the relative phases among the modes can be
unambiguously fixed using post-Newtonian prescriptions,
as we will explain in Sec. IV B below. Our subdominant
modes are calibrated to agree with this alignment of our
hybrid waveforms. The l ¼ jmj ¼ 2 mode is aligned
a posteriori to the same alignment, similar to what has
been done in previous phenomenological frequency
domain models. A difference here is that this a posteriori
time alignment is achieved via an additional parameter
space fit.

C. Strategy for fitting our model to numerical data

As discussed above, following IMRPHENOMXAS our
model is constructed in terms of closed form expressions
for the frequency domain amplitude and phase of spherical
or spheroidal harmonic modes, which are each split into
three frequency regimes. We will refer to a model for the
amplitude or phase for one of the frequency regimes as a
partial model. We thus need to construct a total of six
partial models for each mode. For the inspiral phase, we can
use the scaling relation (2.2) for comparable masses, and
only need to model the extreme mass ratio case. For each of
the six partial models the ansatz will be formulated in terms
of some coefficients, which for example in the inspiral will
be the pseudo-PN coefficients that correspond to yet
unknown higher post-Newtonian orders.
We thus employ two levels of fits to our input numerical

data: First, for each waveform in our hybrid dataset we
perform fits of the six partial models for each mode to the
data. This yields a set of coefficients for each mode,
quantity (amplitude or phase), and frequency interval.
We call this first level the direct fit of the model to our
data. Second, we fit each coefficient across the 3D
parameter space of mass ratio and component spins. We
call this second level the parameter space fit. In the direct fit
we usually collect redundant information: such as the
model coefficients, values and derivatives at certain
frequencies, and other quantities. This redundancy provides
for some freedom when reconstructing the model wave-
form after the parameter space fits. We make extensive use
of this freedom when tuning our model, while the final
model uses a particular reconstruction, which is what will
be described below.
Fitting the coefficients of a particular partial model

across the parameter space may not turn out to be a
well-conditioned procedure, e.g., for the inspiral the pseudo
PN coefficients have alternating signs, the PN series
converges slowly, and different sets of PN coefficients
can yield very similar functions. We will thus sometimes
transform the set of coefficients we need to model to an
alternative representation, in particular collocation points,
following [1,26,39]. In this approach, one constructs fits for
the values of the amplitude and phase at specific frequency

nodes. The coefficients of the phenomenological ansätze
are then obtained by solving linear systems that take such
values as input. This method has been adopted to avoid
fitting directly the phenomenological coefficients, which
would result in a worse conditioned problem. We thus fit
the values or derivatives at certain frequencies, and use the
freedom in reconstructing the final phase or amplitude in
tuning the model as mentioned above.
In order to perform the 3D parameter space fits in

symmetric mass ratio η and the two black-hole spins χ1;2
we use the hierarchical fitting procedure described in [27],
whichwe have also used for the underlying IMRPHENOMXAS

model. The goal of this procedure is to avoid both under-
fitting and overfitting our dataset. In order to simplify the
problem we split the 3D problem into a hierarchy of lower
dimensional fits to some particular subsets of all data points.
For each lower dimensional problem it is significantly easier
to choose an ansatz that avoids underfitting and overfitting,
and finally we combine the lower-dimensional fits into the
full 3D fit and check the global quality of the fit. In order to
check fit quality we compute residuals and compute the
RMS error, and we employ different information criteria to
penalize models with more parameters as discussed in [27]
as an approximation to a full Bayesian analysis.
As a first step of our hierarchical procedure we perform a

1-dimensional fit for nonspinning subspace, choosing the
symmetric mass ratio η as the independent variable. We can
then identify two further natural one-dimensional prob-
lems: First, for the extreme mass ratio case we can neglect
the spin of the smaller black hole, and consider the mass
ratio as a scaling parameter, and we thus consider a one-
dimensional problem in terms of the spin of the larger hole.
Second, at fixed mass ratio we can fix a relation between
the spins. For quantities such as the final spin and mass, or
the coefficients of the IMRPHENOMXAS model for the (2,2)
mode, it has been natural to consider equal black holes,
e.g., equal mass and equal spin for this one-dimensional
problem.
It is then useful to express the results for the one-

dimensional spin fits in terms of a suitably chosen effective
spin, such as

χeff ¼
m1χ1 þm2χ2
m1 þm2

; ð2:16Þ

which is typically measured in parameter estimation (see,
e.g., [6]), and which has also been the choice in the early
phenomenological waveform models IMRPHENOMB [49]
and IMRPHENOMC [50]. A judicious choice of effective spin
parameter can minimize the errors when approximating
functions of the 3D parameter space by functions of η and
effective spin, and can be sufficient for many applications,
since spin-differences are a subdominant effect. For
IMRPHENOMD [1,39] two effective spin parameters have
been used: For the inspiral calibration to hybrid waveforms
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(2.16) has been augmented by extra terms motivated by
post-Newtonian theory [51]

χPN ¼ χeff −
38η

113
ðχ1 þ χ2Þ ð2:17Þ

The final spin and mass, and thus the ringdown frequency
have been fit to numerical data in terms of the rescaled total
angular momentum of the two black holes

Ŝ ¼ m2
1χ1 þm2

2χ2
m2

1 þm2
2

: ð2:18Þ

We model the dominant spin-contributions to the ampli-
tude as functions of χPN during the inspiral and as functions
of Ŝ during the merger-ringdown. For the phase inspiral we
use the scaling relation (2.2) for comparable masses, such
that a phase inspiral calibration is only necessary for large
mass ratios, which we treat in the same way as other phase
coefficients, where we again use Ŝ. We will denote a
generic effective spin parameter by χ in general equations
involving the effective spin, implying that this refers either
to χPN or Ŝ as appropriate.
We thus perform three one-dimensional fits, one for the

nonspinning subspace (depending on η), one for equal
black holes (depending on χ), and one for extreme mass
ratios (again depending on χ). Then a 2D ansatz depending
on η and χ is built such that it reduces to the 1D fits for
those particular cases. The 2D fit is then performed for all
data points and from it we get the best-fit function of η and
χ minimizing the sum of squared residuals.
In order to extend the hierarchical method to the full 3D

parameter space, a second spin parameter needs to be
chosen, which incorporates spin difference effects. For
small spin difference effects, we can simply choose

Δχ ¼ χ1 − χ2 ð2:19Þ

without worrying about a particular mass-weighting of the
spins, since differences in mass-weighting could be
absorbed into higher order terms. The spin difference
effects are then modeled with a function fΔχðηÞ as a term

fΔχðηÞΔχ; ð2:20Þ

and the modeling of small spin difference effects is reduced
to the 1-dimensional problem of fitting a function of η. Note
that this is reminiscent of the structure of post-Newtonian
expansions (see for instance [52]), where spin-difference
effects are usually described in terms of the antisymmetric
spin combination χa ¼ ðχ1 − χ2Þ=2. For larger spin differ-
ence effects, we will however need higher order terms, and
in [27] a term quadratic in Δχ and a term proportional to
χΔχ were included, and again these terms can be modeled
as one-dimensional problems in terms of functions of η.

Extensions to this procedure are needed to model the
behavior of subdominant modes, in particular for the (3,2)
mode and for oddmmodes. For the (3,2), we need to model
mode mixing in the ringdown, as discussed briefly above,
and in detail in Sec. VI. While this requires a trans-
formation from spheroidal to spherical harmonics, it does
not directly affect our strategy for carrying out the direct fits
and the parameter space fits. For oddmmodes, changes are
required due to the change of sign in the amplitude when
rotating by an angle of π, see Eq. (2.13), corresponding to
interchanging the two black holes. For even m modes,
rotations by π correspond to the identity, and as for
IMRPHENOMXAS it is natural to work with non-negative
gravitational-waveform amplitudes. For odd m modes
however, restricting the amplitude to positive values will
make it a nonsmooth function in the two-dimensional spin
parameter space, where the amplitude AlmðfÞ, as defined
through Eq. (2.6), corresponds to the absolute value of a
function that can change sign.
This can be best understood by plotting the values of the

amplitude at a collocation point as a function of the two
BH’s spins, for a given mass ratio (see Fig. 2). It can be seen
that the two-dimensional data in the spin parameter space
exhibit a crease along a line which corresponds to a
vanishing amplitude. For equal masses, this line appears
for equal spin systems, as shown in the top panel. In order
to work with smooth surfaces, we allow the amplitude to
take negative values when fitting our numerical data. Such
sign flips occur at the level of the full gravitational-wave
strain and we choose to fold them into the amplitude for
mere convenience, to simplify the fitting procedure. Since
we require our reconstructed amplitudes to be non-negative
functions, we then take the absolute value of the fits,
whenever we allow such sign flips (see Eq. (2.6) and
discussion therein). Notice that, for sufficiently large mass
ratios, the spin dependence of the sign of the phase can be
neglected, we thus choose which part of the crease we flip
in sign to be consistent with the behavior for higher mass
ratios data.
When modeling the amplitude of odd m modes we can

not use equal masses as one of our one-dimensional fitting
problems, since the amplitude vanishes there, and instead
we use a different mass ratio, typically q ¼ 3. Applying
appropriate boundary conditions for equal black hole
systems is then essentially straightforward—we simply
demand that the amplitude vanishes. Setting appropriate
boundary values for odd mode phases for equal black hole
is however a complicated problem, since the phase will in
general not vanish as one takes the limit toward the
boundary. The numerical data typically become very noisy
and inaccurate for modes with very small amplitude, and
thus one can not in general expect to model odd m modes
for close-to-equal black holes with small relative errors.
When building a parameter space ansatz for odd mode
amplitudes we are adding a minus sign when exchanging
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the spins, the nonspinning and effective-spin parts of the
ansatz must be manifestly set to zero because they pick up a
minus sign when exchanging the BHs, while at the same
time they are invariant by symmetry. We implement this by
adding a multiplicating factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
that cancels these

parts for equal mass systems. The even modes behave in the
opposite way: since when exchanging the two spins they
remain the same, it is the spin-difference part which has to
vanish because it would introduce a minus sign.

III. CALIBRATION DATASET

Our input dataset coincides with the data we have used
for the IMRPHENOMXAS model [26], and comprises a total

of 504 waveforms: 466 for comparable masses (with
1 ≤ q ≤ 18) and 38 for extreme mass-ratios (with
q ¼ f200; 1000g). These waveforms are “hybrids,” con-
structed by appropriately gluing a computationally in-
expensive inspiral waveform to a computationally
expensive waveform, which covers the late inspiral, merger
and ringdown (IMR). For comparable masses, the l ¼ jmj
inspiral is taken from the SEOBNRV4 (EOB) model [53], and
the subdominant modes are constructed from the phase of
the l ¼ jmj mode and post-Newtonian amplitudes as
described in [34] along with other details of our hybridi-
zation procedure. The IMR part of the waveform is taken
from numerical relativity simulations summarized below.
For extreme mass ratios the IMR part is taken from

numerical solutions of the perturbative Teukolsky equation,
and the inspiral part is taken from a consistent EOB
description, as discussed below in Sec. III B.
Due to the poor quality of many of the numerical

relativity waveforms, and the fact that our extreme
mass ratio waveforms are only approximate perturbative
solutions, we do not use all of the waveforms of our
input dataset for the calibration of all the quantities we
need to model across the parameter space. Already for
IMRPHENOMXAS (see [26]) we had to carefully select
outliers, which lacked sufficient quality for model calibra-
tion. Higher-modes waveforms are typically even noisier
and more prone to exhibit pathological features than the
dominant quadrupolar ones. This can result in a large
number of outliers in the parameter-space fits, which can
introduce unphysical oscillations in the fit surfaces. To
attenuate this problem, we developed a system of annota-
tions that stores relevant information about the quality of all
the waveforms in the calibration set. A careful analysis of
data quality is needed, separately for each quantity that we
fit, such as the value of the amplitude (phase) at a given
collocation point for each particular mode. We will not
document these procedures in detail, instead, we will
discuss outliers in Sec. VII, where we evaluate the quality
of our model by comparing to the original hybrid data. We
will see that this comparison has less stringent quality
criteria: pathologies which prohibit the use of a some
waveform accurate fit for a particular coefficient may in the
end not significantly contribute to the waveform mismatch.
We will thus only discuss those waveforms which we
excluded from the model evaluation, because of doubts in
their quality.

