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In this paper we present IMRPHENOMXAS, a thorough overhaul of the IMRPHENOMD [S. Husa et al., Phys.
Rev. D 93, 044006 (2016); S. Khan et al., Phys. Rev. D 93, 044007 (2016)] waveform model, which
describes the dominant l ¼ 2, jmj ¼ 2 spherical harmonic mode of nonprecessing coalescing black holes in
terms of piecewise closed form expressions in the frequency domain. Improvements include in particular
the accurate treatment of unequal spin effects, and the inclusion of extreme mass ratio waveforms.
IMRPHENOMD has previously been extended to approximately include spin precession [M. Hannam et al.,
Phys. Rev. Lett. 113, 151101 (2014)] and subdominant spherical harmonics [L. London et al., Phys. Rev.
Lett. 120, 161102 (2018)], and with its extensions it has become a standard tool in gravitational wave
parameter estimation. Improved extensions of IMRPHENOMXAS are discussed in companion papers
[C. García-Quirós et al., Phys. Rev. D 102, 064002 (2020); G. Pratten et al., arXiv:2004.06503].
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I. INTRODUCTION

A key element of gravitational wave data analysis are
waveform models, which serve as templates that detector
data can be compared with, usually in the context of
matched filter techniques, combined with template-bank
based searches [1,2], or Bayesian inference [3,4]. For
general relativity, significant effort has been spent by the
gravitational wave source modeling community to con-
struct such models as approximate solutions of the Einstein
equations, combining perturbative methods, numerical
solutions, and qualitative insight. The science case of
gravitational wave astronomy is limited by the fidelity of
the models to the complex physical processes they re-
present, and the computational efficiency of evaluating
the models. For GW150914 [5,6], the first detection and
loudest binary black hole event of the first two observation
runs [7], a detailed investigation of the effects of systematic
errors in the waveform models was carried out in [8] for the
models used for the analysis of the event: the time domain
“SEOBNR” family of models based on the effective
one-body approach [9–13], and the phenomenological
frequency domain model IMRPHENOMP [14]. The latter
extends the IMRPHENOMD model [15,16] for the dominant,
i.e., l ¼ 2, jmj ¼ 2, spherical harmonic modes of
quasicircular black hole binaries to include effects of

spin-precession. No evidence was found “for a systematic
bias relative to the statistical error of the original parameter
recovery of GW150914 due to modeling approximations or
modeling inaccuracies,” however more accurate models
would be required for future observations.
In this paper we present IMRPHENOMXAS, a thorough

update to the IMRPHENOMD model [15,16]. Following the
phenomenological modeling framework, IMRPHENOMXAS

is formulated in the frequency domain, and describes the
waveform in terms of piecewise closed form expressions,
with the aim to facilitate computationally efficient appli-
cations in gravitational wave data analysis. In a companion
paper we present an extension to subdominant harmonics,
which is aimed to supersede IMRPHENOMHM [17], which is
only been calibrated to numerical relativity data for the
dominant quadrupole spherical harmonic. In a second
companion paper [18] we present a method to accelerate
the evaluation of the waveform model, based on earlier
work by Vinciguerra et al. [19]. In future work we will
discuss extending our model to precession [20] using the
methods of IMRPHENOMP [14,21].
The main elements of the model construction are chosen

as follows: The waveform is split into two real non-
oscillatory functions, an amplitude and phase. Modeling
then proceeds in two steps: first, closed form expressions
are fitted to numerical waveform data for a set of calibration
waveforms. These calibration waveforms are constructed as*g.pratten@bham.ac.uk
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hybrid waveforms, appropriately gluing together approxi-
mate waveforms describing the inspiral, which in our case
we take as the SEOBNRv4 version of an effective-one-
body (EOB) model [12], and numerical relativity wave-
forms, which describe the last orbits, merger, and ringdown
of the system. Finding appropriate analytical functions
becomes easier as the frequency region for the fitting
procedure is broken up into smaller regions. As with
previous phenomenological waveform models, we choose
three such regions, where the ansatz in each one and the
choice of transition frequencies are guided by perturbative
descriptions and physical intuition: (i) A low frequency
inspiral regime, where the waveform can be described by
adding additional terms to a post-Newtonian expansion.
(ii) A high frequency regime where the waveform is
dominated by quasinormal ringdown. (iii) An intermediate
regime, which captures the complex physics of the merger
and the transition between the physics of the inspiral and
the ringdown, where neither the post-Newtonian nor the
quasinormal-ringdown perturbative descriptions apply.
The result of the first step is a set of coefficients for each

numerical waveform, which greatly compress the informa-
tion used to accurately represent each waveform. In a
second step, each coefficient is then modeled across the
three-dimensional parameter space of nonprecessing qua-
sicircular black hole binaries, described by mass ratio and
the two spin components orthogonal to the orbital plane. In
contrast to previous frequency domain phenomenological
models, IMRPHENOMXAS captures the full spin dependence
of the waveform: In the models preceding IMRPHENOMD

[22,23], a single effective spin was used to model the spin-
dependence. In IMRPHENOMD, different effective spins were
used to model the inspiral and high-frequency regime,
which already significantly reduced the parameter bias for
unequal spin cases [24]. In IMRPHENOMXAS, we use the
hierarchical fitting method developed in [25] to finally treat
the full three-dimensional parameter space.

IMRPHENOMXAS also significantly increases the validity
range in the mass ratio of any previous phenomenological
model by including extreme mass ratio waveforms up to
mass ratio 1000, which were computed by hybridizing
numerical solutions of the perturbative Teukolsky equation
[26–28] as described in [29]. Due to improvements in
the model construction and the larger number of input
calibration waveforms, IMRPHENOMXAS offers a significant
improvement in accuracy, showing ∼1–2 orders of
magnitude improvement in the mismatch compared to
IMRPHENOMD. For a list of the key features implemented
in IMRPHENOMXAS see Sec. X.
The paper is organized as follows: First we provide a

detailed discussion of our conventions in Sec. II. Then we
present our input waveforms in Sec. III. The mapping
between phenomenological coefficients and physical
parameters is discussed in Sec. IV, and the choice of
transition frequencies between the model’s three frequency

regions is treated in Sec. V. The model construction for the
amplitude and phase is then described in Secs. VI and VII,
and an example of our use of the hierachical fitting
procedure for parameter space fits is provided in
Sec. VIII. In Sec. IX we describe how we have validated
our model, and we conclude with a summary and dis-
cussion of our work in Sec. X. Appendix A provides the
details of the post-Newtonian TaylorF2 approximant as we
use it.

II. CONVENTIONS AND PRELIMINARIES

A. Intrinsic parameters conventions

We consider binary systems of astrophysical black holes
in general relativity, which do not exhibit spin precession
and are quasicircular (noneccentric). In the limit of large
separation, each black hole is perfectly described by the
Kerr solution, and the initial conditions for the dynamics
are given by the position and velocity vectors (or equiv-
alently momenta) of the two black holes. In this limit the
momenta correspond to Newtonian particles in a circular
orbit, and we will adopt the center-of-mass frame. The
intrinsic parameters θ of such systems correspond to the
dimensionless projections of the BH spins (intrinsic angu-
lar momenta) S⃗1;2 in the preserved direction of the orbital

angular momentum L⃗, and the masses m1;2, where

χi ¼
S⃗i · L⃗

m2
i jL⃗j

: ð2:1Þ

We define the mass ratio q ¼ m1=m2 ≥ 1, total mass
M ¼ m1 þm2, and symmetric mass ratio η ¼ m1m2=M2.

B. Waveform conventions

IMRPHENOMXAS models the l ¼ jmj ¼ 2 spherical har-
monic modes of the coalescence of binary systems of
nonprecessing quasicircular black holes. We assume a sense
of rotation of the binary consistent with a right-handed
coordinate system: The orbital frequency vector ω⃗ is chosen
in the direction of the z-axis of a Cartesian coordinate system
ðx; y; zÞ. The black holes orbit in the plane z ¼ 0, and the
spacetime, and thus the gravitational-wave signal, exhibits
equatorial symmetry, i.e., the northern hemisphere z ≥ 0 is
isometric to the southern hemisphere z ≤ 0.
We introduce a standard spherical coordinate system

x¼ rcosφcosϑ; y¼ rsinφcosϑ; z¼ rcosϑ; ð2:2Þ

and spherical harmonics Y−2
lm of spin-weight −2 (see, e.g.,

[30]), where here we will only require the modes:

Y−2
2�2 ¼

ffiffiffiffiffiffiffiffi
5

64π

r
ð1� cos ϑÞ2e�2iφ: ð2:3Þ
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The gravitational-wave strain h depends on an inertial time
coordinate t, the angles ϑ, φ in the sky of the source, and the
source parameters θ. It is written in terms of spherical
harmonic modes hlm, and alternatively in terms of gravi-
tational wave polarizations hþ and h× as

hðt;ϑ;φ; θÞ ¼
X

m¼−2;2
h2mðt; θÞ−2Y2mðϑ;φÞ; ð2:4Þ

¼ hþðt;ϑ;φ; θÞ − ih×ðt; ϑ;φ; θÞ: ð2:5Þ

We define the Fourier transform to be consistent with the
conventions adopted in the LIGO Algorithms Library [31]

h̃ðfÞ ¼
Z

∞

−∞
hðtÞe−i2πftdt: ð2:6Þ

With this convention of the Fourier transform time deriv-
atives are converted to multiplications by factors of i2πf in
the Fourier domain. The frequency domain strain h̃ can
then be written in the form of the time domain strain in
(2.4), (2.5),

h̃ðf; ϑ;φ; θÞ ¼
X

m¼−2;2
h̃2mðf; θÞ−2Y2mðϑ;φÞ ð2:7Þ

¼ h̃þðf;ϑ;φ; θÞ − ih̃×ðf; ϑ;φ; θÞ: ð2:8Þ

The equatorial symmetry of nonprecessing binaries implies

h22ðtÞ ¼ h�2−2ðtÞ; ð2:9Þ

it is thus sufficient to model just one spherical harmonic.
For the Fourier transform this leads to

h̃22ðfÞ ¼ h̃�2−2ð−fÞ: ð2:10Þ

Our above choices imply that if the time domain modes are
written in terms of a positive amplitude aTDðtÞ and a phase
ϕTDðtÞ, then

h22ðtÞ¼aTDðtÞe−iϕTDðtÞ; h2−2ðtÞ¼aTDðtÞeiϕTDðtÞ: ð2:11Þ

Since we assume negligible eccentricity the frequency time
derivative of the phases of both modes are monotonic
functions of t. We will assume right-handed circular motion
for the binary, with the rotation axis being the z-axis
defined by (2.2). With the definitions (2.11), (2.3) this
implies that ϕTDðtÞ is then a monotonically increasing
function of time and the gravitational-wave polarizations in
the time domain are given by

hþðtÞ ¼ þ
ffiffiffiffiffiffi
5

4π

r
1þ cos2ϑ

2
· aTD cosð2φ − ϕTDÞ; ð2:12Þ

h×ðtÞ ¼ −
ffiffiffiffiffiffi
5

4π

r
cosϑ · aTD sinð2φ − ϕTDÞ: ð2:13Þ

With our convention for the Fourier transformation (2.6),
the definitions above imply that h̃22ðfÞ is concentrated in
the negative frequency domain and h̃2−2ðfÞ in the positive
frequency domain. For the inspiral, this can be checked
against the stationary phase approximation (SPA), see, e.g.,
[32–34] or the derivation in Appendix B.
We construct our model in the frequency domain, it is

thus convenient to model the h̃2−2, which is nonzero for
positive frequencies. The mode h̃22, defined for negative
frequencies, can then be computed from (2.10). We model
the Fourier amplitude Aðf > 0; θÞ, which is a positive
function for positive frequencies, and zero otherwise, and
the Fourier domain phase ϕðf > 0; θÞ, defined by

h̃2−2ðf; θÞ ¼ Aðf; θÞe−iϕðf;θÞ: ð2:14Þ

The gravitational wave polarizations in the frequency
domain are then given by

h̃þðfÞ ¼ þ
ffiffiffiffiffiffiffiffi
5

16π

r
1þ cos2ϑ

2
· h̃2−2e−i2φ; ð2:15Þ

h̃×ðfÞ ¼ −i
ffiffiffiffiffiffiffiffi
5

16π

r
cosϑ · h̃2−2e−i2φ: ð2:16Þ

When one only carries out computations with the projec-
tions of the gravitational strain onto detectors, i.e., specific
polarizations, one only deals with Fourier transforms of real
functions, and only positive frequencies are required.
Note that with the above definitions, for a face-on binary,

i.e., ϑ ¼ 0, we get that h̃ ¼ h̃þ − ih̃× ¼ 0. This does not
mean that the signal vanishes for face-off binaries, but that
when working with the full waveform without projection
onto specific polarizations, one would also need to explic-
itly consider negative frequencies.
As a consequence of time derivatives being related to

multiplication in Fourier space, the conversion between the
GW strain and the Newman-Penrose scalar ψ4, where

d2hðtÞ
dt2

¼ ψ4ðtÞ; ð2:17Þ

is given by

h̃ðfÞ ¼ −
ψ̃4ðfÞ
4π2f2

; ð2:18Þ

and only affects the Fourier domain amplitude, but not the
phase, up to a jump of π, and apart from possible effects
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specific to the numerical algorithm used to carry out this
conversion.
A time shift of the waveform is encoded only in the

Fourier domain phase, but at the price of changing the
shape of phase function. The Fourier transformation of a
time and phase shifted function hφ0;τ ¼ hðt − τÞeiφ0 is
given by

h̃φ0;τðωÞ ¼
Z

∞

−∞
hðt − τÞeiφ0e−iωtdt

¼ eiðφ0þωτÞ
Z

∞

−∞
hðt0Þe−iωt0dt0;

¼ eiðφ0þωτÞh̃; ð2:19Þ

and thus corresponds to an additional term in the phase,
which is linear in frequency.
An additional ambiguity arises due to the choice of tetrad

defining the polarizations. This is discussed in detail in
[29,35] and, for the dominant quadrupole mode, is equiv-
alent to a fixed global rotation of the source.

