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We study a coupled dark energy scenario in which a massive vector field Aμ with broken Uð1Þ gauge
symmetry interacts with the four-velocity uμc of cold dark matter (CDM) through the scalar product
Z ¼ −uμcAμ. This new coupling corresponds to the momentum transfer, so that the background vector and
CDM continuity equations do not have explicit interacting terms analogous to the energy exchange. Hence
the observational preference of uncoupled generalized Proca theories over the ΛCDM model can be still
maintained at the background level. Meanwhile, the same coupling strongly affects the evolution of
cosmological perturbations. While the effective sound speed of CDM vanishes, the propagation speed and
no-ghost condition of a longitudinal scalar of Aμ and the CDM no-ghost condition are subject to nontrivial
modifications by the Z dependence in the Lagrangian. We propose a concrete dark energy model and show
that the gravitational interaction on scales relevant to the linear growth of large-scale structures can be
smaller than the Newton constant at low redshifts. This leads to the suppression of growth rates of both
CDM and total matter density perturbations, so our model allows an interesting possibility for reducing the
tension of matter density contrast σ8 between high- and low-redshift measurements.
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I. INTRODUCTION

The energy density of today’s Universe is dominated by
dark energy and dark matter, besides a small amount of
baryons (∼5%). The standard paradigm of this dark sector
is known as the ΛCDMmodel [1,2], in which the origins of
two dark components are a cosmological constant (Λ) and
the cold dark matter (CDM). The cosmological constant is
the simplest possibility for realizing late-time cosmic
acceleration, but there has been a growing tension regard-
ing today’s Hubble expansion rate H0 between cosmic
microwave background (CMB) temperature anisotropies
and low-redshift measurements [3–9]. Moreover, the obser-
vational data associated with galaxy clusterings and weak
lensing typically favor the amplitude of matter density
contrast σ8 smaller than that constrained by CMB [10–13].
The cosmological constant predicts a constant dark

energy equation of state wDE ¼ −1, but dynamical models
of late-time cosmic acceleration generally lead to the time
variation of wDE [14]. For example, a canonical scalar field
dubbed quintessence [15–19] gives rise to the time-varying
wDE in the range wDE > −1. However, there has been no
significant observational evidence that quintessence is
favored over the ΛCDM model [20,21]. Meanwhile, the
phantom equation of state (wDE < −1) allows a possibility
for exhibiting better compatibility with the data in com-
parison to the ΛCDM model. In the presence of scalar or

vector fields with derivative self-interactions or nonmini-
mal couplings to gravity, it is possible to realize wDE < −1
without the appearance of ghosts [22–25].
The gravitational-wave (GW) event GW170817 [26],

together with its electromagnetic counterparts [27], showed
that the speed of gravity cT is very close to that of light c in
the redshift range z < 0.009. If we strictly demand that
cT ¼ c without any tunings among functions, a large set of
nonminimal couplings to gravity are forbidden in scalar-
tensor and vector-tensor theories [28–34]. In generalized
Proca (GP) theories, which correspond to vector-tensor
theories with second-order equations of motion [35–42],
the resulting action should contain the minimally coupled
Ricci scalar R and the Galileon-like Lagrangians up to
cubic order, besides intrinsic vector modes [43]. Dark
energy models in GP theories predict wDE less than −1
in the matter era, which is followed by a self-accelerating
de Sitter attractor with wDE ¼ −1 [25,44,45]. At the
background level, such models can show better compati-
bility with the current observational data in comparison to
the ΛCDM model by reducing the tension of H0 [45–47].
As for the evolution of cosmological perturbations

relevant to galaxy clusterings, the cubic-order GP theories
predict the effective gravitational coupling Geff with matter
larger than the Newton constant G [43,44,46]. In this case,
the growth of matter perturbations is enhanced by the cubic
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derivative coupling, so the σ8 tension present in the ΛCDM
model tends to get worse in general. This also limits the
compatibility of GP theories against cross-correlation data
between the integrated Sachs-Wolfe (ISW) signal and the
galaxy distribution. Indeed, the Markov-chain-Monte-
Carlo analysis of Ref. [46] showed that inclusion of the
data of ISW-galaxy cross-correlations and redshift-space
distortions does not improve constraints derived from the
background expansion history. This situation is even
severer in cubic-order scalar-tensor (Horndeski) theories
[48,49], for which the absence of vector degrees of freedom
does not render Geff close to G.
If the vector field Aμ is coupled to CDM, there may be a

possibility that the gravitational coupling with CDM is
smaller than G. In Ref. [50], the coupled dark energy
scenario with the interacting Lagrangian Lint ¼ QfðXÞρc
was proposed, where Q is a coupling constant, f is a
function of X ¼ −AμAμ=2, and ρc is the CDM density (see

also Ref. [51]). This is analogous to the Lagrangian Lint ¼
Q _ϕρc [52,53] studied in the context of scalar-tensor
theories, where _ϕ is the time derivative of scalar field ϕ.
These interactions correspond to the energy transfer,
which typically works to enhance the gravitational cou-
pling with CDM. In coupled quintessence, for example,
the gravitational coupling with CDM is given by Geff ¼
ð1þ 2Q2ÞG [54].
There is yet other kind of interactions associated with the

momentum transfer. In scalar-tensor theories, the field-
derivative coupling with the CDM four-velocity uμc, which
is quantified by the scalar combination Z ¼ uμc∂μϕ
[55–58], can give rise to the CDM gravitational coupling
smaller than G [59–64] on scales relevant to the linear
growth of large-scale structures. In GP theories, the
interaction analogous to the momentum transfer in sca-
lar-tensor theories is quantified by the scalar combination
Z ¼ −uμcAμ. The existence of intrinsic vector modes in GP
theories generally affects the gravitational coupling with
CDM [44,46], and it has not been clarified yet whether the
weak cosmic growth can be realized in coupled GP theories
with the momentum transfer.
To shed some light on this issue, in this paper, we study

the cosmology of cubic-order GP theories with the inter-
acting Lagrangian of the form fðX; ZÞ, where f is a
function of X and Z. We consider the case in which the
vector field is only coupled to CDM, but uncoupled to
baryons or radiation. Then, there are no conflicts with local
gravity experiments [65]. The CDM, baryons, and radiation
are assumed to be perfect fluids, which are described by a
Schutz-Sorkin action [66–68]. At the background level, the
interacting terms do not explicitly appear on the right-hand
sides of vector-field and CDM continuity equations, so it is
possible to maintain the good cosmological background
known for uncoupled GP theories [25,45–47]. We also
derive the general expression of effective gravitational

couplings for CDM and baryon perturbations on scales
deep inside the sound horizon. Finally, we propose a
concrete coupled dark energy model with the explicit Z
dependence in the Lagrangian and show that the weak
cosmic growth of both CDM and total matter density
perturbations can be realized by the momentum exchange
between the vector field and CDM.
Throughout the paper, we adopt the units for which the

speed of light c, the reduced Planck constant ℏ, and the
Boltzmann constant kB are set to unity. The reduced Planck
massMpl is related to the Newton gravitational constant G,
as M2

pl ¼ 1=ð8πGÞ. The Greek and Latin indices represent
components in four-dimensional space-time and in a three-
dimensional space, respectively.