A. Numerical relativity waveforms

The NR simulations used in this work were produced
using three different codes to solve the Einstein equations:
for the amplitude calibration we used 186 waveforms [54]
from the public SXS collaboration catalog, as of 2018 [55]
obtained with the SPEC code [56], 95 waveforms [27,39]
obtained with the BAM code [57,58], and 16 wave-
forms from simulations we have performed with the

FIG. 2. Example of how the amplitude dataset is modified for
the parameter space fit. The data shown correspond to the first
intermediate collocation point of the (3,3) mode. One of the
leaves of the original q ¼ 1 data (top plot) is flipped in sign so we
get a flat surface that is easier to fit. The leaf to be flipped is
chosen such that the final behavior is consistent with the data for
other mass ratios, e.g., q ¼ 2 (intermediate plot). After the fit we
take the absolute value of the final fit to return back a positive
amplitude.
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EINSTEIN-TOOLKIT [59] code. After the release of the latest
SXS collaboration catalog [60], we extended the dataset to
include 355 SPEC simulations, and updated the parameter-
space fits for the phase accordingly. We chose not to update
the amplitude fits, as their recalibrationwas expected to have
a smaller effect on the overall quality of the model wave-
forms. The parameters of our waveform catalogue are
visualized in Fig. 3. Note that to the same set of
ðη; χ1; χ2Þ can correspond multiple NR waveforms: this
allows to compare at the same point in parameter-space
different resolutions and/or numerical codes and it is there-
fore important for data-quality considerations.A detailed list
of thewaveforms we have used can be found in our paper on
the hybrid dataset [34].

B. Extrapolation to the test-mass limit

Due to the computational cost of high mass-ratio
simulations, our catalogue of NR waveforms extends only
up to q ¼ 18, which would leave the test-particle limit of
our model poorly constrained. Here, following [61], we
chose to pin down the large-q boundary of the parameter-
space using extreme mass-ratio inspiral (EMRI) wave-
forms. We produced two sets of such waveforms, one with
q ¼ 200 and the other with q ¼ 103. The spin on the
primary spans the interval ½−0.9; 0.9� in uniform steps of
0.1, while the secondary is assumed to be nonspinning.
The waveforms in the calibration set were generated by
hybridizing a longer inspiral EOB waveform with a shorter
numerical waveform computed using the code of Ref. [62].
The code solves the 2þ 1 Teukolsky equations for per-
turbations that can be freely specified by the user. In our
case the gravitational perturbation was sourced by a particle
governed by an effective-one-body dynamics, with radia-
tion-reaction effects included up to 6PN order for all the
multipoles modeled in this work [63]. The EOB and
Teukolsky waveforms, being both extracted at future null
infinity, can be consistently hybridized, following the same
hybridization routine used for comparable-mass cases.

IV. INSPIRAL MODEL

In the inspiral region we work under the assumption that
the SPA approximation (see, e.g., [38] and our discussion in
the context of IMRPHENOMXAS [26]) is valid. The frequency
domain strain of each mode will therefore take the form

h̃lmðfÞ ¼ Alm

ffiffiffiffiffiffiffi
2π

mϕ̈

s
eið2πftc−ϕlm−π=4þψ0Þ

≔ ASPA
lm eiΨlm; ð4:1Þ

where tc is a time shift parameter, ϕ̈ is the second derivative
respect to time of the orbital phase (expressed as a function
of the frequency), ψ0 is an overall phase factor that depends
on the choice of tetrad conventions and

ASPA
lm ≔ Alm

ffiffiffiffiffiffiffi
2π

mϕ̈

s
; ð4:2Þ

Ψlm ≔ 2πftc − ϕlm − π=4þ ψ0: ð4:3Þ

Notice that, in our tetrad-convention, ψ0 ¼ π (see Eq. (2.2)
and discussion therein).
Furthermore, wewill assume that we can work within the

post-Newtonian framework, and that we can model cur-
rently unknown higher-order terms in the PN-expansions
with NR-calibrated coefficients. Let us stress that in
IMRPHENOMXHM the phase and amplitude are treated in
different ways: while the latter is fully calibrated to NR, the
former is built with a reduced amount of calibration, as we
will explain below.
Following the approach taken in IMRPHENOMXAS, we set

the end of the inspiral region around the frequency of the
MECO (minimum energy circular orbit), as defined in
Ref. [40]. For the amplitude, the default end-frequency of
the inspiral is taken to be

flmIns ¼
m
2
ðf22MECOϵ

lm
Ins ðη; χeffÞ

þ jf22ISCO − f22MECOjδlmIns ðη; χeffÞÞ; ð4:4Þ

where f22ISCO and f22MECO are the gravitational-wave fre-
quency of the 22-mode evaluated at the ISCO (innermost
stable circular orbit) and MECO respectively. The mode-
specific expressions for the functions δlmIns and ϵ

lm
Ins are given

in Table I. In the large-mass-ratio regime, the transition
frequency ofEq. (4.4) is replaced by that of a localmaximum
in the amplitude of ψ4, as we explain in Sec. VA 2 below.
While the fully NR-calibrated amplitude requires careful

tuning of the above transition frequencies, we find that for
the phase we can simply set flmIns ¼ m

2
f22MECO.

The start frequencies of our hybrid waveforms [34]
are set up such that Mf ≥ 0.001453 m=2 for comparable
masses, and Mf ≥ 0.001872 m=2 for extreme-mass-ratio

FIG. 3. Mass ratios and Kerr parameters for the comparable-
mass cases in our waveform catalogue. We also indicate the NR
codes used to carry out the simulations.

CECILIO GARCÍA-QUIRÓS et al. PHYS. REV. D 102, 064002 (2020)

064002-8



waveforms (depending on the spherical harmonic indexm).
We start the amplitude calibration at a higher minimum
frequency of fmin ¼ 0.002 m=2 to avoid contamination
from Fourier transform artefacts. Note that a higher cutoff
frequency was chosen for IMRPHENOMXAS due to the
higher accuracy requirements in that case. For the phase,
only a small and simple (linear) correction term (4.10) is
calibrated, and the same minimum frequency cutoff is
applied in this case.

A. Amplitude

In the inspiral region, the amplitude ansatz of
IMRPHENOMXHM augments a post-Newtonian expansion
with terms up to 3PN oder with three NR-calibrated
coefficients, which correspond to higher-order PN terms.
A 3PN-order expansion for the Fourier domain amplitudes
is computed in [52]. However, some of these expressions
exhibit significant discrepancies with our numerical data
and with analogous expressions we derived independently.
The authors of [52] acknowledged a mistake in their
derivation and agreed with our results. We gather the
correct 3PN-order Fourier domain amplitudes in
Appendix E and advise the reader to use the expressions
reported there.
At low frequency, the leading order post-Newtonian

behavior of the Fourier-amplitude of the (2,2) mode is

A0
22 ≔ π

ffiffiffiffiffi
2η

3

r
ðπfÞ−7=6; ð4:5Þ

while the higher modes present milder divergences. Such a
divergent behavior is expected to negatively impact the
conditioning of our amplitude fits. Therefore, we do not
model the SPA amplitudes directly, but similarly to
IMRPHENOMXAS we rather work with the quantities

Hlm ≔
jASPA

lm j
A0
22

; ð4:6Þ

which are non-negative by construction and nondivergent
in the limit f → 0.

1. Default reconstruction

Currently the highest known PN-term in the expansion
of theHlm is proportional to f2. In order to model currently
unknown higher-order effects, we introduce up to three
pseudo-PN terms fα; β; γg that depend only on the intrinsic
parameters of the source, i.e., mass ratio and spins. The
ansatz employed for the inspiral amplitude is given by

HlmðfÞ ¼
jAPN

lmðfÞj
A0
22ðfÞ

þ α

�
f
fInslm

�7
3 þ β

�
f
fInslm

�8
3 þ γ

�
f
fInslm

�9
3

:

ð4:7Þ

Following [1], we do not perform parameter-space fits of
fα; β; γg. Instead, we compute parameter-space fits of
the hybrids’ amplitudes evaluated at three equispaced
frequencies ½0.5 fInslm; 0.75 fInslm; f

Ins
lm�, which we refer to

as “collocation points.”
We require that the reconstructed inspiral amplitude go

through the three collocation points given by the parameter-
space fits. This yields a system of three equations that can
be solved to obtain the values for fα; β; γg. We observe
however, that in some regions of parameter space this leads
to oscillatory behavior of the reconstructed amplitude for
the (2,1) and (3,2) modes, and a lower order polynomial,
calibrated to a smaller number of collocation points, gives
more robust results. This problem arises in regions of the
parameter space where the model is poorly constrained due
to the lack of NR simulations, such as in cases with very
high positive spins (where in addition the correct functional
form is rather simple and a higher order polynomial is not
required), and where the amplitude of the waveform is very
small (see e.g., Fig. 1). For this reason we apply a series of
vetoes that remove collocation points and allow for a
smooth reconstruction, as discussed next.

2. Vetoes and nondefault reconstruction

The removal of a collocation point implies the modifi-
cation of the ansatz used in the reconstruction. For each
collocation point removed, we set to zero one of the
coefficients of the pseudo-PN terms, starting from the
highest order one. The removal of the three collocation
points would lead us to an ansatz without any pseudo-
PN term.
For the (2,1) mode, when q < 8 we remove the collo-

cation points which gives a Fourier domain amplitude jh̃21j
below 0.2 (in geometric units), which is a typical value for
the ringdown for comparable masses. Furthermore, we
check whether the amplitude values at the three collocation
points form a monotonic sequence, otherwise we remove
the middle point to avoid oscillatory behavior.

TABLE I. Explicit expressions for the coefficients δlmIns and ϵlmIns
entering the inspiral cutting frequencies of the amplitude
reconstruction, according to the notation of Eq. (4.4). flmring is
the fundamental quasinormal mode frequency of the ðl; mÞmode.

Amplitude

(lm) δlmIns ϵlmIns

21 ð3=4 − 0.235 χeff − 5=6 χ2effÞ 1.

33 ð3=4 − 0.235 χeff − 5=6 χeffÞ 1.

32 ð3=4 − 0.235jχeff jÞ f
32
ring

f32ring

f32ring
f22ring

44 ð3=4 − 0.235χeffÞ 1.
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For the (3,2) mode we drop the middle collocation point
if it is not consistent with monotonic behavior. In addition,
for this mode we have isolated two particular regions of the
parameter space where we drop collocation points from our
reconstruction due to the poor quality of the reconstruction.
The first one is given by q > 2.5, χ1 < −0.9, χ2 < −0.9,
where we do not use any of the collocation points and just
reconstruct with the PN ansatz. The second is given by
q > 2.5, χ1 < −0.6, χ2 > 0 where we just remove the
highest frequency collocation point. For the 33 mode we
remove the last collocation point in the region q ∈ ð1; 1.2Þ,
χ1 < −0.1, χ2 > 0.
In the future we will revisit this problem when recali-

brating the amplitude against the recently released new
SXS catalogue of NR simulations [60], which we expect to
mitigate some of the issues we observe.