C. Waveform phenomenology preliminaries

A detailed discussion of the phenomenology of the
inspiral-merger-ringdown frequency domain waveforms
modeled here has been given in [15]. Here we summarize
some of the key features which are most relevant for our
modeling strategy.
Our goal is to describe the amplitude and phase of the

waveform by piecewise closed form expressions, which are
valid in some frequency interval. Using more such intervals
makes the modeling of each interval simpler: e.g., when
using a sufficient number of intervals a cubic spline
representation may be sufficient. Using a smaller number
of intervals makes it harder to find an appropriate analytical
form for each interval.
In this work, we will use three regimes: For the inspiral,

i.e., for low frequencies, it is natural to describe the
waveform in the framework of post-Newtonian theory
(see, e.g., [36]) as a Taylor expansion in powers of v=c,
where v is an orbital velocity parameter and c the speed of
light, or equivalently a frequency f, where πf ¼ ðv=cÞ3.
One can then simply add higher order terms in v=c, often
referred to as pseudo-post-Newtonian terms, where as-of-
yet unknown coefficients are calibrated to the data set of
numerical waveforms. More concretely, we will base our
inspiral description on the standard TaylorF2 approximant
[37–40], which provides closed form expressions for the
amplitude and phase of the Fourier transform of the
gravitational wave strain for quasicircular inspirals, and
is derived from time domain post-Newtonian expressions
via the stationary phase approximation, see Appendixes A
and B. We augment the known TaylorF2 series with higher
order terms as described in Sec. VI A for the amplitude, and
in Sec. VII A for the phase.

After the merger, the relaxation of the excited final black
hole to the Kerr solution can be described by black hole
perturbation theory and quasinormal ringdown behavior
[41]. While the stationary phase approximation is not valid
for the merger and ringdown, it has long been known that
simple models of damped oscillations can be Fourier-
transformed analytically, and thus can serve to analytically
model key features of the ringdown in the frequency
domain. We will briefly discuss such models below, and
how they can be used to form the basis of the closed-form
frequency domain model we want to construct.
We use a third, intermediate, frequency regime to capture

the transition between the inspiral and ringdown regimes.
This transition regime roughly corresponds to the merger,
and models the complex physics that occurs when the
spacetime is highly dynamical and so far eludes a pertur-
bative treatment. A crucial element of modeling this
intermediate regime is to find an appropriate start fre-
quency, when the inspiral breaks down, in the sense that an
inconveniently large number of post-Newtonian orders
would be required for an accurate description. For extreme
mass ratios, the innermost circular orbit gives a good
estimate of this frequency, but it is not appropriate for
comparable masses, where we have found the minimal
energy circular orbit (MECO) as defined by [42] provides a
good estimate.
We now return to the description of the ringdown in the

frequency domain, and will discuss simple analytical
models to motivate how we proceed. For the simple
damped oscillation

hðtÞ ¼ ΘðtÞe2πðifRDt−fdampjtjÞ; ð2:20Þ

where ΘðtÞ denotes the Heaviside theta function, the
Fourier transform is

h̃ðfÞ ¼ 1

2πðfdamp þ iðf − fRDÞÞ
; ð2:21Þ

with absolute value

jh̃ðfÞj ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2damp þ ðf − fRDÞ2

q ; ð2:22Þ

and phase derivative

d arg h̃ðfÞ
df

¼ −
1

2π

fdamp

f2damp þ ðf − fRDÞ2
: ð2:23Þ

The quasinormal mode frequencies are thus imprinted on
the Fourier domain amplitude and phase derivative through
a Lorentzian function for the phase derivative, and its
square root for the amplitude, with a falloff of 1=f for high
frequencies. The physical waveform should however fall
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off faster than any polynomial due to its smoothness, since
for smooth functions hðtÞ one has that (see, e.g., [43])

h̃ðfÞ ¼ Oðjfj−jMjÞ as jfj → ∞ for allM: ð2:24Þ

If a function hðtÞ only has p − 1 continuous derivatives in
L2 for some p ≥ 0 and a pth derivative in L2 of bounded
variation,1 then [43] (see also the discussion in [15]):

h̃ðfÞ ¼ Oðjfj−p−1Þ as jfj → ∞: ð2:25Þ

Other variants of the example of Eq. (2.20) are, e.g.,
replacing t by jtj and dropping the theta function, or
replacing the complex exponential by a sine or cosine
(see, e.g., [44,45]), which leads to minor modifications in
the results, such as a faster polynomial falloff of the
amplitude.
This has motivated to model the frequency domain

ringdown amplitude as a Lorentzian for the early pheno-
menological waveform models [22,23,46,47]. For the
IMRPHENOMD model the Lorentzian amplitude ansatz has
been modified with a decaying exponential to be consistent
with the falloff expected from smooth functions, and the
falloff rate has been calibrated to numerical relativity
waveforms. A rough estimate of the falloff rate can be
obtained with a smooth ansatz for the time domain wave-
form. Inspecting the Newman-Penrose quantity ψ4 around
the merger for numerical relativity waveforms, one finds
that it is roughly symmetric around the peak. This sym-
metry has also been found in a recent approximate
analytical calculation [48]. Following [48] for the ampli-
tude ansatz for ψ4, but making the unrealistic assumption
that the gravitational wave frequency is constant around the
amplitude peak, we get that for

ψ4ðtÞ ¼
e2πtðifRD−fdampÞ

e2πtfdamp þ e−2πtfdamp
ð2:26Þ

the Fourier transform is

ψ̃4ðfÞ ¼
1

2πðfdamp þ iðf − fRDÞÞ
; ð2:27Þ

For large frequencies the amplitude falls off as

ψ̃4ðfÞ ∼ e−πðf−fRDÞ=ð2fdampÞ: ð2:28Þ

We have compared the asymptotic falloff rate of
−π=ð2fdampÞ with our hybrid data set, and find that it
typically overestimates the numerical data, but only by a
factor within 1.32–1.38 for 90% of the cases, which is

surprisingly good giving the crudeness of the model (2.26).
For the ringdown amplitude, we will thus essentially follow
the IMRPHENOMD ansatz of a Lorentzian, multiplied with an
exponential damping factor.
For the phase derivative in the high frequency regime,

modifications of the simple model leads to Lorentzians
with added background terms, in the form

dϕ
df

¼ a
ðf − fRDÞ2 þ ð2fdampÞ2

þ background; ð2:29Þ

which are consistent with our numerical data. For
IMRPHENOMD the ringdown regime was thus modeled as
a Lorentzian, plus a polynomial in f−1. We will follow the
same strategy with two main modifications: First we will
modify how to represent the polynomial that models the
“background” term. Second, we note that fdamp has a very
large dynamic range. For negative spins, fdamp is quite large
and leads to very broad Lorentzians, which are not confined
to the ringdown region. An overview of frequencies that
play a crucial role in designing our modeling approach is
shown in Fig. 1. As the figure shows, all the frequencies
exhibit significant variation, which requires a correspond-
ing dynamic range in the transition frequencies between the
three frequency regions of the model.
The loss of accuracy and gradual breakdown of the post-

Newtonian series expansion for high frequencies as the
merger is approached also determines the frequency regime
where numerical solutions are required to provide un-
ambiguous approximate solutions and error estimates. The

FIG. 1. The ringdown fRD, damping fdamp, ISCO fISCO and
fMECO frequencies are plotted for a random sample of binaries
from the nonprecessing parameter space as functions of the
dimensionless Kerr parameter χf of the remnant black hole
calculated using NR calibrated fits to the final state [25]. A
negative sign of χf corresponds to binaries for which the orbital
angular momentum points in the opposite direction to the spin of
the (final) black hole. The maximum of fMECO occurs for equal
black holes with maximal component spins aligned with the
orbital angular momentum, and the minimum for the extreme
mass ratio limit with maximal antialigned component spins.

1The L2-norm of a function uðxÞ is defined by kuk ¼
½R∞

−∞ juðxÞj2dx�1=2. The symbol L2 denotes the set of functions
for which this integral is finite: L2 ¼ fu∶kuk < ∞g.
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computational cost of such simulations increases drasti-
cally as the initial frequency is lowered, the leading order
post-Newtonian estimate for the time to merger T for start
frequency f0 is

T ∝
f−8=30

η
: ð2:30Þ

Covering densely the parameter space that we want to
model with numerical relativity waveforms with start
frequencies lower than the sensitive band of our detectors
is still prohibitively expensive, and we will thus use
“hybrid” waveforms as our input data set, where numerical
relativity waveforms are appropriately glued to an inspiral
description derived from the post-Newtonian expansion, as
discussed below in Sec. III.

III. INPUT WAVEFORMS

The primary input data we use for developing, calibrat-
ing, and evaluating the IMRPHENOMXAS waveform model
is the set of hybrid waveforms described in [29]. These
waveforms are constructed by appropriately gluing
together numerical waveforms, which cover the last orbits,
merger and ringdown, with an inspiral model. For com-
parable masses up to mass ratio 18, the numerical wave-
forms have been computed by solving the full Einstein field
equations using the methods of numerical relativity. The
inspiral model is taken to be an EOB resummation of
post-Newtonian waveforms. For extreme mass ratios we
use numerical solutions for linearized gravitational waves
in a Kerr background, sourced by EOB dynamics, as
described below.
The EOB approach provides a framework to extend

the validity of post-Newtonian results [49,50] with resum-
mation techniques, and to incorporate additional informa-
tion, such as a calibration to numerical relativity results,
which has lead to families of time-domain models for the
complete waveform, from inspiral to ringdown [10,12,51].
Here we use the recent SEOBNRv4 [12] EOB model to
hybridize with numerical relativity waveforms. For
IMRPHENOMD, the SEOBNRv2 approximant [10] was used,
removing however the calibrations to numerical relativity
in order to decrease the dependence between the two
models. Here we use the original calibrated SEOBNRv4
model, as our goal is to maximize the accuracy of the
resulting waveform model.
SEOBNRv4 has in fact been calibrated to numerical

waveforms, and describes the complete waveform from
inspiral to ringdown. We could thus also augment our
calibration data set with SEOBNRv4 waveforms in regions
of the parameter space where numerical relativity wave-
forms are sparse. In the model presented here, we only use
such SEOBNRv4 waveforms at low frequencies in the
inspiral, i.e., well below the MECO frequency, where very
little to no NR information is present. For the intermediate

and merger-ringdown regions, only EOB-NR hybrids and
test-particle hybrids are used to calibrate the waveform
model.
The comparable mass numerical relativity waveforms

used in the hybrid data set have been produced with SPEC

[52–58]), which uses pseudospectral numerical methods
and black-hole excision, as well as with the BAM [59,60]
and EINSTEIN TOOLKIT [61] codes.
The BAM code solves the 3þ 1 decomposed Einstein

field equations using the χ-variant [62] of the moving-
punctures implementation of the BSSN formulation [63–
65]. Spatial derivatives are computed using sixth-order
accurate finite differencing stencils [60]. Kreiss-Oliger
dissipation terms converge at fifth order, and a fourth-
order Runge-Kutta algorithm is used for the time evolution.
BBH puncture initial data [66,67] are calculated with a
pseudo-spectral elliptic solver described in Ref [68]. The
GWs are calculated using the Newman-Penrose scalar ψ4

and extracted at a finite distance from the source.
The EINSTEIN TOOLKIT simulations use Bowen-York

initial data [66,67] computed using the TwoPunctures
thorn [68]. Time evolution is performed using theW-variant
[69] of the BSSN formulation of the Einstein field
equations as implemented by MCLACHLAN [70]. The BHs
are evolved using standard moving punctures gauge-
conditions [62,71]. The lapse is evolved according to the
1þ log condition [72] and the shift according to the
hyperbolic Γ̃-driver [73]. Simulations are performed using
8th order accurate finite difference stencils with Kreiss-
Oliger dissipation [74]. Adaptive mesh refinement is pro-
vided by CARPET [75,76], with the wave-extraction zone
being computed on spherical grids using the LLAMA multi-
patch infrastructure [77]. Low eccentricity initial data is
produced following the procedure outlined in [78]. Further
details will be given in [29].