II. COUPLED GENERALIZED PROCA THEORIES
WITH MOMENTUM TRANSFER

We consider cubic-order GP theories with a vector field
Aμ. The vector field breaks a Uð1Þ gauge symmetry due to
the existence of LagrangiansG2ðXÞ andG3ðXÞ∇μAμ, where
G2 and G3 are functions of X ¼ −AμAμ=2 and ∇μ is the
covariant derivative operator. In this case, thevector field can
play a role of dark energywith late-time cosmic acceleration
[25,44,45]. We assume that CDM is described by a perfect
fluid with the four-velocity uμc. Given the unknown proper-
ties of dark sectors, we would like to consider possible
interactions between them which are present at the level of
Lagrangian. In coupled GP theories, there exists a simple
interaction quantified by a scalar combination,

Z ¼ −uμcAμ: ð2:1Þ
As we will explicitly show in this paper, this new coupling
allows a possibility for realizing the weak cosmic growth.
Whether or not this type of coupling can arise from some
fundamental particle theories is an open question, which
deserves for a future study.
The action of our coupled GP theories is given by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R−

1

4
FμνFμνþfðX;ZÞþG3ðXÞ∇μAμ

�
þSM; ð2:2Þ

where g is the determinant of metric tensor gμν, R is the
Ricci scalar, and Fμν ¼ ∇μAν −∇νAμ. The function f,
which is the generalization of G2ðXÞ, depends on both
X and Z. For the matter action SM, we consider the perfect
fluids of CDM, baryons, and radiation, which are labeled
by I ¼ c, b, r, respectively. The perfect fluids can be
described by the Schutz-Sorkin action1 [67,68],

1An equivalent action with respect to a four vector instead of
the vector density JμI has been introduced in Ref. [66].
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SM ¼ −
X

I¼c;b;r

Z
d4x½ ffiffiffiffiffiffi

−g
p

ρIðnIÞ þ JμI ð∂μlI

þAI1∂μBI1 þAI2∂μBI2Þ�; ð2:3Þ

where the operator ∂μ represents the partial derivative with
respect to the coordinate xμ. The fluid density ρI depends
on its number density nI, which is related to the vector field
JμI , as

nI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JμI J

ν
I gμν
g

s
: ð2:4Þ

The scalar quantity lI is a Lagrange multiplier, whose
variation leads to a constraint of the particle number
conservation. The quantities AI1, AI2 and BI1, BI2 are
the Lagrange multipliers and Lagrange coordinates of
fluids, respectively, both of which can be regarded as
the two components of spatial vector fields AIj and BIj

(j ¼ 1, 2, 3). Since these fields are associated with intrinsic
vector modes, the divergence-free conditions give the two
independent components AI1, AI2 and BI1, BI2 for each of
them. Since there exists a dynamical vector field in GP
theories, we need to take the Lagrangian −JμI ðAI1∂μBI1 þ
AI2∂μBI2Þ into account for the analysis of vector pertur-
bations [25,44]. In Sec. III B, we will study the dynamics of
vector perturbations by varying the action (2.3) with respect
to AI1, AI2, BI1, BI2.
The fluid four-velocity uIμ is defined by

uIμ ¼
JIμ

nI
ffiffiffiffiffiffi−gp ; ð2:5Þ

which obeys uμI uIμ ¼ −1 from Eq. (2.4). The scalar
combination Z is expressed as

Z ¼ −
gμνJcμAν

nc
ffiffiffiffiffiffi−gp : ð2:6Þ

Neither radiation nor baryons are assumed to be coupled to
the vector field.

A. Covariant equations of motion

We derive the covariant equations of motion by varying
(2.2) with respect to several variables in the action.
Variation with respect to lI leads to

∂μJ
μ
I ¼ 0; ð2:7Þ

which holds for each I ¼ c, b, r. On using the property
JμI ¼ nI

ffiffiffiffiffiffi−gp
uμI and the relation ∂μð ffiffiffiffiffiffi−gp

uμI Þ ¼
ffiffiffiffiffiffi−gp ∇μu

μ
I ,

Eq. (2.7) translates to

nI∇μu
μ
I þ uμI ∂μnI ¼ 0: ð2:8Þ

Since ρI depends only on nI , there is the relation,

ðρI þ PIÞ∂μnI ¼ nI∂μρI; ð2:9Þ

where PI is the fluid pressure defined by

PI ¼ nIρI;nI − ρI; ð2:10Þ

with the notation ρI;nI ≡ ∂ρI=∂nI. On using Eqs. (2.8) and
(2.9), we obtain

uμI∂μρI þ ðρI þ PIÞ∇μu
μ
I ¼ 0: ð2:11Þ

We vary the action (2.2) with respect to Jμc by keeping in
mind that the scalar combination Z of Eq. (2.6) depends
on Jμc. On using the property ∂nI=∂JμI ¼ JIμ=ðnIgÞ, it
follows that

∂μlc ¼ ucμρc;nc −
f;Z
nc

ðAμ−ZucμÞ−Ac1∂μBc1−Ac2∂μBc2:

ð2:12Þ

For baryons and radiation, there is no dependence of Jμb and
Jμr in the function f, so that

∂μlI ¼ uIμρI;nI −AI1∂μBI1 −AI2∂μBI2; ð2:13Þ

where I ¼ b, r.
The covariant Einstein equations of motion follow by

varying the action (2.2) with respect to gμν. In doing so, we
use the following properties,

δnI ¼
nI
2
ðgμν − uIμuIνÞδgμν; ð2:14Þ

δX ¼ −
1

2
AμAνδgμν; ð2:15Þ

δZ ¼
�
1

2
Zucμucν − ucμAν

�
δgμν; ð2:16Þ

together with δ
ffiffiffiffiffiffi−gp ¼ −ð1=2Þ ffiffiffiffiffiffi−gp

gμνδgμν. Then, the
resulting covariant equations are given by

M2
plGμν ¼

X
I¼c;b;r

TðIÞ
μν þ TðAÞ

μν ; ð2:17Þ

where Gμν is the Einstein tensor, and

TðIÞ
μν ¼ ðρI þ PIÞuIμuIν þ PIgμν; ð2:18Þ
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TðAÞ
μν ¼ FμρFν

ρ −
1

4
gμνFρσFρσ þ fgμν þ f;XAμAν

þ f;ZZucμucν þ G3;XðAμAν∇ρAρ

þ gμνAλAρ∇λAρ − AρAμ∇νAρ − AρAν∇μAρÞ:
ð2:19Þ

Varying the action (2.2) with respect to Aν, the equation for
the vector field yields

∇μFμν − f;XAν − f;Zuνc þ G3;XðAμ∇νAμ − Aν∇μAμÞ ¼ 0:

ð2:20Þ

Taking the covariant derivative of Eq. (2.17) leads to

X
I¼c;b;r

∇μTðIÞ
μν þ∇μTðAÞ

μν ¼ 0: ð2:21Þ

On using the property (2.11), it follows that

uνI∇μTðIÞ
μν ¼ 0; ð2:22Þ

which holds for I ¼ c, b, r. This corresponds to the
continuity equation for each perfect fluid. If CDM is the

only fluid component, we have uνc∇μTðAÞ
μν ¼−uνc∇μTðcÞ

μν ¼0
from Eqs. (2.21) and (2.22). Since we are considering
coupled GP theories with the momentum transfer alone,
there are no explicit interacting terms associated with the
energy exchange. This property is different from interacting
GP theories with the energy transfer studied in Ref. [50].
We note that the momentum exchange between the vector
field and CDM occurs through Eq. (2.21).