B. Phase

For the inspiral phase, we start from the considera-
tion that, with good accuracy, the NR data satisfy the
relation [36],

ϕlmðfÞ ≈
m
2
ϕ22

�
2

m
f

�
: ð4:8Þ

As discussed above, our amplitude fits return a real
quantity, but one must be mindful that the PN expansions
of the ASPA

lm are, in general, complex (see, for instance,
[28,52]). For each mode, we reexpand to linear order in the
frequency the quantities

ΛPN
lm ¼ arctan ðℑðAPN

lmÞ=ℜðAPN
lmÞÞ: ð4:9Þ

We evaluated the quantity ΔϕIns
lm ≔ ϕlmðfÞ − m

2
ϕ22ð2=mfÞ

for all the hybrids in our catalogue and found that

ΔϕIns
lm ≈ ΛPN

lm: ð4:10Þ

In Fig. 4 we show the behavior of this approximation for an
example case of comparable mass ratio, as compared to the
result obtained from the hybrids.
The accuracy of the above approximation tends to

degrade for high-mass ratios, high-spins configurations
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FIG. 4. We compare the quantities ΛPN
lm defined in Eq. (4.9) (red dashed lines), with the ΔϕIns

lm computed from a Fourier transformed
hybrid waveform with parameters ðη; χ1; χ2Þ ¼ f0.1094; 0.4; 0g (black solid lines). Each plot is truncated around the end of the inspiral
region corresponding to the selected mode.
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and the PN relative phases are recovered only at sufficiently
low frequencies, as illustrated in Fig. 5. Therefore, we
compute parameter-space fits to capture the leading order
behavior of each ΔϕIns

lm, and use them to build our final
inspiral ansatz in the extreme-mass ratio regime.
Based on the above discussion, we express the inspiral

phase of each multipole as

ϕlmðfÞ ¼
m
2
ϕX
22ð2=mfÞ þ ΛlmðfÞ

þ dϕIns
lmf þ ϕIns

lm; ð4:11Þ

where ϕX
22 is the quadrupole phase reconstructed with

IMRPHENOMXAS, whose coefficients need to be rescaled
as detailed in Appendix D, and

Λlm ¼
�ΛPN

lm if q < 100

Λfit
lm if q ≥ 100

ð4:12Þ

The constant dϕIns
lm in Eq. (4.11) is determined by con-

tinuity with the intermediate-region ansatz.
Once a smooth phase derivative, defined with respect to

the Fourier variable f, has been reconstructed, the remain-
ing constant, ϕIns

lm, is fixed by requiring that, at low
frequencies, one has

lim
f→0

�
Ψlm −

m
2
Ψ22

�
¼ 3

4
π

�
1 −

m
2

�
; ð4:13Þ

which follows from Eq. (4.3) and from our choice of tetrad
convention [see also (2.2)].

V. INTERMEDIATE REGION

The intermediate region connects the inspiral regime to
the ringdown. It is the only region where IMRPHENOMXHM

is fully calibrated, both in amplitude and phase. While for
the amplitude this is the last region to be attached to the rest
of the reconstruction, for the phase this is the central piece
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FIG. 5. We show the quantities ΔϕIns
lm computed from a hybrid FD waveform with parameters ðη; χ1; χ2Þ ¼ f0.001; 0.7; 0.g (black

solid lines). Red dashed lines mark our parameter-space fits [corresponding to the Λfit
lm of Eq. (4.12)], while dotted green lines the

corresponding analytical PN approximations [Eq. (4.9)]. Each plot is truncated around the end of the inspiral region corresponding to the
selected mode.
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of the model, to which inspiral and ringdown phase
derivatives will be smoothly attached. Physically, this
implies that, in IMRPHENOMXHM, the relative time shifts
among different modes are entirely calibrated around
merger. We have found that a good practical way of
testing whether time shifts are consistent between modes
is to compute the recoil of the merger remnant, which is
also of astrophysical interest, and which we discuss in
Sec. VII C.
The intermediate region covers the range of frequencies

f ∈ ½flmIns ; flmRD�; ð5:1Þ

where the inspiral cutting frequencies flmIns are those of
Eq. (4.4) and the ringdown cutting frequencies are
defined as:

flmRD ¼ δlmRDf
lm
ring þ ϵlmRD: ð5:2Þ

In the above equation, flmring is the fundamental quasi-
normal mode (QNM) frequency of the ðl; mÞ mode and
the default coefficients δlmRD; ϵ

lm
RD are given in Table II.

We have computed fits for the real and imaginary parts
of the QNMs as a function of the final dimensionless
spin, based on publicly available data [64], see also
[65]. Notice that, in the (3,2) reconstruction, high-
mass, high-spin cases require an adjustment of the
default cutting frequencies, as we explain in Secs. VA
and V B below.
The rationale behind our choice of cutting frequencies is

simple: in general, the QNM frequencies flmring mark the
onset of the ringdown region and it is therefore natural to
terminate our intermediate region slightly before those.
This does not apply to the (3,2)-mode, where, due to mode-
mixing, new features appear in the waveforms already
around f ≈ f22ring < f32ring.
In the following subsections, we will describe in more

detail our choice of ansätze and collocation points, based
on the specific features of our numerical waveforms in the
intermediate region.

A. Amplitude

1. Default reconstruction

In the intermediate frequency regime we model the
amplitude with the inverse of a fifth-order polynomial as

AInter
lm

A0

¼ 1

δ0 þ δ1f þ δ2f2 þ δ3f3 þ δ4f4 þ δ5f5
; ð5:3Þ

where A0 ¼ π
ffiffiffiffi
2η
3

q
. This function has six free parameters,

which are determined by imposing the value of the
amplitude at two collocation points, together with four
boundary conditions (two on the amplitude itself, and two
on its first derivative), so that the final IMR amplitude is a
C1 function. We use two collocation points at the equally
spaced frequencies flmInt1 ¼ flmIns þ ðflmRD − flmIns Þ=3 and
flmInt2 ¼ flmIns þ 2=3ðflmRD − flmIns Þ.

2. Extreme-mass-ratio reconstruction

For the EMR regime we refine the model to adapt to the
steep amplitude drop at the end of the inspiral part, which is
associated with the sharp transition from inspiral to plunge
for extreme mass ratios. As one would expect, this drop is
deeper for very negative spins. We find that the ansatz of
Eq. (5.3) is not suited to this regime and we introduce a
preintermediate region that ranges from the inspiral cutting
frequency up to the frequency of the first collocation point.
We add an extra collocation point at the frequency
flmInt0 ¼ flmIns þ ðflmInt1 − flmIns Þ=3, where we calibrate the value
of the amplitude and its derivative. We then use the inverse
of a fourth order polynomial to model the amplitude in this
new region. The five free coefficients of the polynomial are
specified by imposing the conditions listed in Table III.
We then apply the default reconstruction procedure in the

region f ∈ ½flmInt0 ; flmRD�, imposing the conditions listed in
Table IV, with the replacement flmIns → flmInt0 .
The two calibration regions are shown in Fig. 6, where

have shaded the pre-intermediate region in red and the
intermediate one in blue. We find it convenient to terminate
the inspiral region just before the amplitude drop.
Therefore, we replace the cutting frequency of Eq. (4.4)
with that of a local maximum in the amplitude of ψ4, which

TABLE II. Choices for the coefficients δlmRD and ϵlmRD entering
the default ringdown cutting frequencies in Eq. (5.2). flmdamp is the
quasinormal mode damping frequency of the ðl; mÞ mode.

Amplitude Phase

(lm) δlmRD ϵlmRD δlmRD ϵlmRD

21 0.75 0 1 −f21damp

33 0.95 0 1 −f33damp

32 0 f22ring 0 f22ring − 0.5f22damp

44 0.9 0 1 −f44damp

TABLE III. Conditions imposed to determine the parameters of
the fourth-order polynomial used in the preintermediate region of
the EMR amplitude reconstruction.

Collocation Points Value Derivative

f1 ¼ flmIns v1 ¼ AInter
lm ðf1Þ=A0 d1 ¼ ðAInter

lm =A0Þ0ðf1Þ
f2 ¼ flmInsþ
ðflmInt1 − flmIns Þ=3

v2 ¼ AInter
lm ðf2Þ=A0 d2 ¼ ðAInter

lm =A0Þ0ðf2Þ

f3 ¼ flmInt1 v3 ¼ AInter
lm ðf3Þ=A0

CECILIO GARCÍA-QUIRÓS et al. PHYS. REV. D 102, 064002 (2020)

064002-12



always precedes the drop (see Fig. 6). We carried out a fit
over the EMR parameter space of the frequency at which
this maximum occurs and used it to replace the default
inspiral cutting frequency when q > 70.

3. Vetoes and nondefault reconstruction

While for comparable masses the ansatz of Eq. (5.3) is
well suited to model the intermediate amplitude, in other
regions of the parameter space modeling errors can result in
a zero-crossing of the fifth order polynomial. We resolve
this problem using a strategy akin to that of Sec. IVA 2
above, i.e., by removing collocation points and switching to
a lower order polynomial, the minimum order being one.
The regions of the parameter space affected are typically
those where the amplitude is very small, or the high-spin
regime. We have also isolated some regions where, due to
the poor quality of the reconstruction, we drop both
intermediate collocation points. This system of vetoes is
summarized in Table V.

We describe now in more detail the adjustments made to
the default reconstruction procedure mode-by-mode. A
summary of the rules applied can be found in Table VI.
For the (2,1) mode, we remove the intermediate colloca-

tion points atwhich the strain Fourier domain amplitude jh̃21j
is below 0.2. This happens when the (2,1) amplitude is very
small and in consequence the current accuracy of the
parameter space fits is not sufficient. The advantage is that
for those cases the (2,1) mode does not contribute signifi-
cantly to the total waveform andwe can afford to simplify the
reconstruction. It can be seen from Fig. 1 that the ratio
between the (2,1) and (2,2) amplitude is in some cases well
below1%. If the amplitude at the ringdowncutting frequency
is below a threshold of 0.01, we remove the two intermediate
collocation points. If the intermediate collocation points have
passed these preliminary tests, we checkwhether they form a
monotonic sequence, and if not we remove flmInt2 . Finally, we
apply the parameter-space vetoes indicated in Table V.
For the (3,2) mode, we require that the amplitude at the

ringdown cutting frequency is above the same threshold
applied to the (2,1) mode. If this condition is not satisfied,
we remove the two intermediate collocation points. If it is,
we check whether the collocation points form a monotonic
sequence. If not, we drop flmInt2 . Finally, we apply our set of
parameter-space vetoes.
The (3,3) and (4,4) modes are typically less problematic.

However, we find that in the high-spin, high-mass-ratio
region (q > 7, χ1 > 0.95) the inspiral is very long and there
is a sharp transition to the ringdown, without a specific
merger signature. For that reason we remove the two
intermediate collocation points and connect inspiral and
ringdown with a third-order polynomial. Once again, we
apply the vetoes of Table V.
After applying all the mode-specific vetoes, we check

whether the denominator of our polynomial ansatz ever
crosses zero in the frequency range of the intermediate
region. If so, we lower the order of the polynomial by
iteratively relaxing the boundary conditions until we obtain
a well-defined ansatz.

FIG. 6. (2,1) Fourier domain amplitude of an extreme-mass
ratio waveform. The strain amplitude shows a deep drop after the
inspiral. This feature is preceded by a local maximum in the
amplitude of ψ4. The red-shaded area corresponds to the pre-
intermediate region mentioned in the text, where the amplitude is
reconstructed using a fourth-order polynomial. The blue-shaded
area corresponds to the intermediate region, where the default
reconstruction procedure applies.

TABLE IV. Conditions imposed to determine the parameters of
the fifth-order polynomial used in the default intermediate
amplitude reconstruction, see Eq. (5.3).

Collocation Points Value Derivative

f1 ¼ flmIns v1 ¼ AInter
lm ðf1Þ=A0 d1 ¼ ðAInter

lm =A0Þ0ðf1Þ
f2 ¼ flmInsþ
ðflmRD − flmIns Þ=3

v2 ¼ AInter
lm ðf2Þ=A0

f3 ¼ flmInsþ
2ðflmRD − flmIns Þ=3

v3 ¼ AInter
lm ðf3Þ=A0

f4 ¼ flmRD v4 ¼ AInter
lm ðf4Þ=A0 d2 ¼ ðAInter

lm =A0Þ0ðf4Þ

TABLE V. Parameter-space regions where the two intermediate
collocation points at fInt1 and fInt2 are removed. “Still alive”
means if the collocation point has not been removed yet by the
previous vetoes.

