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We study the emergence of entropy in gravitational production of dark matter particles, ultralight
scalars minimally coupled to gravity and heavier fermions, from inflation to radiation domination. Initial
conditions correspond to dark matter fields in their Bunch-Davies vacua during inflation. The “out”
states are correlated particle-antiparticle pairs, and their distribution function is found in both cases. In
the adiabatic regime the density matrix features rapid decoherence by dephasing from interference effects
in the basis of out particle states, effectively reducing it to a diagonal form with a concomitant von
Neumann entropy. We show that it is exactly the entanglement entropy obtained by tracing over one
member of the correlated pairs. Remarkably, for both statistics the entanglement entropy is similar to the
quantum kinetic entropy in terms of the distribution function with noteworthy differences stemming from
pair correlations. The entropy and the kinetic-fluid form of the energy-momentum tensor all originate
from decoherence of the density matrix. For ultralight scalar dark matter, the distribution function peaks
at low momentum ∝ 1=k3 and the specific entropy is ≪1. This is a hallmark of a condensed phase but
with vanishing field expectation value. For fermionic dark matter the distribution function is nearly
thermal and the specific entropy is Oð1Þ which is typical of a thermal species. We argue that the
functional form of the entanglement entropy is quite general and applies to alternative production
mechanisms such as parametric amplification during reheating.
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I. INTRODUCTION

The convergence of evidence for dark matter (DM) from
cosmic microwave background (CMB) anisotropies, galac-
tic rotation curves, gravitational lensing, Bullet Cluster,
large scale surveys, and numerical evolution of galaxy
formation is very compelling. It is also evident from its
properties that a particle physics candidate must be sought
in extensions beyond the StandardModel (SM). However, a
multidecade effort for its direct detection has not yet led
to an unambiguous identification of a DM particle [1–5].
A suitable particle physics candidate must feature a
production mechanism yielding the correct abundance
and equation of state, and satisfy the cosmological and
astrophysical constraints with a lifetime of at least the age
of the Universe. So far, all of the available evidence is
consistent with dark matter interacting solely with gravity.
Among the various production mechanisms, particle

production as a consequence of cosmological expansion
is a remarkable phenomenon that has been studied in
pioneering work in Refs. [6–12]. An important aspect of
this mechanism is that if the particle interacts only with
gravity and no other degrees of freedom, its abundance is

determined solely by the particle mass, its coupling to
gravity, and the expansion history, independently of hypo-
thetical couplings beyond the SM. As such, production via
cosmological expansion provides a baseline for the abun-
dance and clustering properties of dark matter candidates.
Gravitational production has been studied for various

candidates and different cosmological settings: heavy par-
ticles produced adiabatically during inflation [13–21], or via
inflaton oscillations [22], during reheating [23–27], or
via cosmological expansion during an era with a particular
equation of state [28]. More recently the nonadiabatic
cosmological production of ultralight bosonic particles
[29] and heavy fermionic particles [30] were studied during
inflation followed by a radiation dominated era.

A. Motivations and main objectives

Nonadiabatic gravitational production of both ultralight
bosonic dark matter and a heavier fermionic dark matter
species was studied in Refs. [29,30] with initial “in”
conditions during inflation with the respective fields in
their Bunch-Davies vacuum state, evolving to asymptotic
“out” particle states in the radiation dominated era. The
asymptotic out particle states feature pair correlations and
the distribution function is obtained from the Bogoliubov
coefficients relating the in to the out states which were
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obtained in these references. Well after the transition
from inflation to radiation domination (RD) and well
before matter radiation equality, when the scale factor
aeq ≃ 10−4 ≫ aðtÞ ≫ 10−17=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðeVÞp

, there ensues an
adiabatic regime during which the Hubble expansion rate
HðtÞ is much smaller than the mass m of the dark matter
particle. It is shown in these references that during the
adiabatic regime, and after averaging rapid oscillations in
interference terms, the energy-momentum tensor of these
dark matter particles feature the kinetic-fluid form.
Furthermore, in the case of fermionic dark matter,
Ref. [30] found that the distribution function features an
unexpected near thermality.
These results motivate the main questions addressed in

this article: a kinetic-fluid description in terms of a
distribution function typically also includes the entropy
[31], which along with the energy density and pressure
provide an effective statistical description of the “fluid,” as
in thermodynamics. In this study we address the origin of
entropy associated with this kinetic-fluid description.
At prima facie the question of entropy within the context

of gravitational production seems surprising because the in
state of dark matter is the vacuum state during inflation;
therefore, the density matrix describes a pure state with
vanishing entropy. While this is true, the study in
Refs. [29,30] revealed that during the adiabatic regime
and in the basis of asymptotic out particles, the energy-
momentum tensor features contributions that evolve on
widely different timescales: a slow timescale associated
with the cosmological expansion ≃1=HðtÞ and a fast time-
scale ≃1=m associated with the dynamics of the out particle
states. The latter one is manifest in specific interference
terms in pair correlations which dephase on the rapid
timescale ≃1=m. As shown explicitly in Refs. [29,30], the
kinetic-fluid form emerges upon averaging these rapidly
varying correlations on the longer timescales. The wide
separation of these two timescales is precisely the hallmark
of the adiabatic regime that sets in well before matter
radiation equality. In this article we study whether and
how this rapid dephasing phenomena stemming from
interference in the asymptotic out state heralds a
decoherence mechanism, and how such mechanism entails
loss of information and a nonvanishing entropy.

B. Brief summary of results

Following up on the study of Refs. [29,30], we consider
the nonadiabatic gravitational production of an ultralight
complex scalar field minimally coupled to gravity and a
heavier fermionic Dirac field under the same set of minimal
assumptions considered in these references. The cosmo-
logical expansion results in the production of entangled
correlated asymptotic out particle-antiparticle pairs of
vanishing total momentum.
During the adiabatic regime, we introduce an effective

Schroedinger picture that implements a separation of the

widely different timescales, the rapid timescale is included
in the time evolution of the density matrix, whereas the
slow timescale is associated with operators. The
Bogoliubov transformation that relates the in to the out
states relates the Schroedinger picture density matrix in the
in basis to the out basis. Off-diagonal density matrix
elements in the out basis feature fast dephasing on short
timescales ≃1=m, leading to decoherence and information
loss, effectively reducing the density matrix to a diagonal
form in this basis, and consequently to a nonvanishing von
Neumann entropy. This rapid dephasing and decoherence
in the density matrix is a direct manifestation of the
interference terms in the energy-momentum tensor in the
out basis and the emergence of its kinetic-fluid form.
We show that because gravitational production results

in correlated particle-antiparticle pairs, the von Neumann
entropy resulting from dephasing and decoherence is
precisely the entanglement entropy obtained by tracing
the density matrix over one member of the pairs.
Remarkably, the entanglement entropy is similar to the
quantum kinetic expression in terms of the distribution
function with noteworthy differences arising from the
intrinsic pair correlations in the out states. We find that
the comoving entropy density in terms of the distribution
function of produced particles, Nk, is given by

S ¼ � 1

2π2

Z
∞

0

k2fð1� NkÞ lnð1� NkÞ ∓ Nk lnNkgdk;

where “þ” is for real or complex bosons and “−” is for
each spin/helicity of Dirac or Majorana fermions. If the
out states were independent particles and/or antiparticles,
complex bosons and Dirac fermions would have twice the
number of degrees of freedom of real bosons and Majorana
fermions and the entropy would feature an extra factor 2
when particles are different from antiparticles. The fact that
the entropy is the same regardless of whether particles are
the same as antiparticles or not is a consequence of the pair
correlations of the out state. These pairs are entangled
in momentum (and spin/helicity for fermions); tracing out
any member of the pair yields the same entanglement
entropy regardless of whether the member is a particle or an
antiparticle. Therefore, the von Neumann-entanglement
entropy and the kinetic-fluid form of the energy-momentum
are all a direct consequence of decoherence of the density
matrix in the out basis by dephasing.
We discuss the role of the out particle basis as a

privileged or “pointer” basis; to describe the statistical
aspects of dark matter, it is preferred by the measurement of
the properties of dark matter “particles.”
For a minimally coupled ultralight scalar field, gravita-

tional production yields a distribution function that is
strongly peaked in the infrared [29]. In this case we find
that the specific entropy (entropy per particle) is vanish-
ingly small; this is a hallmark of a condensed phase albeit
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with a vanishing expectation value of the field. For
fermionic dark matter, the distribution function is nearly
thermal [30] and the specific entropy is Oð1Þ in agreement
with a nearly thermal (but cold) dark matter candidate.
Although we have studied the origin of entropy within

these two specific examples, we argue that the emergence
of entropy in the production of dark matter from the time
evolution of an initial pure state is more generally valid and
the mechanism of decoherence by dephasing is common to
several alternative proposed mechanisms of particle pro-
duction in cosmology.
We note that cosmological particle production and

entanglement entropy have previously been considered
for inflationary perturbations [32–39], in cosmological
particle production [40], and as scenarios of quantum
information concepts applied to model cosmologies
[41–44]. However, to the best of our knowledge the origin
of entropy has not yet been addressed for nonadiabatic
gravitational production of dark matter during inflation
followed by a postinflation radiation dominated cosmol-
ogy, which is the focus of our study.
The article is organized as follows: Section II summa-

rizes the main assumptions. Section III studies a complex
ultralight scalar dark matter field minimally coupled to
gravity, introduces the method of separation of timescales,
obtains the energy-momentum tensor and the density
matrix in the out basis, and analyzes decoherence by
dephasing and the entanglement entropy. Section IV stud-
ies fermionic dark matter specifically to understand
how particle statistics affect the entanglement entropy.
Section V provides a discussion of various related aspects
and arguments for the generality of our results. Section VI
summarizes our conclusions and poses new questions.
Finally, various appendixes supplement technical details.
For self-consistency, completeness and continuity of

presentation, Secs. III and IV include some of the most
relevant technical aspects that are discussed in greater detail
in Refs. [29,30].

II. PRELIMINARIES

We consider a similar cosmological setting as in
Refs. [29,30], namely, a spatially flat Friedmann-
Robertson-Walker cosmology in conformal time η with
metric

gμνðηÞ ¼ a2ðηÞdiagð1;−1;−1;−1Þ: ð2:1Þ

The assumptions adopted from these references are (i) the
dark matter particle only interacts with gravity but no other
degrees of freedom and the dark matter field does not
develop an expectation value, (ii) instantaneous transition
from inflation to a postinflation radiation dominated era,
motivated by the consideration of modes that are super-
Hubble at the end of inflation, (iii) we take the cosmo-
logical dynamics as a background: during inflation it is

determined by the inflaton field, and during radiation
domination by the more than ≃100 degrees of freedom
of the SM (and beyond), and (iv) we take all dark matter
fields to be in their (Bunch-Davies) vacuum state during
inflation.
The inflationary stage is described by a de Sitter space

time (thereby neglecting slow roll corrections) with a scale
factor

aðηÞ ¼ −
1

HdSðη − 2ηRÞ
; ð2:2Þ

whereHdS is the Hubble constant during de Sitter and ηR is
the (conformal) time at which the de Sitter stage transitions
to the RD stage.
During the RD stage

HðηÞ ¼ 1

a2ðηÞ
daðηÞ
dη

¼ 1.66
ffiffiffiffiffiffiffi
geff

p T2
0

MPla2ðηÞ
; ð2:3Þ

where geff is the effective number of ultrarelativistic degrees
of freedom, which varies in time as different particles
become nonrelativistic. We take geff ¼ 2 corresponding to
radiation today. As discussed in Refs. [29,30] by taking
geff ¼ 2 for a fixed dark matter particle mass, one obtains a
lower bound on the DM abundance and equation of state,
differing by a factor of Oð1Þ from the abundance if the RD
era is dominated only by SM degrees of freedom. This
discrepancy is not relevant for our study on the origin of
entropy.
With this approximation the scale factor during radiation

domination is given by

aðηÞ ¼ HRη; ð2:4Þ

with

HR ¼ H0

ffiffiffiffiffiffi
ΩR

p
≃ 10−35 eV; ð2:5Þ

and matter radiation equality occurs at

aeq ¼
ΩR

ΩM
≃ 1.66 × 10−4: ð2:6Þ

The result (2.5) corresponds to the value of the fraction
density ΩR today, thereby neglecting the change in the
number of degrees of freedom contributing to the radiation
density fraction. For geff effective ultrarelativistic degrees
of freedom, Eq. (2.5) must be multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffi
geff=2

p
.

However, as discussed in Refs. [29,30] accounting for
ultrarelativistic degrees of freedom of the SM at the time of
the transition between inflation and RD modifies the final
abundance by a factor of Oð1Þ and affects the entropy only
at a quantitative level by factors of Oð1Þ.
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We require that the scale factor and the Hubble rate be
continuous across the transition from inflation to RD at
conformal time ηR, and assume (self-consistently) that the
transition occurs deep in the RD era so that aðηRÞ ¼
HRηR ≪ aeq. Continuity of the scale factor and Hubble
rate at the instantaneous reheating time results in that the
energy density is continuous at the transition [29,30].
UsingHðηÞ ¼ a0ðηÞ=a2ðηÞ, continuity of the scale factor

and Hubble rate at ηR imply that

adSðηRÞ ¼
1

HdSηR
¼ HRηR; HdS ¼

1

HRη
2
R
; ð2:7Þ

yielding

ηR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HdSHR

p : ð2:8Þ

Constraints from Planck [45] on the tensor-to-scalar
ratio yield the following upper bound on the scale of
inflation HdS,

HdS=MPl < 2.5 × 10−5 ð95%ÞCL: ð2:9Þ

We take as a representative value HdS ¼ 1013 GeV, from
which it follows that

adSðηRÞ ¼ HRηR ¼
ffiffiffiffiffiffiffiffi
HR

HdS

s
≃ 10−28 ≪ aeq; ð2:10Þ

consistently with our assumption that the transition from
inflation occurs deep in the RD era.
With HdS ≃ 1013 GeV, HR ≃ 10−35 eV it follows that

ηR ≃ 106=ðeVÞ. In our analysis we will consider solely
modes that are super-Hubble at the end of inflation, namely
with comoving wave vectors k such that

kηR ≪ 1; ð2:11Þ

corresponding to comoving wavelengths λ ≫ fewmeters.
Therefore, all scales of cosmological relevance today
correspond to super-Hubble wavelengths at the end of
inflation.
The consideration of solely super-Hubble modes pro-

vides an a priori justification for the assumption of an
instantaneous transition from inflation to RD. These modes
feature very slow dynamics and in principle are causally
disconnected from microphysical processes, such as colli-
sional thermalization, occurring on sub-Hubble scales.
These considerations suggest that these cosmologically
relevant modes are insensitive to the reheating dynamics
postinflation, thereby bypassing the model dependence of
reheating mechanisms [25,27] and the rather uncertain
dynamics of thermalization of SM degrees of freedom,
which depends on couplings and nonequilibrium aspects.