B. Background equations of motion

We derive the background equations on the flat
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time given by the line element,

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð2:23Þ

where a is the scale factor that depends on the cosmic time
t. The vector-field profile and the fluid four-velocities
consistent with this background are given, respectively, by

Aμ ¼ ðϕðtÞ; 0; 0; 0Þ; uμI ¼ ð1; 0; 0; 0Þ; ð2:24Þ

where ϕ is a function of t. We introduce the Hubble-
Lemaître expansion rate H ¼ _a=a, where a dot denotes a
derivative with respect to t. Since ∇μu

μ
I ¼ 3H, the fluid

continuity Eq. (2.22), which is equivalent to Eq. (2.11),
reduces to

_ρI þ 3HðρI þ PIÞ ¼ 0; ð2:25Þ

with I ¼ c, b, r.
From the (00) and (ii) components of Einstein equa-

tions (2.17), we obtain

3M2
plH

2 ¼
X

I¼c;b;r

ρI − f þ ðf;Xϕþ f;Z þ 3G3;XHϕ2Þϕ;

ð2:26Þ

M2
plð2 _H þ 3H2Þ ¼ −

X
I¼c;b;r

PI − f þG3;Xϕ
2 _ϕ: ð2:27Þ

The ν ¼ 0 component of Eq. (2.20) translates to

f;Xϕþ f;Z þ 3G3;XHϕ2 ¼ 0: ð2:28Þ

We define the dark energy density ρDE and pressure PDE, as

ρDE ¼ −f þ ðf;Xϕþ f;Z þ 3G3;XHϕ2Þϕ ¼ −f; ð2:29Þ

PDE ¼ f −G3;Xϕ
2 _ϕ; ð2:30Þ

where we used Eq. (2.28) in the second equality of
Eq. (2.29). Taking the time derivative of Eq. (2.29) and
exploiting Eq. (2.28), we obtain

_ρDE þ 3HðρDE þ PDEÞ ¼ 0; ð2:31Þ

which corresponds to the continuity equation in the dark
energy sector.
Taking the time derivative of Eq. (2.28) and combining it

with Eq. (2.27), it follows that

_ϕ ¼ ϕ4G3;X

qS
ð3ρc þ 3ρb þ 4ρrÞ; ð2:32Þ

_H ¼ −
qS − 3ϕ6G2

3;X

6M2
plqS

ð3ρc þ 3ρb þ 4ρrÞ; ð2:33Þ

where

qS ¼ 3ϕ3ð2Hϕ2M2
plG3;XX þ ϕ3G2

3;X þ 4HM2
plG3;XÞ

þ 2ϕ2M2
plðϕ2f;XX þ 2ϕf;XZ þ f;ZZ þ f;XÞ: ð2:34Þ

As we will show later in Sec. III, the quantity qS must be
positive to avoid the ghost in the scalar sector. In this case,
the right-hand sides of Eqs. (2.32) and (2.33) do not cross
the singular point qS ¼ 0.
We also introduce the density parameters,

ΩI ¼
ρI

3M2
plH

2
; ΩDE ¼ ρDE

3M2
plH

2
; ð2:35Þ
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as well as the equations of state

wI ¼
PI

ρI
; wDE ¼ PDE

ρDE
¼ −1þG3;Xϕ

2 _ϕ

f
: ð2:36Þ

Then, Eq. (2.26) is expressed asX
I¼c;b;r

ΩI þΩDE ¼ 1: ð2:37Þ

The effective equation of state is given by

weff ¼
X

I¼c;b;r

wIΩI þ wDEΩDE ¼ −1 −
2 _H
3H2

; ð2:38Þ

where we used Eq. (2.27) in the second equality. The Z
dependence in f affects the evolution of ϕ through the term
f;Z in Eq. (2.28). The dark energy equation of state wDE is
also modified by the vector-CDM interaction.

III. COSMOLOGICAL PERTURBATIONS AND
THEORETICALLY CONSISTENT CONDITIONS

We proceed to the study of cosmological perturbations
on the flat FLRW background (2.23). The linear perturba-
tions can be decomposed into tensor, vector, and scalar
modes, which evolve independently from each other. The
perturbed line element in the flat gauge is given by

ds2 ¼ −ð1þ 2αÞdt2 þ 2ð∂iχ þ ViÞdtdxi
þ a2ðtÞðδij þ hijÞdxidxj; ð3:1Þ

where α and χ are scalar perturbations with the notation
∂iχ ¼ ∂χ=∂xi, Vi is the vector perturbation obeying the
transverse condition ∂iVi ¼ 0, and hij is the tensor per-
turbation satisfying the transverse and traceless conditions
∂ihij ¼ 0 and hii ¼ 0.
The vector field JμI in the Schutz-Sorkin action (2.3)

contains both scalar and vector modes, such that

J0I ¼ N I þ δJI; JiI ¼
1

a2ðtÞ δ
ijð∂jδjI þWIjÞ; ð3:2Þ

where δJI and δjI are scalar perturbations, and WIj is the
vector perturbation satisfying ∂jWIj ¼ 0. Here, N I is the
background particle number of each matter species, which
is constant from Eq. (2.7). We also decompose the vector
field Aμ, as

A0 ¼ ϕðtÞ þ δϕ; Ai ¼ 1

a2ðtÞ δ
ijð∂jχV þ EjÞ; ð3:3Þ

where δϕ and χV are scalar perturbations, and Ej is the
vector perturbation satisfying ∂jEj ¼ 0. Substituting

g0i ¼ ∂iχ þ Vi, gij ¼ a2ðtÞδij, and Eq. (3.3) into Ai ¼
g0iA0 þ gijAj, the spatial component of Aμ yields

Ai ¼ ∂iψ þ Yi; ð3:4Þ

where

ψ ≡ χV þ ϕðtÞχ; ð3:5Þ

Yi ≡ Ei þ ϕðtÞVi: ð3:6Þ

The perturbations ψ and Yi correspond to the dynamical
scalar and vector degrees of freedom, respectively.
The spatial component of uIμ can be expressed in the

form

uIi ¼ −∂ivI þ vIi; ð3:7Þ

where vI is the scalar velocity potential, and vIi is the
intrinsic vector mode satisfying ∂ivIi ¼ 0.
Substituting Eqs. (3.4) and (3.7) into the spatial compo-

nent of Eq. (2.12), it follows that

∂ilc þAc1∂iBc1 þAc2∂iBc2

¼ −ρc;nc∂ivc −
f;Z
nc

ð∂iψ þ ϕ∂ivcÞ þ ρc;ncvci

−
f;Z
nc

ðYi − ϕvciÞ; ð3:8Þ

up to linear order in perturbations. The coefficients in front
of the perturbed quantities in Eq. (3.8) (e.g., ρc;nc) are time-
dependent background quantities. The rotational-free scalar
part ∂ilc needs to be identical to the spatial derivative of
scalar perturbations on the right-hand side of Eq. (3.8),
while the divergence-free vector partAc1∂iBc1 þAc2∂iBc2
is equivalent to the corresponding intrinsic vector pertur-
bations on the same right-hand side. This gives the
following relations,