(lm) Region Veto applied if

21 η < 0.23 & χ1 > 0.7 & χ2 < −0.5 Always
q > 40 & χ1 > 0.9 flmInt1;2 still alive

33 q > 40 & χ1 > 0.9 flmInt1;2 still alive
32 q > 2.5 & χ1 < −0.6 & χ2 > 0 Always

χ1 < −0.9 & χ2 < −0.9 Always
q > 40 & χ1 > 0.9 flmInt1;2 still alive

44 q > 40 & χ1 > 0.9 flmInt1;2 still alive
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B. Phase

In the intermediate region our most general ansatz for the
phase-derivative of each mode reads:

dϕInt
lm

df
¼ almλ

flmdamp

ðflmdampÞ2 þ ðf − flmringÞ2
þ
X4
k¼0

almk
fk

: ð5:4Þ

For the modes that do not show significant mode-mixing,
namely (2,1),(3,3),(4,4), we set alm3 ¼ 0 and retain all the
remaining coefficients. This was done for consistency with
the IMRPHENOMXAS model (see Sec. VII B. of [26]). For
these modes, we do not impose any boundary condition,
which leaves us with a total of five free coefficients, which
we determine by solving the linear system

dϕInt
lm

df
ðfilmÞ ¼ F i

lm; i ∈ ½1; 5�: ð5:5Þ

In the above equation, film are the frequencies of the
intermediate-region collocation points, and F i

lm are the
values of the phase-derivative evaluated at each film, as
reconstructed through our parameter-space fits.
In the reconstruction of the (3,2)-mode, we allow a323 to

be nonzero: this extra degree of freedom allows to have
better control on the effects caused by mode-mixing (see
Fig. 7). In this case only, we impose two boundary
conditions coming from the ringdown-region, where the
(3,2) phase is also fully calibrated.1 We determine the six
free coefficients of Eq. (5.4) by solving the system

dϕInt
32

df
ðfi32Þ ¼ F i

32; i ∈ ½1; 4�;

dϕInt
32

df
ðf32RDÞ ¼

dϕRD
32

df
ðf32RDÞ;

d2ϕInt
32

df
ðf32RDÞ ¼

d2ϕRD
32

df
ðf32RDÞ: ð5:6Þ

The explicit expressions for the frequencies of our
intermediate-region collocation points are given in
Table VII. These values result from taking a mixture of
equidistant and Gauss-Chebyshev nodes in the interval
½βðηÞflmIns ; flmEnd�, where

flmEnd ¼
� flmring if ðl; mÞ ≠ ð3; 2Þ
f22ring − 0.5f22damp if ðl; mÞ ¼ ð3; 2Þ

and βðηÞ is a monotonically decreasing function of η that
shifts forward the frequency of the first collocation points
for small η, thus reducing the steepness of the parameter-
space fit surfaces in this limit, chosen here as βðηÞ ≔
ð1.þ 0.001ð0.25=η − 1ÞÞ.
We find it convenient tomodel onemore collocation point

than what is strictly needed, in order to add some flexibility
to the calibration. Our standard choice of collocation points
can result in a badly-behaved reconstruction in regions of the
parameter space where we have fewer calibration wave-
forms, such as the high spin and/or low-η regime. In such

TABLE VI. Summary of the sanity checks used in the intermediate amplitude reconstruction. The vetoes are sorted in order of
application. The coefficient aλ will be presented in Eq. (6.2).

Veto description Applied to modes Region where applied Collocation point removed

Amplitude at flmInt1;2 < 0.2 21 q < 8 flmInt1;2
Amplitude at flmRD < 0.01 21 Always flmInt1 & flmInt2

32 flmInt1 , f
lm
Int2

& derivatives at boundaries
Monotonicity (if flmInt1 and flmInt2 21, 32 Always flmInt2
have passed the previous checks)
aλ badly behaved 33, 44 q > 7, χ1 > 0.95 flmInt1 & flmInt2
Parameter-space vetoes 21, 33, 32, 44 see Table V flmInt1 & flmInt2
Check that the denominator of the resulting ansatz does not cross zero, if so remove derivatives at boundaries

FIG. 7. The plot shows the phase derivatives of the (3,2) mode
of a FD hybrid waveform with parameters ðq; χ1; χ2Þ ¼
f3;−0.3; 0.g, compared with the reconstructed (2,2) and (3,2)
modes. The (3,2) phase derivative does not show the usual fall-off
in the ringdown region, due to mode-mixing with the (2,2) mode.

1Notice that, when mode-mixing is absent, the ringdown is
built through an appropriate rescaling of the quadrupole’s phase
and does not contain any information about the physical relative
time-shifts among the modes.
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cases, we drop one of the collocation points close to inspiral,
where the phase derivative has a steeper slope and is harder
to model accurately, and replace it with a point in the flatter
near-ringdown region, as we illustrate in Fig. 8.

VI. RINGDOWN MODEL

The ringdown region covers the frequency range

Mf ∈ ½flmRD; 0.3�; ð6:1Þ

where flmRD was defined in Eq. (5.2).
In IMRPHENOMXHM, the modes (2,1),(3,3),(4,4) have a

fully calibrated amplitude, while their phase is built by
appropriately rescaling the quadrupole’s phase, along the
lines of IMRPHENOMHM.
When mode-mixing visibly affects the ringdown wave-

form (i.e., in the (3,2)-mode reconstruction), the model is

instead fully calibrated to NR. In this case, the key
observation is that the signal is much simpler when
expressed in terms of spin-weighted spheroidal harmonics,
as we illustrate in Figs. 9 and 10. This can be traced back to
the fact that the Teukolsky equation is fully separable only
in a basis of spheroidal harmonics, and not in a spherical-
harmonic one [66].
Under the simplifying assumption that the (3,2)-mode

interacts only with the (2,2)-mode, the spherical-harmonic
strains can be projected onto a spheroidal-harmonic basis
by means of a simple linear transformation, which we
describe in Appendix A. We reconstruct amplitude and
phase of the signal in a spheroidal-harmonic basis and then
transform the full waveform back into the original basis.
After doing so, the ringdown reconstruction can be
smoothly connected to the inspiral-merger waveform.
In the following subsections, we provide further details

about the ansätze used in this region.

A. Amplitude

The ansatz we adopt is similar to the one used in
IMRPHENOMXAS:

Alm
RD

A22
0

¼ 1

f
1
12

jaλjflmdamp σ

ðf − flmringÞ2 þ ðflmdamp σÞ2
e
−
ðf−flm

ring
Þ λ

flm
damp

σ ; ð6:2Þ

except for the factor f−1=12 used here for historical reasons
and for the replacement of the (2,2) ringdown and damping
frequencies with those of the corresponding ðl; mÞ mode.
This ansatz is used for all the modes calibrated in the
model. Notice, however, that for the (3,2) mode the ansatz

TABLE VII. Frequencies of the collocation points used in the
reconstruction of the intermediate phase derivative.

Collocation point frequencies

f1lm βðηÞflmIns
f2lm 1

4
ðð ffiffiffi

3
p þ 2ÞβðηÞflmIns − ð ffiffiffi

3
p

− 2ÞflmEndÞ
f3lm

1
4
ðflmEnd þ 3βðηÞflmIns Þ

f4lm
1
2
ðflmEnd þ βðηÞflmIns Þ

f5lm
1
4
ð3flmEnd þ βðηÞflmIns Þ

f6lm
1
8
ð7flmEnd þ βðηÞflmIns Þ

C1

C2

C3

C4 C5

E1

E2

E3
E4

E5

Equidistant

Chebyshev

0.04 0.06 0.08 0.10

3200

3400

3600

3800

4000

FIG. 8. We compare two different sets of collocation points in
the intermediate region of the (3,3) phase-derivative. Gauss-
Chebyshev nodes are marked in red, while equidistant nodes are
marked in blue. We compute parameter-space fits of the phase-
derivative evaluated at the points [C1, C2, E2, E3, E4, E5]. The
default set of collocation points is [C1, C2, E2, E3, E5]; in
regions with fewer calibration waveforms, we switch to the subset
[C1, C2, E3, E4, E5], which contains more points close to the
ringdown. Here, the phase-derivative becomes flatter and our
parameter-space fits are more robust.

0.08 0.10 0.12 0.14

3075

3100

3125

3150

3175

3200

3225

FIG. 9. The phase derivative of the (3,2) mode can exhibit sharp
features when plotted in the original spherical-harmonic basis
(black solid line). However, the same signal written in terms of
spheroidal harmonics is much simpler (blue solid line) and
amenable to be fitted with the same ansatz used in IMRPHENOM-

XAS and IMRPHENOMD. Red and green lines mark the direct fit to
the data and the final reconstruction.
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is fitted to the data expressed in a spheroidal-harmonic
basis, see Fig. 10.
We first fit the free coefficients faλ; λ; σg to NR data in a

“primary” direct fit and then perform a parameter space fit
of each coefficient for every mode. We find that the
coefficient σ shows a very small dynamic range for the
modes (3,3), (3,2), and (4,4), and we thus take it as a
constant. We then perform a “secondary” direct fit where
we redo the direct fits using the constant values for σ shown
in Table VIII. Finally we repeat the parameter space fits for
aλ and λ.
The final reconstruction of the amplitude through inspi-

ral, merger, and ringdown for the modes without mixing
can be seen in Fig. 11.

B. Phase

1. Modes without mode-mixing

To model the (2,1),(3,3),(4,4) modes, for which mode-
mixing is negligible, we rescale a simplified reconstruction
of the quadrupole’s ringdown phase, much in the spirit of
IMRPHENOMHM.
Our ansatz for the phase-derivatives in this case reads:

dϕRD
lm

df
¼ αlm2

ðflmringÞ2
f2

þ αlmλ
flmdamp

ðflmdampÞ2 þ ðf − flmringÞ2
þ dϕlm

RD; ð6:3Þ

which, integrated, gives:

ϕRD
lm ¼ −αlm2

ðflmringÞ2
f

þ αlmλ tan−1
�
f − flmring
flmdamp

�

þ dϕlm
RDf þ ϕlm

RD: ð6:4Þ

We first compute parameter-space fits of the quantities
α22λ and α222 and rescale them to obtain their higher-modes
counterparts. We set

FIG. 10. Top: the amplitude of the (3,2) mode expressed in a
spherical (red) and spheroidal (green) basis for a fq; χ1; χ2g ¼
f3; 0; 0g case. The latter can be easily fitted using the ansatz (6.2)
(orange curve). The inspiral portion of the amplitude is fitted in a
spherical-harmonic basis (blue dashed line), therefore the ring-
down waveform must be transformed back to the original basis
before being smoothly attached to the rest of the model. Bottom:
NR data and final reconstruction in spherical-harmonics for the
same case plotted in the top panel. The black line is the
transformation to a spherical-harmonic basis of the orange curve
in the top plot (which is computed instead in a spheroidal-
harmonic basis). The green line is a smooth connection between
the inspiral and ringdown fits (blue and black lines respectively)
that goes through the two collocation points in the intermediate
region.

TABLE VIII. Mode-specific values for the parameter σ appear-
ing in Eq. (6.2). In the final model σ is taken to be fixed across
parameter space execpt for the 21 mode. Here we show these
fixed values, which correspond to an average across the param-
eter-space of the values obtained through direct fits where σ is not
specified a priori.

Mode σ value

33 1.3
32 1.33
44 1.33

FIG. 11. Comparison between the NR data and the final model
for the amplitude of three modes for a system with fq; χ1; χ2g ¼
f3; 0; 0g.
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αlmλ ¼ α22λ ;

αlm2 ¼ wlm

f22damp

flmdamp

α222 ; ð6:5Þ

where wlm are some constants, which only depend on l; m
and not on the intrinsic parameters of the binary. We
verified that the above equalities hold, albeit approximately,
for the parameters of the direct fits to each mode’s phase
derivative.
The shifts dϕlm

RD and ϕlm
RD are fixed by requiring a smooth

connection to the intermediate-region reconstruction.