III. COMPLEX SCALAR FIELDS

We begin by considering an ultralight complex scalar
field ϕ minimally coupled to gravity, generalizing the
study in Ref. [29]. The action in comoving coordinates
is given by

S ¼
Z

d3xdt
ffiffiffiffiffiffi
−g

p �∂ϕ†

∂t
∂ϕ
∂t −

1

a2
∇ϕ†∇ϕ −m2ϕ†ϕ

�
:

ð3:1Þ

Changing coordinates to conformal time η with metric
(2.1), conformally rescaling the scalar field

ϕðx⃗; ηÞ ¼ χðx⃗; ηÞ
aðηÞ ; ð3:2Þ

and after discarding a total surface term the action becomes

S ¼
Z

d3xdηfχ†0χ0 −∇χ†∇χ −M2ðηÞχ†χg ð3:3Þ

where 0 ≡ d
dη, and

M2ðηÞ ¼ m2a2ðηÞ − a00ðηÞ
aðηÞ : ð3:4Þ

Quantization of the complex scalar field in a comoving
volume V is achieved by writing

χðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

h
ak⃗gkðηÞe−ik⃗·x⃗ þ b†

k⃗
g�kðηÞeik⃗·x⃗

i
; ð3:5Þ

where the mode functions gkðηÞ obey the equations of
motion

g00kðηÞ þ
�
k2 þm2a2ðηÞ − a00ðηÞ

aðηÞ
�
gkðηÞ ¼ 0; ð3:6Þ

and satisfy the Wronskian conditions

g0kðηÞg�kðηÞ − gkðηÞg0�kðηÞ ¼ −i; ð3:7Þ

which imply canonical commutation relations for the
annihilation and creation operators in the expansion (3.5).

A. “In-out” states, adiabatic mode functions,
and particle states

The mode equation (3.6) can be written in the more
familiar form as
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−
d2

dη2
gkðηÞ þ VðηÞgkðηÞ ¼ k2gkðηÞ;

VðηÞ ¼ −m2a2ðηÞ þ a00ðηÞ
aðηÞ ; ð3:8Þ

namely a Schroedinger equation for a wave function gk
with a potential VðηÞ and “energy” k2. The potential VðηÞ
and/or its derivative are discontinuous at the transition ηR;
however, gkðηÞ and g0kðηÞ are continuous at ηR. Defining

gkðηÞ ¼
�
g<k ðηÞ; for; η < ηR

g>k ðηÞ; for; η > ηR
; ð3:9Þ

the matching conditions are

g<k ðηRÞ ¼ g>k ðηRÞ;
d
dη

g<k ðηÞ
����
ηR

¼ d
dη

g>k ðηÞ
����
ηR

: ð3:10Þ

As discussed in Ref. [29] these continuity conditions on
the mode functions, along with the continuity of the scale
factor and Hubble rate ensure that the energy density is
continuous at the transition from inflation to RD.

1. Inflationary stage

We consider that the DM scalar field is in the Bunch-
Davies vacuum state during the inflationary stage, which
corresponds to the mode functions gkðηÞ fulfilling the
boundary condition

gkðηÞ ⟶
η→−∞

e−ikηffiffiffiffiffi
2k

p ; ð3:11Þ

and the Bunch-Davies vacuum state j0Ii is such that

ak⃗j0Ii ¼ 0; bk⃗j0Ii ¼ 0 ∀ k⃗: ð3:12Þ

We refer to this vacuum state as the in vacuum.
During the de Sitter stage (η < ηR), with the scale factor

given by Eq. (2.2), the mode equation becomes

d2

dτ2
g<k ðτÞ þ

�
k2 −

ν2 − 1=4
τ2

�
g<k ðτÞ ¼ 0; ð3:13Þ

where

τ ¼ η − 2ηR; ν2 ¼ 9

4
−

m2

H2
dS

: ð3:14Þ

The solution with the boundary condition (3.11) fulfilling
the Wronskian condition (3.7) is given by

g<k ðτÞ ¼
1

2

ffiffiffiffiffiffiffiffi
−πτ

p
ei

π
2
ðνþ1=2ÞHð1Þ

ν ð−kτÞ ð3:15Þ

where Hð1Þ
ν is a Hankel function. For ultralight dark matter

with the correct abundance, the result of Ref. [29] yields
m ≃ 10−5ðeVÞ; therefore, with HdS ≃ 1013 GeV it follows
that m=HdS ≪ 1, hence we can take ν ¼ 3=2, yielding

g<k ðτÞ ¼
e−ikτffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
: ð3:16Þ

As mentioned in the previous section, we consider only
comoving wavelengths that are well outside the Hubble
radius at the end of inflation, namely fulfilling the condition
(2.11), these describe all the relevant astrophysical scales
today.
In summary, the in state is the Bunch-Davies vacuum

defined by Eq. (3.12) and the mode functions (3.16) during
the de Sitter inflationary stage.

2. Radiation dominated era

During the radiation era for η > ηR, with aðηÞ ¼ HRη
we set a00 ¼ 0, and the mode equation (3.6) becomes

d2

dη2
g>k ðηÞ þ ½k2 þm2H2

Rη
2�g>k ðηÞ ¼ 0; ð3:17Þ

the general solutions of which are linear combinations of
parabolic cylinder functions [29,46–50]. As out boundary
conditions, we consider particular solutions that describe
asymptotically positive frequency particle states; their
complex conjugates describe antiparticles. This identifica-
tion relies on a Wentzel-Kramers-Brillouin (WKB) form of
the asymptotic mode functions.
Let us consider a particular solution of (3.17) of the

WKB form [9]

fkðηÞ ¼
e
−i
R

η

ηR
Wkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðηÞ
p : ð3:18Þ

Upon inserting this ansatze in the mode equation (3.17)
one finds that WkðηÞ obeys

W2
kðηÞ ¼ ω2

kðηÞ −
1

2

�
W00

kðηÞ
WkðηÞ

−
3

2

�
W0

kðηÞ
WkðηÞ

	
2
�
; ð3:19Þ

where

ω2
kðηÞ ¼ k2 þm2H2

Rη
2: ð3:20Þ

When ωkðηÞ is a slowly varying function of time, the
WKB Eq. (3.19) may be solved in a consistent adiabatic
expansion in terms of derivatives of ωkðηÞ with respect to η
divided by appropriate powers of the frequency, namely
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W2
kðηÞ¼ω2

kðηÞ
�
1−

1

2

ω00
kðηÞ

ω3
kðηÞ

þ3

4

�
ω0
kðηÞ

ω2
kðηÞ

	
2

þ���
�
: ð3:21Þ

We refer to terms that feature n-derivatives of ωkðηÞ as of
nth adiabatic order. During the time interval of rapid
variations of the frequencies, the concept of particle is
ambiguous, but at long time the frequencies evolve slowly
and the concept of particle becomes clear [29].
We want to identify particles (dark matter particles) near

the time of matter radiation equality, so that entering in
the matter dominated era when aðηÞ ≃ aeq ≃ 10−4, we can
extract the energy-momentum tensor associated with these
particles.
The condition of adiabatic expansion relies on the ratio

ω0
kðηÞ

ω2
kðηÞ

≪ 1: ð3:22Þ

An upper bound on this ratio is obtained in the very long
wavelength (superhorizon) limit; taking ωkðηÞ ¼ maðηÞ, in
a RD cosmology the adiabaticity condition (3.22) leads to

a0ðηÞ
ma2ðηÞ ¼

HR

ma2ðηÞ ≪ 1 ⇒ aðηÞ ≫ 10−17ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðeVÞp : ð3:23Þ

Therefore, for m ≃ 10−5 eV corresponding to aðηÞ ≃ 10−14

there is a long period of nonadiabatic evolution since the
end of inflation aðηRÞ ≃ 10−29 ≪ 10−14, during which the
ωkðηÞ varies rapidly. However, even for an ultralight
particle with m ≃ 10−5ðeVÞ the adiabaticity condition is
fulfilled well before matter-radiation equality.
The adiabaticity condition (3.23) has an important

physical interpretation. Since a0=a2 ¼ HðtÞ ¼ 1=dHðtÞ is
the Hubble expansion rate with dH the Hubble radius (both
in comoving time) it follows that the condition (3.23)
implies that

HðtÞ
m

≪ 1 or
λc

dHðtÞ
≪ 1; ð3:24Þ

where λc is the Compton wavelength of the particle. During
radiation or matter domination, dHðtÞ is proportional to the
physical particle horizon; therefore, the adiabaticity con-
dition is the statement that the Compton wavelength of the
particle is much smaller than the physical particle horizon.
The adiabaticity condition becomes less stringent for
k ≫ maðηÞ, in which case it implies that the comoving
de Broglie wavelength is much smaller than the particle
horizon. The evolution of the mode functions is non-
adiabatic during inflation and for a period after the
transition to RD [29,30], but becomes adiabatic well before
matter radiation equality.
During the adiabatic regime the WKB mode function

(3.18) asymptotically becomes

fkðηÞ →
e−i

R
η
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p : ð3:25Þ

We refer to the mode functions with this asymptotic
boundary condition that fulfill the Wronskian condition

f0kðηÞf�kðηÞ − fkðηÞf0�k ðηÞ ¼ −i ð3:26Þ

as out particle states. As discussed in Refs. [29,30] this
criterion is the closest to the particle characterization in
Minkowski space-time.
The general solution of Eq. (3.17) is a linear combination

g>k ðηÞ ¼ AkfkðηÞ þ Bkf�kðηÞ; ð3:27Þ

where fkðηÞ are the solutions of the mode equation (3.17)
with the asymptotic boundary conditions (3.25) and Ak and
Bk are Bogoliubov coefficients. Since g>k ðηÞ obeys the
Wronskian condition (3.7) and so does fkðηÞ, it follows that
the Bogoliubov coefficients obey

jAkj2 − jBkj2 ¼ 1: ð3:28Þ

Using the Wronskian condition (3.26) and the matching
condition (3.10), the Bogoliubov coefficients are deter-
mined from the following relations:

Ak ¼ i½g0<k ðηRÞf�kðηRÞ − g<k ðηRÞf0kðηRÞ�
Bk ¼ −i½g0<k ðηRÞfkðηRÞ − g<k ðηRÞf0kðηRÞ�: ð3:29Þ

Since the mode functions g<k ðηÞ also fulfill the Wronskian
condition (3.7), it is straightforward to confirm the iden-
tity (3.28).
For η > ηR the field expansion (3.5) yields

χðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

h
ak⃗g

>
k ðηÞeik⃗·x⃗ þ b†

k⃗
g�>k ðηÞe−ik⃗·x⃗

i

¼ 1ffiffiffiffi
V

p
X
k⃗

h
ck⃗fkðηÞeik⃗·x⃗ þ d†

k⃗
f�kðηÞe−ik⃗·x⃗

i
; ð3:30Þ

where

ck⃗ ¼ akAk þ b†
−k⃗
B�
k; d†

k⃗
¼ b†

k⃗
A�
k þ a−k⃗Bk: ð3:31Þ

We refer to ck⃗; dk⃗ and c
†
k⃗
; d†

k⃗
as the annihilation and creation

operators of out particle and antiparticle states respectively
and the mode functions fkðηÞ as defining the out basis.
These operators obey canonical quantization conditions as
a consequence of the relation (3.28) and are time inde-
pendent because the mode functions fkðηÞ are exact
solutions of the equations of motion. The expectation
values of bilinears in c, d in the Bunch-Davies vacuum
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state j0Ii (3.12) are obtained from the relations (3.31);
we find

h0Ijc†k⃗ck⃗0 j0Ii ¼ jBkj2δk⃗;k⃗0 ; h0Ijd†k⃗dk⃗0 j0Ii ¼ jBkj2δk⃗;k⃗0 ;
h0Ijc†k⃗d

†
−k⃗0

j0Ii ¼ BkA�
kδk⃗;k⃗0 ð3:32Þ

with all others vanishing. In particular the number of out
particles and antiparticles are given by

Nk ¼ h0Ijc†k⃗ck⃗j0Ii ¼ jBkj2 ¼ N̄k ¼ h0Ijd†k⃗dk⃗j0Ii: ð3:33Þ

We identify Nk ¼ N̄k with the number of dark matter
particles and antiparticles produced asymptotically from
cosmic expansion. Gravitational production yields the same
number of particles as antiparticles. Only in the asymptotic
adiabatic regime can Nk be associated with the number of
particles (for a more detailed discussion on this point
see Ref. [29]).
It remains to obtain the solutions fkðηÞ of the mode

equations (3.17) with asymptotic out boundary condition
(3.25) describing asymptotic particle states.
It is convenient to introduce the dimensionless variables

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
η; α ¼ −

k2

2mHR
; ð3:34Þ

in terms of which Eq. (3.17) becomes Weber’s equation
[47–50]

d2

dx2
fðxÞ þ

�
x2

4
− α

�
fðxÞ ¼ 0: ð3:35Þ

The solution that satisfies the Wronskian condition (3.26)
and features the asymptotic out state behavior (3.25) with
ω2
kðηÞ ¼ x2

4
− α, has been obtained in Ref. [29] in terms of

Weber’s function W½α; x� [46–48]. It is given by

fkðηÞ ¼
1

ð8mHRÞ1=4
�
1ffiffiffi
κ

p W½α; x� − i
ffiffiffi
κ

p
W½α;−x�

�
;

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2πjαj

p
− e−πjαj: ð3:36Þ

The Bogoliubov coefficients are obtained from
Eqs. (3.29), where the mode functions during the de
Sitter era, g<k ðηÞ, are given by Eq. (3.16) (with τ ¼
η − 2ηR). Here we just quote the result for jBkj2 referring
the reader to [29] for details. In terms of the variable

z ¼ k

½2mHR�1=2
; ð3:37Þ

it is given by

Nk ¼ jBkj2 ≃
1

16
ffiffiffi
2

p
�
HdS

m

	
2DðzÞ

z3
ð3:38Þ

where

DðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2πz

2
p ����Γð14 − i z

2

2
Þ

Γð3
4
− i z

2

2
Þ

����: ð3:39Þ

This function is analyzed in Ref. [29] but the only
properties that are relevant for our discussion are that
Dð0Þ ≃ 4.2 and that DðzÞ → ffiffiffi

2
p

=z for z ≫ 1. The infrared
enhancement of Nk ∝ 1=k3 and the prefactor HdS=m ≫ 1
are both consequences of a minimally coupled light scalar
field during inflation [29] and results in a distribution
function that is strongly peaked with Nk ≫ 1 for
z ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HdS=m

p
.