SPEC is a multidomain pseudospectral code [53,54,79]
that uses excision to remove the BH interiors, thereby
removing the BH singularity from the computational
domain. The code evolves the generalized harmonic coor-
dinate formulation of the Einstein field equations [79–82]
with constraint damping. Initial data is constructed using
the extended conformal thin sandwich (XCTS) equations
[83–85], with newer simulations typically choosing the
conformal metric and trace of the extrinsic curvature to be a
weighted superposition of two single BHs in Kerr-Schild
coordinates [86]. Boundary conditions imposed on the
excision boundaries ensure that these boundaries are
apparent horizons [53–55,79]. Further details can be found
in [87].
We used 186 waveforms from the public SXS catalog as

of 2018 [57]. After the release of the latest SXS collabo-
ration catalog, [87], we extended the dataset to incorporate
355 SPEC simulations and updated the parameter space fits
for the phase accordingly. We opted not to update the
amplitude fits to incorporate the latest SpEC simulations as

GERAINT PRATTEN et al. PHYS. REV. D 102, 064001 (2020)

064001-6



this is anticipated to have a smaller impact on the overall
accuracy of the waveform model.
The 95 BAM waveforms consists of previously published

and new waveforms. The EINSTEIN TOOLKIT simulations
have been recently produced by the authors. For further
details on the BAM and EINSTEIN TOOLKIT waveforms
see [29].
The key data sets that determine the calibration range of

our waveform model are the BAM waveforms for a range of
spins at mass ratio 1∶18, high-spin BAM and SXS wave-
forms at mass ratios 4 and 8, and equal mass SXS data sets
at very high spins of −0.95 and þ0.994.
The coverage of the comparable mass parameter space is

shown in Fig. 2.
As the computational cost of NR simulations diverges

rapidly as η → 0, no systematic NR simulations are
available for mass ratios q ≥ 18. This severely limits the
parameter space against which we can calibrate a waveform
model to NR. Constraining the asymptotic behavior of the
parameter space fits in the extreme-mass-ratio limit is
essential for well-behaved extrapolation and to reduce
uncertainty in the waveform model for intermediate-
mass-ratio binaries, where NR coverage is extremely
sparse. For many of the coefficients appearing in our
waveform model, no fully analytical knowledge, with
complete spin dependence, is available and we instead
opt to constrain the fits by calibrating against semianalyt-
ical waveforms in the test-particle limit.
As in [88], the simulations for BBH mergers in the test-

particle limit are produced using TEUKODE [26–28], which
combines a semi-analytical description of the dynamics
with a time-domain numerical approach for computing the
full multipolar waveform. The dynamics of the binary are
prescribed using EOB dynamics, where conservative geo-
desic motion has been augmented with a linear-in-η
radiation reaction [89,90]. This makes use of the factorized
and resummed circularized waveform introduced in [9,91]

and uses PN information up to 5.5PN. The fluxes are
computed by solving the Regge-Wheeler-Zerilli (RWZ)
1þ 1 equations (nonspinning) or the Teukolsky 2þ 1
equations (spinning). These equations are solved in
the time domain using a hyperboloidal foliation and
horizon-penetrating coordinates that allow for the unam-
biguous extraction of radiation at Iþ (future null infinity)
[26,92,93].
As with the NR simulations detailed above, the test-

particle waveforms are hybridized against a longer
EOB inspiral. For the calibration of IMRPHENOMXAS, we
use two sets of waveforms: one set at q ¼ 200 and the other
set at q ¼ 1000. The spin of the primary BH spans an
interval ½−0.9; 0.9� and the secondary BH is taken to be
nonspinning.
The waveforms in the test-particle limit should only be

treated as approximate as OðηÞ effects are neglected in the
conservative dynamics and the 5PN-accurate EOB-
resummed analytical multipolar waveforms, used to build
the radiation reaction force, show relatively poor perfor-
mance. A more detailed discussion on some of the observed
discrepancies between the comparable-mass limit and the
extreme-mass-ratio limit will be given below.
A recently proposed framework for the factorization and

resummation of the residual waveform amplitudes [94–96]
is expected to improve the self-consistency of the test-
particle waveforms and hence the self-consistency of the
calibration. A discussion of different approaches to resum-
mation and the radiation reaction in the context of effective
one body models can be found in [97,98]. A detailed study
of the consistency of IMRPHENOMXAS in the test-particle
limit will be presented elsewhere.

IV. MAPPING PHENOMENOLOGICAL
COEFFICIENTS TO PHYSICAL PARAMETERS

The model here has 8 amplitude coefficients and 13
phase coefficients, meaning that there are 21 phenomeno-
logical coefficients that must be mapped to the physical
3D parameter space ðη; Ŝ; δχÞ, where Ŝ is an effective spin
parametrization of our choice and δχ ¼ χ1 − χ2 is the
linear-in-spin difference. The mapping procedure detailed
here is a generalization of the approach taken in previous
phenomenological models and pioneered in fits to the
radiated energy, final mass and final spin [25,88]. Here we
use a hierarchical, bottom-up approach to calibrate fits to
numerical relativity waveforms. As in previous post-
Newtonian studies, the dominant parameter dependencies
are on the mass ratio and effective spin parametrizations.
The remaining unequal spin contribution is subdominant
and can be effectively modeled by working to linear order
in the spin difference. We provide a representative exam-
ple of this workflow in Sec. VIII and a flowchart of the
logic behind the hierarchical fitting procedure is shown
in Fig. 3.

FIG. 2. The mass ratio and spins for the NR waveforms used in
the calibration of IMRPHENOMXAS. SXS simulations are shown in
blue [57] and orange [87], BAM simulations in green and EINSTEIN

TOOLKIT simulations in pink.
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A. Collocation points

Direct calibration of the phenomenological coefficients
to the hybrid data can often be problematic due to poor
numerical conditioning. This is notable during inspiral,
where both poor convergence and the eventual breakdown
of the PN series can lead to numerical instabilities for the
pseudo-PN coefficients used to capture higher frequency
behavior. Such coefficients typically alternate in sign
leading to significant numerical cancellations that must
be captured accurately across the parameter space.
The previous calibration of a phenomenological wave-

form models typically reduced to fitting a polynomial of
order n, PnðxÞ, to the input EOB-NR hybrid data fðxÞ and
producing a fit for the coefficients of the polynomial across
the binary parameter space ðη; χ1; χ2Þ. However, due to the
considerations above, we instead adopt a slightly different
strategy and opt to reconstruct a phenomenological model
by solving a linear system of equations that requires us to
know the value of the amplitude or phase derivative at a set
of fixed frequency nodes or collocation points. In this
section, we outline the choice of these collocation points
and how it allows us to both optimally sample the hybrid
data and optimally reconstruct a phenomenological model.
The Weierstraß approximation theorem [99] states that

for any continuous real valued function on an interval ½a; b�
and ϵ > 0, there exists a polynomial PnðxÞ such that for all
x ∈ ½a; b� we have jfðxÞ − pðxÞj < ϵ. However, a well
known caveat to this theorem is that the result is highly
dependent on the set of polynomials used and on their
convergence. In particular, use of equidistant nodes when
constructing PnðxÞ can lead to oscillatory divergences from
fðxÞ as we increase the degree of the polynomial. This is

known as Runge’s phenomena and results in unphysical
oscillations that can impact the accuracy of the model. In
order to help alleviate such issues, there are a number of
possible options. For instance, we could help tame oscil-
latory behavior by fitting to a lower degree polynomial or
we could construct multiple overlapping subintervals con-
structed with low-degree polynomials, i.e., piecewise
polynomial interpolation. Instead, the strategy adopted
here, and in [100], is to choose the interpolation nodes
fxigni¼0 such that the maximum error kenðxÞk∞ is mini-
mized, where the error is enðxÞ ¼ fðxÞ − PnðxÞ and k · k∞
denotes the L−∞ norm.2 This can be achieved by selecting
(nþ 1) sample points for the polynomial PnðxÞ at the roots
of the Chebyshev polynomial. For nodes on an arbitrary
interval ½a; b�, this reduces to

xk ¼
1

2
ðaþ bÞ þ 1

2
ðb − aÞ cos

�ð2k − 1Þπ
2n

�
; ð4:1Þ

where k ¼ 1;…; n. There are a few key advantages to
using Chebyshev nodes when constructing such phenom-
enological fits. First, the error will be the smallest for all
polynomials of degree n. Second, the error can often be
more uniformly distributed over the interval in which we
perform the fit. Finally, the error decreases exponentially
with n, leading to spectral convergence of the fit

kenk ≤
kfðnþ1Þk∞
2nðnþ 1Þ! : ð4:2Þ

In contrast, the error from using equidistant nodes scales
approximately as kenk ≤ kfðnþ1Þk∞hnþ1=4ðnþ 1Þ, where
h is the spacing between the nodes. For these reasons, we
find it optimal to use collocation points evaluated at the
Chebyshev nodes in the domain of interest.
The next step is to fit the value of the amplitude or phase

derivative evaluated at these collocation points across the
binary parameter space ðη; χ1; χ2Þ using the hierarchical
procedure discussed in the next section. Using the values
of the amplitude or phase derivative at the collocation
points, or their differences, we can reconstruct the under-
lying phenomenological model by solving a system of
linear equations using standard methods, such as an LU
factorization

FðfiÞ ¼ vi; ð4:3Þ

where F ¼ φ0ðfÞ or AðfÞ, fi are the collocation points,
i.e., the frequencies at the Gauss-Chebyshev nodes, and
vi are the values of the hybrid evaluated at the collocation
points.

FIG. 3. Flowchart for the hierarchical parameter space fits,
taken from Fig. 1 of [25]. The starting point are one-dimensional
submanifolds, taken to be the equal mass and spin limit and the
nonspinning limit. The next step is to use a given spin para-
metrization Ŝ to perform an expansion about the 1D fits. Finally,
the residuals between the data and the 2D fits are used to fit for
unequal spin contributions.

2The L −∞ or max-norm is defined by kfk∞ ≡ kfkL∞½a;b� ¼
maxt∈½a;b�jfðtÞj.
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B. Hierarchical fitting procedure: One-dimensional
subspace fits

As was just discussed, in order to evaluate a pheno-
menological waveform model, we must be able to recon-
struct the phenomenological coefficients given the intrinsic
parameters ðη; χ1; χ2Þ of the binary. To solve the linear
system of equations that allows us reconstruct the pheno-
menological ansatz, we require a fit across the parameter
space for the values of the amplitude and phase derivative
evaluated at the collocation points. In this section, we detail
the hierarchical procedure used to construct the fits
dimension-by-dimension.
The hierarchical fits are performed dimension-by-

dimension, focusing first on the simplest and best-sampled
subspaces in the EOB-NR hybrid data set, the nonspinning
and equal-mass equal-spin waveforms. The spin paramet-
rization Ŝ used to construct the fit is a free choice and will
differ from region to region. The various parametrizations
employed in this paper are discussed in Sec. IV E.
The fits are constructed using Mathematica’s

NonlinearModelFit function, where we use both
polynomial and rational ansätze, as in [25,88]. Fits using
rational functions can often fail to converge due to the
existence of singularities in the rational functions
themselves. In order to alleviate issues related to non-
convergence, we use high-dimensional polynomials to
construct a Padé approximant to a given order, whose
coefficients are then used to precondition the starting values
for the rational function fits [25,88]. Rational functions
with a numerator of polynomial orderm and a denominator
of polynomial order k will be denoted as an ansatz of order
ðm; kÞ. The use of rational functions offers numerous
advantages to high-dimensional polynomials. In particular
we find that rational functions are smoother, less prone
to unphysical oscillations and extrapolate in a more
controlled manner.
We obtain Fðη; Ŝ ¼ 0Þ fits for a large set of polynomial

and rational functions. In order to avoid overfitting the data,
we rank the fits using their goodness of fit and the Bayesian
information criteria, allowing us to penalize fits that carry
redundant coefficients. The general functional form of the
nonspinning fits can be written as

Fðη; Ŝ ¼ 0Þ ¼
P

iaiη
i

1þP
ajηj

: ð4:4Þ

The general form of the 2D ansatz will be given as the sum
of nonspinning and spinning contributions. We will there-
fore need to constrain the constant term of the 1D ansatz in
Ŝ in order to reproduce the equal-mass, nonspinning result,
i.e., Fðη ¼ 0.25; Ŝ ¼ 0Þ must be identical for both 1D fits.
The general form of the equal-mass, equal-spin fits is
therefore written as

Fðη ¼ 0.25; ŜÞ ¼
P

ibiŜ
i

1þP
jbjŜ

j þ Fðη ¼ 0.25; Ŝ ¼ 0Þ;

ð4:5Þ

where the constant term is equivalent to Eq. (4.4) in the
limit η → 0.25. As above, the fits are ranked according to
the goodness of fit and the Bayesian information criterion.