2. Modes with mode-mixing

As we outlined at the beginning of this section, the
morphology of the (3,2)-mode ringdown signal is signifi-
cantly affected by mode-mixing. In this case, we first build
a reconstruction of the phase derivative in a spheroidal-
harmonics base, using the ansatz below

dϕ32;S

df
¼ α322

f2
þ α324

f4
þ α32λ

f32damp

ðf32dampÞ2 þ ðf − f32ringÞ2
þ dϕ32

RD: ð6:6Þ

Integrating the above equation, one obtains

ϕ32;S ¼ −
α322
f

−
α324
3f3

þ α32λ tan−1
�
f − f32ring
f32damp

�

þ dϕ32
RDf þ ϕ32

RD; ð6:7Þ

where the subscript S is a reminder that we are now
working in a spheroidal-harmonic basis. The four free
coefficients of Eq. (6.6) are determined by solving the
linear system

dϕRD
32;S

df
ðfi32Þ ¼ Gi

32; i ∈ ½1; 4�; ð6:8Þ

where Gi
32 are some parameter-space fits of the value of

the phase derivative, evaluated at four collocation points
fiRD; i ∈ ½1; 4�, given in Table IX.
One must ensure that ϕ32;S has the correct relative time

and phase shift with respect to the (2,2) mode that is being

used, or else the transformation back to the original
spherical-harmonic basis will produce an incorrect result.
Therefore, we compute two extra fits

ΔT32;S ¼ ϕ0
32;Sðf0Þ − ϕ0

22ðf0Þ ð6:9Þ

TABLE IX. Frequencies of the collocation points used in the
reconstruction of the (3,2)-mode phase derivative.

Collocation points for ϕ0
32;S

f132 f22ring
f232 f32ring − 3=2f32damp

f332 f32ring − 1=2f32damp

f432 f32ring þ 1=2f32damp

FIG. 12. The plot shows the last few cycles of a hybrid (3,2)
mode waveform built hybridizing the SXS simulation SXS:
BBH:0271 with SEOBNRV4 (black solid line), together with the
corresponding IMRPHENOMXHM and IMRPHENOMHM reconstruc-
tions (red and green dashed lines respectively). The (2,2) modes
of all waveforms have been previously time-shifted so that their
amplitudes peak at t ¼ 0.

FIG. 13. Mode-by-mode mismatches between IMRPHE-

NOMXHM and a validation set of hybrids built using the latest
release of the SXS collaboration catalog. Each plot shows the
maximum (red), median (blue) and minimum (green) mismatch
over a range of total masses between 20 and 300 solar masses.
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Δϕ32;S ¼ ϕ32;Sðf1Þ − ϕ22ðf1Þ; ð6:10Þ

at some suitable reference frequencies f0, f1 in the ring-
down region, and use them to correctly align our spheroi-
dal-harmonic reconstruction to the quadrupole’s phase
given by IMRPHENOMXAS.
In Fig. 12 we plot the (3,2) mode of a hybrid waveform

built from the SXS simulation SXS:BBH:0271 and show the
corresponding time-domain reconstructions resulting from
IMRPHENOMXHM and IMRPHENOMHM. It can seen that our
model can better capture the effects of mode-mixing on the
ringdown waveform.

VII. QUALITY CONTROL

A. Single mode matches

To quantify the agreement between two single-mode
waveforms (reals in time domain) we use the standard
definition of the inner product (see, e.g., [67]),

hh1; h2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

; ð7:1Þ

where SnðfÞ is the one-sided power spectral-density of the
detector. The match is defined as this inner product divided

by the norm of the two waveforms and maximised over
relative time and phase shifts between both of them,

Mðh1; h2Þ ¼ max
t0;ϕ0

hh1; h2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1i
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh2; h2i

p : ð7:2Þ

Accordingly, we define the mismatch between two wave-
forms as

MMðh1; h2Þ ¼ 1 −Mðh1; h2Þ: ð7:3Þ

For our match calculations we use the Advanced-LIGO
design sensitivity zero-detuned-high-power power spectral
density (PSD) [68,69] with a lower cutoff frequency for the
integrations of 20 Hz.
In Fig. 13 we first show single-mode mismatches against

a validation set consisting of 387 of our hybrid waveforms
built from the latest SXS collaboration catalog, where we
have discarded 152 hybrids, which show up as outliers in
our calibration procedure for at least one of the modes,
which we suspect to be due to quality problems with the
waveforms. The list of SXS waveforms we have used is
provided as Supplementary Material [70]. The matches
were computed for masses between 20 M ⊙ and 300 M ⊙,
with a spacing of 10 M ⊙ between subsequent bins.

FIG. 14. Mismatches between different models for all the
modes modeled by IMRPHENOMXHM with the aLIGOZeroDe-
tHighPower PSD (see the main text for further details). The
parameter range is restricted to avoid extrapolation as detailed in
the main text.

FIG. 15. Mismatches between different models for all the
modes modeled by IMRPHENOMXHM with the aLIGOZeroDe-
tHighPower PSD (see the main text for further details). The
parameter range is chosen to test the extrapolation region of
parameter space detailed in the main text.

CECILIO GARCÍA-QUIRÓS et al. PHYS. REV. D 102, 064002 (2020)

064002-18



We also show mismatches among IMRPHENOMXHM, the
previous IMRPHENOMHM model and the independent
NRHYBSUR3DQ8 surrogate model. Total masses are log-
uniformly distributed in the range ½3 M⊙; 150 M⊙�
(with individual masses not smaller than 1 M⊙). In
Fig. 14 we show the mismatches for the calibration region
of NRHYBSUR3DQ8, for mass ratios below 9.09 and dimen-
sionless spin magnitudes up to 0.8, and up to 0.5 in the
neutron star sector of total masses up to 3 M⊙. We carry out
three sets of comparisons, in red we have the mismatches
between IMRPHENOMXHM and IMRPHENOMHM, in blue
IMRPHENOMHM versus NRHYBSUR3DQ8 and finally in green
IMRPHENOMXHM versus NRHYBSUR3DQ8. The results show
that IMRPHENOMXHM is in a much better agreement with the
surrogate model that the previous version IMRPHENOMHM,
the improvement is particularly remarkable for the (3,2)
mode due to themodeling of themode-mixing. In Fig. 15we
show matches for cases outside of the spin region defined
before to assess the effects of extrapolation beyond the
calibration region.

B. Multimode matches

When having a multimode waveform, not only it is
important to model accurately each individual mode but
also the relative phases and time shifts between them. To
test this we compute the mismatch for the hþ and h×
polarizations between our hybrids and the model for three
inclination values: 0, π=3 and π=2 (rad). The polarizations

FIG. 16. Mismatches for the hþ (left) and h× (right) polar-
izations between hybrids and IMRPHENOMXHM for three different
inclinations. For edge-on systems we only show results for the hþ
polarization since h× vanishes. The minimum, maximum and
median are taken over a range of total masses and azimuthal angle
ϕS, as explained in the main text. The mismatch is numerically
optimized over the azimuthal angle ϕT of the model.

FIG. 17. In this plot we show the absolute value of the final
recoil velocity for a nonspinning black-hole binary, as computed
with IMRPHENOMXHM (in red) IMRPHENOMHM (green), and with
the fit of Ref. [74] (black). In blue we show the recoil velocity for
all the nonspinning configurations in our calibration dataset. We
can see that, when a good number of NR waveform is available,
our calibrated model can reproduce with great accuracy the final
velocity of the remnant.

FIG. 18. In this plot we show the absolute value of the final
recoil velocity jvfj for an equally spinning black-hole binary with
adimensional spins χ1 ¼ χ2 ¼ 0.5, as computed with IMRPHE-

NOMXHM (in red) IMRPHENOMHM (green), and with the fit of
Ref. [74] (black, note that here we also shade in gray the fit’s error
margins, using the error estimates provided by the authors in
Table III of the aforementioned reference). In blue we show the
recoil velocity for all the corresponding configurations in our
calibration dataset. Note that, despite the loss of accuracy due to
having fewer waveforms than in the nonspinning case, our model
returns a value of jvfj much closer to NR than the uncalibrated
version.
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for the hybrids and the model are built with the same
inclination, however the azimuthal angle entering the
spherical harmonics can be different. We denote by ϕS
and ϕT the azimuthal angle of the hybrids (source) and
model (template) respectively. ϕS takes the values of an
equally spaced grid of five points between 0 and 2π. Then
for each value of ϕS we numerically optimize the value of
ϕT that gives the best mismatch. For each configuration of
inclination and ϕS the mismatch is computed for an array of
8 total masses from 20 M⊙ to 300 M⊙ logarithmically
spaced and then we take the minimum, median, and
maximum values over all these configurations. Similarly
to the single-mode matches we used the Advanced-LIGO
design sensitivity zero-detuned-high-power noise curve
and a lower cutoff of 20 Hz. The results are shown in
Fig. 16. It can be observed that the mismatches degrade for

higher inclinations due to the weaker contribution of the
dominant (2,2) mode which is the best modeled mode,
although events that are seen close to edge-on are much less
likely to be detected due to the reduced signal-to-noise-
ratio. For edge-on systems we only show results for the hþ
polarization, since the h× vanishes. Alternative ways of
quantifying multi-mode mismatches have been used in the
literature, see, e.g., [71] or [72], with different advantages
and drawbacks. The quantities we show here are chosen for
simplicity.

C. Recoil

Asymmetric black-hole binaries will radiate gravitational
waves anisotropically. This will result in a net emission of
linear momentum, at a rate (in geometric units)

FIG. 19. Single-mode waveforms for a binary with q ¼ 4, with maximally spinning black holes. The model appears to extrapolate well
beyond its calibration region (jχ1;2j ≤ 0.99).
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dPk

dt
¼ r2

16π

Z
dΩð _h2þ þ _h2×Þnk; ð7:4Þ

where nk is the radial unit-vector pointing away from the
source, leading the final remnant to recoil in the opposite
direction. The precise value of the final recoil velocity will
depend on the interactions among different GWmultipoles.
This quantity is extremely sensitive to the relative time and
phase shifts among different modes and thus provides an
excellent and physically meaningful test bed for our model.
We computed the final recoil velocity predicted by

IMRPHENOMXHM for different binary configurations and
compared the results with those obtained directly from our
hybrid waveforms. As new numerical simulations became
available, several works presented increasingly improved

NR-based fits for the final recoil velocity (see for instance
[73–76] and the latter reference for further works and
comparisons). Below we compare our results to the fit of
Ref. [74], for two test configurations: a black-hole binary
where both bodies are nonspinning (Fig. 17), and one
where both are spinning with Kerr parameters χ1 ¼ χ2 ¼
0.5 (Fig. 18). For comparison, we also show the recoil
velocities obtained with IMRPHENOMHM.

D. Time-domain behavior

We have checked that the model has a reasonable
behavior in regions of the parameter-space where no
simulations are available (e.g., 18 ≤ q ≤ 200) and for
extreme spins. We show here example-waveforms to test
both these regimes. Figures 19 and 20 show single-mode

FIG. 20. Single-mode waveforms for a binary with q ¼ 100, χ1 ¼ χ2 ¼ 0.7. There are no NR simulations in our calibration dataset
with q > 18, and the extrapolation to high mass-ratios is done by placing Teukolsky waveforms at the large-q boundary of the parameter
space, as explained in Sec. III B. Here we can see that the model achieves a smooth transition between NR and point-particle physics.
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waveforms for binaries with parameters ðq; χ1; χ2Þ ¼
ð4; 1.; 1.Þ and ðq; χ1; χ2Þ ¼ ð100; 0.7; 0.7Þ, respectively.
We can see that in both cases the model returns well-
behaved waveforms.