B. Heisenberg vs adiabatic Schroedinger pictures

In the adiabatic regime the mode functions fkðηÞ with
out boundary conditions can be written as

fkðηÞ ¼
e−i

R
η
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p F kðηÞ;

f0kðηÞ ¼ −iωkðηÞ
e−i

R
η
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p GkðηÞ; ð3:40Þ

where

F kðηÞ ¼ e−iðξð1ÞðηÞþξð2ÞðηÞþ���Þ½1þ F ð1Þ
k ðηÞ þ F ð2Þ

k ðηÞ þ � � ��;
ð3:41Þ

GkðηÞ ¼ e−iðξð1ÞðηÞþξð2ÞðηÞþ���Þ½1þ Gð1Þ
k ðηÞ þ Gð2Þ

k ðηÞ þ � � ��:
ð3:42Þ

The functions ξðnÞ are real, and ξðnÞ, F ðnÞ
k , GðnÞ are of nth

adiabatic order and vanish in the asymptotic long time
limit. During the adiabatic regime ξðnÞ, F ðηÞ, GðηÞ are
slowly varying functions of η, whereas the phase

e−i
R

η
ωkðη0Þdη0 varies rapidly during a Hubble time. To

appreciate this latter point more clearly, consider the
k ¼ 0 case for which the phase is given in comoving time
by mt ≃m=HðηÞ ¼ ma2=a0 ≫ 1, were the last equality
follows from the adiabaticity condition (3.23) during RD.
The important point is that during the adiabatic regime
there is a wide separation of timescales: the expansion
timescale 1=HðtÞ is much longer than the microscopic
timescale 1=m, namely HðtÞ=m ≪ 1 which is precisely the
adiabaticity condition.
This important point is at the heart of decoherence of the

density matrix by dephasing discussed below.
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With the slow-fast expansion of the out basis modes
(3.40) the expansion of the complex field (3.30) in this
basis in the Heisenberg representation is given by

χðx⃗; ηÞ ¼
X
k⃗

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðηÞV

p �
ck⃗F kðηÞe−i

R
η

ηi
ωkðη0Þdη0eik⃗·x⃗

þ d†
k⃗
F �

kðηÞe
i
R

η

ηi
ωkðη0Þdη0e−ik⃗·x⃗

�
; ð3:43Þ

where ηi is some (arbitrary) early scale but well within the
adiabatic regime. We note that a change of ηi may be
absorbed into a canonical transformation of ck⃗; dk⃗. Let us
introduce the zeroth order adiabatic Hamiltonian in the
out basis

H0ðηÞ ¼
X
k⃗

h
c†
k⃗
ck⃗ þ d†

k⃗
dk⃗

i
ωkðηÞ: ð3:44Þ

It follows that

½H0ðηÞ; ck⃗� ¼ −ωkðηÞck⃗; ½H0ðηÞ; dk⃗� ¼ −ωkðηÞdk⃗:
ð3:45Þ

Although H0ðηÞ depends explicitly on time, it fulfills

½H0ðηÞ; H0ðη0Þ� ¼ 0 ∀ η; η0: ð3:46Þ

Therefore, associated with H0 we introduce the unitary
time evolution operator

U0ðη; ηiÞ ¼ e
−i
R

η

ηi
H0ðη0Þdη0 ; ð3:47Þ

and from the commutation relations (3.45) it follows that

U−1
0 ðη; ηiÞck⃗U0ðη; ηiÞ ¼ ck⃗e

−i
R

η

ηi
ωkðη0Þdη0 ;

U−1
0 ðη; ηiÞdk⃗U0ðη; ηiÞ ¼ dk⃗e

−i
R

η

ηi
ωkðη0Þdη0 : ð3:48Þ

We can now write the Heisenberg picture field operator in
the out basis (3.43) as

χðx⃗; ηÞ ¼ U−1
0 ðη; ηiÞχSðx⃗; ηÞU0ðη; ηiÞ; ð3:49Þ

with the adiabatic Schroedinger picture field

χSðx⃗; ηÞ ¼
X
k⃗

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðηÞV

p h
ck⃗F kðηÞeik⃗·x⃗ þ d†

k⃗
F �

kðηÞe−ik⃗·x⃗
i
:

ð3:50Þ

Similarly with the expansion (3.40) we find

χ0ðx⃗; ηÞ ¼ U−1
0 ðη; ηiÞΠSðx⃗; ηÞU0ðη; ηiÞ; ð3:51Þ

where

ΠSðx⃗; ηÞ ¼
X
k⃗

−iωkðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðηÞV

p h
ck⃗GkðηÞeik⃗·x⃗ − d†

k⃗
G�
kðηÞe−ik⃗·x⃗

i
:

ð3:52Þ

This is the Schroedinger picture version of the adiabatic
expansion, χSðx⃗; ηÞ;ΠSðx⃗; ηÞ evolve slowly, on timescales
≃1=HðtÞ in the adiabatic regime, whereas the phases

e
−i
R

η

ηi
ωkðη0Þdη0 evolve fast, on timescales 1=m.

In the Heisenberg picture, operators depend on time, but
states and the density matrix do not. Consider a Heisenberg
picture operator Oðx⃗; ηÞ and its expectation value in the
Bunch-Davis in state j0Ii,

h0IjOðx⃗; ηÞj0Ii ¼ h0IjU−1
0 ðη; ηiÞOSðx⃗; ηÞU0ðη; ηiÞj0Ii

≡ Tr½ρSðηÞOSðx⃗; ηÞ�; ð3:53Þ

where we have introduced the adiabatic Schroedinger
picture density matrix

ρSðηÞ ¼ U0ðη; ηiÞj0Iih0IjU−1
0 ðη; ηiÞ: ð3:54Þ

Obviously this density matrix describes a pure state since
ρ2SðηÞ ¼ ρSðηÞ. This adiabatic Schroedinger picture effec-
tively separates the fast time evolution, now encoded in the
density matrix, from the slow time evolution of the field
operators OSðx⃗; ηÞ.
In Minkowski space time the Schroedinger picture

operators OSðx⃗; ηÞ do not evolve in time whereas the states
and the density matrix evolves in time with the usual time
evolution operator e−iHt. During the adiabatic regime in RD
cosmology the equivalent Schroedinger picture operators
feature a slow residual adiabatic time evolution on the
timescales of cosmological expansion.

C. Energy-momentum tensor

For a minimally coupled complex scalar field, the
energy-momentum tensor is given by

Tμν ¼ ∂μϕ
†∂νϕþ ∂νϕ

†∂μϕ − gμν½gαβ∂αϕ
†∂βϕ −m2jϕj2�:

ð3:55Þ

In conformal time and after the conformal rescaling of
the field (3.2) we find (space-time arguments are implicit)

T0
0¼

1

a4

��
χ0−

a0

a
χ

	†�
χ0−

a0

a
χ

	
þ∇χ† ·∇χþm2a2jχj2

�
;

ð3:56Þ

along with
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Tμ
μ¼ 2

a4

�
2m2a2jχj2−

�
χ0−

a0

a
χ

	†�
χ0−

a0

a
χ

	
þ∇χ† ·∇χ

�
:

ð3:57Þ

The Bunch-Davies in vacuum state is homogeneous and
isotropic; therefore, the expectation value of the energy-
momentum tensor in this state features the ideal fluid form
h0IjTμ

ν j0Ii ¼ diagðρ̄ðηÞ;−P̄ðηÞ;−P̄ðηÞ;−P̄ðηÞÞ. It proves
convenient to extract the homogeneous and isotropic
components of the energy-momentum tensor as an oper-
ator; this is achieved by its averaging over the comoving
volume V, namely

1

V

Z
d3xT0

0ðx⃗; ηÞ ¼ ˆ̄ρðηÞ;
1

V

Z
d3xTμ

μðx⃗; ηÞ ¼ ˆ̄ρðηÞ − 3 ˆ̄PðηÞ; ð3:58Þ

where the hat refers to the operator. Since we are interested
in the energy-momentum tensor near matter radiation
equality well within the adiabatic regime, we obtain these
volume averages by implementing two steps: (i) the field χ
is written in the out basis, namely in terms of the mode
functions fkðηÞ as in Eq. (3.30), (ii) these mode functions
are written by separating the slow and fast parts as in
Eqs. (3.40), (3.43); we find

ˆ̄ρðηÞ ¼ 1

2Va4ðηÞ
X
k⃗

�
½1þ c†

k⃗
ck⃗ þ d†

k⃗
dk⃗�

�
ðjF j2 þ jGj2ÞωkðηÞ − i

�
a0

a

	
ðG�F − GF �Þ þ

�
a0

a

	
2 jF j2
ωkðηÞ

�

þ c†
k⃗
d†
−k⃗
e
2i
R

η

ηi
ωkðη0Þdη0

�
ωkðηÞðF �2 − G�2Þ − 2i

�
a0

a

	
ðFGÞ� þ

�
a0

a

	
2 F �2

ωkðηÞ
�

þ ck⃗d−k⃗e
−2i

R
η

ηi
ωkðη0Þdη0

�
ωkðηÞðF 2 − G2Þ þ 2i

�
a0

a

	
ðFGÞ þ

�
a0

a

	
2 F 2

ωkðηÞ
��

ð3:59Þ

and

ˆ̄ρðηÞ − 3 ˆ̄PðηÞ ¼ 1

Va4ðηÞ
X
k⃗

�
ð1þ c†

k⃗
ck⃗ þ d†

k⃗
dk⃗Þ

�
m2a2ðηÞ
ωkðηÞ

jF j2 þ ωkðηÞðjF j2 − jGj2Þ þ i

�
a0

a

	
ðG�F − GF �Þ

−
�
a0

a

	
2 jF j2
ωkðηÞ

�
þ c†

k⃗
d†
−k⃗
e
2i
R

η

ηi
ωkðη0Þdη0

�
F �2

ωk
ðm2a2 þ ω2

kÞ −
1

ωk

�
iωG� −

a0

a
F �

	
2
�

þ ck⃗d−k⃗e
−2i

R
η

ηi
ωkðη0Þdη0

�
F 2

ωk
ðm2a2 þ ω2

kÞ −
1

ωk

�
−iωG −

a0

a
F
	

2
��

: ð3:60Þ

The expectation values of these operators in the in
vacuum state are readily obtained from Eq. (3.32).
These expressions show explicitly that the contributions

that are diagonal in the out basis, namely, c†c; d†d are
slowly varying, whereas the off-diagonal terms cd, c†d†

exhibit the fast varying phases. These rapidly varying terms
are a consequence of the interference between particle
and antiparticle out states, similar to the phenomenon of
zitterbewegung, and average out over timescales ≳1=m
leaving only the diagonal contributions to the energy
density and pressure [29]. The energy-momentum tensor,
as an operator, can also be written passing to the adiabatic
Schroedinger picture as

Tμνðx⃗; ηÞ ¼ U−1
0 ðη; ηiÞTμν

S ðx⃗; ηÞU0ðη; ηiÞ; ð3:61Þ

where U0ðη; ηiÞ is the time evolution operator (3.47)
removing the fast varying phases in (3.59), (3.60), and
Tμν
S ðx⃗; ηÞ is the adiabatic Schroedinger picture operator

with slow time evolution in the adiabatic regime. In terms
of the adiabatic Schroedinger picture density matrix (3.54),
it follows that

h0IjTμνðx⃗; ηÞj0Ii ¼ Tr½ρSðηÞTμν
S ðx⃗; ηÞ�: ð3:62Þ

The rapidly varying phases in the particle-antiparticle
interference terms in the out basis in (3.59), (3.60) suggest
that the of-diagonal elements of the density matrix ρSðηÞ in
the out basis will also feature these rapidly varying phases
from particle-antiparticle interference, which average out
on timescales ≳1=m. This averaging suggests a process of
decoherence by dephasing, which is analyzed in detail in
the next section.

D. Decoherence of the density matrix:
von Neumann and entanglement entropy

In Appendix A we show that the in Bunch-Davies
vacuum state can be written in terms of the Fock states
of the out basis as (see Appendix A for definitions)
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j0Ii ¼ Πk⃗

X∞
nk⃗¼0

Cnk⃗ðkÞjnk⃗; n̄k⃗i;

Cnk⃗ðkÞ ¼
ðe2iφ−ðkÞ tanhðθkÞÞnk⃗

coshðθkÞ
; ð3:63Þ

with

jBkj2 ¼ sinh2ðθkÞ ¼ Nk; jAkj2 ¼ cosh2ðθkÞ;

tanh2ðθkÞ ¼
Nk

1þ Nk
; ð3:64Þ

and

e2iφ−ðkÞ tanhðθkÞ ¼
B�
k

A�
k
; ð3:65Þ

and the correlated Fock pair states

jnk⃗;n̄−k⃗i¼
ðc†

k⃗
Þnk⃗ffiffiffiffiffiffiffi
nk⃗!

p ðd†
−k⃗
Þnk⃗ffiffiffiffiffiffiffi
nk⃗!

p j0Oi; nk⃗¼0;1;2…; ð3:66Þ

where the out vacuum state j0Oi is such that

ck⃗j0Oi ¼ dk⃗j0Oi ¼ 0: ð3:67Þ

We note that the Fock pair states (3.66) are eigenstates of
the pair number operator

N̂ k⃗ ¼
X∞
mk⃗¼0

mk⃗jmk⃗; m̄−k⃗ihmk⃗; m̄−k⃗j; ð3:68Þ

with

N̂ k⃗jnk⃗; n̄−k⃗i ¼ nk⃗jnk⃗; n̄−k⃗i; nk⃗ ¼ 0; 1; 2…: ð3:69Þ

In this out basis and in the adiabatic regime prior to
matter-radiation equality, the density matrix in the
Schroedinger picture (3.54) becomes

ρSðηÞ ¼ Πk⃗Πp⃗

X∞
nk⃗¼0

X∞
mp⃗¼0

C�mp⃗
ðpÞCnk⃗ðkÞjnk⃗; n̄−k⃗i

× hmp⃗; m̄−p⃗je2i
R

η

ηi
½mp⃗ωpðη0Þ−nk⃗ωkðη0Þ�dη0 : ð3:70Þ

The diagonal density matrix elements both in momentum
and number of particles, namely k⃗ ¼ p⃗, mp⃗ ¼ nk⃗ are time
independent; these describe the “populations,” whereas the
off-diagonal elements describe the coherences. These latter
matrix elements vary rapidly in time and average out over
timescales ≫ 1=m. To see this aspect more clearly, and
recognizing that

Z
η
ωkðη0Þdη0 ¼

Z
t
Ekðt0Þdt0; EkðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

a2ðtÞ þm2

s
;

ð3:71Þ

let us consider the average

1

ðtf − tiÞ
Z

tf

ti

e2i
R

t½mp⃗Epðt0Þ−nk⃗Ekðt0Þ�dt0dt; mðtf − tiÞ ≫ 1:

ð3:72Þ

For example for p⃗ ¼ k⃗ ¼ 0 andmðtf − tiÞ ≫ 1 the integral
yields δm

0⃗
;n

0⃗
. Taking the interval tf − ti of the order of the

Hubble time ≃1=HðtÞ, in the adiabatic regime with
HðtÞ=m ≪ 1 the integral yields ≃H=m ≪ 1 for m

0⃗
≠ n

0⃗

and Oð1Þ for m
0⃗
¼ n

0⃗
. Therefore, the rapidly varying

phases effectively average out the coherences over time-
scales ≃1=m ≪ 1=HðtÞ projecting the density matrix to the
diagonal elements in the out basis.
In summary, the rapid dephasing of the off-diagonal

matrix elements in the out basis in the adiabatic regime
average these contributions on timescales of order 1=m
which are much shorter than the expansion timescale
(Hubble scale) in the adiabatic regime. The rapid dephasing
leads to decoherence in the out basis, the time averaging is
tantamount to a coarse graining over short timescales
leaving effectively a diagonal density matrix in this basis,
describing a mixed state that evolves slowly on the long
timescale,

ρðdÞS ¼Πk⃗½1− tanh2ðθkÞ�
X∞
nk⃗¼0

ðtanh2ðθkÞÞnk⃗ jnk⃗; n̄−k⃗ihnk⃗; n̄−k⃗j:

ð3:73Þ

This density matrix is diagonal in the Fock out basis of
correlated—entangled—particle-antiparticle pairs, and in k⃗
space, with the diagonal matrix elements representing the

probabilities. We note that TrρðdÞS ¼ 1. The entropy asso-
ciated with this mixed state can be calculated simply by

establishing contact between the density matrix ρðdÞS and
that of quantum statistical mechanics in equilibrium
described by a fiducial Hamiltonian