∂ilc ¼ −ρc;nc∂ivc −
f;Z
nc

ð∂iψ þ ϕ∂ivcÞ; ð3:9Þ

Ac1∂iBc1þAc2∂iBc2 ¼ ρc;ncvci−
f;Z
nc

ðYi−ϕvciÞ: ð3:10Þ

The integrated solution to Eq. (3.9) is lc ¼ cðtÞ − ρc;ncvc−
ðf;Z=ncÞðψ þ ϕvcÞ. The time-dependent function cðtÞ is
determined by the μ ¼ 0 component of Eq. (2.12), as
cðtÞ ¼ −

R
t ρc;ncðt̃Þdt̃. Then, the scalar quantity lc is

given by

lc ¼ −
Z

t
ρc;ncðt̃Þdt̃ − ρc;ncvc −

f;Z
nc

ðψ þ ϕvcÞ; ð3:11Þ
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which contains the velocity potential vc and the dynamical
perturbation ψ . We recall that the energy-momentum
tensors (2.18) and (2.19) were obtained after elimina-
ting lc on account of Eq. (2.12). The terms −ρc;ncvc
and −ðf;Z=ncÞðψ þ ϕvcÞ in Eq. (3.11) contribute to
Eqs. (2.18) and (2.19), respectively, as the perturbed
energy-momentum tensors.
Since the linear perturbations with different wave num-

bers do not mix on the FLRW background, we can consider
a configuration with which all the perturbations propagate
in one direction, x3. Then, the vector perturbations Xi ¼ Vi,
WIi, Ei, vci depend on t and x3. The components of Xi

consistent with the divergence-free conditions ∂iXi ¼ 0 are
chosen to be

Xi ¼ ðX1ðt; x3Þ; X2ðt; x3Þ; 0Þ: ð3:12Þ

For the Lagrange multiplers AI1, AI2, BI1, BI2, we can
choose them in the following forms [69]

AI1 ¼ δAI1ðt; x3Þ; AI2 ¼ δAI2ðt; x3Þ; ð3:13Þ

BI1 ¼ x1 þ δBI1ðt; x3Þ; BI2 ¼ x2 þ δBI2ðt; x3Þ;
ð3:14Þ

where δAI1, δAI2, δBI1, δBI2 are perturbed quantities. The
vector perturbations δAIi ¼ ðδAI1ðt; x3Þ; δAI2ðt; x3Þ; 0Þ
and δBIi ¼ ðδBI1ðt; x3Þ; δBI2ðt; x3Þ; 0Þ satisfy the trans-
verse conditions ∂iδAIi ¼ 0 and ∂iδBIi ¼ 0. The vector
field BIi, which is orthogonal to the x3 direction, can be
chosen to have the background components B̄Ii ¼
ðb1x1; b2x2; 0Þ with arbitrary constants b1 and b2. In
Eq. (3.14) both b1 and b2 are normalized to be 1, in which
case the left-hand side of Eq. (3.10) reduces to the linear
perturbation δAci (with i ¼ 1, 2). This is consistent with
the fact that the right-hand side of Eq. (3.10) consists of the
perturbations at linear order. Then, it follows that

δAci ¼ ρc;ncvci −
f;Z
nc

ðYi − ϕvciÞ: ð3:15Þ

On using Eq. (2.13), the relations for baryons and
radiation analogous to Eqs. (3.11) and (3.15) are given,
respectively, by

lI ¼ −
Z

t
ρI;nIðt̃Þdt̃ − ρI;nI vI; ð3:16Þ

δAIi ¼ ρI;nI vIi; ð3:17Þ

where I ¼ b, r.

A. Tensor perturbations

The tensor perturbations hij, which are transverse and
traceless, can be expressed in terms of the sum of two
polarization modes, as hij ¼ hþeþij þ h×e×ij. The unit vec-
tors eþij and e

×
ij satisfy the normalizations eþijðkÞeþijð−kÞ�¼1,

e×ijðkÞe×ijð−kÞ� ¼ 1, and eþijðkÞe×ijð−kÞ� ¼ 0 in Fourier
space with the comoving wave number k. Expanding
(2.2) up to quadratic order in hλ (where λ ¼ þ;×), integrat-
ing the action by parts, and using the background
Eq. (2.27), we end up with the second-order action of tensor
perturbations,

Sð2Þ
T ¼

X
λ¼þ;×

Z
dtd3x

M2
pl

8
a3
�
_h2λ −

1

a2
ð∂hλÞ2

�
: ð3:18Þ

This is equivalent to the corresponding action of tensor
perturbations in standard general relativity, so the speed of
gravitational waves cT is equivalent to that of light. Hence
our coupled GP theories are consistent with the bound of cT
constrained by the GW170817 event [26].

B. Vector perturbations

The intrinsic vector modes appear in each term of (2.2),
so we sum up all those contributions to the action. For this
purpose, we use the fact that lI (I ¼ c, b, r) are scalar
quantities satisfying Eqs. (3.11) and (3.16), so the term
JμI∂μlI in the matter action (2.3) does not contribute to the
quadratic-order action of vector perturbations. Vary the
resulting second-order action with respect toWIi and δAIi,
it follows that

WIi ¼
�
δAIi

ρI;nI
− Vi

�
N i; ð3:19Þ

δAIi ¼ ρI;nIðVi − a2 _δBIiÞ: ð3:20Þ

The perturbations δAci and δAIi (I ¼ b, r) are related to the
spatial components of four-velocities according to
Eqs. (3.15) and (3.17), respectively. Then, we have

Vi − a2 _δBci ¼ vci −
f;Z

ρc þ Pc
ðYi − ϕvciÞ; ð3:21Þ

Vi − a2 _δBIi ¼ vIi; ðfor I ¼ b; rÞ; ð3:22Þ

where we used Eq. (2.10). In the following, we exploit
Eqs. (3.19) and (3.20) to eliminate the variables WIi and
δAIi from the second-order action. On using the back-
ground Eqs. (2.26) and (2.28), the second-order action of
vector perturbations yields
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Sð2Þ
V ¼

Z
dtd3x

X2
i¼1

a
2

�
_Y2
i −

1

a2
ð∂YiÞ2

−
1

ϕ
ðG3;Xϕ _ϕ − f;ZÞY2

i − 2f;ZViYi þ
M2

pl

2a2
ð∂ViÞ2

þ ðVi − a2 _δBciÞ2ðρc þ Pc þ ϕf;ZÞ þ 2a2f;ZYi
_δBci

þ
X
I¼b;r

ðVi − a2 _δBIiÞ2ðρI þ PIÞ
�
: ð3:23Þ

In Fourier space with the comoving wave number
k ¼ jkj, we vary the action (3.23) with respect to Vi,
δBci, and δBIi (I ¼ b, r). This leads to