C. Hierarchical fitting procedure:
Two-dimensional subspace fits

The next step in the hierarchical framework is to
construct the two-dimensional fits spanning the ðη; ŜÞ
subspace. The ansatz from the 1D fit in Eq. (4.5) is
reexpanded with a polynomial of order J in order to
capture 2D curvature associated to Ŝ-dependent terms via

bi → bi
Xj¼J

j¼0

fijηj; ð4:6Þ

where bi are the coefficients of the 1D equal-mass, equal-
spin fit. The general 2D ansatz for a phenomenological
coefficient is therefore

Fðη; ŜÞ ¼ Fðη; 0Þ − Fð0.25; 0Þ þ Fð0.25; Ŝ; fijÞ: ð4:7Þ

The order to which we expand in η is dependent upon the
behavior of the phenomenological coefficient that is being
fitted. Typically we find that expanding to third order in η
(J ¼ 3) is the lowest order that leaves sufficient freedom to
incorporate the constraints from the 1D fits and the extreme
mass ratio limit as well as to adequately capture all the
features of the data set. At higher order in η, numerous
pathologies outside the calibration regime can start to
develop, leading to a significant degradation in the perfor-
mance of the calibrated model. In order to avoid potential
singularities, appropriate care must be taken to remove
pathological coefficients from the denominator of the
rational ansatz.

D. Hierarchical fitting procedure: Unequal spin
contributions and 3D fits

The final stage in the hierarchical approach is to
incorporate the subdominant effect of unequal spins.
Here we parametrize this effect by Δχ ¼ χ1 − χ2. The
residuals are defined by subtracting the 2D equal spin fit
from the fit against the unequal-spin NR cases:

ΔFðη; Ŝ;ΔχÞ ¼ Fðη; Ŝ;ΔχÞ − Fðη; ŜÞ: ð4:8Þ

This procedure can be done at discrete points in the
symmetric mass ratio provided that sufficient unequal spin
NR simulations are available.
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At a given mass ratio, the residuals form a 2D surface
ðŜ;Δχ;ΔλÞ which can be used to informatively construct
an ansatz for the unequal spin effects. As with many aspects
of phenomenological waveform modeling, insight can be
taken from studying the structure of the post-Newtonian
equations. For example, if we consider the next-to-leading
order (NLO) spin-orbit (SO) contribution to the flux

FNLO
SO ∝

�
−
9

2
þ 272

9
η

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p �
−
13

16
þ 43

4
η

�
Σl;

ð4:9Þ

where

Σl ¼ ðm2χ2l −m1χ1lÞ: ð4:10Þ

By inspection, the linear-in-spin difference contribution is
killed by a factor of δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p

in the equal mass limit.
Away from equal masses, the unequal spin contribution is a
simple polynomial function in η. By comparison, the
leading-order (LO) spin-spin (SS) term is given by

FLO
SS ∝ x2

�
8S2l þ 8δΣlSl þ

�
33

16
− 8η

�
Σ2
l

�
; ð4:11Þ

where

Sl ¼ m2
1χ1l þm2

2χ2l: ð4:12Þ

In the equal mass limit the mixed term ΣlSl is killed by a
factor of δ but we still have a nonvanishing quadratic-in-
spin-difference term Σ2

l.
In practice, we find that the 2D surfaces are typically

close to flat, suggesting that the unequal spin effects are
dominated by a linear dependence on Δχ and a possible
mixture term ŜΔχ. This linear dependence will break down
in the equal mass limit as, under an exchange of χ1 and χ2,
terms linear in Δχ will vanish. In this limit, the surface is
approximately parabolic and well-modeled by a quad-
ratic term.
Based on the above considerations, we use a general

ansatz with three spin-difference terms

ΔFðη; Ŝ;ΔχÞ¼A1ðηÞΔχþA2ðηÞΔχ2þA3ðηÞΔχŜ: ð4:13Þ

The resulting full 3D ansatz is therefore given by

Fðη; Ŝ;ΔχÞ ¼ Fðη; ŜÞ þ ΔFðη; Ŝ;ΔχÞ: ð4:14Þ

Additional higher order terms in the effective spin or spin
difference are not used as there is no motivation from either
PN or visual inspection of the residuals. In addition, the
intrinsic error of the NR simulations begins to dominate
and caution is required to ensure that we do not overfit

noisy data. As a check, we follow the approach in [25] and
perform four fits in Δχ for the values of Ai: linear,
linear þ quadratic, linear þmixed and the sum of all three
contributions. Broadly, we find little evidence for quadratic
and mixed contributions, with the linear spin-difference
term dominating the fits.

E. Choice of spin parametrization

A choice that must be made when constructing the fits
across the parameter space is the spin parametrization, Ŝ,
employed. The choice of parametrization can help mini-
mize errors when building fits on a subspace of the data.
One of the most widely used spin parametrizations is the
effective aligned spin [22,37,101]

χeff ¼
m1χ1 þm2χ2

M
: ð4:15Þ

This choice was made in early Phenomenological wave-
form models IMRPHENOMB [22] and IMRPHENOMC [23]. In
IMRPHENOMD, an alternative spin parametrization was used
based on the reduced spin parameter, that describes the
leading order spin-orbit term at 1.5PN in the amplitude and
the phase [102,103]

χPN ¼ χeff −
38η

113
ðχ1 þ χ2Þ; ð4:16Þ

normalized to ½−1; 1� for any mass ratio

χ̂PN ¼ χPN
1 − 76η=113

: ð4:17Þ

This PN motivated parametrization is particularly suited to
use in IMR waveform models [104] and was also found to
best capture spin-orbit contributions to the binding energy
[105]. We will adopt χ̂PN as our spin parametrization of
choice for the inspiral regime.
For the final state, however, the underlying physics is

best captured by the linear spin combination S1 þ S2. We
therefore find it useful to employ an effective total spin
parameter

Ŝtot ¼
S

m2
1 þm2

2

; with S ¼ m2χ1 þm2χ2; ð4:18Þ

which was found to work well for final-state quantities
[15,25]. In IMRPHENOMXAS, we will use Ŝtot to parametrize
the fits to the intermediate and merger-ringdown coeffi-
cients. A detailed study of the impact of different spin
parametrizations is beyond the scope of this paper.

V. MATCHING REGIONS

Following the strategy adopted in previous phenomeno-
logical waveform models [15,16,22,23,47], we split the
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waveform into three frequency regions and model each of
these regimes separately. This is done for both the ampli-
tude and the phase derivative. In this section we define
these regions and explicitly highlight the calibration range
used in determining the fits as well as the transition
windows used when reconstructing the phenomenological
model. These regions are highlighted in Fig. 4.

A. Inspiral

Two of the key improvements of IMRPHENOMXAS over
IMRPHENOMD concern the frequency region over which the
model is calibrated to the hybrid data. For IMRPHENOMD

this region was

0.0035 ≤ Mf ≤ 0.018: ð5:1Þ

In IMRPHENOMXAS the lower frequency has been reduced to

Mf0 ¼ 0.0026 ð5:2Þ

which corresponds to lowering the starting frequency from
71.1 Hz to 52.8 Hz for a binary of total mass of 10 M⊙, or

to lowering the binary mass for which the calibration
completely covers frequencies above 10 Hz from 71.1 M⊙
to 52.8 M⊙. We find that this change significantly
improves matches between hybrids and the model for
lower masses. The reason for not lowering the starting
frequency further has been twofold: First, we build our
hybrid waveforms in the time domain, and need to Fourier
transform the hybrids on an equispaced frequency grid. In
order to simplify our setup, we choose this frequency grid
to be the same for all our waveforms. In order to achieve
sufficient resolution at high frequencies, we choose a time
step of t=M ¼ 0.5. The start frequency is chosen to
conveniently fit the complete hybrid generation in the time
and frequency domain into the RAM available on a laptop
for mass ratios up to about 500, as described in [29].
Allowing for windowing and robustly cutting away differ-
ent types of artifacts restricts the low frequency limit that
can be achieved. In future editions of the model, a more
flexible approach will be used to further reduce the start
frequency. The second reason is that a further reduction of
start frequency would only be useful with further studies of
how to best model the inspiral (e.g., regarding the order of
pseudo-PN terms used, and the number of collocation
points used). These studies are outside the scope of the
present paper, but will be required for a more accurate
representation of the extreme mass ratio limit, and possibly
for further increases in accuracy.
In IMRPHENOMD, the maximal frequency for the inspiral

description in terms of a modified post-Newtonian ansatz,
was also fixed, irrespective of the binary’s mass ratio or
spin. In the extreme mass ratio case, an appropriate choice
of transition frequency is given by the ISCO (innermost
stable circular orbit) frequency, which can be evaluated in
closed form, and ranges from Mf ≈ 0.006 for inspiral into
an extreme Kerr black hole with orbital angular momentum
antialigned with the spin of the large black hole, to Mf ≈
0.08 for the aligned case. A fixed transition frequency from
the inspiral to the intermediate regime is thus clearly not
appropriate for extreme mass ratios, but also not for
comparable masses where the dynamical range is smaller.
A natural termination frequency for the inspiral, which

also applies to comparable masses, can be based on the
minimum energy circular orbit (MECO) frequency. In a
standard binary black hole inspiral, the orbital energy will
gradually decrease until it reaches some minimum. The
MECO is defined to be the orbit at which the orbital energy
reaches its minimum value. Naturally, the MECO is
implicitly tied to the PN order under consideration, which
can be problematic in the extreme mass ratio limit where
the PN approximation is poorly convergent. In order to
alleviate such problems, [42] implemented a hybrid-MECO
in which test-particle dynamics are folded into the PN
approximation in order to provide a well-defined MECO
condition valid for all spins. Schematically, the hybrid
energy is constructed by replacing the test-particle limit of

FIG. 4. Transition regions for the amplitude and phase derivative
φ0 ¼ ∂fφðfÞ. The purple shaded area shows the inspiral region,
green shaded the intermediate and the blue shaded the merger
ringdown. The three colored lines show theMECO (purple), ISCO
(green) and ringdown (blue) frequencies respectively.
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the PN energy with the exact orbital energy per unit mass
for a test-particle around a Kerr black hole [42]

EHybrid ¼ En−PN
η

−
�Xx¼2n

x¼0

EKerrðvxÞ
�
þ EKerr ð5:3Þ

where

EKerr ¼
�

1 − 2wþ χw3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3wþ 2χw3=2

p − 1

�
; ð5:4Þ

and w ¼ v2=ð1 − χv3Þ2=3. This expression was shown to
have a minimum for currently known PN orders. In
practice, we use a phenomenological fit to the hybrid-
MECO as a natural PN approximation to the end of the
inspiral. This alleviates the necessity of performing a root-
finding operation when evaluating the waveform model.
The inspiral calibration range for the amplitude (A) and

the phase ðφÞ is taken to be

fφC;Ins ∈ ½0.0026; 1.02fMECO�; ð5:5Þ

fAC;Ins ∈ ½0.0026; 1.025fAT �; ð5:6Þ

where the C explicitly denotes the calibration domain and

fAT ¼ fMECO þ 1

4
ðfISCO − fMECOÞ: ð5:7Þ

However, when building the waveform, the inspiral region
interval is defined by

fφIns ∈ ð0; fMECO − δRÞ ð5:8Þ

fAIns ∈ ð0; fAT �; ð5:9Þ

where

fφT ¼ 0.6

�
1

2
fRD þ fISCO

�
; ð5:10Þ

δR ¼ 0.03ðfφT − fMECOÞ: ð5:11Þ

The inspiral region corresponds to the purple-shaded region
in Fig. 4.

B. Intermediate regime

The intermediate regime is introduced in order to
phenomenologically bridge the gap between the post-
Newtonian regime and the perturbative black hole ring-
down regime. The start of this region is determined by the
breakdown of post-Newtonian theory and the end of the
region is set relative to the ISCO and ringdown frequencies.
This enables us to implicity incorporate a natural hierarchy

of frequencies in a standard binary black hole inspiral:
fMECO < fISCO < fring.
For the intermediate region, the calibration domain is

taken to be

fφC;Int ∈ ½fMECO − δR; f
φ
T þ 0.5δR�; ð5:12Þ

fAC;Int ∈ ½0.98fAT; 1.02fpeak�; ð5:13Þ

where fpeak is the analytical location of the peak of the
Lorentzian describing the ringdown [15,16]

fpeak ¼
����fRD þ fdampσ

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
− 1

λ

����: ð5:14Þ

The intermediate interval when building the waveform is
defined by

fφInt ∈ ½fMECO − δR; f
φ
T þ δR� ð5:15Þ

fAInt ∈ ðfAT; fpeak�: ð5:16Þ

The intermediate region corresponds to the green-shaded
region in Fig. 4.