Ĥ ¼
X
k⃗

EkN̂ k⃗; ð3:74Þ

with N̂ k⃗ the pair number operator (3.68) with eigenvalues
nk⃗ ¼ 0; 1; 2 � � �, and the fiducial energy

Ek ¼ − ln½tanh2ðθkÞ�: ð3:75Þ
This fiducial Hamiltonian is diagonal in the correlated basis
of particle-antiparticle pairs; therefore, we identify
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ρðdÞS ¼ e−Ĥ

Z
; Z ¼ Tre−Ĥ ≡ e−F ; ð3:76Þ

with F the fiducial free energy, and

Z ¼ Πk⃗Zk⃗; Z k⃗ ¼
1

½1 − e−Ek � ¼
1

½1 − tanh2ðθkÞ�
:

ð3:77Þ

Obviously the matrix elements of (3.76) in the pair basis are
identical to those of (3.73).
The von Neumann entropy associated with this mixed

state is

SðdÞ ¼ −TrρðdÞS ln ρðdÞS : ð3:78Þ

Since Ĥ is diagonal in the basis of the pair Fock states

(3.66), so is ρðdÞS . The eigenvalues of ρðdÞS are the probability

for each state of nk⃗ pairs of momenta ðk⃗;−k⃗Þ, namely,

Pk⃗;nk⃗
¼ e−Eknk⃗

Z k⃗

;
X∞
nk⃗¼0

Pk⃗;nk⃗
¼ 1; ð3:79Þ

therefore, the von Neumann entropy is given by

SðdÞ ¼ −
X
k⃗

X∞
nk⃗¼0

Pk⃗;nk⃗
lnPk⃗;nk⃗

: ð3:80Þ

This is equivalent to a simple quantum statistical
mechanics problem. The relation

F ¼ − lnZ ¼ U − SðdÞ; U ¼ TrρðdÞS Ĥ ð3:81Þ

is a direct consequence of the expression (3.80) for SðdÞ and
the normalized probabilities Pk⃗;nk⃗

given by (3.79). The

entropy SðdÞ is obtained once the fiducial internal energy U
is found. It is easily shown to be given by the equivalent
form in quantum statistical mechanics

U ¼
X
k⃗

Ek

eEk − 1
: ð3:82Þ

Using the identity (3.64) and recognizing the following
relations

Ek ¼ ln

�
1þ Nk

Nk

�
;

1

eEk − 1
¼ Nk ð3:83Þ

we find the von Neumann entropy

SðdÞ ¼
X
k⃗

fð1þ NkÞ lnð1þ NkÞ − Nk lnNkg: ð3:84Þ

E. Interpretation of SðdÞ: Entanglement entropy

Consider the full density matrix ρSðηÞ Eq. (3.70).
Although it describes a pure state, in the out basis this
state is a highly correlated, entangled state of pairs,
because in this basis the state j0Ii is not a simple product
state. Because the members of the particle-antiparticle pairs
are correlated, projecting onto a state with nk⃗ antiparticles

of momentum −k⃗ effectively projects onto the state with nk⃗
particles with momentum k⃗. Therefore, consider obtaining
a reduced density matrix by tracing ρSðηÞ over the
antiparticle states p̄. Because the states jnk⃗; n̄−k⃗i ¼
jnk⃗ijn̄−k⃗i such trace involves terms of the form
ðjnk⃗ihmp⃗jÞðhn̄−k⃗jm̄−p⃗iÞ¼ðjnk⃗ihmp⃗jÞδk⃗;p⃗δnk⃗;mp⃗

thereby pro-
jecting on particle states diagonal both in number and
momentum. Therefore the rapidly varying phases in (3.70)
vanish identically, yielding

ρðrÞS ðηÞ ¼ Trp̄ρSðηÞ

¼ Πk⃗½1 − tanh2ðθkÞ�
X∞
nk⃗¼0

ðtanh2ðθkÞÞnk⃗ jnk⃗ihnk⃗j:

ð3:85Þ

Note that because the density matrix (3.73) is diagonal in
the basis of correlated pairs, tracing over one member of the
correlated pair, either the particle or the antiparticle keeps
the density matrix diagonal with the same probabilities.
For example, tracing over the antiparticles reduces (3.73)
directly to (3.85) with the same eigenvalues, i.e., proba-
bilities. This observation is yet another manner to interpret
the equivalence with the fiducial quantum statistical
mechanical example, now with the fiducial Hamiltonian

ĤðrÞ ¼
X
k⃗

EkN̂
ðrÞ
k⃗
; ð3:86Þ

with the reduced number operator

N̂ ðrÞ
k⃗

¼
X∞
mk⃗¼0

mk⃗jmk⃗ihmk⃗j; ð3:87Þ

namely,

ρðrÞS ¼ e−Ĥ
ðrÞ

Z
; Z ¼ Tre−Ĥ

ðrÞ ≡ e−F ; ð3:88Þ
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with the same Z and fiducial free energy F as for ρðdÞS

Eq. (3.73). Hence ρðrÞS and ρðdÞS feature the same eigenvalues
and yield the same entropy.
The von Neumann entropy associated with the reduced

density matrix ρðrÞS ðηÞ, i.e.,

SðrÞ ¼ −TrρðrÞS ln ρðrÞS ; ð3:89Þ

is the entanglement entropy [51]. Therefore, we conclude
that decoherence from rapid dephasing of the off-diagonal
density matrix elements results in a reduction of the density
matrix which is diagonal in the correlated pair basis. This
reduction is identical to tracing over one member of the
correlated pair leading to the entanglement entropy. The
equivalence between the entropy resulting from dephasing
and decoherence and the entanglement entropy is no
accident: it is a direct consequence of the entangled—
correlated—particle-antiparticle pairs in the out state and
that after decoherence the density matrix is diagonal in this
basis of correlated pairs. Therefore the diagonal matrix
elements, in other words the probabilities, are exactly the
same as when one of the members of the pairs is traced
over, which yields the entanglement entropy. The result
(3.84) is remarkably similar to the quantum kinetic form of
the entropy in terms of the distribution function [31].
However, there is an important difference: a complex scalar
field has two degrees of freedom, corresponding to particles
and antiparticles; therefore, if the out state were a super-
position of independent single particles and antiparticles we
would expect an extra overall factor 2 multiplying the von
Neumann entropy (3.84) because of the two independent
degrees of freedom. The reason for this discrepancy is that the
density matrix is diagonal in the basis of particle-antiparticle
correlated pairs, not independent particles and antiparticles.
Because of the pairing, for each pair there is effectively only
one degree of freedom, not two as would be the case for
independent particles and antiparticles. This is more evident
in the identification of the von Neumann entropy with the
entanglement entropy which is obtained by tracing over one
member of the pairs either particle or antiparticle.

F. Energy density, pressure, and entropy

During the adiabatic regime and well before matter
radiation equality, the decoherence process via dephasing
renders the time-dependent density matrix in the
Schroedinger picture diagonal in the out basis, namely

ρðdÞS . With this density matrix we find

Trc†
k⃗
ck⃗ρ

ðdÞ
S ¼ Trd†

k⃗
dk⃗ρ

ðdÞ
S ¼ sinh2ðθkÞ ¼ Nk;

Trc†
k⃗
d†
−k⃗
ρðdÞS ¼ Trd−k⃗ck⃗ρ

ðdÞ
S ¼ 0; ð3:90Þ

from which we can now obtain the expectation value of
the energy-momentum tensor, given by Eq. (3.62) with

ρSðηÞ≡ ρðdÞS . The nonvanishing contributions to the expect-
ation values of the expressions (3.59), (3.60) are those with
terms c†c, d†d, since the off-diagonal terms of the density

matrix ρðdÞS vanish.
Near matter radiation equality when the dark matter

contribution begins to dominate, the adiabatic approxima-
tion is very reliable; therefore, we keep the leading order
terms in the adiabatic expansions (3.41), (3.42), namely
jF j ¼ jGj ¼ 1, yielding

ρ̄ðηÞ ¼ Tr ˆ̄ρðηÞρðdÞS ¼ 1

2π2a4ðηÞ
Z

∞

0

k2½1þ 2Nk�ωkðηÞdk;

ð3:91Þ

P̄ðηÞ ¼ Tr ˆ̄PðηÞρðdÞS ¼ 1

6π2a4ðηÞ
Z

∞

0

k2½1þ 2Nk�
k2

ωkðηÞ
dk:

ð3:92Þ

These are precisely the kinetic-fluid expressions obtained
in Ref. [29] after averaging over the rapid phases in the
interference terms. Therefore, this averaging in the energy-
momentum tensor and the emergence of the kinetic-fluid
form in the adiabatic regime is a direct manifestation of
decoherence by dephasing in the density matrix, hence also
directly related to the emergence of entropy.
The “1” inside the brackets in (3.91), (3.92) corresponds

to the zero point energy density and pressure. As explained
in detail in Ref. [29], these zero point contributions are
subtracted by renormalization of the energy-momentum
tensor [52–58]. Therefore the contribution from gravita-
tional particle-antiparticle production to the energy density,
pressure, and comoving entropy density S ¼ S=V (V is
comoving volume) of dark matter are given by the kinetic-
fluid forms

N pp̄ ¼ 1

π2

Z
∞

0

k2Nkdk; ð3:93Þ

ρ̄pp̄ðηÞ ¼
1

π2a4ðηÞ
Z

∞

0

k2NkωkðηÞdk; ð3:94Þ

P̄pp̄ðηÞ ¼
1

3π2a4ðηÞ
Z

∞

0

k4

ωkðηÞ
Nkdk; ð3:95Þ

Spp̄ ¼ 1

2π2

Z
∞

0

k2½ð1þ NkÞ ln½1þ Nk� − Nk lnNk�dk;

ð3:96Þ

where N pp̄ is the total (particles plus antiparticles)
comoving number density. It is straightforward to confirm
covariant conservation
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_̄ρpp̄ðtÞ þ 3
_a
a
ðρ̄pp̄ðtÞ þ P̄pp̄ðtÞÞ ¼ 0; ð3:97Þ

along with the conservation of the comoving entropy
density

_Spp̄ ¼ 0; ð3:98Þ

where the dot stands for derivative with respect to comov-
ing time. Although the comoving entropy density is
proportional (up to a factor 2) to the quantum kinetic
expression, it is not to be identified with a thermodynamic
entropy; as shown above it is the entanglement entropy
resulting from the loss of information as a consequence of
dephasing and decoherence from the interference between
particle and antiparticle out states. The equivalence with the
entanglement entropy is a consequence of the correlations
in the particle-antiparticle pairs; tracing over one member is
equivalent to neglecting the off-diagonal matrix elements.
The result (3.96) is similar to the expression for the

entanglement entropy obtained in Ref. [40] for bosonic
particle production after tracing one member of the
produced pairs from the Wigner distribution function.
While in this reference the tracing over one member of
the pairs was carried out to obtain the entanglement
entropy, we emphasize that in our case, the main origin
of entropy is the decoherence via dephasing during the
adiabatic regime. The fact that this entropy is exactly the
same as the entanglement entropy is an a posteriori
conclusion on the equivalence between the entropy emerg-
ing from the decoherence via dephasing and the entangle-
ment entropy.

G. Entropy for ultralight dark matter

In Ref. [29] the case of gravitationally produced ultra-
light dark matter has been studied under the same con-
ditions assumed in this article. In this reference it was
established that a scalar field minimally coupled to gravity
and with mass m ≃ 10−5 eV yields the correct dark matter
abundance and is a cold dark matter candidate with a very
small free streaming length. The distribution function is
given by Eq. (3.38). It features an infrared enhancement
∝ 1=k3 and the large factor HdS=m ≫ 1, both conse-
quences of a light scalar minimally coupled to gravity
during inflation. Since DðzÞ ≃ 1=z for z ≫ 1 the occupa-
tion number Nk ≫ 1 in the region 0 ≤ z ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HdS=m

p
.

The comoving number density of gravitationally pro-
duced cold dark matter scalar particles has been obtained in
Ref. [29]; it is given by

N pp̄ ≃
�
HdS

4πm

	
2

ð2mHRÞ3=2Dð0Þ ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mHR
p

H0

�
: ð3:99Þ

The leading contribution to the comoving entropy
density (3.96) can be extracted by implementing the

following steps: (a) changing integration variable to z
given by (3.37), and (b) taking the limit Nk ≫ 1 in the
region of integration dominated by the infrared 0 ≤ z ≤ zc
where 1 ≪ zc ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HdS=m

p
, yielding

Spp̄ ≃
ð2mHRÞ3=2

2π2

Z
zc

0

z2½lnðNkÞ þ � � ��dz; ð3:100Þ

where the dots stand for subleading terms of order 1=Nk for
Nk ≫ 1. It is more instructive to obtain the dimensionless
specific entropy, namely the entropy per particle Spp̄=N pp̄.
To leading order in HdS=m ≫ 1 we find

Spp̄

N pp̄
≃

16

3Dð0Þ
lnðHdS=mÞz3c
ðHdS
m Þ2 ln½

ffiffiffiffiffiffiffiffiffi
2mHR

p
H0

�

�
1 −

1

2 lnðHdS=mÞ

×

�
lnð8

ffiffiffi
2

p
Þ − ð4=3 − 4 ln zcÞ −

0.17
z3c

��
: ð3:101Þ

For ultralight dark matter with H0 ≪ m ≪ HdS (for exam-
ple withHdS ¼ 1013 GeV,m ≃ 10−5 eV) it follows that the
specific entropy

Spp̄

N pp̄
≪ 1: ð3:102Þ

A large occupation number in an narrow momentum
region and with a very small specific entropy are all
hallmarks of a condensed state; these are precisely the
conditions of a Bose-Einstein condensate. However, in this
case of gravitationally produced particles, this is not a
condensate in the usual manner because the expectation
value of the field vanishes; therefore, it is not described by a
coherent state. Instead this a condensed state of correlated
pairs entangled in momentum but of total zero momentum
in a two-mode squeezed state [59].
For a value of the mass that yields the correct dark matter

abundance, m ≃ 10−5 eV [29], the ratio of the comoving
dark matter entropy Spp̄ to that of the CMB

Scmb ≃ T3
0; T0 ≃ 10−4 eV ð3:103Þ

yields

Spp̄

Scmb
≃ 10−45; ð3:104Þ

therefore, if ultralight dark matter is gravitationally pro-
duced, the entropy of the Universe today is dominated by
the CMB.

IV. FERMIONIC DARK MATTER

The results obtained above for a complex scalar are, in
fact, much more general and apply with few modifications
primarily due to the different statistics, to the case of
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gravitationally produced fermionic dark matter. We analyze
this case by briefly summarizing the results of Ref. [30] to
which we refer the reader for a more comprehensive
treatment.
In comoving coordinates, the action for a Dirac field is

given by

S ¼
Z

d3xdt
ffiffiffiffiffiffi
−g

p
Ψ̄½iγμDμ −m�Ψ: ð4:1Þ

Introducing the vierbein field eμaðxÞ defined as

gμνðxÞ ¼ eμaðxÞeνbðxÞηab;

where ηab ¼ diagð1;−1;−1;−1Þ is the Minkowski space-
time metric, the curved space time Dirac gamma-matrices
γμðxÞ are given by

γμðxÞ ¼ γaeμaðxÞ; fγμðxÞ; γνðxÞg ¼ 2gμνðxÞ; ð4:2Þ

where the γa are the Minkowski space time Dirac matrices.
The fermion covariant derivative Dμ is given in terms of

the spin connection by [9,11,60,61]

Dμ ¼ ∂μ þ
1

8
½γc; γd�eνcð∂μedν − Γλ

μνedλÞ; ð4:3Þ

where Γλ
μν are the usual Christoffel symbols.