E. Parameter estimation: GW170729

In our companion paper to present IMRPHENOMXAS for
the (2,2) mode we reanalyzed the data for the first
gravitational wave event, GW150914, as an example for
an application to parameter estimation. Here we present
a reanalysis of GW170729, where the effect of models
with subdominant higher harmonics has been discussed in
the literature [14], and we will demonstrate broad agree-
ment between IMRPHENOMXHM, IMRPHENOMHM, and
SEOBNRV4HM for this event. Again we use coherent
Bayesian inference methods to determine the posterior
distribution pðθ⃗jd⃗Þ to derive expected values and error
estimates for the parameters of the binary. Following [14],
we use the public data for this event from the Gravitational
Wave Open Science Center (GWOSC) [77–79] calibrated
by a cubic spline and the PSDs used in [6]. We analyze four
seconds of the strain dataset with a lower cutoff frequency
of 20 Hz. For our analysis we use the LALINFERENCE [7]

implementation of the nested sampling algorithm. We
perform the runs using 2048 “live points” for five different
seeds, then merge into a single posterior result. We choose
the same priors used in [14], taking into account that
IMRPHENOMXHM is a nonprecessing model and we have to
use aligned spin priors.
In Fig. 21 we compare our results with the higher mode

models (IMRPHENOMHM and SEOBNRV4HM) and the (2,2)
mode model results (IMRPHENOMD) published in [14]. We
find that the posteriors derived from IMRPHENOMXHM are
consistent with the two other models that include higher
harmonics, which can be distinguished from the results
obtained for models that only include the (2,2) mode.

F. NR injection study

As a further test of the improvements brought by
IMRPHENOMXHM, we have performed parameter estimation
of a synthetic signal generated using the public SXS
waveform SXS:BBH:0110. This corresponds to a binary with
strongly asymmetric masses (q ¼ 5), and adimensional
spin magnitudes χ1 ¼ 0.500, χ2 ¼ 0. at a reference fre-
quency of 20 Hz. We injected the signal into a Hanford-
Ligo-Virgo detector network in zero-noise and used

FIG. 21. Comparison between IMRPHENOMXHM, IMRPHENOMHM, SEOBNRV4HM, and IMRPHENOMD (results for the latter three models
are taken from [14]) for the event GW170729 as discussed in Sec. VII E. We show posterior distributions of mass ratio, total mass,
effective aligned spin and luminosity distance. The dashed vertical lines mark the 90% confidence limits.
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Advanced-LIGO design sensitivity PSDs. The mock signal
had chirp mass M ¼ 18.96 M⊙ and total mass 62 M⊙ in
detector frame, right ascension ra ¼ 1.4 rad, declination
dec ¼ −0.6 rad and geocentric time tc ¼ 1126259600.0 s.
The source was placed at a luminosity distance dL ¼
600 Mpc at an inclination ι ¼ π=3. The network SNR of
this configuration was 17.9. For this analysis we used the
gravitational-wave inference library PBILBY [8,80] with
dynamic nested sampling [81] and 2048 live points. We
present our results in Figs. 22 and 23. IMRPHENOMXHM

delivers a better recovery of the mass ratio (center panel
of Fig. 22) and, although the measurement of χeff is
very consistent with IMRPHENOMHM, the spin of the
primary appears to be more tightly constrained by the
upgraded model.

G. Computational cost

We will now compare the computational cost of
the evaluation of different models available in
LALSIMULATION compared to the IMRPHENOMX family.
Since the different models include a different number
of modes we also show the evaluation time per mode.
Using the GenerateSimulation executable within
LALSIMULATION we compute the average evaluation time
over 100 repetitions for a nonspinning case ðq; χ1; χ2Þ ¼
ð1.5; 0; 0Þ for a frequency range of 10 to 2048 Hz. We vary
the total mass of the system from 3 to 300 solar masses and
the frequency spacing df is automatically chosen by the
function SimInspiralFD to take into account the length
of thewaveform in the time domain for the given parameters.
All the timing calculations were carried out in the LIGO
cluster CIT to allow comparison with the benchmarks we
have shown in [30] to compare different accuracy thresholds
of multibanding which is a technique that accelerate the
evaluation of the model by evaluating it in a coarser
nonuniform frequency grid and using interpolation to get
the waveform in the final fine uniform grid, reducing
considerably the computational cost.

FIG. 22. 1D posterior distributions for some of the mass and
spin parameters characterizing the mock signal generated using
the public SXS simulation SXS:BBH:0110. Results obtained with
IMRPHENOMXHM and IMRPHENOMHM are plotted in orange and
blue respectively. A vertical black line marks the injected value.
Dashed lines indicate 90% credible intervals.

FIG. 23. Joint posterior distributions for the individual spins χ1,
χ2. Dashed lines indicate 90% credible intervals. Solid black lines
mark the injected values for each parameter (note that the
secondary has zero spin, and therefore the line in this case
coincides with the x-axis).
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In Fig. 24 the dashed lines represent models for
only the 22 mode (IMRPHENOMD, SEOBNRV4_ROM, and
IMRPHENOMXAS). We see that the three models show very
similar performance for low masses, while for higher
masses the IMRPHENOM models are faster. Models that
include higher modes are shown with solid lines:
NRHYBSUR3DQ8 (11 modes), IMRPHENOMHM (6 modes)
and IMRPHENOMXHM (5 modes), the latter is shown with
and without the acceleration technique of multibanding
[30]. Since NRHYBSUR3DQ8 is a time domain model, for
many applications the actual evaluation time would also
include the time for the Fourier transformation to the
frequency domain, which can also lead to requirements
for a lower start frequency and windowing to avoid
artefacts from the Fourier transforms, which again would
increase evaluation time. We also see that the new
model IMRPHENOMXHM without multibanding is already
significantly faster than the previous IMRPHENOMHM

model. Comparing the new model to the surrogate,
IMRPHENOMXHM without multibanding is significantly
faster when considering all the modes, but the evaluation

cost per mode is only lower for high masses. However,
using the multibanding technique [30] with the threshold
value of 10−3, which is the default setting when calling the
model in LALSUITE (IMRPHENOMXHM_MB3 in the plot),
IMRPHENOMXHM is significantly faster also for the evalu-
ation time per mode. The threshold value can be adjusted
to control the speed and accuracy of the algorithm as
explained in Appendix C and in [30], where we have shown
that for an example injection of a relatively high signal-to-
noise ratio 28, even at a threshold of 10−1, which evaluates
significantly faster than the conservative default setting,
differences in posteriors are hardly visible.

VIII. CONCLUSIONS

Phenomenological waveform models in the frequency
domain have become a standard tool for gravitational wave
parameter estimation [6] due to their computational effi-
ciency, accuracy [82], and simplicity. The current generation
of suchmodels has been built on the IMRPHENOMDmodel for
the (2,2) mode of the gravitational wave signal of non-
precessing and noneccentric coalescing black holes, which
has been extended to precession by the IMRPHENOMP [2,83]
and IMRPHENOMPV3 [33] models, to subdominant harmon-
ics by the IMRPHENOMHM model, and to tidal deformations
by the IMRPHENOMPV2_NRTIDAL model [84,85].
The present paper is the second in a series to provide a

thorough update of the family of phenomenological fre-
quency domain models: In a parallel paper [26] we have
presented IMRPHENOMXAS, which extends IMRPHENOMD to
a genuine double spin model, includes a calibration to
extreme mass ratios, and improves the general accuracy of
the model. In the present work we extend IMRPHENOMXAS

to subdominant modes. Contrary to IMRPHENOMHM,
the IMRPHENOMXHM model we present here is calibrated
to numerical hybrid waveforms, and we have tested in
Sec. VII that the new model is indeed significantly more
accurate than IMRPHENOMHM.
Calibration of the model to comparable mass numerical

data has proceeded in two steps: we have started with a
dataset based on numerical relativity simulations we have
performed with the BAM and EINSTEIN TOOLKIT codes, and
the dataset corresponding to the 2013 edition of the SXS
waveform catalog [54] (including updates up to 2018). The
quality and number of waveforms available at the time has
determined the number of modes we model in this paper,
i.e., the (2,1),(3,2),(3,3), and (4,4) spherical harmonics.
During the implementation of the model in LALSUITE [25],
the 2019 edition of the SXS waveform catalog [60] became
available, and we have subsequently upgraded the calibra-
tion of IMRPHENOMXAS and of the subdominant mode
phases to the 2019 SXS catalog. We have not updated the
amplitude calibrations, which are more involved but
contribute less to the accuracy of the model. Instead, we
plan to update the amplitude model in future work, where
we will include further harmonics, in particular the (4,3)

FIG. 24. Evaluation time of different waveform models in
LALSIMULATION. Top panel: we show the total contribution of the
evaluation of the quadrupolar/multimode waveform. Bottom
panel: evaluation time per mode, the models include different
numbers of modes, so we average over this number for a fair
comparison.
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and (5,5) modes, which we can now calibrate to numerical
date thanks to the increased number of waveforms and
improved waveform quality of the latest SXS catalog.
The computational performance and a method to accel-

erate the waveform evaluation by means of evaluation on
appropriately chosen unequally spaced grids and interpo-
lation is presented in a companion paper [30].
While IMRPHENOMXHM resolves various shortcomings

of IMRPHENOMHM, further improvements are called for by
the continuous improvement of gravitational wave detec-
tors: We will need to address the complex phenomenology
of the (2,1) harmonic for close to equal masses, add further
modes as indicated above, and include nonoscillatory
m ¼ 0 modes.

IMRPHENOMXHM can be extended to precession follow-
ing [2,33,83]. Regarding mode mixing in the context of
precession one will however take into account that mixing
then occurs between precessing modes [86], while current
phenomenological precession extensions handle mode-
mixing at the level of the coprecessing modes.
A computationally efficient implementation of the

model is available as part of the LSC Algorithm Library
Suite [25].
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APPENDIX A: CONVERSION
FROM SPHEROIDAL TO

SPHERICAL-HARMONIC MODES

Spin-weighted spheroidal harmonics can be written as a
linear combination of spherical ones:

sSða; θ;ϕÞml ¼
X∞
l0¼2

αll0mðaÞsYðθ;ϕÞml0 : ðA1Þ

In the sum above, each spherical harmonic is weighted by a
mixing coefficient αll0m measuring its overlap with the
corresponding spherical harmonic:

αll0m ¼
Z

dΩsSða; θ;ϕÞml sY�ðθ;ϕÞml0 : ðA2Þ

Note that the mixing coefficients are functions of the final
spin only. Although in theory the (3,2) couples to all the
modes with m ¼ 2, in practice we find that the strongest
source of mode-mixing comes from the mixing with the
(2,2). Therefore, we choose to neglect the coupling to
modes with l > 3.
Under this assumption the coefficients of the strain in the

two bases of harmonics are related via the following simple
linear transformation:

�
h22
h32

�
¼

�
α222 α232

α322 α332

��
hS22
hS32

�
: ðA3Þ

The mixing coefficients have been computed in [46] for
black holes spinning up to χf ¼ 0.9999. To improve
accuracy for extreme spins, we perform a quadratic-in-
spin fit of all the data points with χf ∈ ½0.999; 0.9999� and
use it to obtain the values of the mixing coefficients
extrapolated at jχfj ¼ 1.
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APPENDIX B: TESTING TETRAD
CONVENTIONS

The relative phase-alignment of the different modes is
established trough Eq. (4.13), which implies a specific
choice of tetrad convention. One can check that, when
calling the model in time-domain, IMRPHENOMXHM returns
modes that follow the same convention adopted for the
LVCNR catalog [87]. One has that

mod ð2Φlm −mΦ22; 2πÞ ¼
�

π modd

0 meven

holds for both the LVCNR catalog and the IMRPHENOMXHM

higher-multipoles, as shown in Fig. 25.