C. Merger-ringdown regime

Finally, the merger-ringdown regime is particularly well
described in terms of the ringdown and damping frequency
of the remnant BH. The calibration interval for the merger
ringdown is taken to be

fφC;MR ∈ ½0.985fφT; fRD þ 1.25fdamp�; ð5:17Þ

fAC;MR ∈
�
fRD−

ð1þ4ηÞ
5

fdamp;fRDþ3.25fdamp

�
; ð5:18Þ

note that the factor of ð1þ 4ηÞ has been added to help
control the fits in the extreme-mass-ratio limit, where the
amplitudes at the peak of the rescaled data can become
particularly flat and no clear merger ringdown can be
defined in a morphological sense.
The merger-ringdown frequency interval when recon-

structing the waveform is defined by

fφMR ∈ ðfφT; 0.3MfÞ; ð5:19Þ

fAMR ∈ ðfpeak; 0.3MfÞ; ð5:20Þ

where 0.3Mf is an arbitrary high-frequency cutoff fre-
quency implemented for IMRPHENOMXAS in LAL. The
merger-ringdown region corresponds to the blue-shaded
region in Fig. 4.
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VI. AMPLITUDE MODEL

When calibrating the amplitude model of
IMRPHENOMXAS to the hybrid data, we factor out the
leading order PN behavior f−7=6. We opt to normalize
the data such that as f → 0 the data tends to unity. This
normalization is motivated by the Newtonian limit

lim
f→0

½f7=6APNðfÞ� →
ffiffiffiffiffiffiffiffiffiffiffi
2η

3π1=3

r
; ð6:1Þ

with the resulting normalization factor being

A0 ≡
ffiffiffiffiffiffiffiffiffiffiffi
2η

3π1=3

r
f−7=6: ð6:2Þ

A. Inspiral

The inspiral model is based on a PN reexpanded
TaylorF2 amplitude augmented with pseudo-PN terms that
are calibrated to the hybrid data

AInsðfÞ ¼ APN þ A0

X3
i¼1

ρiðπfÞð6þiÞ=3; ð6:3Þ

where APN constitutes the known PN terms

APNðfÞ ¼ A0

X6
i¼0

AiðπfÞi=3; ð6:4Þ

and ρi are the pseudo-PN coefficients, where A0 is the
normalization factor corresponding to the leading order PN
term f−7=6. An example of the calibrated inspiral amplitude
compared to the hybrid data is shown in Fig. 5.
The pseudo-PN coefficients are constructed by calibrat-

ing collocation points at the nodes

f0.5; 0.75; 1.0gfMECO; ð6:5Þ

and analytically solving the system of equations generated
by evaluating the pseudo-PN terms in Eq. (6.3) at the
above nodes.

B. Intermediate

As an example of the modularity of IMRPHENOMXAS, we
implement two different models for the intermediate
amplitude. The first model is based on the inverse of a
fifth-order polynomial

AInt ¼
A0

α0 þ α1f þ α2f2 þ α3f3 þ α4f4 þ α5f5
; ð6:6Þ

and the second model on the inverse of a fourth-order
polynomial

AInt ¼
A0

α0 þ α1f þ α2f2 þ α3f3 þ α4f4
: ð6:7Þ

For an ansatz with n coefficients, we require n pieces of
information in order to reconstruct the underlying function.
For the fifth-order polynomial, the function requires six
input parameters, given by the value of the amplitude at two
collocation points together with four boundary conditions:
two for the amplitude and two for the first derivative of the
amplitude. The amplitude is therefore C1 continuous by
construction. A similar argument holds for the fourth-order
function, though using 5 coefficients. The collocation
points used for both models are detailed in Tables I
and II. For the fifth-order polynomial, the coefficients αi
are the solution to the system of equations

FIG. 5. The calibrated amplitude inspiral fit (blue curve) against
a series of q ¼ 1 SEOB-SXS NR hybrids (grey curves). The top
panel shows the fit to the data and the bottom panel shows the
residuals up to the fMECO frequency.

TABLE I. Location of collocation points fi for the fifth-order
intermediate ansatz. The coefficients v1, v4, d1, d4 are con-
strained by the inspiral and merger-ringdown model. The free
coefficients v2 and v3 must be fit to the data.

Collocation points Value Derivative

f1 ¼ fW1 v1 ¼ AInsðf1Þ d1 ¼ A0
Insðf1Þ

f2 ¼ ðfAT þ fpeakÞ=3 v2 ¼ AHybðf2Þ
f3 ¼ 2ðfAT þ fpeakÞ=3 v3 ¼ AHybðf3Þ
f4 ¼ fpeak v4 ¼ AMRðf4Þ d4 ¼ A0

MRðf4Þ
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AInsðf1Þ ¼ v1; ð6:8Þ

AHybðf2Þ ¼ v2; ð6:9Þ

AHybðf3Þ ¼ v3; ð6:10Þ

AMRðf4Þ ¼ v4; ð6:11Þ

A0
Insðf1Þ ¼ d1; ð6:12Þ

A0
MRðf4Þ ¼ d4: ð6:13Þ

For the fourth-order polynomial, the system of equations is
analogous to [16]

AInsðf1Þ ¼ v1; ð6:14Þ

AHybðf2Þ ¼ v2; ð6:15Þ

AMRðf4Þ ¼ v3; ð6:16Þ

A0
Insðf1Þ ¼ d1; ð6:17Þ

A0
MRðf3Þ ¼ d3: ð6:18Þ

The fifth-order ansatz allows us to capture more dramatic
features in the amplitude morphology, which is particular
important as we extend to higher mass ratios. For aligned-
spin binaries, the system is highly adiabatic and there are
many quasicircular orbits before the smaller black hole
plunges into the larger black hole. For antialigned spins, the
system is not adiabatic and the system evolves through to
the plunge phase much quicker, especially at high mass
ratios. For the unadiabatic case, the binary shows a distinct
morphology in which the amplitude drops as we rapidly
transition from the inspiral to the merger ringdown. A
comparison between the fourth-order and fifth-order inter-
mediate ansatz against q ¼ 8 hybrid data is shown in Fig. 6.
For the remainder of this paper, we will work with the

fifth-order intermediate ansatz unless otherwise stated.

FIG. 6. The fit to the intermediate amplitude using a 4th-order
(dashed curves) and 5th-order (solid curves) ansatz against 3 SXS
simulations at q ¼ 8 (grey curves). The 5th-order ansatz is able to
more accurately fit the features in the waveform but has poor
extrapolation compared to the 4th order ansatz. The top panel
shows the direct fit to the data and the bottom panel the residuals.

TABLE II. Location of collocation points fi for the fourth-
order intermediate ansatz. The coefficients v1, v3, d1, d3 are
constrained by the inspiral and merger-ringdown model, whereas
v2 must be fit to the data.

Collocation points Value Derivative

f1 ¼ fAT v1 ¼ AInsðf1Þ d1 ¼ A0
Insðf1Þ

f2 ¼ ðfAT þ fpeakÞ=2 v2 ¼ AHybðf2Þ
f3 ¼ fpeak v3 ¼ AMRðf3Þ d3 ¼ A0

MRðf3Þ

FIG. 7. The fit to the merger-ringdown amplitude for 3 BAM

simulations at q ¼ 18 corresponding to spins on the primary BH
of χ1 ∈ f−0.8; 0; 0.4g. The secondary BH is nonspinning. The
top panel shows the fit against the original hybrid data and the
bottom panel the residuals.
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C. Merger ringdown

The merger-ringdown ansatz is modeled using a
deformed Lorentzian, corresponding to the Fourier trans-
form of a two-sided exponential decay function. The ansatz
adopted is given by [15,16]

AMR ¼
�

aRðfdampσÞ
ðf−fRDÞ2þðfdampσÞ2

�
e−λðf−fRDÞ=ðfdampσÞ: ð6:19Þ

Unlike the other two regions, here we choose to calibrate λ
and σ directly. By this we simply mean that we produce a
hierarchical fit to the value of the phenomenological
coefficient across the binary parameter space rather than
fitting to the value of the amplitude at the collocation points
and solving the resulting system of linear system equations,
as in Eq. (4.3). In order to solve the amplitude coefficient
aR, we further calibrate a collocation point at the defined at
fpeak. Together with λ and σ, we can use the collocation
point to solve a trivial system of equations for aR. An
example of the ringdown fit applied to the BAM q ¼ 18 data
is shown in Fig. 7.

VII. PHASE MODEL

A. Inspiral

The inspiral phase model is based on TaylorF2, derived
under the stationary phase approximation, augmented with
pseudo-PN coefficients that are calibrated to the hybrid
data. We write out inspiral phase as

φIns ¼ φTF2ðMf; θÞ

þ 1

η

�
σ0 þ σ1ðMfÞ þ 3

4
σ2ðMfÞ4=3 þ 3

5
σ3ðMfÞ5=3

þ 1

2
σ4ðMfÞ6=3 þ 3

7
σ5ðMfÞ7=3

�
: ð7:1Þ

where φTF2 is the analytically known TaylorF2 phase

φTF2 ¼ 2πftc − φc −
π

4

þ 3

128η
ðπMfÞ−5=3

X7
i¼0

φiðθÞðπMfÞi=3; ð7:2Þ

and φiðθÞ are known PN coefficients that are functions of the
intrinsic parameters of the binary, see Appendix A. The
coefficients σi are the pseudo-PN coefficients that we
calibrate against the hybrid dataset and supplementary
SEOBNRv4 waveforms. A detailed discussion of the PN
information used in IMRPHENOMXAS is given inAppendixA.
The calibration of the pseudo-PN coefficients is per-

formed by subtracting a given TaylorF2 approximant from
the full hybrid phase and factoring out the leading order
frequency power

RinspðMfÞ¼ ðMfÞ−8=3ðφ0
HybridðMfÞ−φ0

TF2ðMfÞÞ: ð7:3Þ

where 0 ¼ ∂f. By performing such a rescaling, we numeri-
cally condition the data such that wemore accurately capture
the un-modeled higher-PN contributions to the phase.
Note that, by construction, the calibrated pseudo-PN

coefficients are implicitly tied to the specific TaylorF2
approximant used. If we incorporate additional analytical
PN information, we would need to recalibrate the pseudo-
PN coefficients on a case-by-case basis.
In this paper, we demonstrate the flexibility of the

IMRPHENOMXAS framework by producing four different
calibrated inspiral models. The first two models adopt a
canonical 3.5PN TaylorF2 phase using recent cubic-in-spin
and quadratic-in-spin corrections [106,107] but use 4 or 5
pseudo-PN coefficients, with σ0 being fixed by imposing
C1 continuity in the phase. The model with 4 additional
coefficients requires 4 collocation points whereas the
model with 5 additional coefficients requires 5 collocations
points. The final set of models are all based on an extended
TaylorF2 phase that incorporates some recent results at
4PN [108–113], 4.5PN [114] and a recently identified

FIG. 8. The pseudo-PN coefficients are fit to the hybrid data by
subtracting a given TaylorF2 approximant and factoring out the
leading order frequency, f−8=3½φ0

HybðfÞ − φ0
TF2ðfÞ�. Such data

conditioning helps improve the accuracy of the fit up to the
MECO frequency. The green circles denote the location of the
nodes when using 5 collocation points and the red crosses for 4
collocation points. The sampling points are chosen based on a
Gauss-Chebyshev scheme aimed at reducing Runge’s phenom-
ena near the boundaries. The SEOB-NR hybrid shown is for
SXS:0153, a binary with q ¼ 1 and χ1 ¼ χ2 ¼ 0.85. The top
panel shows the direct fit to the data and the bottom panel the
residuals of the fit, δR ¼ RFit

Insp −RHyb
Insp.
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tail-induced, spin-spin term in the flux [95]. As before, we
produce two variants with 4 and 5 pseudo-PN coefficients
respectively.
The collocation points for this system are set by the

Gauss-Chebyshev nodes. When using 4 collocation points,
these nodes are given by

vInti ¼ M

�
fL;

1

4
δImφ ;

3

4
δImφ ; fH

	
ð7:4Þ

where fH ¼ 1.02fMECO, fL ¼ 0.0026 and δImφ ¼ fH − fL.
For 5 collocation points, the nodes occur at

vInti ¼ M

�
fL;

1

2

�
1 −

1ffiffiffi
2

p
�
δImφ þ fL; fL þ 1

2
δImφ ;

1

2

�
1þ 1ffiffiffi

2
p

�
δImφ þ fL; fH

	
: ð7:5Þ

The location of the nodes when using 4 and 5 collocation
points is demonstrated in Fig. 8, where we fit the residual
ansatz in Eq. (7.3) to the hybrid data.
Unless otherwise stated, we adopt the canonical

TaylorF2 ansatz with 4 pseudo-PN coefficients as the
default inspiral model. The performance of the different
inspiral models is discussed in Sec. IX and the mismatches,
as defined in Eq. (9.1), shown in Fig. 17. The low-
frequency oscillations occur due to numerous artifacts
including residual eccentricity and numerical conditioning
from the Fourier transforms. We note that these oscillations
are overly pronounced due to the scaling by f−8=3 and
seemingly have little impact on the quality of the fit.