The vierbeins can be obtained easily for a spatially flat
Friedmann- Robertson-Walker cosmology in conformal
time with metric given by Eq. (2.1). Introducing the
conformally rescaled fields

a
3
2ðηÞΨðx⃗; tÞ ¼ ψðx⃗; ηÞ; ð4:4Þ

the action becomes

S ¼
Z

d3xdηψ̄ ½i=∂ −MðηÞ�ψ ; ð4:5Þ

with

MðηÞ ¼ maðηÞ; ð4:6Þ

and the γa matrices are the usual Minkowski space time
ones taken to be in the standard Dirac representation. We
consider the fermion massmmuch smaller than the Hubble
scale during inflation, namely m=HdS ≪ 1 but otherwise
arbitrary.
The Dirac equation for the conformally rescaled Fermi

field becomes

½i=∂ −MðηÞ�ψ ¼ 0: ð4:7Þ

Then expand ψðx⃗; ηÞ in a comoving volume V as

ψðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗;s

½bk⃗;sUsðk⃗; ηÞ þ d†
−k⃗;s

Vsð−k⃗; ηÞ�eik⃗·x⃗;

ð4:8Þ

and the spinor mode functions U, V obey the Dirac
equations

½iγ0∂η − γ⃗ · k⃗ −MðηÞ�Usðk⃗; ηÞ ¼ 0; ð4:9Þ

½iγ0∂η − γ⃗ · k⃗ −MðηÞ�Vsð−k⃗; ηÞ ¼ 0: ð4:10Þ

Finally, the spinor solutions are given by [30]

Usðk⃗; ηÞ ¼ N

�
F kðηÞξs
kfkðηÞsξs

	
; ð4:11Þ

Vsð−k⃗; ηÞ ¼ N

�−kf�kðηÞsξs
F �

kðηÞξs

	
; ð4:12Þ

where

F kðηÞ ¼ if0kðηÞ þMðηÞfkðηÞ; ð4:13Þ

and the functions fkðηÞ are solutions of [30]

�
d2

dη2
þ k2 þM2ðηÞ − iM0ðηÞ

�
fkðηÞ ¼ 0; ð4:14Þ

with in boundary conditions

fkðηÞ → e−ikη; ð4:15Þ

as η → −∞ during inflation [30]. The two component
spinors ξs are helicity eigenstates, namely

σ⃗ · k⃗ξs ¼ skξs; s ¼ �1; ð4:16Þ

and N is a (constant) normalization factor.
The spinor solutions are normalized as follows:

U†
sðk⃗; ηÞUs0 ðk⃗; ηÞ ¼ δs;s0 ; V†

sð−k⃗; ηÞVs0 ð−k⃗; ηÞ ¼ δs;s0 ;

ð4:17Þ

yielding

jNj2½F �
kðηÞF kðηÞ þ k2f�kðηÞfkðηÞ� ¼ 1: ð4:18Þ

With these normalization conditions the operators bk⃗;s, dk⃗;s
in the field expansion (4.8) obey the usual canonical
anticommutation relations.
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Furthermore, it is straightforward to confirm that

U†
sðk⃗; ηÞVs0 ð−k⃗; ηÞ ¼ 0 ∀ s; s0: ð4:19Þ

The spinors Us, Vs furnish a complete set of four
independent solutions of the Dirac equation.
During the inflationary stage, considered as a spatially

flat de Sitter space-time, the functions fk obey�
d2

dτ2
þ k2 −

ν2 − 1=4
τ2

�
fkðτÞ ¼ 0; τ ¼ η − 2ηR;

ν ¼ 1

2
þ i

m
HdS

: ð4:20Þ

The solution with in boundary conditions (4.15) is given by

fkðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
πkτ
2

r
eiπðνþ1=2Þ=2Hð1Þ

ν ð−kτÞ; ð4:21Þ

where Hð1Þ
ν is a Hankel function. The operators bk⃗;s; dk⃗;s in

the field expansion (4.8) are chosen to annihilate the in
vacuum state j0Ii, namely

bk⃗;sj0Ii ¼ 0; dk⃗;sj0Ii ¼ 0; ð4:22Þ

with the mode functions fk given by (4.21), the state j0Ii
corresponds to the Bunch-Davies vacuum.
Since we are considering an instantaneous transition

between inflation and radiation domination, and because
the Dirac equation is first order in time, the matching
conditions correspond to the continuity of the spinor wave
functions across the transition.
Defining ψ<ðx⃗; ηÞ and ψ>ðx⃗; ηÞ the fermion field for

η < ηR (inflation) and η > ηR RD respectively, the match-
ing condition is

ψ<ðx⃗; ηRÞ ¼ ψ>ðx⃗; ηRÞ: ð4:23Þ

This continuity condition along with the continuity of the
scale factor and Hubble rate at ηR results in that the energy
density is continuous at the transition [30].
Introducing the Dirac spinors during the inflationary

(η < ηR) and RD (η > ηR) stages as U<, V< and U>, V>

respectively, it follows from the matching condition (4.23)
that

U<
s ðk⃗; ηRÞ ¼ U>

s ðk⃗; ηRÞ; ð4:24Þ

V<
s ð−k⃗; ηRÞ ¼ V>

s ð−k⃗; ηRÞ: ð4:25Þ

We define the mode functions during RD as hkðηÞ to
distinguish them from the solutions (4.21) during inflation.
These obey the mode equations

�
d2

dη2
þ ω2

kðηÞ − imHR

�
hkðηÞ ¼ 0;

ω2
kðηÞ ¼ k2 þm2H2

Rη
2: ð4:26Þ

Similarly to the spinor solutions (4.11), (4.12) we now find

Usðk⃗; ηÞ ¼ Ñ

�
HkðηÞξs
khkðηÞsξs

	
; ð4:27Þ

Vsð−k⃗; ηÞ ¼ Ñ

�−kh�kðηÞsξs
H�

kðηÞξs

	
; ð4:28Þ

where we have introduced

HkðηÞ ¼ ih0kðηÞ þMðηÞhkðηÞ; ð4:29Þ

and Ñ is a (constant) normalization factor chosen so that

U†
sðk⃗; ηÞUs0 ðk⃗; ηÞ ¼ δs;s0 ; V†

sð−k⃗; ηÞVs0 ð−k⃗; ηÞ ¼ δs;s0 ;

ð4:30Þ

yielding

jÑj2½H�
kðηÞHkðηÞ þ k2h�kðηÞhkðηÞ� ¼ 1: ð4:31Þ

Again, it is straightforward to confirm that

U†
sðk⃗; ηÞVs0 ð−k⃗; ηÞ ¼ 0: ð4:32Þ

The mode equation (4.26) admits a solution of the
form [30] (see Appendix C)

hkðηÞ ¼ e−i
R

η Ωkðη0Þdη0 ; ð4:33Þ

where ΩkðηÞ obeys a differential equation that can be
systematically solved in the adiabatic expansion and is
analyzed in Appendix C. It relies on the ratio HðηÞ=m ≪ 1
which during the RD era implies that aðηÞ ≫
10−17=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mðeVÞp

, for the value m ≃ 108 GeV which satu-
rates the dark matter bound as found in Ref. [30]; its range
of validity begins well before matter radiation equality at
aeq ≃ 10−4. We choose the solution of (4.26) to feature the
asymptotic out boundary condition

hkðηÞ → e−i
R

η
ωkðη0Þdη0 : ð4:34Þ

With this boundary condition, the spinor solutions
during the RD era (4.27), (4.28) satisfy the asymptotic
out boundary conditions

Usðk⃗; ηÞ →∝ e−i
R

η
ωkðη0Þdη0 ; Vsðk⃗; ηÞ →∝ ei

R
η
ωkðη0Þdη0 ;

ð4:35Þ
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therefore describing out particle and antiparticle solutions
with helicities�1, defining a complete set of four solutions
of the Dirac equation during RD.
It is convenient to introduce the following dimensionless

combinations:

z ¼
ffiffiffiffiffiffiffiffiffiffi
mHR

p
η; q ¼ kffiffiffiffiffiffiffiffiffiffi

mHR
p ; λ ¼ q2 − i ð4:36Þ

in terms of which Eq. (4.26) becomes

d2

dz2
hkðzÞ þ ðz2 þ λÞhkðzÞ ¼ 0; ð4:37Þ

the solutions of which are the parabolic cylinder functions
[46–50]

Dα½
ffiffiffi
2

p
eiπ=4z�; Dα½

ffiffiffi
2

p
e3iπ=4z�;

α ¼ −
1

2
− i

λ

2
¼ −1 − i

q2

2
: ð4:38Þ

The solution that fulfills the out boundary condition (4.34)
(see appendix A in Ref. [30]) is given by

hkðηÞ ¼ Dα½
ffiffiffi
2

p
eiπ=4z�: ð4:39Þ

The general solution for the spinor wave functions U>, V>

during the RD era are linear combinations of the four
independent solutions (4.27), (4.28). In principle, with four
independent solutions during inflation matching onto four
independent solutions during RD there would be a 4 × 4
matrix of Bogoliubov coefficients; however, because hel-
icity is conserved, the linear combinations are given by

U>
s ðk⃗; ηÞ ¼ Ak;sUsðk⃗; ηÞ þ Bk;sVsð−k⃗; ηÞ; ð4:40Þ

V>
s ð−k⃗; ηÞ ¼ Ck;sVsð−k⃗; ηÞ þDk;sUsðk⃗; ηÞ: ð4:41Þ

The Bogoliubov coefficients Ak;s � � �Dk;s are obtained from
the matching conditions (4.24), (4.25) and the relations
(4.30), (4.32). These obey the relations [30]

Dk;s ¼ −B�
k;s; Ck;s ¼ A�

k;s; ð4:42Þ

and

jAk;sj2 þ jBk;sj2 ¼ 1: ð4:43Þ

During the RD era, with Us ≡U>
s , Vs ≡ V>

s with U>,
V> given by (4.40), (4.41) the field expansion (4.8) in terms
of the spinor solutions with out boundary conditions (4.35)
becomes

ψðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗;s

½b̃k⃗;sUsðk⃗; ηÞ þ d̃†
−k⃗;s

Vsð−k⃗; ηÞ�eik⃗·x⃗;

ð4:44Þ

where

b̃k⃗;s ¼ bk⃗;sAk þ d†
−k⃗;s

Dk;s; ð4:45Þ

d̃†
−k⃗;s

¼ d†
−k⃗;s

Ck;s þ bk⃗;sBk;s: ð4:46Þ

The relations (4.42), (4.43) imply that the new operators b̃,
d̃ obey canonical anticommutation relations. The operators
b̃† and d̃† create asymptotic particle and antiparticle states,
respectively. In particular we find that the number of
asymptotic out particle and antiparticle states in the
Bunch-Davies vacuum state (4.22) are the same and are
given by

h0Ijb̃†k⃗;sb̃k⃗;sj0Ii ¼ jDk;sj2 ¼ h0Ijd̃†−k⃗;sd̃−k⃗;sj0Ii ¼ jBk;sj2:
ð4:47Þ

We identify the number of out particles, which is equal to
the number of out antiparticles as

h0Ijb̃†k⃗;sb̃k⃗;sj0Ii¼h0Ijd̃†−k⃗;sd̃−k⃗;sj0Ii¼ jBk;sj2≡Nk ð4:48Þ

with Nk ¼ jBk;sj2 being the distribution function of pro-
duced particles and antiparticles. The relation (4.43)
implies that

jBk;sj2 ≤ 1; ð4:49Þ

for each helicity s, consistent with Pauli exclusion. For
m ≪ HdS it is found in Ref. [30] that

Nk ¼ jBk;sj2 ¼
1

2

h
1 − ð1 − e−

k2
2mTHÞ1=2

i
; ð4:50Þ

in terms of the emergent temperature [30]

TH ¼ HR

2π
≃ 10−36 eV: ð4:51Þ

In the adiabatic regime during RD the spinors Usðk⃗; ηÞ,
Vsð−k⃗; ηÞ can be written as (see Appendix C and Ref. [30])

Usðk⃗; ηÞ ¼ e
−i
R

η

ηi
ωkðη0Þdη0 Ũsðk⃗; ηÞ;

Vsð−k⃗; ηÞ ¼ e
i
R

η

ηi
ωkðη0Þdη0 Ṽsð−k⃗; ηÞ; ð4:52Þ

where Ũsðk⃗; ηÞ, Ṽsð−k⃗; ηÞ are slowly varying functions of
time during this regime, and again ηi is some early time in
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the adiabatic regime. To leading (zeroth) order in the
adiabatic expansion these are given by (see Appendix C)

Ũsðk⃗; ηÞ ¼
1

½2ωkðηÞðωkðηÞ þMðηÞÞ�1=2

×

� ðωkðηÞ þMðηÞÞξs
ksξs

	
; ð4:53Þ

Ṽsð−k⃗; ηÞ ¼
1

½2ωkðηÞðωkðηÞ þMðηÞÞ�1=2

×

� −ksξs
ðωkðηÞ þMðηÞÞξs

	
: ð4:54Þ

A. Energy density, pressure, and entropy

The energy-momemtum tensor for Dirac fields is given
by [11,62–64]

Tμν ¼ i
2
ðΨ̄γμDν

↔
ΨÞ þ μ ↔ ν: ð4:55Þ

In terms of conformal time and the conformally rescaled
fields (4.4), the energy density ρ and pressure P as
operators are given by

ρ̂ðx⃗; ηÞ ¼ T0
0ðx⃗; ηÞ

¼ i
2a4ðηÞ

�
ψ†ðx⃗; ηÞ d

dη
ψðx⃗; ηÞ

−
d
dη

ψ†ðx⃗; ηÞψðx⃗; ηÞ
	
; ð4:56Þ

P̂ðx⃗; ηÞ ¼ −
1

3

X
j

Tj
jðx⃗; ηÞ

¼ −i
6a4ðηÞ ðψ

†ðx⃗; ηÞα⃗ · ∇⃗ψðx⃗; ηÞ

− ∇⃗ψ†ðx⃗; ηÞ · α⃗ψðx⃗; ηÞÞ: ð4:57Þ

The expectation value of the energy-momentum tensor in
the Bunch-Davies vacuum state is given by

h0IjTμ
ν j0Ii ¼ diagðρðηÞ;−PðηÞ;−PðηÞ;−PðηÞÞ; ð4:58Þ

only the homogeneous and isotropic component of the
energy-momentum tensor contributes to the expectation
value. Because we want to extract the rapid time depend-
ence during the adiabatic era, we obtain this homogeneous
component by averaging the above operators in the
comoving volume V; just as in the bosonic case we obtain

1

V

Z
d3xT0

0ðx⃗; ηÞ ¼ ˆ̄ρðηÞ;

−
1

3V

Z
d3x

X
j

Tj
jðx⃗; ηÞ ¼ ˆ̄PðηÞ: ð4:59Þ

During the RD era and near matter radiation equality when
the adiabatic approximation becomes very reliable, we
obtain these operators by expanding the fermionic field in
the out basis as in Eq. (4.44), and writing the spinors as in
Eqs. (4.53), (4.54) separating the fast phases from the
slowly varying spinors Ũ, Ṽ. We find