M2
plk

2

2a2
Vi þ ðρc þ Pc þ ϕf;ZÞðVi − a2 _δBciÞ

− f;ZYi þ
X
I¼b;r

ðρI þ PIÞðVi − a2 _δBIiÞ ¼ 0; ð3:24Þ

½ðρc þ Pc þ ϕf;ZÞðVi − a2 _δBciÞ − f;ZYi�a3 ¼ Cci; ð3:25Þ

ðρI þ PIÞðVi − a2 _δBIiÞa3 ¼ CIi; ðfor I ¼ b; rÞ;
ð3:26Þ

where CIi (with I ¼ c, b, r) are constants in time. Notice
that all the combinations in the form Vi − a2 _δBIi (with
I ¼ c, b, r) can be rewritten in terms of the perfect fluid and
Proca physical quantities by means of Eqs. (3.21) and
(3.22). Substituting Eqs. (3.25) and (3.26) into Eq. (3.24),
we obtain

Vi ¼ −
2

M2
plk

2a

X
I¼c;b;r

CIi; ð3:27Þ

which decays as jVij ∝ a−1. Plugging Eqs. (3.21) and
(3.22) into Eqs. (3.25) and (3.26), it follows that

vci ¼
ðρc þ PcÞCci þ ½2ðρc þ PcÞ þ ϕf;Z�f;Za3Yi

ðρc þ Pc þ ϕf;ZÞ2a3
;

ð3:28Þ

vIi ¼
CIi

ðρI þ PIÞa3
; ðfor I ¼ b; rÞ: ð3:29Þ

While vbi stays constant, the CDM velocity vci is instead
affected by the dynamical field Yi.
Integrating out the Lagrange multiplier Vi by means of

Eq. (3.24), the action gets its reduced form, with the field Yi

and the contributions from _δBci, and _δBIi (I ¼ b, r). On
taking the small-scale limit k → ∞, the dominant contri-
butions to the second-order action of vector perturbations
are given by

Sð2Þ
V ≃

X2
i¼1

Z
dtd3x

a
2

�
qV

�
_Y2
i − c2V

k2

a2
Y2
i

�

þ ðρc þPc þϕf;ZÞa4 _δB2
ci þ

X
I¼b;r

ðρI þPIÞa4 _δB2
Ii

�
;

ð3:30Þ

where

qV ¼ 1; c2V ¼ 1: ð3:31Þ

Hence there are neither ghosts nor Laplacian instabilities
for the dynamical perturbations Yi, with the propagating
speed equivalent to that of light. As we are going to see in
Sec. III C, the same no-ghost condition for the field δBci,
will reappear in the scalar perturbation sector, so that we
will postpone its study for later. Since the instability of Yi is
absent, the violent growth of vci does not occur through
Eq. (3.28). This is the same conclusion as that found for
uncoupled GP theories [44]. Hence the existence of
dynamical vector perturbations does not affect the
anisotropy in structure formation. The constant qV different
from 1 arises for more general Lagrangians containing
intrinsic vector modes, say, LF ¼ −qVFμνFμν=4.
The above discussion shows that the new interaction

associated with the momentum transfer affects the small-
scale stability conditions of neither tensor nor for the Proca
vector perturbations.

C. Scalar perturbations

Let us derive conditions for the absence of ghosts and
Laplacian instabilities for scalar perturbations. From
Eq. (2.4), the perturbation of each fluid number density
nI , which is expanded up to second order, is given by

δnI ¼
δρI
ρI;nI

−
ðN I∂χ þ ∂δjIÞ2

2N Ia5
; ð3:32Þ

where δρI is the density perturbation related to δJI , as

δρI ¼
ρI;nI
a3

δJI: ð3:33Þ

The fluid sound speed squares are defined by

c2I ¼
nIρI;nInI
ρI;nI

; ð3:34Þ

which are c2c ¼ þ0, c2b ¼ þ0, and c2r ¼ 1=3 for CDM,
baryons, and radiation, respectively.
On using the property nI

ffiffiffiffiffiffi−gp
uIi ¼ JIi ¼ J0I g0i þ

JjIgij ¼ N I∂iχ þ ∂iδjI for linear perturbations, it follows
that
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∂δjI ¼ −N Ið∂χ þ ∂vIÞ: ð3:35Þ

This relation is used to eliminate the nondynamical
variable δjI.
In total, there are ten perturbed quantities associated with

the scalar mode: α, χ for the metric components, δϕ,
ψð¼ χV þ ϕðtÞχÞ for the vector field, and vI, δρI (with
I ¼ c, b, r) for each matter component. Expanding the

action (2.2) up to second order in scalar perturbations and
integrating it by parts, the quadratic-order action yields

Sð2Þ
S ¼

Z
dtd3xðLGP þ LZ þ LMÞ; ð3:36Þ

where

LGP ¼ a3
��

w1αþ w2δϕ

ϕ

� ∂2χ

a2
− w3

ð∂αÞ2
a2

þ w4α
2 −

�
ð3Hw1 − 2w4Þ

δϕ

ϕ
−

w3

a2ϕ
ð∂2δϕþ ∂2 _ψÞ þ w6

∂2ψ

a2

�
α

−
w3

4

ð∂δϕÞ2
a2ϕ2

þ w5

ðδϕÞ2
ϕ2

−
�ðw6ϕþ w2Þψ

2
−
w3

2
_ψ

� ∂2ðδϕÞ
a2ϕ2

−
w3

4ϕ2

ð∂ _ψÞ2
a2

þ w7

2

ð∂ψÞ2
a2

�
; ð3:37Þ

LZ ¼ a3
�

ϕf;Z
ρc þ Pc

�
ðρc þ PcÞ

∂2χ

a2
− _δρc − 3Hð1þ c2cÞδρc

�
vc − ϕf;Z

ð∂vcÞ2
2a2

þ f;Zψ
∂2χ

a2
þ f;Z
ρc þ Pc

_ψδρc

þ f;XZϕ _ϕþ f;ZZ _ϕþ 3f;ZH
ρc þ Pc

ψδρc þ
1

2
ð2ϕ3f;XZ þ ϕ2f;ZZ − ϕf;ZÞ

�
αþ δϕ

ϕ

�
2

þ f;Z
2ϕa2

ð∂ψÞ2
�
; ð3:38Þ

LM ¼ a3
X

I¼c;b;r

��
ðρc þ PcÞ

∂2χ

a2
− _δρI − 3Hð1þ c2I ÞδρI

�
vI −

ρc þ Pc

2

ð∂vIÞ2
a2

−
c2I

2ðρc þ PcÞ
ðδρIÞ2 − αδρI

�
; ð3:39Þ

with

w1 ¼ −ϕ3G3;X − 2HM2
pl; ð3:40Þ

w2 ¼ w1 þ 2HM2
pl ¼ −ϕ3G3;X; ð3:41Þ

w3 ¼ −2ϕ2qV; ð3:42Þ

w4¼
1

2
ϕ4f;XX−

3

2
Hϕ3ðG3;X−ϕ2G3;XXÞ−3M2

plH
2; ð3:43Þ

w5 ¼ w4 −
3

2
Hðw1 þ w2Þ; ð3:44Þ

w6 ¼
1

ϕ
w2 ¼ −ϕ2G3;X; ð3:45Þ

w7 ¼
_ϕ

ϕ3
w2 ¼ − _ϕG3;X: ð3:46Þ

For the variables w1;…; w7, the same notations as those
given in Ref. [25] are used. The contribution of intrinsic
vector modes to the scalar perturbation equations appears
only through the quantity w3 ¼ −2ϕ2qV. In our theory, qV
is equivalent to 1.
There are six nondynamical variables α, χ, δϕ, vc, vb, vr,