B. Intermediate

We now consider the phenomenological intermediate
region. As in [15,16], we adopt a polynomial ansatz but add
a Lorentzian term to smoothly match the phase to the
merger-ringdown ansatz. As with the inspiral, we provide
two models as an example of the modularity of
IMRPHENOMXAS. The functional form for the general ansatz
used for the intermediate phase is

ηφ0
Int ¼ β0 þ β4f−4 þ β3f−3 þ β2f−2 þ β1f−1

−
4c0aφ

ðf − fRDÞ2 þ ð2fdampÞ2
; ð7:6Þ

where the Lorentzian term, i.e., the nonpolynomial coef-
ficient, is fixed by the merger-ringdown model. The first
model adopts 4 collocation points and sets β3 ¼ 0. The
second model uses 5 collocation points, retaining all 5
coefficients fβ0; β1; β2; β3; β4g. Unlike IMRPHENOMD, we
impose additional constraints on the intermediate ansatz
and use the value of the inspiral and merger-ringdown fits
respectively to determine the boundary collocation points.
The 4-coefficient model therefore requires two calibrated

collocation points and the 5-coefficient model 3 calibrated
terms. The Gauss-Chebyshev nodes for 4 collocation points
occur at

vInti ¼
�
fL;

1

4
δImφ ;

3

4
δImφ ; fH

	
; ð7:7Þ

where fH ¼ fφT þ 0.5δR, fL ¼ fMECO − δR and δImφ ¼
fH − fL. Similarly, for the 5 collocation points, the nodes
occur at

vInti ¼
�
fL;

1

2

�
1 −

1ffiffiffi
2

p
�
δImφ þ fL; fL þ 1

2
δImφ ;

1

2

�
1þ 1ffiffiffi

2
p

�
δImφ þ fL; fH

	
: ð7:8Þ

In order to help numerically condition the collocation
points, we opted to fit the difference with respect to
vMR
4 , the value of the merger-ringdown phase at the

ringdown frequency. Such a strategy is particularly bene-
ficial when extrapolating to higher mass ratios and high-
spin configurations, where the sparsity of available NR
simulations can lead to poor constraints on the parameter
space fits. For the 4-coefficient model, the two free
coefficients are v2 and v3. We therefore require parameter
space fits for

δ2;RD4 ¼ vIm2 − vRD4 ; ð7:9Þ

δ3;RD4 ¼ vIm3 − vRD4 ; ð7:10Þ

which could be used in conjunction with a fit for vRD4 to
reconstruct vIm2 and vIm3 respectively. In order to help tame
unphysical behavior at extremely large mass ratios and
large spins, we use a weighted average between the fit to
the differences, as above, and a direct fit to the collocation
point v̄Im2 in the final model

vIm2 ¼ 3

4
ðδ2;RD4 þ vRD4 Þ þ 1

4
v̄Im2 : ð7:11Þ

An example of the reconstructed intermediate phase
derivative against hybrid data, along with the collocation
points used, is shown in Fig. 9. Unless otherwise stated, we
take the 5th order polynomial ansatz as the default model
for the intermediate phase derivative.

C. Merger ringdown

As in previous phenomenological waveform models, the
ansatz for the merger ringdown is based on a Lorentzian
embedded in a background arising form the late inspiral
and merger. In order to capture the steep inspiral gradient,
negative powers of the frequency were added to the
Lorentzian
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ηφ0
RD ¼ cRD þ

Xn
i

cif−pi þ c0aφ
f2damp þ ðf − fRDÞ2

: ð7:12Þ

In IMRPHENOMD, the leading contribution was taken to be
p2 ¼ 2 and an additional term p3 ¼ −1=4 was added in
order to reduce residuals across the parameter space.
However, for IMRPHENOMXAS, we find that we no longer
require the coefficient α5, defined in Eq. (13) of [16], to
correct for the ringdown frequency. Using the recent
recalibration of the final mass and spin fits in [25], the
values of the ringdown and damping frequency are suffi-
ciently accurate that we are able to drop this coefficient.
This allows us to calibrate an additional coefficient without
increasing the dimensionality of the fit. The inclusion of an
additional polynomial coefficients is of particular impor-
tance in correctly modeling the gradient of the merger
ringdown in the extremal spin limit. For IMRPHENOMXAS,
we use three polynomial coefficients with powers of−4;−2
and −1=3 respectively.
As with the other regions, we use Gauss-Chebyshev

nodes to fix the collocation points but set the 4th node to
occur at the ringdown frequency. The ringdown frequency
approximately correponds to the peak of the Lorentzian, as
can be seen in Fig. 10. Whilst this may impact the
optimality of reconstructing the underlying function, we
find that vMR

4 is very well conditioned and can be fit to high

accuracy. The collocation points nodes for the merger-
ringdown phase are therefore taken to be

vi¼M

�
fL;

1

2

�
1−

1ffiffiffi
2

p
�
δMR
φ þfL;fLþ

1

2
δMR
φ ;fRD;fH

	
;

ð7:13Þ

where fH ¼ fRD þ 5
4
fdamp, fL ¼ fφT and δMR

φ ¼ fH − fL.
An example of the reconstructed merger-ringdown phase

derivative against hybrid data, along with the collocation
points used, is shown in Fig. 10. The fit detailed here is as
implemented in the final model.

D. Final state

Accurate modeling of the final state is important as this
determines the ringdown fRD and damping fdamp frequen-
cies that enter into the amplitude and phase model, e.g., see
Eq. (6.19) and (7.12). Notably, the ringdown fRD and
damping fdamp frequencies determine the peak and shape of
the Lorentzian ringdown for the amplitude and phase.
IMRPHENOMXAS implicitly benefits from the improved
recalibration of the final state fits presented in [25]. Due
to these improvements, we find that we no longer require α5
in [16], which was introduced to correct for deficiencies in
modeling the final state.

FIG. 9. Phase derivative of the EOB-NR hybrid using SXS-
BBH-0153, as in Fig. 8. Here we show the intermediate hybrid
data (gray curve) and the corresponding fit to the data (blue)
reconstructed from a system of collocation points (green). The
top panel shows the direct fit to the data and the bottom panel the
residuals of the fit, δφ0 ¼ φ0

Int;Fit − φ0
Int;Hyb.

FIG. 10. Phase derivative for the EOB-NR hybrid using SXS-
BBH-0153, as in Fig. 8. Here we show the hybrid merger
ringdown (gray curve) along with the fit to the data (blue)
reconstructed from the system of collocation points (green). The
top panel shows the direct fit to the data and the bottom panel the
residuals of the fit, δφ0 ¼ φ0

RD;Fit − φ0
RD;Hyb.
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The total angular momentum can be written in terms
of the physical spins S⃗1, S⃗2 and the orbital angular
momentum L⃗ as

J⃗ ¼ L⃗þ S⃗1 þ S⃗2; ð7:14Þ

where S⃗i change negligibly in the aligned-spin limit. Due to
the symmetry of the binary, all vector components orthogo-
nal to the orbital angular momentum vanish and we are
only left with components in the z-direction. For brevity,
we drop the vector notation as we are only dealing with the
z-components. Given that Eq. (7.14) depends on the total
spin Stot ¼ S1 þ S2, it is reasonable to expect that the final
BH spin

χf ¼ Jf=M2
f; ð7:15Þ

will be well approximated by Jf ≈ Jðη; Stot;ΔχÞ, motivat-
ing the use of Stot as the spin-parametrization of choice for
the final state. A detailed discussion of the final state fits
used in IMRPHENOMXAS is given in [25].
In order to determine the dimensionless ringdown and

damping frequencies as a function of χf, we fit a rational
function to the data set in [115]. To calculate the dimen-
sionful ringdown frequency, we must also take into account
energy loss during the inspiral

2πfRDM
Mf

¼ 2πfRDM
M − Erad

; ð7:16Þ

where Erad is determined using the fit in [25]. A similar
expression holds for the damping frequency.

VIII. MODEL CALIBRATION, A WORKED
EXAMPLE

In this section we provide a worked example of
the hierarchical fitting procedure used to calibrate
IMRPHENOMXAS. Here we detail the calibration of vMR

4 ,
the value of the phase derivative of the EOB-NR hybrids
evaluated at the ringdown frequency, effectively describing
the phase derivative at the peak of the Lorentzian. We use
available SXS, BAM and ET waveforms supplemented by
the test-particle waveforms. As was also observed in
[15,25], an effective spin parametrization defined in terms
of the dimensionful spin components Si most accurately
reflects the physics driving the merger ringdown. The spin
parametrization, Ŝ, that we will use to calibrate vMR

4 is the
total effective spin, Ŝtot, defined in Eq. (4.18).

A. 1D Fits

The starting point for the hierarchical fitting procedure is
a 1D fit to the value of the collocation point vMR

4 for the
nonspinning EOB-NR hybrids. We follow the general
procedure of first producing a high-degree polynomial

and using this to construct a Padé approximant that
can be used to pre-condition a rational fit using the
NonLinearModelFit package in Mathematica. The
resulting rational function fit is of the following form

FðηÞ ¼ a0 þ a1ηþ a2η2 þ a3η3 þ a4η4 þ a5η5

1þ a6η
; ð8:1Þ

with numerical coefficients

a0 ¼ −85.8606;

a1 ¼ −4616.74;

a2 ¼ −4925.76;

a3 ¼ 7732.06;

a4 ¼ 12828.3;

a5 ¼ −39783.5;

a6 ¼ 50.2063: ð8:2Þ

We now follow the same procedure to generate a fit to the
1D equal-mass, equal-spin hybrid data. In terms of an
effective spin parametrization Ŝ, we obtain a rational fit of
the form

FðŜÞ ¼ b0 þ
b1Ŝþ b2Ŝ

2 þ b3Ŝ
3 þ b4Ŝ

4 þ b5Ŝ
5

1þ b6Ŝ
; ð8:3Þ

with numerical coefficients

b0 ¼ −104.477;

b1 ¼ −19.0379;

b2 ¼ 15.3476;

b3 ¼ −0.419939;

b4 ¼ −0.884176;

b5 ¼ −0.631487;

b6 ¼ −0.729629: ð8:4Þ

This fit has been constrained by imposing the limit
FðŜ ¼ 0Þ ¼ Fðη ¼ 0.25Þ, ensuring that there are no dis-
continuities between FðŜÞ and FðηÞ in the limit Ŝ → 0.
Figures 11 and 12 show the 1D fits for the nonspinning and
equal-mass, equal-spin subspaces respectively. The top
panels show the direct fits to the data alongwith the 90% con-
fidence levels estimated usingNonLinearModelFit. The
bottom panels show the residuals between the 1D fits and the
hybrid data.

B. 2D fits

The two-dimensional fits to the ðη; ŜÞ subspace are
constructed by combining both of the 1D subspace fits
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derived above. As discussed in Sec. IV C, we generalize the
Ŝ-dependent fits by inserting a polynomial of order J in η
for each coefficient in the 1D fit [25,88]. Here we opt to use
a fourth order in η expansion (J ¼ 4) and kill the least
constrained coefficients (i.e., p-values near unity) as deter-
mined by the nonlinear model fit. In addition, we fix all
coefficients on the denominator to avoid singularities. The
constrained 2D fit Fðη; ŜÞ against the input data is shown
in Fig. 13.

C. Full 3D fits

The final step in the procedure is to fit the unequal spin
effects, parametrized by Δχ ¼ χ1 − χ2, to the residual data,
as discussed in Sec. IVD. In Fig. 14, we show the unequal
spin subspace for all q ¼ 3NR data. As anticipated, the data
is dominated by a linear-in-spin-difference terms with only
weak evidence for higher order corrections. Fits are per-
formed at all mass ratios for which we have sufficient data to
constrain the ansatz. Note that the ansatz per-mass-ratio is
used to inform the full 3D ansatz and as a consistency check.
The 3D fit implemented in themodel is constructed by fitting
the constrained 2D ansatz plus the unequal spin terms
to the full NR dataset. Here we demonstrate two approaches
to constraining the unequal-spin fit. In the first approach,

we restrict our analysis to the linear-in-spin-difference
term Δχ

ΔvMR
4 ðη; Ŝ;ΔχÞ ¼ A1ðηÞΔχ: ð8:5Þ

In the second approach we use the full quadratic in unequal
spin-correction ansataz

ΔvMR
4 ðη; Ŝ;ΔχÞ¼FLinðηÞΔχþFQuadðηÞΔχ2þFMixðηÞŜΔχ:

ð8:6Þ

FIG. 12. The 1D fit to the equal-mass equal-spin hybrid data,
Eq. (8.3). The blue curves show the 1D fit to the data and the
orange shaded region denotes the 90% confidence level for the fit.
The grey points denote the input NR and test-particle data. Unlike
the nonspinning subspace, the equal-mass and equal-spin region
of the parameter space is exceptionally well constrained and the
90% confidence level is indistinguishable from the direct fit.

FIG. 11. The 1D fit to the nonspinning hybrid data, Eq. (8.1).
The blue curves show the 1D fit to the data and the orange shaded
region denotes the 90% confidence level for the fit. The grey
points denote the input NR and test-particle data. The non-
spinning parameter space is densely covered up to q ∼ 10 with
only the nonspinning BAM simulation at q ¼ 18. Whilst test-
particle data can be used to constrain the fit in the extreme-mass-
ratio limit boundary q ∼ 103, there is a clear degree of uncertainty
in the fit at mass ratios q > 20. The top panel shows the direct fit
and the bottom panel shows the residuals.