ρ̂ðηÞ ¼ ρ̄vacðηÞ þ ˆ̄ρintðηÞ þ ˆ̄ρppðηÞ; ð4:60Þ

P̂ðηÞ ¼ P̄vacðηÞ þ ˆ̄PintðηÞ þ ˆ̄PppðηÞ; ð4:61Þ

with

ρ̄vac ¼
1

Va4ðηÞ
X

k⃗;s¼�1

½Ṽ†
sð−k⃗; ηÞΣðk⃗; ηÞṼsð−k⃗; ηÞ�; ð4:62Þ

ˆ̄ρint ¼
1

Va4ðηÞ
X

k⃗;s¼�1

�
d̃−k⃗;sb̃k⃗;se

−2i
R

η

ηi
ωkðη0Þdη0

× Ṽ†
sð−k⃗; ηÞΣðk⃗; ηÞŨsðk⃗; ηÞ þ H:c:

�
; ð4:63Þ

ˆ̄ρpp ¼ 1

Va4ðηÞ
X

k⃗;s¼�1

h
b̃†
k⃗;s
b̃k⃗;sŨ

†
sðk⃗; ηÞΣðk⃗; ηÞŨsðk⃗; ηÞ

− d̃†−k⃗;sd̃−k⃗;sṼ
†
sð−k⃗; ηÞΣðk⃗; ηÞṼsðk⃗; ηÞ

i
; ð4:64Þ

where

Σðk⃗; ηÞ ¼ α⃗ · k⃗þ γ0MðηÞ ð4:65Þ

is the conformal time instantaneous Dirac Hamiltonian, and

ρ̄vac ¼
1

3Va4ðηÞ
X

k⃗;s¼�1

½Ṽ†
sð−k⃗ · ηÞðα⃗; k⃗ÞṼsð−k⃗; ηÞ�; ð4:66Þ

ˆ̄ρint ¼
1

3Va4ðηÞ
X

k⃗;s¼�1

�
d̃−k⃗;sb̃k⃗;se

−2i
R

η

ηi
ωkðη0Þdη0

× Ṽ†
sð−k⃗; ηÞðα⃗ · k⃗ÞŨsðk⃗; ηÞ þ H:c:

�
; ð4:67Þ

ˆ̄ρpp ¼ 1

3Va4ðηÞ
X

k⃗;s¼�1

�
b̃†
k⃗;s
b̃k⃗;sŨ

†
sðk⃗; ηÞðα⃗ · k⃗ÞŨsðk⃗; ηÞ

− d̃†−k⃗;sd̃−k⃗;sṼ
†
sð−k⃗; ηÞðα⃗ · k⃗ÞṼsðk⃗; ηÞ

�
; ð4:68Þ
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ρ̄vac, P̄vac are the zero point (out vacuum) contributions to

the energy density and pressure. The terms ˆ̄ρint,
ˆ̄Pint feature

the fast oscillations associated with the interference
between particle and antiparticles similar to the complex
bosonic case studied above. As discussed in the previous
section, these oscillations average out on comoving time-
scales equal to or shorter than ≃1=m ≪ 1=HðtÞ leaving
only the slowly varying contributions ρ̄vac, ρ̄pp̄; P̄vac, P̄pp̄.
Following the same strategy as in the bosonic case, we
introduce the zeroth-order adiabatic Hamiltonian,

H0ðηÞ ¼
X
k⃗;s

h
b̃†
k⃗;s
b̃k⃗;s þ d̃†

k⃗;s
d̃k⃗;s

i
ωkðηÞ;

½H0ðηÞ; H0ðη0Þ� ¼ 0 ∀ η; η0; ð4:69Þ

and the time evolution operator

U0ðη; ηiÞ ¼ e
−i
R

η

ηi
H0ðη0Þdη0 ; ð4:70Þ

from which it follows that

U−1
0 ðη; ηiÞb̃k⃗;sU0ðη; ηiÞ ¼ b̃k⃗;se

−i
R

η

ηi
ωkðη0Þdη0 ;

U−1
0 ðη; ηiÞd̃k⃗;sU0ðη; ηiÞ ¼ d̃k⃗;se

−i
R

η

ηi
ωkðη0Þdη0 : ð4:71Þ

It is clear that the fermionic case is very similar to that
of the complex scalar case studied in the previous section
with the important difference in the statistics. Following
the steps described for the scalar case, we define the
Schroedinger picture fermion operator during the adiabatic
regime in the RD era

ψðx⃗; ηÞ ¼ U0ðη; ηiÞψSðx⃗; ηÞU−1
0 ðη; ηiÞ; ð4:72Þ

with

ψSðx⃗; ηÞ ¼
1ffiffiffiffi
V

p
X
k⃗;s

h
b̃k⃗;sŨsðk⃗; ηÞ þ d̃†

−k⃗;s
Ṽsð−k⃗; ηÞ

i
eik⃗·x⃗:

ð4:73Þ

This field evolves slowly in time in the adiabatic regime.
A similar definition of Schroedinger picture operators is
carried out for the energy-momentum tensor just as in the
complex scalar case. The density matrix evolved in time in
the Schroedinger picture is given by Eq. (3.54). In
Appendix B we show that the fermionic in Bunch-
Davies vacuum state j0Ii is now given in terms of the
out states by

j0Ii ¼ Πk⃗;s

�
½cosðθkÞ�

×
X1
nk⃗;s¼0

ð−e2iφ−ðkÞ tanðθkÞÞnk⃗;s jnk⃗;s; n̄−k⃗;si
�
; ð4:74Þ

the fermionic out particle-antiparticle pair states are
given by

jnk⃗;s; n̄−k⃗;si ¼
ðb̃†

k⃗;s
Þnk⃗;sffiffiffiffiffiffiffiffiffi

nk⃗;s!
q ðd̃†

−k⃗;s
Þnk⃗;sffiffiffiffiffiffiffiffiffi

nk⃗;s!
q j0Oi; nk⃗;s ¼ 0; 1;

ð4:75Þ

where the out vacuum state j0Oi is such that

b̃k⃗;sj0Oi ¼ 0; d̃k⃗;sj0Oi ¼ 0 ∀ k⃗; ð4:76Þ

and from Eq. (4.48)

jBk;sj2 ¼ sin2ðθkÞ ¼ Nk: ð4:77Þ

The Schroedinger picture density matrix ρSðηÞ ¼
U0ðη; ηiÞj0Iih0IjU−1

0 ðη; ηiÞ is now given by

ρSðηÞ¼Πk⃗;sΠp⃗;s0
X1
nk⃗;s¼0

X1
mp⃗;s0¼0

C�mp⃗;s0 ðpÞCnk⃗;sðkÞjnk⃗;s; n̄−k⃗;si

× hmp⃗;s0 ;m̄−p⃗;s0 je2i
R

η

ηi
½mp⃗;s0ωpðη0Þ−nk⃗;sωkðη0Þ�dη0 ; ð4:78Þ

where in the fermion case (see Appendix B)

Cnk⃗;sðkÞ ¼ cosðθkÞð−e2iφ−ðkÞ tanðθkÞÞnk⃗;s ; nk⃗;s ¼ 0; 1:

ð4:79Þ

Just as in the scalar case, the rapid oscillatory phases in the
terms that are off-diagonal in pair number m ≠ n, momenta
and helicity average out on timescales ≃1=m ≪ 1=HðtÞ
leading to the decoherence of the density matrix in this
basis. Proceeding as in the scalar case we average these
terms over timescales intermediate between 1=m and the
Hubble timescale 1=HðtÞ. This averaging, a coarse graining
on the short timescale, is a direct consequence of the
separation of timescales during the adiabatic regime, with
HðtÞ=m ≪ 1 and yields a density matrix that is diagonal in
the basis of particle-antiparticle pairs (4.75). The loss of
coherence in the averaging of correlations implies a loss
of information (from these correlations). The calculation of
the entropy associated with this loss of information follows
the same route as in the scalar case with few modifications
as a consequence of the different statistics. Upon averaging
the rapidly varying phases, the density matrix becomes
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diagonal in the basis of particle-antiparticle pairs, and is
given by

ρðdÞS ¼ Πk⃗;s½cos2ðθkÞ�
X1
nk⃗;s¼0

ðtan2ðθkÞÞnk⃗;s jnk⃗;s; n̄−k⃗;si

× hnk⃗;s; n̄−k⃗;sj: ð4:80Þ

We can compare this density matrix with the reduced one
obtained by tracing over the antiparticle states,

ρðrÞS ðηÞ ¼ Trp̄ρSðηÞ

¼ Πk⃗;s½cos2ðθkÞ�
X1
nk⃗;s¼0

ðtan2ðθkÞÞnk⃗;s jnk⃗;sihnk⃗;sj;

ð4:81Þ

exhibiting the equivalence of the diagonal matrix elements,

namely the probabilities. The density matrices ρðdÞS ; ρðrÞS
feature the same eigenvalues, hence the same entropy.
Again, this is the statement that the entropy arising from the
loss of information in the time averaging or coarse graining,
is identical to the entanglement entropy obtained from the
reduced density matrix.
The diagonal density matrix (4.80) can be written in a

familiar quantum statistical mechanics form by introducing
a fiducial Hamiltonian

Ĥ ¼
X
k⃗;s

EkN̂ k⃗;s; ð4:82Þ

with

Ek ¼ − ln½tan2ðθkÞ�;

N̂ k⃗;s ¼
X1
nk⃗;s¼0

nk⃗;sjnk⃗;s; n̄−k⃗;sihnk⃗;s; n̄−k⃗;sj; ð4:83Þ

and the partition function is given by

Z ¼ Πk⃗;s½cos2ðθkÞ�−1 ¼ Πk⃗;s½1þ tan2ðθkÞ�; ð4:84Þ

so that

ρðdÞS ¼ e−Ĥ

Z
; Z ¼ Tre−Ĥ ≡ e−F ; ð4:85Þ

with F the fiducial free energy. We note that in the

fermionic case N̂ 2

k⃗;s ¼ N̂ k⃗;s; therefore, for fixed k⃗; s its
eigenvalues are 0,1 and from the relations (4.48), (4.77) it
follows that

tan2ðθkÞ ¼
Nk

1 − Nk
: ð4:86Þ

The entropy is now obtained from (3.81) but now with

U¼TrρðdÞH¼
X
k⃗;s

Ek

eEk þ1
¼
X
k⃗;s

Nk ln

�
1−Nk

Nk

�
: ð4:87Þ

The entropy is now given by

SðdÞ ¼ −2
X
k⃗

fð1 − NkÞ lnð1 − NkÞ þ Nk lnNkg: ð4:88Þ

This is a remarkable result; the entanglement entropy is
proportional to the quantum kinetic entropy for fermions in
terms of the distribution function [31]. The factor 2
accounts for two helicity eigenstates, since the distribution
function is the same for both helicities. We highlight that
although the number of particles and of antiparticles are
the same, the entropy does not feature a factor 4 (particle,
antiparticle with two helicities) but a factor 2. The reason
behind this is the same as in the complex scalar case:
particles and antiparticles are produced in correlated pairs
not independently. This important aspect is also at the heart
of the equivalence between the entropy arising from
dephasing and decoherence and the entanglement entropy:
tracing over one member of the particle-antiparticle pairs
in (4.78) (either particle or antiparticle) reduces the full
density matrix (4.78) to (for example tracing over anti-
particles)

ρðrÞðηÞ ¼ Πk⃗;s½cos2ðθkÞ�
X1
nk⃗;s¼0

ðtan2ðθkÞÞnk⃗;s jnk⃗;sihnk⃗;sj;

ð4:89Þ

yielding an entanglement entropy equivalent to (4.88). We
also find

Trb̃†
k⃗;s
b̃k⃗;sρ

ðdÞ
S ¼ Trd̃†

k⃗;s
d̃k⃗;sρ

ðdÞ
S ¼ jBk;sj2 ¼ Nk;

Trb̃†
k⃗;s
d̃†
−k⃗;s

ρðdÞS ¼ Trd̃−k⃗;sb̃k⃗;sρ
ðdÞ
S ¼ 0: ð4:90Þ

Therefore, the energy density and pressure near matter
radiation equality when the adiabatic approximation is very
reliable and the density matrix has undergone complete
decoherence via dephasing, are given by

ρ̄ðηÞ ¼ Tr ˆ̄ρðηÞρðdÞS ; P̄ðηÞ ¼ Tr ˆ̄PðηÞρðdÞS : ð4:91Þ

These are obtained to leading (zeroth) order in the
adiabatic approximation by using the spinors (4.53),
(4.54). As a consequence of decoherence yielding the
identities (4.90), the particle-antiparticle interference terms
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vanish. Because the spinors (4.53), (4.54) are eigenstates
of the instantaneous conformal Hamiltonian (4.65) with
eigenvalues �ωkðηÞ, we find to leading order in the
adiabatic expansion1

ρ̄ðηÞ ¼ −
1

π2a4ðηÞ
Z

∞

0

k2dkωkðηÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ρ̄0ðηÞ

þ 2

π2a4ðηÞ
Z

∞

0

k2dkNkωkðηÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ρ̄pp̄ðηÞ

; ð4:92Þ

P̄ðηÞ ¼ −
1

3π2a4ðηÞ
Z

∞

0

k2dk
k2

ωkðηÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P̄0ðηÞ

þ 2

3π2a4ðηÞ
Z

∞

0

k2dkNk
k2

ωkðηÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P̄pp̄ðηÞ

; ð4:93Þ

where ρ̄0ðηÞ, P̄0ðηÞ are the zero point energy density and
pressure and ρ̄pp̄ðηÞ, P̄pp̄ðηÞ are the contributions from
gravitational particle production. The zero point and
particle production contributions independently obey
covariant conservation. As explained in Ref. [30] the zero
point contribution is absorbed into a renormalization
[62–66]; therefore, the kinetic-fluid description of gravi-
tationally produced fermionic dark matter near matter
radiation equality can now be summarized as

N pp̄ ¼ 2

π2

Z
∞

0

k2Nkdk; ð4:94Þ

ρ̄pp̄ðηÞ ¼
2

π2a4ðηÞ
Z

∞

0

k2NkωkðηÞdk; ð4:95Þ

P̄pp̄ðηÞ ¼
2

3π2a4ðηÞ
Z

∞

0

k2Nk
k2

ωkðηÞ
dk; ð4:96Þ

Spp̄ ¼ −
2

2π2

Z
∞

0

k2fð1 − NkÞ lnð1 − NkÞ þ Nk lnNkgdk;

ð4:97Þ

where N pp̄ is the total comoving number density of
particles plus antiparticles produced, Spp̄ is the time-
independent comoving entropy density, and the distribution
function Nk is given by Eq. (4.50). The kinetic-fluid forms
of the energy density (4.95) and pressure (4.96) are exactly
the same as those obtained in Ref. [30] by averaging over
the fast phases in the particle-antiparticle interference

terms. Therefore, just as in the bosonic case this averaging
in the energy-momentum tensor and the emergence of
the kinetic-fluid form in the adiabatic regime is a direct
manifestation of decoherence by dephasing in the density
matrix, hence also directly related to the emergence of
entropy in this case.
With the distribution function (4.50), we find

N pp̄ ¼ 2

π2
ð2mTHÞ3=2 × 0.126; ð4:98Þ

and

Spp̄ ¼ 1

π2
ð2mTHÞ3=2 × 0.451; ð4:99Þ

with a specific entropy

Spp̄

N pp̄
≃ 1.8: ð4:100Þ

We note that a specific entropyOð1Þ is typical of a thermal
species. However, with m ≃ 108 GeV for a heavy fermion
with the correct dark matter abundance [30], the ratio of
its comoving entropy to that of the CMB today given by
(3.103), which also features a specific entropy Oð1Þ, is

Spp̄

Scmb
≃ 10−15; ð4:101Þ

therefore, even for a heavy fermionic dark matter species
that is gravitationally produced, its entropy is negligible
compared to that of the CMB today.