APPENDIX C: NOTES ON THE
IMPLEMENTATION OF THE IMRPHENOMXHM

MODEL IN THE LIGO ALGORITHMS LIBRARY

The IMRPHENOMXHM model is implemented in the
C language as part of the LALSimIMR package of
inspiral-merger-ringdown waveform models, which is part
of the LALSIMULATION collection of code for gravitational

waveform and noise generation within LALSUITE [25].
Online Doxygen documentation is available at https://
lscsoft.docs.ligo.org/lalsuite, with top level information
for the LALSimIMR package provided through the
LALSimIMR.h header file. Externally callable functions
of the IMRPHENOMXHM model follow the XLAL coding
standard of LALSUITE.
Following our implementation of the IMRPHENOMXAS

model, our IMRPHENOMXHM implementation is highly
modularised, such that the inspiral, intermediate and ring-
down parts can be updated independently, they are also
tracked with independent version numbers, and are imple-
mented in different files of the source code. Note that the
XLAL standard implies that all the source code files are
included via the C preprocessor into the main driver file,
LALSimIMRPhenomXHM.c.
The model can be called both in the native Fourier

domain, and in the time domain, where an inverse fast
Fourier transformation is applied by the LALSUITE code. The
SWIG [88] software development tool is used to automati-
cally create Python interfaces to all XLAL functions of our
code, which can be used alternatively to the C interfaces.
Special attention is due for the time and phase alignment

of our LALSUITE implementation. As mentioned in

FIG. 25. The quantity mod ð2Φlm −mΦ22; 2πÞ can be used to discriminate between different tetrad conventions. Here we show that
the time-domain conversion of IMRPHENOMXHM follows the same tetrad choice implemented in the LVCNR catalog.
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Sec. II B, our hybrid waveforms are aligned in time such
that the Newman-Penrose scalar for the l ¼ jmj ¼ 2
modes peaks 500M before the end of the waveform. In
the LALSUITE implementation, we first apply a global time-
shift of 500M to our reconstructed waveforms, and then a
parametric fit that accounts for the time-difference between
the peak-time of ψ4 and that of strain. An inverse Fourier
transformation of the Fourier domain waveform, as pro-
duced by LALSUITE, will then return a strain peaking around
the end of the waveform.
When calling the model in the time domain through

LALSIMULATION’s ChooseTDWaveform interface, the
time coordinate is chosen such that t ¼ 0 for the peak of
the sum of the square of the polarizations:

AðtÞ ¼ h2þðtÞ þ h2×ðtÞ; ðC1Þ
Aðt ¼ 0Þ ¼ Apeak: ðC2Þ

These polarizations include all the modes used to generate
the model and also depend on the line of sight from the
detector to the source through the inclination and azimuthal
angle. This choice is consistent with the choice made for
the IMRPHENOMHM model.
In LALSIMULATION the model is called through the

function ChooseFDWaveform, whose input parameters
f_ref and phiRef are used to define the phase of the
22 mode at some particular reference frequency. The
rest of the modes are built with the correct relative phases
with respect to the 22 mode. The argument phiRef is
defined as the orbital phase at the frequency f_ref.
See our discussion in the context of IMRPHENOMXAS [26]
for further details. We relate this with the frequency
domain 22 phase by means of the SPA (see also our
discussion in [26]).

Ψ2−2ðfrefÞ ¼ 2phiRef − 2π fref tfref þ
π

4
: ðC3Þ

Note that when talking about positive frequencies we have
to refer to the negative mode, although we usually skip the
minus sign for economy of the language.
Since our model is built in the Fourier domain we can not

compute the quantity tfref without a Fourier transforma-
tion to the time domain plus a numerical root finding, and
we currently set it to tfref ¼ 0. Furthermore, the expres-
sion (C3) would not be valid if f_ref is situated in the
merger-ringdown part of the waveform, because the SPA
approximation is only reliable for the inspiral. This means

that when comparing a time-domain model with our model
with the exact same parameters we can only expect them to
agree up to rotations, and would thus have to optimize over
phiRef to achieve agreement.
In LALSIMULATION the azimuthal angle that enters in the

spin-weighted spherical harmonics is defined as
β ¼ π

2
− phiRef, this means that changing the parameter

phiRef is equivalent to rotating the system: For example,
by increasing the phiRef by a quantity δϕ, we would
rotate the system an angle −δϕ. When the 22 mode only is
considered, phiRef acts just as a global phase factor for
the waveform (ei 2phiRef) and the match is not affected
since it maximizes over phase and time shifts. However,
when higher modes are included this is not satisfied
anymore since the term eimphiRef is different for every
mode and can not be factored out. Note that in our
LALSUITE code, this rotation is applied to every individual
mode, such that individual modes and the mode sum are
consistent with respect to rotations.
The user is free to specify the spherical harmonic

modes that should be used to construct the waveform.
The default behavior is to use all the modes available:
f22; 2-2; 21; 2-1; 33; 3-3; 32; 3-2; 44; 4-4g, below we
describe how the modes can be chosen through the different
interfaces available for LALSUITE waveforms.
Furthermore, the model implemented in LALSUITE

supports acceleration of waveform evaluation by inter-
polation of an unequispaced frequency grid broadly
following the “multibanding” of [31]. Our version of
the algorithm is described in [30] to do the evaluation
faster and can also use a custom list of modes specified by
the user. The multibanding algorithm is parametrized by a
threshold, which describes the permitted local interpola-
tion error for the phase in radians, lower values thus
correspond to higher accuracy. The default value is set to a
value of 10−3.
Extensive debugging information canbe enabled at compile

time with the C preprocessor flag -D PHENOMXHMDEBUG.

1. Python Interface

To call the model with the default behavior we
use the function SimInspiralChooseFDWaveform
from lalsimulation with the argument lalparams
being an empty LALSUITE dictionary lalparams=
lal.CreateDict(). The threshold of the multibanding
and the mode array can be changed by adding their values
to the LALSUITE dictionary in the following way:

lalsimulation.SimInspiralWaveformParamsInsertPhenomXHMThresholdMband(lalparams,
threshold)

ModeArray ¼ lalsimulation:SimInspiralCreateModeArrayðÞ
for mode in [[2,2],[2,-2],[2,1],[2,-1]]:

lalsimulation.SimInspiralModeArrayActivateMode(ModeArray, mode[0], mode[1])
lalsimulation.SimInspiralWaveformParamsInsertModeArray(lalparams, ModeArray).
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If threshold ¼ 0 then multibanding is switched off. By
calling ChooseFDWaveform with this LALSUITE dic-
tionary we would get the hp and hc polarizations from the
contribution of the 22, 2-2, 21, and 2-1 modes without
using multibanding.

2. GenerateSimulation Interface.

This is an executable in LALSIMULATION called through
command line. The parameters to evaluate the model are
passed by options like –m1,–spin1z, etc. The multi-
banding threshold and the mode array are specified as
follows

./GenerateSimulation –approximant IM-
RPhenomXHM

...waveform params...
–phenomXHMMband 0.
–modesList "2,2, 2,-2, 2,1, 2,-1".

3. LALInference and Bilby

We also included the options in the two standard
codes to perform Bayesian inference in gravita-
tional wave data analysis: LALInference[89] and
Bilby [8]. LALInference uses the same syntax than
GenerateSimulation when called through the com-
mand line. You can also add these options to the config file
and the example we have employed so far can be called as:

[engine]
...
approx ¼ IMRPhenomXHMpseudoFourPN
modesList ¼ ’2;2;2;−2;2;1;2;−1’
phenomXHMMband ¼ 0
...

Note that in the current version of LALInference the
string pseudoFourPN has to be added to the name of the
approximant. For Bilby these options are specified in
the waveform_argument dictionary defined in
the configuration file. The equivalent example would be
called as:

waveformarguments ¼
dictðwaveformapproximant ¼

’IMRPhenomXHM’,
referencefrequency ¼ 50.,
minimumfrequency ¼ 20.,
mode array ¼ ½½2;2�; ½2;−2�; ½2;1�; ½2;−1��,
phenomXHMMband ¼ 0:Þ.

The released version of Bilby does not support the
multibanding option yet, however a private branch that
support this option can be downloaded with git clone -
b imrphenomx https://git.ligo.org/cecilio.garcia-quiros/
bilby.git. Equivalently we provide a branch for the PyCBC
software [90] which can be obtained with the command

git clone -b imrphenomx https://github.com/
Ceciliogq/pycbc.git.

APPENDIX D: INSPIRAL PHASE: HIGHER-
MODES EXTENSION OF IMRPHENOMXAS

The inspiral orbital phase calibrated in IMRPHENOMXAS

can be written as a pseudo-PN expansion:

ϕ22ðfÞ ¼ N ðMfÞ−5=3
X9
i¼0

ðMfÞi=3ðci22 þ di22 log fÞ; ðD1Þ

where N is a certain normalization constant. In the
reconstruction of the higher-mode inspiral phase we need
m
2
ϕ22ð2m fÞ [see Eq. (4.8)]. To avoid recomputing the (2,2)-

phase on a new frequency array for each mode, we wish to
rewrite this quantity as

m
2
ϕ22

�
2

m
f

�
¼ N ðMfÞ−5=3

X9
i¼0

ðMfÞi=3ðcim þ dim log fÞ;

ðD2Þ

where all the rescaling factors have been reabsorbed in
frequency-independent coefficients. It is straightforward to
verify that the coefficients of the two expansions above are
related as follows:

cim ¼
�
m
2

�ð8−iÞ=3�
ci22 − di22 log

m
2

�
;

dim ¼
�
m
2

�ð8−iÞ=3
di22: ðD3Þ

APPENDIX E: FOURIER DOMAIN
POST-NEWTONIAN AMPLITUDES

When comparing the Fourier domain expressions for the
spherical harmonic mode amplitudes given in Eqs. (11-12)
of [52] we found significant discrepancies with our
numerical data. We have thus recomputed the mode
amplitudes as outlined below, and include the explicit
expressions we have used (which deviate from [52] at
2PN order), and which resolve the observed discrepancies
with the numerical data, at the end of this Appendix.
The time domain PN spherical harmonic modes are

typically written in the form

hlm ¼ Alme−imϕ; AlmðxÞ ¼ 2 η x

ffiffiffiffiffiffiffiffi
16π

5

r
ĥlm: ðE1Þ

Expressions for the ĥlm can be found in [28,91,92],
including nonspinning terms up to 3PN order, and spinning
terms up to 2PN order. The quantities ĥlm, and with them
the time domain amplitudes Alm are complex functions.
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According to the SPA, the modes in the frequency domain
can then be approximated as

h̃lmðfÞ ≈ AlmðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

mϕ̈ðxÞ

s
eiΨlmðfÞ; ðE2Þ

and we define ASPA
lm ðfÞ ¼ AlmðxÞ

ffiffiffiffiffiffiffiffiffi
2π

mϕ̈ðxÞ
q

(compare also

with the expressions in [50]). The orbital phase ϕ is related
to the freqency and the PN expansion parameter x by

ϕ̈ ¼ _ω ¼ ð3=2Þ ffiffiffi
x

p
_x. The frequency f, which acts as the

independent variable in the Fourier domain is related to x
by x ¼ ð2π fm Þ2=3. We then obtain

ASPA
lm ðfÞ ¼ AlmðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

mð3=2Þ ffiffiffi
x

p
_x

s
: ðE3Þ

We now need to compute _x. Using the TaylorT4 expression
[93] we finally obtain:

_x ¼ −m1m2

32744250ðm1 þm2Þ2
½x5ð−419126400m2

1 − 838252800m1m2 − 419126400m2
2Þ

þ x6ð1152597600m3
1m2 þ 1247400m2

1ð1848m2
2 þ 743Þ

þ 2494800m1m2ð462m2
2 þ 743Þ þ 926818200m2

2Þ
þ x7ð−1373803200m4

1m
2
2 − 2747606400m3

1m
3
2

þ 207900m3
1m2ð10206χ21 − 19908χ1χ2 þ 10206χ22 − 13661Þ

− 23100m2
1ð59472m4

2 þ 91854χ21 þ 34103

− 18m2
2ð10206χ21 − 19908χ1χ2 þ 10206χ22 − 13661ÞÞ

þ 23100m1m2ð9m2
2ð10206χ21 − 19908χ1χ2 þ 10206χ22 − 13661Þ

− 2ð45927χ21 þ 45927χ22 þ 34103ÞÞ − 23100m2
2ð91854χ22 þ 34103ÞÞ ðE4Þ

þ x13=2ð6566313600m4
1χ1 þ 13132627200m3

1m2χ1 − 2619540000m3
1χ1

− 34927200m2
1ð48π −m2ð188m2ðχ1 þ χ2Þ þ 75χ2ÞÞ

− 34927200m1m2ð96π −m2ð376m2χ2 þ 75χ1ÞÞ
− 34927200m2

2ðð75 − 188m2Þm2χ2 þ 48πÞÞ ðE5Þ

þ x15=2ð−34962127200m5
1m2χ1 − 69924254400m4

1m
2
2χ1 þ 14721814800m4

1m2χ1

þ 17059026600m4
1χ1 − 34962127200m3

1m
3
2ðχ1 þ χ2Þ − 14721814800m3

1m
2
2χ2

þ 5821200m3
1m2ð5861χ1 þ 1701πÞ − 4036586400m3

1χ1

þ 207900m2
1ð3πð31752m2

2 þ 4159Þ þ 2m2ð−168168m3
2χ2 − 35406m2

2χ1

þ 41027m2ðχ1 þ χ2Þ þ 9708χ2ÞÞ þ 415800m1m2ð−84084m4
2χ2 þ 35406m3

2χ2

þ 82054m2
2χ2 þ 3πð7938m2

2 þ 4159Þ þ 9708m2χ1Þ
þ 207900m2

2ð2m2ð41027m2 − 9708Þχ2 þ 12477πÞÞ ðE6Þ

þ x17=2ð84184254000m6
1m

2
2χ1 þ 170726094000m5

1m
3
2χ1 þ 2357586000m5

1m
3
2χ2

− 35665037100m5
1m

2
2χ1 − 198816225300m5

1m2χ1 þ 88899426000m4
1m

4
2ðχ1 þ χ2Þ

þ 35665037100m4
1m

3
2χ2 − 138600m4

1m
2
2ð3399633χ1 þ 530712χ2 þ 182990πÞ

þ 33313480200m4
1m2χ1 þ 87143248500m4

1χ1 þ 9702000m3
1m

5
2ð243χ1 þ 17597χ2Þ

þ 35665037100m3
1m

4
2χ1 − 69300m3

1m
3
2ð4991769ðχ1 þ χ2Þ þ 731960πÞ

− 33313480200m3
1m

2
2χ2 þ 1925m3

1m2ð97151928χ1 þ 6613488χ2 − 12912300πÞ
− 14891068500m3

1χ1 − 11550m2
1ð15πð146392m4

2 þ 286940m2
2 − 2649Þ
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þ 2m2ð−3644340m5
2χ2 þ 1543941m4

2χ2 þ 54m3
2ð58968χ1 þ 377737χ2Þ

þ 1442142m2
2χ1 − 4874683m2ðχ1 þ χ2Þ − 644635χ2ÞÞ

− 23100m1m2ðm2ðm2ð8606763m2
2 − 1442142m2 − 8095994Þχ2

þ ð−551124m2 − 644635Þχ1Þ þ 15πð71735m2
2 − 2649ÞÞ

þ 57750m2
2ð2m2ð754487m2 − 128927Þχ2 þ 7947πÞ�: ðE7Þ

We can now compute the complex nonpolynomial
Fourier domain PN amplitudes Alm, that we reexpand
up to 3PN order, as we have done for the l ¼ jmj ¼ 2
modes in IMRPHENOMXAS. We list the resulting complex
Fourier domain PN amplitudes following this method. We
write them as a function of v ¼ ffiffiffi

x
p ¼ ð2π fm Þ1=3 and factor

out a common term to simplify the comparison with [52]
(note that there ν ¼ η, Vm ¼ v and mΨSPA þ π=4 ¼ Ψlm),
finally obtaining

ASPA
lm ðfÞ ¼ π

ffiffiffiffiffi
2η

3

r
v−7=2Ĥlm: ðE8Þ

The post-Newtonian expressions that we use to calibrate
the inspiral part of the amplitude are given by the expanded

expressions below, as used in Eq. (E3), except for the (2,1)
mode. We observed that for some cases with q < 40 the
reexpansion of the (2,1) mode breaks down before reaching
the cutting frequency of the inspiral. For those cases the
(2,1) amplitude is very small (see Sec. II B) and the
spinning contribution of higher PN terms is more important
due to the different competing effects which can lead to
cancellations in the waveform which are not captured by
our 3PN accurate quasicircular expressions. For the (2,1)
mode we therefore do not re-expand in a power series but
keep the form of expression (E3) when q < 40. The
expression (E3) is not used for q > 40 because it shows
a divergence that appears before the inspiral cutting
frequency for high spins.

Ĥ22 ¼ 1þ
�
451η

168
−
323

224

�
v2 þ v3

�
27δχza
8

−
11ηχzs
6

þ 27χzs
8

�

þ v4
�
−
49δχzaχ

z
s

16
þ 105271η2

24192
þ 6ηðχzaÞ2 þ

ηðχzsÞ2
8

−
1975055η

338688
−
49ðχzaÞ2

32
−
49ðχzsÞ2

32
−
27312085

8128512

�

þ v6
�
107291δηχaχs

2688
−
875047δχaχs

32256
þ 31πδχa

12
þ 34473079η3

6386688
þ 491η2χa

2

84
−
51329η2χ2s

4032

−
3248849057η2

178827264
þ 129367ηχ2a

2304
þ 8517ηχs

2

224
−
7πηχs
3

−
205π2η

48
þ 545384828789η

5007163392
−
875047χa

2

64512

−
875047χ2s
64512

þ 31πχs
12

þ 428iπ
105

−
177520268561

8583708672

�
ðE9Þ

Ĥ21 ¼
1

3
i

ffiffiffi
2

p �
vδþ v2

�
−
3δχzs
2

−
3χza
2

�
þ v3

�
117δη

56
þ 335δ

672

�

þ v4
�
−
965

336
δηχzs þ

3427δχzs
1344

− πδ −
iδ
2
−
1

2
iδ logð16Þ − 2101ηχza

336
þ 3427χza

1344

�

þ v5
�
21365δη2

8064
þ 10δηχ2a þ

39

8
δηχ2s −

36529δη

12544
−
307δχ2a
32

−
307δχ2s
32

þ 3πδχs

−
964357δ

8128512
þ 213ηχaχs

4
−
307χaχs

16
þ 3πχa

�

þ v6
�
−
547

768
δη2χs − 15δηχ2aχs −

3

16
δηχ3s −

7049629δηχs
225792

þ 417πδη

112
−
1489iδη
112

−
89

28
iδη logð2Þ þ 729

64
δχ2aχs

þ 243δχ3s
64

þ 143063173δχs
5419008

−
2455πδ

1344
−
335iδ
1344

−
335

336
iδ logð2Þ þ 42617η2χa

1792
− 15ηχ3a −

489

16
ηχaχs

2

−
22758317ηχa

225792
þ 243χa

3

64
þ 729χaχ

2
s

64
þ 143063173χa

5419008

��
ðE10Þ
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Ĥ33 ¼ −
3

4
i

ffiffiffi
5

7

r �
vδþ v3δ

�
27

8
η −

1945

672

�
þ v4

�
−
2

3
δηχzs þ

65δχzs
24

þ πδ −
21iδ
5

þ 6iδ log

�
3

2

�
−
28ηχza
3

þ 65χza
24

�

þ v5
�
420389δη2

63360
þ 10δηχ2a þ

1

8
δηχ2s −

11758073δη

887040
−
81δχ2a
32

−
81δχ2s
32

−
1077664867δ

447068160
þ 81ηχaχs

4
−
81χaχs
16

�

þ v6
�
−
67

24
δη2χs −

58745δηχs
4032

þ 131πδη

16
−
440957iδη

9720
þ 69

4
iδη log

�
3

2

�
þ 163021δχs

16128
−
5675πδ

1344
þ 389iδ

32

−
1945

112
iδ log

�
3

2

�
−
137η2χa

24
−
148501ηχa

4032
þ 163021χa

16128

��
ðE11Þ

Ĥ32 ¼
1

3

ffiffiffi
5

7

r �
v2ð1 − 3ηÞ þ v34ηχzs þ v4

�
−
589η2

72
þ 12325η

2016
−
10471

10080

�

þ v5
�
η

�
113δχa

8
þ 1081χs

84
−
66i
5

�
þ 1

24
ð−113δχa − 113χs þ 72iÞ − 15η2χs

�

þ v6
�
η

�
−
1633δχaχs

48
−
563χ2a
32

−
2549χ2s
96

þ 8πχs −
8689883

149022720

�
þ 81δχaχs

16

þ 837223η3

63360
þ η2

�
30χ2a þ

313χ2s
24

−
78584047

2661120

�
þ 81χa

2

32
þ 81χ2s

32
þ 824173699

447068160

��
ðE12Þ

Ĥ31 ¼
i

12
ffiffiffi
7

p
�
vδþ v3

�
17δη

24
−
1049δ

672

�
þ v4

�
10δηχzs

3
þ 65δχzs

24
− πδ −

7iδ
5

−
1

5
iδ logð1024Þ − 40ηχza

3
þ 65χza

24

�

þ v5
�
−
4085δη2

4224
þ 10δηχ2a þ

1

8
δηχ2s −

272311δη

59136
−
81δχ2a
32

−
81δχ2s
32

þ 90411961δ

89413632
þ 81ηχaχs

4
−
81χaχs
16

�

þ v6
�
803

72
δη2χs −

36187δηχs
1344

þ 245πδη

48
−
239iδη
120

−
5

12
iδη logð2Þ þ 264269δχs

16128
þ 313πδ

1344
þ 1049iδ

480

þ 1049

336
iδ logð2Þ þ 2809η2χa

72
−
318205ηχa

4032
þ 264269χa

16128

��
ðE13Þ

Ĥ44 ¼
4

9

ffiffiffiffiffi
10

7

r �
v2ð3η − 1Þ þ v4

�
1063η2

88
−
128221η

7392
þ 158383

36960

�

þ v5
�
πð2 − 6ηÞ þ 1

120
ð−ηð1695δχa þ 2075χs − 3579iþ 2880i logð2ÞÞ

þ 565δχa þ 1140η2χs þ 565χs − 1008iþ 960i logð2ÞÞ
�

þ v6
�
η

�
243δχaχs

16
þ 563χ2a

32
þ 247χs

2

32
−
22580029007

880588800

�
−
81δχaχs

16
−
7606537η3

274560

þ η2
�
−30χa2 −

3χ2s
8

þ 901461137

11531520

�
−
81χa

2

32
−
81χ2s
32

þ 7888301437

29059430400

��
ðE14Þ

Ĥ43 ¼
3

4
i

ffiffiffiffiffi
3

35

r �
v3ð2δη − δÞ þ v4

�
5ηχa
2

−
5δηχs
2

�
þ v5

�
887δη2

132
−
10795δη

1232
þ 18035δ

7392

�

þ v6
�
−
469

48
δη2χs þ

4399δηχs
448

þ 2πδη −
16301iδη

810
þ 12iδη

�
3

2

�
−
113δχs
24

− πδþ 32iδ
5

− 6iδ log

�
3

2

�
−
1643η2χa

48
þ 41683ηχa

1344
−
113χa
24

��
ðE15Þ
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Jiménez Forteza, and A. Bohé, Phys. Rev. D 93, 044007
(2016).

[2] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F.
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and S. Ossokine, Phys. Rev. D 98, 084028 (2018).

[72] J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, D. A.
Hemberger, P. Schmidt, and R. Smith, Phys. Rev. D 95,
104023 (2017).

[73] J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. D 90,
104004 (2014).

[74] J. Healy and C. O. Lousto, Phys. Rev. D 95, 024037 (2017).
[75] J. Healy and C. O. Lousto, Phys. Rev. D 97, 084002 (2018).
[76] V. Varma, D. Gerosa, L. C. Stein, F. Hébert, and H. Zhang,
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