while the dynamical perturbations correspond to the four
fields ψ , δρc, δρb, δρr. Varying the action (3.36) with
respect to the six nondynamical fields in Fourier space, it
follows that

X
I¼c;b;r

δρI − 2w4αþ ð3Hw1 − 2w4Þ
δϕ

ϕ
þ k2

a2
ðY þ w1χ − w6ψÞ ¼ ð2ϕ3f;XZ þ ϕ2f;ZZ − ϕf;ZÞ

�
αþ δϕ

ϕ

�
; ð3:47Þ

X
I¼c;b;r

ðρI þ PIÞvI þ w1αþ w2

δϕ

ϕ
¼ −f;Zðϕvc þ ψÞ; ð3:48Þ

ð3Hw1 − 2w4Þα − 2w5

δϕ

ϕ
þ k2

a2

�
1

2
Y þ w2χ −

1

2

�
w2

ϕ
þ w6

�
ψ

�
¼ ð2ϕ3f;XZ þ ϕ2f;ZZ − ϕf;ZÞ

�
αþ δϕ

ϕ

�
; ð3:49Þ
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_δρI þ 3Hð1þ c2I ÞδρI þ
k2

a2
ðρI þ PIÞðχ þ vIÞ ¼ 0; for I ¼ c; b; r; ð3:50Þ

where

Y ¼ w3

ϕ
ð _ψ þ δϕþ 2ϕαÞ: ð3:51Þ

Variations of the action (3.36) with respect to the dynamical perturbations lead to

_Y þ
�
H −

_ϕ

ϕ

�
Y þ 2ϕðw6αþ w7ψÞ þ ðw2 þ w6ϕÞ

δϕ

ϕ
¼ −2f;Zðϕvc þ ψÞ; ð3:52Þ

_vc − 3Hc2cvc − c2c
δρc

ρc þ Pc
− α ¼ −

1

a3ðρc þ PcÞ
∂
∂t ½a

3f;Zðϕvc þ ψÞ�; ð3:53Þ

_vI − 3Hc2I vI − c2I
δρI

ρI þ PI
− α ¼ 0; for I ¼ b; r: ð3:54Þ

We eliminate the nondynamical perturbations from the action (3.36) by solving Eqs. (3.47)–(3.50) for α, χ, δϕ, vc, vb, vr.
After the integration by parts, the resulting second-order action in Fourier space can be expressed in the form,

Sð2Þ
S ¼

Z
dtd3xa3

�
_X⃗
t
K _X⃗ −

k2

a2
X⃗ tGX⃗ − X⃗ tMX⃗ −

k
a
X⃗ tB _X⃗

�
; ð3:55Þ

where K, G, M and B are 4 × 4 matrices. The leading-order contributions to the matrix component M are at most of the
order k0. The vector field X⃗ t is composed of the dynamical perturbations, as

X⃗ t ¼ ðψ ; δρc=k; δρb=k; δρr=kÞ: ð3:56Þ

In the small-scale limit (k → ∞), the nonvanishing components of K and G are given, respectively, by

K11 ¼
H2M2

pl

ϕ2ðw1 − 2w2Þ2
½3w2

1 þ 4M2
plw4 þ 2M2

plð2ϕ3f;XZ þ ϕ2f;ZZ − ϕf;ZÞ�; ð3:57Þ

K22 ¼
a2ðρc þ Pc þ ϕf;ZÞ

2ðρc þ PcÞ2
; K33 ¼

a2

2ðρb þ PbÞ
; K44 ¼

a2

2ðρr þ PrÞ
; ð3:58Þ

and

G11 ¼ Gþ _μþHμ −
w2
2

2ðw1 − 2w2Þ2ϕ2

X
I¼c;b;r

ðρI þ PIÞ −
4f;ZH2M4

pl

2ðw1 − 2w2Þ2ϕ
; ð3:59Þ

G22 ¼
a2c2c

2ðρc þ PcÞ
; G33 ¼

a2c2b
2ðρb þ PbÞ

; G44 ¼
a2c2r

2ðρr þ PrÞ
; ð3:60Þ

where

G¼ −
4H2M4

plw
2
2

ϕ2w3ðw1 − 2w2Þ2
−

_ϕ

2ϕ3
w2; μ¼ HM2

plw2

ϕ2ðw1 − 2w2Þ
: ð3:61Þ

The antisymmetric matrix B has the leading-order off- diagonal components, which are given by
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B12 ¼ −B21 ¼ −
aHM2

plf;Z
ðw1 − 2w2Þðρc þ PcÞ

: ð3:62Þ

The diagonal components of B are lower than the order k0.
In the following, we will consider perfect fluids obeying

the weak energy conditions ρI þ PI > 0 (with I ¼ c, b, r).
In this case, the no-ghost conditions for baryons and
radiation (K33 > 0 and K44 > 0) are automatically satis-
fied. The absence of ghosts for the dynamical perturbations
ψ and δρc requires that

qS ¼ 3w2
1þ 4M2

plw4þ 2M2
plð2ϕ3f;XZ þϕ2f;ZZ −ϕf;ZÞ> 0;

ð3:63Þ

qc ¼ 1þ ϕf;Z
ρc þ Pc

> 0; ð3:64Þ

respectively. By using Eq. (2.28), one can easily confirm
that qS given by Eq. (3.63) is identical to the quantity (2.34)
appearing in the denominators of background Eqs. (2.32)
and (2.33). The Z dependence in the coupling f affects the
no-ghost conditions of both the Proca field and CDM.
To avoid a strong-coupling problem for the Proca field,

we need to impose at any time, for high k’s, that the
diagonal term K11 never vanishes or approaches zero.
Similarly, the element K22ρ

2
c should satisfy the same no

strong-coupling condition.2 Other matter fields trivially
satisfy the no strong-coupling condition.
The propagation of baryons and radiation is not modified

by the matrix B, so their sound speeds are c2b ¼ G33=K33

and c2r ¼ G44=K44, respectively. On the other hand, the off-
diagonal components (3.62) affect the propagation of
dynamical perturbations X1 ≡ ψ and X2 ≡ δρc=k. We
substitute the solutions X j ¼ X̃ jeiðωt−kxÞ (with j ¼ 1, 2
and ω is a frequency) to their equations of motion following
from the action (3.55). To derive the dispersion relations in
the small-scale limit, we pick up terms of the orders ω2, ωk,
and k2. Then, we obtain