V. DISCUSSION

A. Real scalars, Majorana fermions

We have studied complex scalars and Dirac fermions for
which particles are different from antiparticles. However,
the results apply just as well to real scalars and Majorana
fermions, in which cases particles are the same as anti-
particles and the correlated pair states are now of the form
jnk⃗; n−k⃗i. The entanglement entropy is exactly the same as
for complex scalars or Dirac fermions respectively, since
for each value of k⃗ (and helicity s for fermions), tracing
over one member of the pair (say that with −k⃗) yields
exactly the same probabilities, regardless of whether it
is a particle or an antiparticle. This is also explicit in the
entanglement entropies obtained above since there is no
factor 2 for particle and antiparticle, because of the
correlated nature of the pair state, independently of whether
the members of the pairs are particle and antiparticle or
particle-particle with opposite momenta.1For higher order contributions see Ref. [30].
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B. The origin of entropy: The out basis
is a pointer basis

In the language of quantum information, the out basis of
particles is the “measured” basis and constitutes a pointer
basis [67]. This is indeed a privileged basis, since the
energy-momentum tensor in this out particle basis
describes the abundance, equation of state, and entropy
of particles (and antiparticles). These are the observable
macroscopic variables that describe the properties of dark
matter. It is precisely in this basis that the rapid dephasing
and coarse graining as a consequence of time averaging
over the short timescales leads to decoherence and infor-
mation loss, with the concomitant emergence of a non-
vanishing entropy.
One could take expectation values of the energy-

momentum tensor (or any other observable related to dark
matter) in the in vacuum state j0Ii or the density matrix
j0Iih0Ij as is the case in Refs. [29,30]. This expectation
value features the rapidly oscillating interference terms
between out particles and antiparticles, which were aver-
aged out on the short timescales in these references. This
averaging in the expectation values in the in state j0Ii are a
manifestation of the loss of correlations by dephasing,
yet do not make explicit the entropic content of this
decoherence process.
These are precisely the coherences and correlations that

are averaged out in the density matrix in the Schroedinger
picture in the out basis. Hence, particle “observables” or
measurements in the out particle basis in general will
undergo this process of decoherence via dephasing even
when the matrix elements are obtained in the in basis. The
coarse graining of the density matrix in the Schroedinger
picture in the out basis exhibits directly this decoherence
mechanism by dephasing and the emergence of entropy. It
also makes explicit that the decoherence timescale is
≃1=m. Therefore, the origin of entropy is deeply associated
with this natural selection of basis of “out particles” to
describe the density matrix and the statistical properties of
dark matter.

C. More general arguments for entropy

Although we focused on the entropy in gravitational
particle production, the main concepts elaborated here are
more general. For example they apply also to the case when
particles are produced from inflaton oscillations at the end
of inflation [22], or by parametric resonance during
reheating [25,27]. In these cases, a homogeneous scalar
field (generically the inflaton) couples nonlinearly to the
matter bosonic or fermionic fields. If the expectation value
of this scalar field depends on time, acting as a time-
dependent mass term, such coupling leads to production of
particle or particle-antiparticle pairs entangled in momen-
tum (and any other conserved quantum number). The in
basis is generically a superposition of the out particle basis
states; therefore, the interference effects will also be

manifest in a similar manner as studied here, although the
occupation number of out states will be different for different
mechanisms. Because dark matter particles are defined as
asymptotic out states in the adiabatic era, a separation of
timescales as in the adiabatic Schroedinger picture in which
the density matrix evolves in time will feature a structure
very similar to that unveiled in the study above, but with
different probabilities determined by the different processes.
Nevertheless dephasing and decoherence will play a similar
role leading to an entropy of the very same form as obtained
above but with different Nk.

D. Entanglement entropy vs entropy
(isocurvature) perturbations

The entanglement entropy discussed above should not be
identified with linear entropy or isocurvature perturbations.
The latter are generically associated with multiple fields
with nonvanishing expectation values during inflation
[68–70]. Entropy perturbations in the case when scalar
fields do not acquire expectation values [71], or for
fermionic fields (which cannot acquire expectation values)
[72] were analyzed within the context of zero point
contributions to the energy-momentum tensor in
Refs. [71,72]. However, in Refs. [29,30] it was argued that
the renormalization fully subtracting the zero point contri-
bution as is implicitly or explicitly done in the literature,
prevents a consistent interpretation of entropy perturbations
from the zero point contribution of the energy-momentum
tensor as advocated in Refs. [71,72]. In our study here the
scalar field does not acquire an expectation value and we
implemented the same renormalization scheme subtracting
completely the zero point contribution to the energy-
momentum tensor as in Refs. [29,30] both for scalar and
fermion fields. Therefore the analysis and conclusions of
Refs. [71,72] do not apply to our study.
Curvature perturbations and inhomogeneous gravita-

tional potentials will modify the entropies (3.96), (4.88)
by modifying the distribution functions Nk → Nk þ
δNkðx⃗; tÞ thereby inducing a perturbation in the entangle-
ment entropy. Such perturbation is completely determined
by the change in the distribution function which obeys a
linearized collisionless Boltzmann equation in the presence
of the metric perturbations. This equation along with a
proper assessment of initial conditions must be studied in
detail for a definite understanding of entropy perturbations,
a task that is well beyond the scope and objective of
our study.

VI. CONCLUSIONS AND FURTHER QUESTIONS

While the evidence for dark matter is overwhelming,
direct detection of a particle physics candidate with
interactions with SM degrees of freedom, necessary for
detection, has proven elusive. Therefore dark matter par-
ticles featuring only gravitational interaction are logically a
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suitable alternative. Such candidates are produced gravi-
tationally via cosmological expansion, a phenomenon that
received substantial attention in the last few years. In this
article we studied the emergence of entropy in gravitational
production of dark matter particles, focusing on the cases of
a complex scalar and a Dirac fermion under a minimal set
of assumptions as in Refs. [29,30]. We considered a rapid
transition from inflation to radiation domination and
focused on comoving super-Hubble wavelengths at the
end of inflation, with dark matter fields being in their
Bunch-Davies vacua during inflation. The out states are
correlated particle-antiparticle pairs and the distribution
function of gravitationally produced particles is obtained
exactly both for ultralight scalars and heavier fermions.
Well after the transition and before matter radiation

equality there ensues a period of adiabatic evolution when
the scale factor aeq ≫ aðtÞ ≫ 10−17=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðeVÞp

character-
ized by the adiabatic ratio HðtÞ=m ≪ 1 with HðtÞ the
Hubble expansion rate and m the particle’s mass. During
this regime there is a wide separation of timescales with
1=HðtÞ a long timescale of cosmological evolution and 1=m
a short timescale associated with particle dynamics. As
shown in Refs. [29,30], during this regime the energy-
momentum tensor written in the out particle basis (dark
matter particles) feature rapidly varying particle-antiparticle
interference terms. Averaging these contributions on inter-
mediate timescales renders the energy-momentum tensor of
the usual kinetic-fluid form. We show that these rapidly
varying interference terms are manifest in the density matrix
in the adiabatic Schroedinger picture in the out particle
basis as off-diagonal density matrix elements that feature
rapid dephasing on short decoherence timescales ≃1=m.
Decoherence by dephasing effectively reduces the density
matrix to a diagonal form in the out basis with a non-
vanishing von Neumann entropy. In turn, the von Neumann
entropy is exactly the same as the entanglement entropy
obtained by tracing over one member of the correlated
particle-antiparticle pair.
Remarkably, we find that the comoving von Neumann

entanglement-entropy density is almost of the kinetic-fluid
form in terms of the distribution function Nk

Spp̄ ¼ � 1

2π2

Z
∞

0

k2fð1� NkÞ lnð1� NkÞ ∓ Nk lnNkgdk;

ð6:1Þ

where “þ” is for real or complex bosons and “−” is for
each spin/helicity of Dirac or Majorana fermions. If the
out states were described by independent particles and/or
antiparticles, complex bosons and Dirac fermions would
have twice the number of degrees of freedom of real bosons
and Majorana fermions and the entropy would feature an
extra factor 2 when particles are different from antipar-
ticles. The fact that the entanglement entropies are the
same regardless of whether particles are different from

antiparticles is a consequence of the pair correlations of the
out state, explaining the qualifier “almost.” These particle-
antiparticle or particle-particle pairs are entangled in
momentum (and helicity in the case of fermions) and the
entanglement entropy; being obtained by tracing over one
member of the pair is the same in both cases regardless of
whether particles are the same or different from antipar-
ticles. An important conclusion of our study is that the von
Neumann entanglement entropy and the kinetic-fluid form
of the energy momentum are all a consequence of
decoherence of the density matrix in the out basis.
We argue that the origin of entropy is deeply related to

the natural physical basis of out particles that determine the
statistical properties of dark matter, such as energy density,
pressure, and entropy. Furthermore, we also argue that our
results are more general and apply also to several other
production mechanisms such as parametric amplification
and production from inflaton oscillations at the end of
inflation.
For an ultralight bosonic dark matter candidate mini-

mally coupled to gravity we find that while the occupation
number is very large in the infrared region, the specific
entropy, or entropy per particle, is negligibly small,
indicating that this dark matter candidate is produced in
a condensed state, albeit with vanishing expectation value.
For fermionic dark matter the distribution function is nearly
thermal [30] and the specific entropy is Oð1Þ consistent
with a thermal species.

A. Further questions

1. Observational consequences?

While the energy density and pressure (or equation of
state) both have clear observational consequences and
directly yield information on clustering properties such
as the free streaming length or cutoff in the matter power
spectrum [29], we have not yet identified an observational
consequence directly associated with entropy. As discussed
above, for both cases, ultralight or heavier fermionic
gravitationally produced dark matter, their comoving
entropy is many orders of magnitude smaller than that
for the CMB today.
The similarity with the fluid kinetic form suggests that

perhaps the entropymay play a role in the dynamics of galaxy
formation. Pioneering work in Refs. [73,74] studied the
nonequilibrium process of violent relaxation in collisionless
galactic dynamics in terms of an H-function that is similar to
the statistical entropy of a classical dilute gas. It is argued in
these references that such H-function increases during this
process of relaxation towards an equilibrium state. It is an
intriguing possibility that the entanglement entropy that we
find couldplay a similar role inunderstanding the evolution of
clustering during the matter dominated era.
Another important question is the role of metric pertur-

bations on the entropy; as mentioned above this would
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entail a study of the linearized boltzmann equation and
further understanding on initial conditions.

2. Interactions

Although we did not consider the possibility of dark
matter self-interactions or interactions with SM degrees of
freedom, the study of how the entanglement entropy
evolves in time as a consequence of such interactions
would be of fundamental interest and a worthy endeavor.
In principle the evolution of the entropy could be obtained
by setting up a quantum kinetic Boltzmann equation for the
distribution function Nk. However, a new framework must
be developed to implement this program, because typically
the Boltzmann equation is obtained by calculating tran-
sition amplitudes in S-matrix theory; however, the mode
functions even during the adiabatic regime are not the same
as in Minkowski space time. Furthermore, the usual
approach takes the infinite time limit to obtain the transition
probabilities, which in principle is not warranted in the
presence of cosmological expansion, instead a framework
similar to that implemented in Refs. [75,76] must be
adapted to a quantum kinetic approach.
The first law of thermodyamics when combined with

covariant conservation of the energy entails that the total
thermodynamic entropy is constant, namely the cosmo-
logical expansion is adiabatic in the thermodynamic sense
in agreement with the Universe being a closed system.
However, the entanglement entropy is not a thermody-
namic entropy; therefore, if interactions are included, it is
by no means clear that the entanglement entropy remains
constant. The authors of Ref. [77] advocated a possible
statistical framework to include interactions akin to the
Bogoliubov-Born-Green-Kirkwood- Yvon hierarchy of
equations that yields the usual Boltzmann equation.
While this suggestion is compelling, the applicability of
such framework to study the time evolution of the
entanglement entropy merits further study beyond the
scope of this article.

APPENDIX A: BOGOLIUBOV
TRANSFORMATION FOR BOSONIC FIELDS

The unitary operator that implements the Bogoliubov
transformation (3.31),

ck⃗ ¼ ak⃗Ak þ b†
−k⃗
B�
k; ðA1Þ

d†
−k⃗

¼ b†
−k⃗
A�
k þ ak⃗Bk; ðA2Þ

is obtained as follows. The coefficients Ak, Bk are functions
solely of k determined by the relations (3.29) and obey the
condition (3.28). We write

Ak ¼ eiφAðkÞ coshðθkÞ; Bk ¼ eiφBðkÞ sinhðθkÞ: ðA3Þ

Let us introduce the following definitions (we suppress the
momentum arguments of the angles):

φA ¼ φþ þ φ−; φB ¼ φþ − φ−;

ak⃗e
iφþ ¼ ãk⃗; bk⃗e

iφþ ¼ b̃k⃗;

ck⃗e
−iφ− ¼ c̃k⃗; dk⃗e

−iφ− ¼ d̃k⃗; ðA4Þ

in terms of which the transformation (A2) becomes

c̃k⃗ ¼ ãk⃗ coshðθkÞ þ b̃−k⃗ sinhðθkÞ; ðA5Þ

d̃†
−k⃗

¼ b̃†
−k⃗

coshðθkÞ þ ãk⃗ sinhðθkÞ: ðA6Þ

These transformations are implemented by the following
unitary operator:

S½θ� ¼ Πk⃗ expfθk½b̃−k⃗ãk⃗ − ã†
k⃗
b̃†
−k⃗
�g; S−1½θ� ¼ S½−θ�;

ðA7Þ

so that

S½θ�ãk⃗S−1½θ� ¼ c̃k⃗; ðA8Þ

S½θ�b̃†
−k⃗
S−1½θ� ¼ d̃−k⃗; ðA9Þ

as can be confirmed by expanding the exponential and
using the canonical commutation relations. An important
identity yields the following factorization of the exponen-
tial [59]:

S½θ� ¼ Πk⃗ expf− lnðcoshðθkÞÞg expf− tanhðθkÞã†k⃗b̃
†
−k⃗
g

× expf− lnðcoshðθkÞðã†k⃗ãk⃗ þ b̃†
k⃗
b̃k⃗Þg

× expftanhðθkÞb̃−k⃗ãk⃗g: ðA10Þ

The inverse Bogoliubov transformation is given by

ãk⃗ ¼ c̃k⃗ coshðθkÞ − d̃†
−k⃗

sinhðθkÞ;
b̃†
−k⃗

¼ d̃†
−k⃗

coshðθkÞ − c̃k⃗ sinhðθkÞ: ðA11Þ

The unitary operator that implements it is

T½θ� ¼ Πk⃗ expf−θk½c̃k⃗d̃−k⃗ − d̃†
−k⃗
c̃†
k⃗
�g; T−1½θ� ¼ T½−θ�;