FIG. 13. Fit Fðη; ŜÞ to the two-dimensional subspace fη; Ŝg.
The blue points denote NR and test-particle data.
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Based on the symmetry arguments outlined in [25,88] and
Sec. IVD,we adopt an ansatz for the linear in spin-difference
term of the form

FLinðηÞ ¼ d10ηð1þ d11Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
: ð8:7Þ

For the quadratic in spin-difference and mixed spin-
difference ansätze, we adopt simpler fits of the form

FQuadðηÞ ¼ d20η; ð8:8Þ

FMixðηÞ ¼ d30η
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
: ð8:9Þ

Whilst more complicated ansätze could be pursued, we
typically find that the systematic errors in the NR data and
strong correlations lead to poor constraints on the coeffi-
cients.As can be seen in the top twoplots ofFig. 15, the shape
and numerical value of the linear term is robust when adding
different combinations of the unequal spin terms. Applying
the fits to all data, we find

FIG. 14. Example of the spin-difference behavior at a mass
ratio q ¼ 3. At such mass ratios the surface is very close to flat
and the linear-in-spin difference term dominates. The Ai denote
the linear in spin-difference and quadratic in spin-difference
coefficients defined in Eq. (4.13).

FIG. 15. Fits to the unequal spin data. The first plot shows the
linear-in-spin difference fit. The second plot shows the linear-in-
spin difference contribution to the full unequal spin ansatz in
Eq. (4.13), fLinc ðηÞΔχ fit. The third plot the mixed-spin fit
fMix
c ðηÞŜΔχ and the final plot shows the quadratic in spin-difference

fit fQuadc ðηÞðΔχÞ2. Whilst the linear-in-spin difference is relatively
well captured, the second order unequal spin effects are less reso-
lved with the coefficients for the fits becoming poorly constrained.
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d10 ¼ 22.3632; ð8:10Þ

d11 ¼ 6.9794; ð8:11Þ

for the linear-only ansatz and

d10 ¼ 24.1579; ð8:12Þ

d11 ¼ 6.1330; ð8:13Þ

d20 ¼ −0.4132; ð8:14Þ
d30 ¼ 6.1896 ð8:15Þ

for the full ansatz. Though the data shows some evidence for
quadratic-in-spin-difference corrections, third plot of Fig. 15,
and mixed spin-difference terms, second plot of Fig. 15,
systematic errors prevent a robust fit to the data. As such, for
IMRPHENOMXAS we opt to use the linear-only ansatz in the
final 3D fit.
The full 3D fit to the hybrid data is

ΔvMR
4 ðη; Ŝ;ΔχÞ ¼ a0 þ a1ηþ a2η2 þ a3η3 þ a4η4 þ a5η6

1þ a6η
þ 1

1þ b6Ŝ
½Ŝðc0 þ c1ηþ c2η2 þ c3η3 þ c4η4Þ

þ Ŝ2ðd0 þ d1ηþ d2η2 þ d3η3 þ d4η4Þ þ Ŝ3ðe0 þ e1ηþ e2η2 þ e3η3 þ e4η4Þ
þ Ŝ4ðf0 þ f1ηþ f2η2 þ f3η3 þ f4η4Þ þ Ŝ5ðg0 þ g1ηþ g2η2 þ g3η3 þ g4η4Þ� þ h0ð1þ h1ηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4η

p
Δχ;

ð8:16Þ

whereΔvMR
4 is thevalue of themerger-ringdown phase at the

ringdown frequency. This collocation point effectively cap-
tures the value of the phase derivative at the peak of the
Lorentzian, e.g., Eq. (7.12). The coefficients ai are defined in
Eqs. (8.2) and b6 in Eq. (8.4). The additional coefficients are

c0 ¼ −24.32; c1 ¼ 50.49

c2 ¼ −68.32; c3 ¼ 0.0

c4 ¼ 784.98

d0 ¼ 26.62; d1 ¼ −19.39

d2 ¼ 13.27; d3 ¼ 1092.51

d3 ¼ 2512.13;

e0 ¼ 2.80; e1 ¼ 11.23

e2 ¼ −308.99; e3 ¼ 74.22

e4 ¼ 3103.82;

f0 ¼ −1.68; f1 ¼ −22.78

f2 ¼ 76.14; f3 ¼ 0.0

f4 ¼ 443.83;

g0 ¼ −1.21; g1 ¼ −71.28

g2 ¼ 525.24; g3 ¼ 0.0

g4 ¼ 3694.97;

h0 ¼ 22.36; h1 ¼ 6.98:

The full 3D fits for all coefficients required for IMRPHENOM-

XAS are given in the Supplementary Material [116] attached
to this paper.

IX. MODEL VALIDATION

A. Mismatches against hybrid dataset

The agreement between two waveforms h1 and h2 can be
quantified by the overlap, the noise-weighted inner product

hh1; h2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df: ð9:1Þ

The match is defined as the normalised (ĥ ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffihh; hip

)
inner product maximized over time and phase shifts

Mðh1; h2Þ ¼ max
t0;ϕ0

hĥ1; ĥ2i: ð9:2Þ

The mismatch is then defined as

Mðh1; h2Þ ¼ 1 −Mðh1; h2Þ: ð9:3Þ

In all matches presented here, we use the zero-detuned
high-power (zdethp) PSD [117,118]. We use a low fre-
quency cutoff of 20 Hz and an upper cutoff frequency of
8192 Hz.
In order to assess the accuracy of our model, we compute

the mismatch against all SXS hybrids produced for
IMRPHENOMXAS. As shown in Fig. 16, IMRPHENOMXAS

shows 1 to 2 orders of magnitude improvement over
IMRPHENOMD across the entire parameter space. Figure 17
showsmass-averagedmismatches for the performance of the
four calibrated inspiral models discussed in Sec. VII A. As
we focus on the dominant-mode nonprecessing waveforms,
we neglect all extrinsic BBH parameters, such as orientation
or sky-location, in our mismatch. The inclusion of additional
pseudo-PN coefficients demonstrates mild performance
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improvements, though not at a significantly appreciable
level. We note that the small tails visible for versions E4
and E5 could be further improved with further refinement to
the calibration pipeline, as was done for versions C4 and C5.
In Fig. 18 we show mismatches for IMRPHENOMXAS,
IMRPHENOMD and SEOBNRV4_ROM against NRHybSur3dq8

[119] for mass ratios below 9.09 and dimensionless spin
magnitudes up to 0.8.

B. Time domain conversion

Although IMRPHENOMXAS is expressed in terms of
closed-form frequency domain expressions, the input

calibration data and output from NR are time-domain
function. It is therefore useful and illustrative to check
the behavior of the model when transformed from the
frequency-domain back to the time-domain via an inverse
Fourier transformation. In particular, the model should be a
smooth function in both the frequency- and time-domain.
Such comparisons are often useful as an additional
consistency check on the physical accuracy of the model.
In Fig. 19 we plot the time-domain reconstruction of
IMRPHENOMXAS against selected SXS or BAM waveforms
at the boundary of the calibration region for NR. We find
excellent agreement between IMRPHENOMXAS and input
NR data, even when considering near extremal spin
configurations (first panel) as well as at large mass ratios
and relatively large spins (last two panels). Note that we
have optimized over a time and phase shift when aligning
the waveforms. Such comparisons provide further evi-
dence, in addition to the mismatches, that our end-to-end
pipeline for hybridization, calibration, and model reco-
nstruction are faithfully reproducing the input data.
As in [16], the frequency domain data is tapered and an

optimal sampling rate chosen through the stationary phase
approximation.

C. Parameter estimation

1. GW150914

As an example of the application of IMRPHENOMXAS to
gravitational-wave data, we reanalyze GW150914 and
demonstrate broad agreement between IMRPHENOMXAS,

FIG. 16. Mismatches for IMRPHENOMXAS (blue) and IMRPHE-

NOMD (grey) against all SXS NR hybrids. We use the Advanced
LIGO design sensitivity PSD and a lower frequency cutoff of
20 Hz. We see a dramatic decrease in the mismatch by 1 to 2
orders of magnitude across the parameter space.
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FIG. 17. Mass averaged mismatches in a range of 20–250 M⊙
for IMRPHENOMXAS and IMRPHENOMD against all SXS NR
hybrids. We use the Advanced LIGO design sensitivity PSD
and a lower frequency cutoff of 20 Hz. We showcase four
variants of IMRPHENOMXAS corresponding to different inspiral
models. The C denotes the canonical TaylorF2 baseline at 3.5PN
and the E denotes the extension to 4PN and 4.5PN order
discussed in the Appendix. The number, 4 or 5, denotes the
number of pseudo-PN terms used in the model.

FIG. 18. The ðl; mÞ ¼ ð2; 2Þ mismatches M for IMRPHENOM-

XAS (green), IMRPHENOMD (red), and SEOBNRV4 (blue) against
NRHybSur3dq8, the NR hybrid surrogate valid up to a mass
ratio q ¼ 8 and spins χi ¼ �0.8. We compute the matches at
random points in the parameter space, including points that fall
between the calibration datasets used to construct IMRPHENOM-

XAS. Here we clearly see that IMRPHENOMXAS offers a significant
improvement in performance in comparison to IMRPHENOMD or
SEOBNRV4.
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IMRPHENOMD and SEOBNRv4. We use coherent Bayesian
inference methods to determine the posterior distribution
pðθ⃗jd⃗Þ for the parameters that characterize the binary. We

use the nested sampling algorithm implemented in
LALINFERENCE [3] and the public data from the
Gravitational Wave Open Science Center (GWOSC)

FIG. 19. Time-domain IMRPHENOMXAS waveforms (violet) and SEOBNRv4-NR hybrids (grey) for configurations at the edge of the
calibration domain.
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[120–122]. Following [7], we marginalize over the fre-
quency dependent spline calibration envelopes that char-
acterize the uncertainty in the detector amplitude and strain.
We analyze four seconds of strain data, with a lower cutoff
frequency of 20 Hz. Our choice of priors is as detailed in
Sec. I of Appendix C in [7].
Figure 20 shows the posterior densities for the M − q

and q − χeff subspaces. The consistency between the three
waveform models is in agreement with previous studies,
demonstrating that systematic errors were below the
statistical errors for this event [6,8,123].

2. NRHybSur3dq8

In the second example, we inject a NRHybSur3dq8 wave-
form into a HLV detector network assuming zero-noise and
using the Advanced LIGO and Advanced VIRGO design
sensitivity PSDs [117,124,125]. The injected waveform
was taken to have a mass-ratio of q ¼ 3, chirp mass of
Mc ¼ 20 M⊙, and spins of χ1 ¼ 0.6 and χ2 ¼ −0.3. The
luminosity distance was dL ¼ 1 Gpc and the sky location,
polarization, and coalesence phase were arbitrarily chosen.
Priors are again taken to be as detailed in Sec. I of

FIG. 20. The top panel shows the q − χeff 2D posteriors
recovered by IMRPHENOMXAS, IMRPHENOMD, and SEOBNRv4
when analyzing GW150914. All models show excellent agree-
ment. The bottom panel shows the recovered component masses
in the source frame using the same waveform models. Note
that the black line denotes the equal mass limit and we
enforce m1 > m2.

FIG. 21. PE results on an injected NRHybSur3dq8 waveform with
parametersMc ¼ 20, q ¼ 3, χ1z ¼ 0.6 and χ2z ¼ −0.3. The first
three panels show the 1D posterior distributions for the chirp
mass Mc, mass ratio q and effective spin χeff as recovered by
IMRPHENOMXAS and IMRPHENOMD against an injected NRHyb-
Sur3dq8 waveform. The dashed line denotes the injected values.
IMRPHENOMXAS demonstrates excellent recovery of the injected
parameters with significantly smaller biases and tighter posteriors
than those exhibited by IMRPHENOMD. The last panel shows the
2D posterior distributions for χ1z and χ2z, highlighting how
improvements in IMRPHENOMXAS enables a more accurate
measurement of individual spin components.
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Appendix C in [7]. In Fig. 21, we highlight the reduced bias
provided by IMRPHENOMXAS over IMRPHENOMD, demon-
strating how the advances implemented in IMRPHENOMXAS

will help tighten and improve our constraints on the source
properties of astrophysical black holes. A detailed study of
waveform systematics and parameter biases is beyond the
scope of this paper and will be presented in a forth-
coming paper.

X. CONCLUSIONS

In this paper we have presented a new model for the
dominant ð2;�2Þ spherical harmonics of the gravitational-
wave signal from nonprecessing, noneccentric coalescing
black holes. In gravitational wave data analysis, this model
will most typically be used as part of a multimode wave-
form, where subdominant modes are included using the
IMRPHENOMXHM model, which we present in a companion
paper [100]. Furthermore, a technique to accelerate wave-
form evaluation is available, which drastically reduces
computational cost in particular for low masses (or low start
frequencies), as discussed in a second companion paper [18].
The model presented here will form the basis for the
forthcoming extension to precession and higher modes
[20]. Details of how to use the LALsuite [31] implementation
of the model are given in Appendix C of [100].
In the following we summarize the main improvements

of IMRPHENOMXAS over IMRPHENOMD. Several of the
changes affect all of the three frequency regions:

(i) The number of NR waveforms the model is cali-
brated to has increased from 19 to 652. While
IMRPHENOMD was only calibrated to waveforms
up to mass ratio 18, IMRPHENOMXAS includes wave-
forms up to mass ratio 1000, which were computed
in the in an appropriate test-particle limit as in [88],
see Sec. III.