ω2X̃1 − ĉ2S
k2

a2
X̃1 − iω

k
a
B12

K11

X̃2 ≃ 0; ð3:65Þ

ω2X̃2 − ĉ2c
k2

a2
X̃2 − iω

k
a
B21

K22

X̃1 ≃ 0; ð3:66Þ

where

ĉ2S ¼
G11

K11

¼ ϕ2ðw1 − 2w2Þ2
H2M2

plqS

�
Gþ _μþHμ

−
w2
2

2ðw1 − 2w2Þ2ϕ2

X
I¼c;b;r

ðρI þ PIÞ

−
4f;ZH2M4

pl

2ðw1 − 2w2Þ2ϕ
�
; ð3:67Þ

ĉ2c ¼
G22

K22

¼ c2c
qc

: ð3:68Þ

Since we are considering the case c2c ¼ þ0, it follows that
ĉ2c ¼ þ0. Then, the two solutions to Eq. (3.66) are given by

ω ¼ 0; ð3:69Þ

ωX̃2 ¼ i
k
a
B21

K22

X̃1: ð3:70Þ

The CDM has the dispersion relation (3.69), so its sound
speed squared c2CDM ¼ ω2a2=k2 is

c2CDM ¼ þ0: ð3:71Þ

The perturbation ψ associated with the longitudinal scalar
mode of Aμ corresponds to the other branch (3.70), so
substitution of Eq. (3.70) into Eq. (3.65) results in the
dispersion relation ω2 ¼ c2Sk

2=a2, with

c2S ¼ ĉ2S þ Δc2S; ð3:72Þ

where

Δc2S ¼
B2
12

K11K22

¼ 2M2
plðϕf;ZÞ2

qSqcðρc þ PcÞ
: ð3:73Þ

Thus the interaction between the Proca field and CDM
gives rise to an additional contribution Δc2S to the total
sound speed squared c2S. The small-scale Laplacian insta-
bility is absent for

c2S ≥ 0: ð3:74Þ

Under the no-ghost conditions (3.63) and (3.64), Δc2S is
positive. This means that, as long as ĉ2S defined by
Eq. (3.67) is positive, the Laplacian instability is always
absent for the perturbation ψ .
In summary, there are neither ghosts nor Laplacian

instabilities for scalar perturbations under the conditions
(3.63), (3.64), and (3.74). As long as c2c ¼ þ0, the coupling
between the Proca field and CDM does not modify the
effective CDM sound speed squared c2CDM.

2We have multiplied K22 by ρ2c, as this corresponds to the
kinetic term for the density contrast δc ¼ δρc=ρc.
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IV. EFFECTIVE GRAVITATIONAL COUPLINGS
FOR CDM AND BARYONS

To confront coupled dark energy models in GP theories
with the observations of galaxy clusterings and weak
lensing, we need to understand the evolution of matter
density perturbations at low redshifts. For this purpose, we
derive the effective gravitational couplings felt by CDM
and baryon density perturbations by employing the so-
called quasistatic approximation. The contribution of radi-
ation to the background and perturbation equations of
motion is ignored in the following discussion.
We consider the case in which the equations of state and

the sound speed squares of CDM and baryons are given by

wc ¼ 0; wb ¼ 0; c2c ¼ 0; c2b ¼ 0: ð4:1Þ

We also introduce the CDM and baryon density contrasts,

δc ¼
δρc
ρc

; δb ¼
δρb
ρb

: ð4:2Þ

From Eq. (3.50), we obtain

_δI ¼ −
k2

a2
ðχ þ vIÞ; for I ¼ c; b: ð4:3Þ

We can express Eqs. (3.53) and (3.54) in the forms,

_vc ¼
1

qc

�
α −

H
ϕ
fqcϵc þ ð1 − qcÞϵϕgψ

þ 1

ϕ
ð1 − qcÞ _ψ −Hqcϵcvc

�
; ð4:4Þ

_vb ¼ α; ð4:5Þ

where

qc ¼ 1þ ϕf;Z
ρc

; ð4:6Þ

ϵc ¼
_qc

Hqc
¼ ðf;Z þ f;XZϕ2 þ f;ZZϕÞ _ϕþ 3Hϕf;Z

Hðϕf;Z þ ρcÞ
; ð4:7Þ

ϵϕ ¼
_ϕ

Hϕ
: ð4:8Þ

If there is no Z dependence in f, we have qc ¼ 1 and
ϵc ¼ 0, in which case _vc ¼ α.
The gauge-invariant Bardeen potentials are defined by

Ψ ¼ αþ _χ; Φ ¼ Hχ: ð4:9Þ

Taking the time derivatives of Eq. (4.3) and using
Eqs. (4.4)–(4.5), it follows that

δ̈c þ ð2þ ϵcÞH _δc

þ k2

a2
Ψ
qc

þ k2

a2

��
1 −

1

qc

��
_Φ
H

− ϵHΦ
�
þ ϵcΦ

�

−
k2

a2
H
ϕ

��
1 −

1

qc

��
_ψ

H
− ϵϕψ

�
þ ϵcψ

�
¼ 0; ð4:10Þ

δ̈b þ 2H _δb þ
k2

a2
Ψ ¼ 0; ð4:11Þ

where

ϵH ¼
_H
H2

: ð4:12Þ

In contrast to Eq. (4.11) of baryon perturbations, the
evolution of CDM density contrast is nontrivially affected
by the Z dependence in f through the quantities containing
Φ, _Φ, ψ , _ψ in Eq. (4.10). By using the quasistatic
approximation in the following, we derive the closed-form
expressions of Ψ, Φ, and ψ to estimate the gravitational
couplings of CDM and baryon density perturbations.

A. Quasistatic approximation

We employ the quasistatic approximation for the modes
deep inside the horizon, under which the dominant con-
tributions to the perturbation equations are the terms
containing k2=a2 as well as δρc, δρb and their time
derivatives [70–72]. Then, from Eqs. (3.47) and (3.49),
it follows that

δρc þ δρb ≃ −
k2

a2
ðY þ w1χ − w6ψÞ; ð4:13Þ

Y ≃
�
w2

ϕ
− w6

�
ψ − 2w2χ: ð4:14Þ

Substituting Eq. (4.14) into Eq. (4.13) and using δI (I ¼
c, b) and Φ defined in Eqs. (4.2) and (4.9), respectively,
we obtain