ðA12Þ

so that

T½θ�c̃k⃗T−1½θ� ¼ ãk⃗

T½θ�d̃†
−k⃗
T−1½θ� ¼ b̃†

−k⃗
: ðA13Þ
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The factorized form of T½θ� is

T½θ� ¼ Πk⃗ expf− lnðcoshðθkÞÞg expftanhðθkÞc̃†k⃗d̃
†
−k⃗
g

× expf− lnðcoshðθkÞðc̃†k⃗c̃k⃗ þ d̃†
k⃗
d̃k⃗Þg

× expf− tanhðθkÞd̃−k⃗c̃k⃗g: ðA14Þ

These operators allow us to relate the in vacuum state to
out states. Define the out vacuum state j0Oi as that
annihilated by ck⃗, dk⃗, namely,

ck⃗j0Oi ¼ 0; dk⃗j0Oi ¼ 0: ðA15Þ

Premultiplying these expressions by T½θ� and inserting
T−1½θ�T½θ� ¼ 1 yields

ðT½θ�ck⃗T−1½θ�Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ak⃗

ðT½θ�j0OiÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
j0Ii

¼ 0;

ðT½θ�dk⃗T−1½θ�Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
bk⃗

ðT½θ�j0OiÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
j0Ii

¼ 0: ðA16Þ

Therefore, we find

j0Ii ¼ Πk⃗

�
½coshðθkÞ�−1

X∞
nk⃗¼0

ðe2iφ−ðkÞ tanhðθkÞÞnk⃗ jnk⃗; n̄−k⃗i
�
;

ðA17Þ

where the out particle-antiparticle states read as

jnk⃗;n̄−k⃗i¼
ðc†

k⃗
Þnk⃗ffiffiffiffiffiffiffi
nk⃗!

p ðd†
−k⃗
Þnk⃗ffiffiffiffiffiffiffi
nk⃗!

p j0Oi; nk⃗¼0;1;2…: ðA18Þ

In quantum optics these correlated states are known as
two-mode squeezed states [59]. Several checks are in order:

h0Ij0Ii ¼ Πk⃗

1

cosh2ðθkÞ
X∞
n¼0

ðtanh2ðθkÞÞn

¼ Πk⃗

1

cosh2ðθkÞ
1

1 − tanh2ðθkÞ
¼ 1; ðA19Þ

h0Ijc†p⃗cp⃗j0Ii ¼ h0Ijd†p⃗dp⃗j0Ii

¼ 1

cosh2ðθpÞ
X∞
n¼0

nðtanh2ðθpÞÞn

¼ sinh2ðθpÞ ¼ jBpj2; ðA20Þ

h0Ijc†p⃗d†p⃗j0Ii

¼ 1

cosh2ðθpÞ
e−2iφ−ðpÞ

tanhðθpÞ
X∞
n¼0

ð1þ nÞðtanh2ðθpÞÞ1þn

¼ e−2iφ−ðpÞ

tanhðθpÞ
tanh2ðθpÞ
cosh2ðθpÞ

1

ð1 − tanh2ðθpÞÞ2
¼ e−2iφ−ðpÞ sinhðθpÞ coshðθpÞ ¼ BpA�

p; ðA21Þ

thereby confirming the identities (3.32) in the out basis.

APPENDIX B: BOGOLIUBOV
TRANSFORMATION FOR FERMIONIC FIELDS

The Bogoliubov transformations for fermionic operators
are somewhat more subtle because of the anticommutation
relations. The out basis operators are related to the in basis
via the Bogoliubov transformation

b̃k⃗;s ¼ bk⃗;sAk − d†
−k⃗;s

B�
k;s; ðB1Þ

d̃†
−k⃗;s

¼ d†
−k⃗;s

A�
k;s þ bk⃗;sBk;s; ðB2Þ

and

jAk;sj2 þ jBk;sj2 ¼ 1: ðB3Þ

We write

Ak;s¼ cosðθkÞeiðφþþφ−Þ; Bk;s¼ sinðθkÞeiðφþ−φ−Þ; ðB4Þ

where the k, s arguments of the phases are implicit. We now
absorb the phases into a redefinition of the various
operators,

b̃k⃗;s ≡ b̃k⃗;se
−iφ− ; d̃†

−k⃗;s
≡ d̃†

−k⃗;s
eiφ− ;

bk⃗;s ≡ bk⃗;se
iφþ ; d†

−k⃗;s
≡ d†

−k⃗;s
e−iφþ : ðB5Þ

In terms of these redefinitions the Bogoliubov transforma-
tions (B1), (B2) read

b̃k⃗;s ¼ bk⃗;s cosðθkÞ − d†
−k⃗;s

sinðθkÞ; ðB6Þ

d̃†
−k⃗;s

¼ d†
−k⃗;s

cosðθkÞ þ bk⃗;s sinðθkÞ: ðB7Þ

The inverse transformation is

bk⃗;s ¼ b̃k⃗;s cosðθkÞ þ d̃†
−k⃗;s

sinðθkÞ; ðB8Þ

d†
−k⃗;s

¼ d̃†
−k⃗;s

cosðθkÞ − b̃k⃗;s sinðθkÞ: ðB9Þ
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It is convenient to define

γk⃗ ¼ b̃†
k⃗;s
d̃†
−k⃗;s

− d̃−k⃗;sb̃k⃗;s; ðB10Þ

in terms of which, this inverse transformation is generated
by the unitary operator

Tf½θk� ¼ expf−θkγk⃗g; ðB11Þ

namely

bk⃗;s ¼ Tf½θk�b̃k⃗;sT−1
f ½θk�; ðB12Þ

d†
−k⃗;s

¼ Tf½θk�d̃†−k⃗;sT−1
f ½θk�: ðB13Þ

To see that this is the case, consider the definitions

αðθÞ ¼ Tf½θ�b̃k⃗;sT−1
f ½θ�; ðB14Þ

βðθÞ ¼ Tf½θ�d̃†−k⃗;sT−1
f ½θ�: ðB15Þ

Using the anticommutation relations we find

dαðθÞ
dθ

¼ βðθÞ; ðB16Þ

dβðθÞ
dθ

¼ −αðθÞ; ðB17Þ

with the “initial conditions”

αð0Þ ¼ b̃k⃗;s;
dαðθÞ
dθ

����
θ¼0

¼ βð0Þ ¼ d̃†
−k⃗;s

; ðB18Þ

βð0Þ ¼ d̃†
−k⃗;s

;
dβðθÞ
dθ

����
θ¼0

¼ −αð0Þ ¼ −b̃k⃗;s: ðB19Þ

The solutions of Eqs. (B16), (B17) with the initial con-
ditions (B18), (B19) are given by

αðθÞ ¼ b̃k⃗;s cosðθÞ þ d̃†
−k⃗;s

sinðθÞ; ðB20Þ

βðθÞ ¼ d̃†
−k⃗;s

cosðθÞ − b̃k⃗;s sinðθÞ; ðB21Þ

which are recognized as bk⃗;s, d†
−k⃗;s

Eqs. (B8), (B9),

respectively, confirming the relations (B12), (B13).
These relations may also be found from the identity

eXYe−X ¼ Y þ ½X; Y� þ 1

2!
½X; ½X; Y�� þ � � � ðB22Þ

with X ¼ −θkγk⃗ and Y ¼ b̃; d̃† respectively. Suppressing

the indices, k⃗, s, it follows that

e−θγb̃eθγ ¼ b̃þ θd̃† −
θ2

2!
b̃ −

θ3

3!
d̃†… ðB23Þ

¼ b̃

�
1 −

θ2

2!
þ θ4

4!
…

	
þ d̃†

�
θ −

θ3

3!
þ � � � :

	
ðB24Þ

⇒ e−θγb̃eθγ ¼ b̃ cos θ þ d̃† sin θ ¼ b: ðB25Þ

Similarly,

e−θγd̃†eθγ ¼ d̃† − θb̃ −
θ2

2!
d̃† þ θ3

3!
b̃… ðB26Þ

⇒ e−θγd̃†eθγ ¼ d̃† cos θ − b̃ sin θ ¼ d†: ðB27Þ

In order to find a more compact expression for Tf½θ� it
proves convenient to expand,

Tf½θk� ¼ 1 − θkγk⃗ þ
1

2!
θ2kγ

2

k⃗
þ 1

3!
θ3kγ

3

k⃗
þ � � � ðB28Þ

Using the canonical anticommutation relations we find

γ2
k⃗
¼ −½b̃†

k⃗;s
b̃k⃗;sd̃

†
−k⃗;s

d̃−k⃗;s þ d̃−k⃗;sd̃
†
−k⃗;s

b̃k⃗;sb̃
†
k⃗;s
� ¼ −Pk⃗:

ðB29Þ

Pk⃗ is a projection operator, which in terms of

b̃†
k⃗;s
b̃k⃗;s ¼ n̂k⃗; d̃†

−k⃗;s
d̃−k⃗;s ¼ ˆ̄n−k⃗; ðB30Þ

may also be written as

Pk⃗ ¼ n̂k⃗ ˆ̄n−k⃗ þ ð1 − n̂k⃗Þð1 − ˆ̄n−k⃗Þ; P2

k⃗
¼ Pk⃗: ðB31Þ

Again using the anticommutation relations we find

γk⃗Pk⃗ ¼ Pk⃗γk⃗ ¼ γk⃗; ðB32Þ

and iterating yields

γ3
k⃗
¼ −γk⃗; γ4

k⃗
¼ Pk⃗; γ5

k⃗
¼ γk⃗Pk⃗ ¼ γk⃗ � � � : ðB33Þ

Combining these results we finally find

Tf½θk� ¼ 1 − Pk⃗ þ Pk⃗ cosðθkÞ − γk⃗ sinðθkÞ: ðB34Þ

Since the operators γk⃗ commute for different values of k⃗ it
follows that the full unitary transformation is

Tf½θ� ¼ Πk⃗Tf½θk�: ðB35Þ
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Define the out vacuum state j0Oi as that annihilated by
b̃k⃗;s, d̃−k⃗;s for all k⃗, namely

b̃k⃗;sj0Oi ¼ 0; d̃−k⃗;sj0Oi ¼ 0: ðB36Þ

Premultiplying these expressions by Tf½θ� and inserting
T−1
f ½θ�Tf½θ� ¼ 1 yields

ðTf½θ�b̃k⃗;sT−1½θ�Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
bk⃗

ðT½θ�j0OiÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
j0Ii

¼ 0;

ðT½θ�d̃−k⃗;sT−1½θ�Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
d†
−k⃗

ðT½θ�j0OiÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
j0Ii

¼ 0: ðB37Þ

Applied to the out vacuum state j0Oi annihilated by b̃k⃗;s,
d̃−k⃗;s for all k⃗, we find

j0Ii ¼ Tf½θ�j0Oi
¼ Πk⃗;s

h
cosðθkÞ − e2iφ− sinðθkÞb̃†k⃗;sd̃

†
−k⃗;s

i
j0Oi; ðB38Þ

where we restored the phases as per Eq. (B5). It proves
convenient to write this result as

j0Ii ¼ Πk⃗;s

�
½cosðθkÞ�

×
X1
nk⃗;s¼0

ð−e2iφ−ðkÞ tanðθkÞÞnk⃗;s jnk⃗;s; n̄−k⃗;si
�
; ðB39Þ

where the fermionic out particle-antiparticle states

jnk⃗;s; n̄−k⃗;si ¼
ðb̃†

k⃗;s
Þnk⃗;sffiffiffiffiffiffiffiffiffi

nk⃗;s!
q ðd̃†

−k⃗;s
Þnk⃗;sffiffiffiffiffiffiffiffiffi

nk⃗;s!
q j0Oi; nk⃗;s ¼ 0; 1:

ðB40Þ

Unitarity of the transformation is confirmed by obtaining

h0Ij0Ii ¼ Πk⃗;sfcos2ðθkÞ½1þ tan2ðθkÞ�g ¼ 1: ðB41Þ

Furthermore, we find

h0Ijb̃†k⃗;sb̃k⃗;sj0Ii¼h0Ijd̃†k⃗;sd̃k⃗;sj0Ii¼ sin2ðθkÞ¼ jBk;sj2¼Nk:

ðB42Þ

APPENDIX C: SUMMARY OF ADIABATIC
EXPANSION FOR FERMIONS

In this appendix we provide a brief summary of the
adiabatic expansion for fermions. For more details see

Ref. [30]. We write generically the spinors as U, V with the
implicit understanding that during RD these are to be
identified with the solutions U, V.
Consider the mode equation (4.26) (we suppress the

momentum label and conformal time arguments for ease of
notation)

h00 þ ðω2 − iM0Þh ¼ 0 ðC1Þ

and propose the solution

hðηÞ ¼ e−i
R

η Ωðη0Þdη0 ; Ω ¼ ΩR þ iΩI: ðC2Þ

Introducing this ansatz into the mode equation (C1) yields

Ω2 þ iΩ0 − ω2 þ iM0 ¼ 0: ðC3Þ

Separating the real and imaginary parts yields the coupled
system of equations

Ω2
R −Ω2

I − Ω0
I − ω2 ¼ 0; ðC4Þ

2ΩRΩI þ ðΩ0
R þM0Þ ¼ 0 ⇒ ΩI ¼ −

ðΩ0
R þM0Þ
2ΩR

: ðC5Þ

The above equations can be solved in a consistent adiabatic
expansion in derivatives of ω,M; with respect to conformal
time, we find

Ωð0Þ
R ¼ ω; Ωð0Þ

I ¼ 0; Ωð1Þ
R ¼ 0;

Ωð1Þ
I ¼ −

ðω0 þM0Þ
2ω

; Ωð2Þ
R ¼ ðΩð1Þ

I Þ2 þ ðΩð1Þ
I Þ0

2ω
;

Ωð2Þ
I ¼ 0…: ðC6Þ

In the representation (C2) it follows that the spinors can
be written compactly as

Usðk⃗; ηÞ ¼ Ne−i
R

η Ωkðη0Þdη0
� ðΩþMÞξs

ksξs

	
; ðC7Þ

Vsð−k⃗; ηÞ ¼ Nei
R

η Ω�
kðη0Þdη0

� −ksξs
ðΩ� þMÞξs

	
; ðC8Þ

with N a normalization constant. The orthogonality con-
ditions U†

sUs0 ¼ 0, V†
sVs0 ¼ 0 for s ≠ s0 and U†

sVs0 ¼ 0 for
all s, s0 are evident.
Normalizing the spinors U†

sUs0 ¼ δs;s0 ¼ V†
sVs0 it fol-

lows that

Usðk⃗; ηÞ ¼
e−i

R
η ΩRðη0Þdη0

½Ω2
R þ Ω2

I þ ω2 þ 2MΩR�1=2
� ðΩþMÞξs

ksξs

	
;

ðC9Þ
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Vsð−k⃗; ηÞ ¼
ei
R

η ΩRðη0Þdη0

½Ω2
R þ Ω2

I þ ω2 þ 2MΩR�1=2
� −ksξs
ðΩ� þMÞξs

	
: ðC10Þ

To leading (zeroth) adiabatic order with ΩR ¼ ωkðηÞ;ΩI ¼ 0.
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