(ii) IMRPHENOMD modeled 2-dimensional parameter
spaces of symmetric mass ratio and effective spin
(choosing different effective spins in different fre-
quency regimes as appropriate). IMRPHENOMXAS

models the complete 3-dimensional parameter space
without effective spin approximations.

(iii) Ad hoc parameter space fits have been replaced by a
systematic procedure designed to avoid both under-
fitting and overfitting [25,88], which proceeds by
hierarchically treating subspaces like the nonspin-
ning, or equal-spin systems.

(iv) IMRPHENOMXAS incorporates physically motivated
transition regions, with the key frequencies obeying
a natural hierarchy.

(v) The improvements mentioned above also facilitated
a more systematic study regarding the optimal
parametrization of a given waveform model, in
particular concerning the use of coefficients of basis
functions versus the use of collocation points, see
Sec. IVA.

(vi) Finally, the implementation in the LAL software
library for gravitational wave data analysis [31] has
been modularized, to allow independent updates for
the inspiral, intermediate and ringdown regions of
the phase or amplitude models.

In summary, these improvements lead to a dramatic
increase in the accuracy of IMRPHENOMXAS over
IMRPHENOMD, as shown in Fig. 18. We find up to 2 orders
of magnitude improvement in the mismatches against the
SEOBNRv4-NR hybrids across the parameter space and an
order of magnitude improvement in the mismatches against
the 22-mode for NRHybSur3dq8.
Our description of the inspiral region has improved due

to a lower cutoff frequency of 74% of the IMRPHENOMD

value for the inspiral calibration, which corresponds to
approximately doubling the length of the waveform in the
time domain. In addition, the transition frequency from
inspiral to the intermediate region is now carefully chosen
as a function of parameter space, instead of set to a fixed
frequency, as discussed in Sec. V, and different post-
Newtonian orders of the underlying TaylorF2 approximant
have been compared. Modeling of the intermediate fre-
quency region also greatly benefits from our careful choice
of transition frequencies. In addition we have added further
degrees of freedom for more accurate fits.
Finally, several changes affect mostly the ringdown, or

more generally the highest frequencies:
(i) Hybrid waveforms have been built from the

Newman-Penrose scalar ψ4 (see, e.g., [29]) instead
of from the strain, which results in a significantly
cleaner ringdown waveform.

(ii) The time resolution for hybrid waveforms has been
increased from MΔt ¼ 1 to MΔt ¼ 0.5, which ben-
efits high spin cases with high ringdown frequencies.

(iii) The fits for final spin and final mass, which are
required for computing the complex ringdown
frequency, have been changed from using the
2-dimensional effective spin fits of [16] to modeling
the full 3-dimensional parameter space dependency,
which eliminates the necessity to model the discrep-
ancy between the value from ringdown frequency
according to the fits with an extra parameter.

An important challenge for the future is to improve the
modeling of extreme mass ratios, and to study the transition
between comparable and extreme mass ratios. An impor-
tant element here will be to extend the catalogue of accurate
and sufficiently long numerical relativity waveforms
beyond mass ratio 18.
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APPENDIX A: TAYLORF2

Here we incorporate nonspinning corrections to 3.5PN
order, spin-orbit corrections to 3.5PN, spin-orbit tail
corrections to 4PN, quadratic-in-spin corrections to 3PN
and the cubic-in-spin 3.5PN corrections.

1. Amplitude

The inspiral amplitude is based on the reexpanded PN
amplitude TaylorF2

APNðf;ΞÞ ¼ A0

X6
i¼0

AiðπfÞi=3; ðA1Þ

where Ξ ¼ fη; χ1; χ2g. The expansion coefficients are
given by

A0 ¼ 1; ðA2Þ

A1 ¼ 0; ðA3Þ

A2 ¼ −
323

224
þ 451η

168
: ðA4Þ

A3 ¼ χ1

�
27δ

16
−
11η

12
þ 27

16

�
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�
−
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−
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16

�
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2. Phase

The underlying frequency-domain phasing model in
IMRPhenomX is based on the TaylorF2 post-Newtonian
approximant constructed via the application of the sta-
tionary phase approximation (SPA). For quasicircular,
nonprecessing binaries, the input ingredients are the
center-of-mass energy E and the energy flux F. The
canonical TaylorF2 approximant used in IMRPhenomX
implements recent tail-induced spin-orbit terms at 4PN,
cubic-in-spin corrections at 3.5PN and quadratic-in-spin
corrections at 3PN. Schematically, the energy can be
written as

E ¼ −
η

2
x½ENS þ x3=2ESO þ x2ESS þ x7=2ESSS� ðA9Þ

where ENS, ESO, ESS and ESSS the nonspinning, spin-orbit,
quadratic-in-spin and cubic-in-spin corrections to the
energy. Although the nonspinning contributions are cur-
rently known to 4PN, the baseline model presented here
restricts the nonspinning contributions to 3PN. The spin-
orbit terms begin at 1.5PN order are currently known to
3.5PN [106,107]. The quadratic-in-spin corrections are
known at next-to-leading order, coresponding to 3PN
[107]. The cubic-in-spin terms are currently known to
leading order and enter the energy and flux at 3.5PN [106].
Similarly, the flux can be written as

F ¼ 32

5
ηx5½FNSþx3=2F SOþx2F SSþx7=2F SSS� ðA10Þ

where FNS, F SO, F SS and F SSS denote the nonspinning,
spin-orbit, quadratic-in-spin and cubic-in-spin corrections
to post-Newtonian energy flux.

The frequency-domain phase from the TaylorF2 terms is
given by

φTF2ðf;ΞÞ ¼ 2πftc − φc −
π

4

þ 3

128η
ðπfMÞ−5=3

X7
i¼0

φiðΞÞðπfMÞi=3:

ðA11Þ

In IMRPHENOMD, the TaylorF2 baseline was based on
nonspinning corrections to 3.5PN, linear spin-orbit correc-
tions to 3.5PN and quadratic spin corrections to 2PN. In
addition, upon re-expanding the PN energy and flux in
deriving the TaylorF2 phase, all quadratic and higher spin
corrections beyond 2PN were implicitly dropped. The
coefficients used in IMRPHENOMXAS incorporate relative
1PN quadratic-in-spin corrections, the leading-order cubic-
in-spin corrections and a tail-induced SO term entering at
4PN, φ8. The coefficients detailed below define the
canonical TaylorF2 model discussed in Sec. VII A
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φ7 ¼ χa

�
−
1985δη2

48
þ 26804935δη

6048
−
25150083775δ

3048192

�

þ χs

�
−1140πδχa þ

5345η3

36
þ
�
80η2 − 7270ηþ 14585

8

�
χ2a −

1042165η2

3024
þ 10566655595η

762048
−
25150083775

3048192

�

þ χ3a

�
14585δ

24
− 2380δη

�
þ χ2s

�
χa

�
14585δ

8
−
215δη

2

�
þ 40πη − 570π

�
þ
�
100η2

3
−
475η

6
þ 14585

24

�
χ3s

−
74045πη2

756
þ ð2240πη − 570πÞχ2a þ

378515πη

1512
þ 77096675π

254016
ðA19Þ

φ8 ¼ π

�
χa

�
−
99185

252
δηþ 233915δ

168
þ
�
99185δη

252
−
233915δ

168

�
logðπfÞ

�

þ χs

��
−
19655η2

189
þ 3970375η

2268
−
233915

168

�
logðπfÞ þ 19655η2

189
−
3970375η

2268
þ 233915

168

��
: ðA20Þ

3. Extending results to 4.5PN

An implicit and powerful feature of the current generation of phenomenological waveform models is the implicit
modularity. By separating the waveform into three key regimes we are free to recalibrate or improve aspects of the
waveform model in reaction to the latest developments in the literature. Aworked example of this would be the extension of
the results to include the latest 4PN and 4.5PN results in the literature. For the nonspinning sector, the equations of motion
for compact binaries has been derived to 4PN [108,109,111,113,126] leading to an additional nonspinning term of the form

E4PN¼x4
�

77

31104
η4þ 301

1728
η3þ

�
3157π2

576
−
498449

3456

�
η2þη

�
448

15
logð16xÞþ9037π2

1536
þ896

15
γE−

123671

5760

�
−
3969

128

�
: ðA21Þ

As well as the 4PN derivation above, higher nonlinear tail effects associated to quartic nonlinear interactions have
recently been derived from first principles in the MPM formalism [114] as well as an independent derivation from the PN
reexpansion of the factorized and resummed EOB fluxes [95]. Such interactions lead to a 4.5PN contribution to the flux

F 4.5PN
Tail ¼πx9=2

�
−
3719141η3

38016
−
133112905η2

290304
þ
�
2062241

22176
þ41π2

12

�
η−

3424

105
logð16xÞ−6848γ

105
þ265978667519

745113600

�
: ðA22Þ

Another interesting contribution derived from the PN re-expansion of the EOB fluxes is the identification of a leading-
order tail-induced spin-spin term in the flux [95]3

F 3.5PN
LO-SS;Tail ¼ πx7=2

��
8δ2 þ 1

8

�
χ2a þ

�
δ2

8
þ 8

�
χ2s þ

65

4
δχaχs

�
; ðA23Þ

which coincides with the known test-particle limit [127]. Adding these terms to the PN flux and energy, we find the
following higher order contributions to the PN phasing

φN
7 ¼ −πx7=2

�
−325δχaχs þ

�
640η −

325

2

�
χ2a þ

�
10η −

325

2

�
χ2s

�
ðA24Þ

φN
9 ¼ πx9=2

�
10323755

199584
η3 þ 45293335

127008
η2 þ

�
−
1492917260735

134120448
þ 2255π2

6

�
η

−
6848 logðxÞ

21
−
640π2

3
−
13696

21
γE þ 105344279473163

18776862720
−
27392 logð2Þ

21

�
; ðA25Þ

3Using an appropriate change in spin variables from the notation of [95].
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in agreement with [95,128]. A somewhat more vexing task
is how to incorporate, in a fully consistent way, the
incomplete knowledge at 4PN. One possible approach,
as taken in [95], is to construct an approximant that depends
on as of yet unknown analytical coefficients cN , allowing
the incomplete 4 and 4.5PN terms to be included in a fully
consistent way, complete with η dependence. Here, how-
ever, we choose to drop the unknown analytical informa-
tion and instead absorb these into the pseudo-PN
calibration. In practice, we do not find any significant
difference between the canonical TaylorF2 approximant
used and the higher order PN expressions given here after
the pseudo-PN calibration is taken into account. The
extended TaylorF2 approximant discussed in Sec. VII A
uses the coefficients detailed in Eqs. (A12) to (A21) plus
the additional terms in Eqs. (A24) and (A25).

APPENDIX B: STATIONARY PHASE
APPROXIMATION

Here we overview the stationary phase approximation
(SPA) applied to a time domain signal [32,33,129]

hlmðtÞ ¼ AlmðtÞe−imφðtÞ:

The orbital phase φ is related to the orbital frequency by
ω ¼ _φ. The SPA approximation is formally valid if the
following criteria are met [32,33,130]

���� _A=Aω
���� ≪ 1;

���� _ω

ω2

���� ≪ 1;

���� ð _A=AÞ2_ω

���� ≪ 1:

The SPA approximation works as the Fourier transform of a
signal is highly oscillatory and unless there are strong
cancellations between the orbital phase φðtÞ and the 2πft
term, the Fourier transform will have support that is
roughly centered on the point of stationary phase. This
enables us to define a time as a function of the frequency

mωðtfÞ ¼ 2πf;

where tf is strictly only valid in the SPA regime. Assuming
a monotonically increasing orbital phase, such that ω > 0

and _ω > 0, then we can expand the signal about the SPA
time

h̃SPAðfÞ ≃ AlmðtfÞe2πiftf−miφðtfÞ
Z

e−iðt−tfÞ2m _ωðtfÞ=2dt

Noting that jð _A=AÞ2= _ωj ≪ 1, we can treat the amplitude as
being approximately constant. Performing the Gaussian
integration, we find

h̃lmðfÞ ≃ AlmðfÞe−iΨlmðfÞ;

AlmðfÞ ≃ AlmðtfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

m _ωðtfÞ

s
;

ΨlmðfÞ ≃mφðtfÞ − 2πftf þ
π

4
;

where we have made use of the standard integralR∞
−∞ dxe−ix

2 ¼ ffiffiffi
π

p
e−iπ=4. This can now be expressed in

terms of the TaylorF2 phase φTF2
lm and a phase shift φ0;lm

ΨlmðfÞ ≃ −2πft0 þ
π

4
þ φ0;lm þ φTF2

lm ðfÞ

where

φ0;lm ¼ m
2
φ0;22 þ φAmp

lm ;

and

φTF2
lm ðfÞ ¼ m

2
φTF2
22

�
2f
m

�
: ðB1Þ

The termφAmp
lm corresponds to phase corrections arising from

the complex PN amplitudes and φ0;l;m a gauge freedom
associated to phase shifts. Collecting this all together, we can
write the SPA of the time domain mode as

h̃lmðfÞ ¼ AlmðtfÞ
ffiffiffiffiffiffiffi
2π

m _ω

r
ei½2πftf−mφðtfÞ−π=4�: ðB2Þ
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