ρcδc þ ρbδb ≃ −
k2

a2

�
w1 − 2w2

H
Φþ w2

ϕ
ψ

�
: ð4:15Þ

From Eqs. (3.51) and (4.14), it follows that

_ψ ≃
w2 þ w6ϕ

w3

ψ − 2ϕ

�
αþ w2

w3

Φ
H

�
− δϕ: ð4:16Þ

We differentiate Eq. (4.15) with respect to t and resort to
Eqs. (4.3) and (4.16) to remove _δc, _δb, and _ψ . The
perturbation δϕ can be eliminated by exploiting
Eq. (3.48). After this procedure the CDM velocity potential
vc still remains, so we employ Eq. (4.3) to express it in
terms of _δc and Φ, as
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vc ¼ −
a2

k2
_δc −

Φ
H
: ð4:17Þ

Then, we obtain

ϕ2ðw1 − 2w2Þw3Ψþ μ1Φþ μ2ψ ≃
a2

k2
w3ϕ

2ðqc − 1Þρc _δc; ð4:18Þ

where

μ1 ¼
ϕ2

H
½ð _w1 − 2 _w2 þHw1 − ρb − qcρcÞw3 − 2w2ðw2 þHw3Þ�; ð4:19Þ

μ2 ¼ ϕðw2
2 þHw2w3 þ _w2w3Þ þ w2ðw6ϕ

2 − w3
_ϕÞ þ ϕw3ρcðqc − 1Þ: ð4:20Þ

We also substitute Eq. (4.14) and its time derivative into Eq. (3.52) by exploiting the relations (4.16) and (4.17). This
procedure leads to

2ϕ2w2Ψþ μ3Φþ μ4ψ ≃ −
2a2

k2
ϕ2ðqc − 1Þρc _δc; ð4:21Þ

where

μ3 ¼
2ϕ

Hw3

μ2; ð4:22Þ

μ4 ¼ −
1

w3

½ϕ3ðw2
6 þ 2w3w7Þ þ ϕ2ð2w2w6 þHw3w6 þ w3 _w6Þ þ ϕfw2

2 þHw2w3 þ w3ð _w2 − _ϕw6Þg − 2 _ϕw2w3�

− 2ϕρcðqc − 1Þ: ð4:23Þ

Since qc − 1 ¼ ϕf;Z=ρc, the Z dependence in f gives rise to the new terms containing _δc on the right-hand sides of
Eqs. (4.18) and (4.21). Combining Eq. (4.18) with (4.21) to eliminate the time derivative _δc, we obtain

2ϕ2ðw1 − w2Þw3Ψþ ð2μ1 þ μ3w3ÞΦþ ð2μ2 þ μ4w3Þψ ¼ 0: ð4:24Þ

On using the definitions of w1;…; w7 in Eqs. (3.40)–(3.46) and the background Eqs. (2.26)–(2.27), the following equalities
hold

2ϕ2ðw1 − w2Þw3 ¼ 2μ1 þ μ3w3 ¼ −4Hϕ2M2
plw3; ð4:25Þ

2μ2 þ μ4w3 ¼ 0: ð4:26Þ

Then, Eq. (4.24) reduces to

Ψ ¼ −Φ; ð4:27Þ

which shows the absence of an anisotropic stress.
It is convenient to introduce the two dimensionless variables,

αB ¼ ϕ3G3;X

2M2
plH

; ð4:28Þ

ν̂S ¼
qSĉ2S

4M4
plH

2
; ð4:29Þ
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where

qSĉ2S ¼ 2M2
pl½Hϕ5ϵϕG3;XX þHϕ3ð1þ 2ϵϕÞG3;X − ρcðqc − 1Þ� − ϕ6G2

3;X

�
1þ 4M2

pl

w3

�
: ð4:30Þ

Then, the quantities w1, w2, μ1, and μ2 appearing in Eqs. (4.15) and (4.18) are expressed, respectively, as

w1 ¼ −2HM2
plðαB þ 1Þ; w2 ¼ −2HM2

plαB; ð4:31Þ

μ1 ¼ 2Hϕ2M2
plw3ðα2B þ ν̂S − 1Þ; μ2 ¼ −2H2ϕM2

plw3ðα2B þ ν̂SÞ: ð4:32Þ

On using Eq. (4.27), we can solve Eqs. (4.15) and (4.18) for Ψ, Φ, ψ , as

Ψ ¼ −Φ ≃ −
a2

2M2
plk

2

��
1þ α2B

ν̂S

�
ðρcδc þ ρbδbÞ þ

αB
ν̂S

ðqc − 1Þρc
_δc
H

�
; ð4:33Þ

ψ ≃
a2

2M2
plk

2

ϕ

H

��
1þ αBðαB − 1Þ

ν̂S

�
ðρcδc þ ρbδbÞ þ

αB − 1

ν̂S
ðqc − 1Þρc

_δc
H

�
: ð4:34Þ

The time derivatives of Eqs. (4.33) and (4.34) give rise to the terms containing δ̈c, which contribute to Eq. (4.10) of the
CDM density contrast. After eliminating Ψ, _Φ, Φ, _ψ , and ψ from Eq. (4.10), we obtain the second-order differential
equation for δc, as

δ̈c þH
ĉ2S
c2S

�
2þ ϵc −

3ðqc − 1ÞΩc

2ν̂Sqc
fðqc − 1Þð1þ 2ϵH þ ϵSÞ − 2qcϵcg

�
_δc þ

3HαBðqc − 1Þ
2ν̂Sqc

ĉ2S
c2S

Ωb
_δb

−
3H2

2G
ðGccΩcδc þGcbΩbδbÞ ≃ 0; ð4:35Þ

where

Gcc ¼ Gcb ¼
�
1þ α2B

ν̂S
þ αB

ν̂S
fðqc − 1Þð1þ ϵH þ ϵS − ϵBÞ − qcϵcg

�
1

qc

ĉ2S
c2S

G; ð4:36Þ

with

ϵB ≡ _αB
HαB

; ϵS ≡
_̂νS
Hν̂S

: ð4:37Þ

From Eqs. (3.72) and (3.73), the ratio between c2S and ĉ2S is

c2S
ĉ2S

¼ 1þ Δc2S
ĉ2S

¼ 1þ 3ðqc − 1Þ2Ωc

2ν̂Sqc
: ð4:38Þ

The difference Δc2S between c2S and ĉ
2
S, which arises from the off-diagonal components of matrix B in Eq. (3.55), vanishes

for f;Z ¼ 0.
Substituting Eq. (4.33) into Eq. (4.11), we obtain

δ̈b þ 2H _δb −
3HαBðqc − 1Þ

2ν̂S
Ωc

_δc −
3H2

2G
ðGbcΩcδc þ GbbΩbδbÞ ≃ 0; ð4:39Þ

where

Gbb ¼ Gbc ¼
�
1þ α2B

ν̂S

�
G: ð4:40Þ
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As long as ĉ2S is positive with the absence of ghosts
(qS > 0), the quantity ν̂S is positive. In coupled GP theories
the Laplacian instability is absent for c2S ¼ ĉ2S þ Δc2S > 0,
so the condition ĉ2S > 0 is not mandatory. To ensure the
stability during the whole cosmic expansion history, how-
ever, we do not consider the special case where the two
inequalities ĉ2S < 0 and c2S > 0 hold. As long as qSĉ2S > 0,
the gravitational couplings Gbb and Gbc of baryons are
larger than the Newton constant G. This enhancement of
Gbb is attributed to the cubic-derivative coupling G3ðXÞ
[44]. If there is no dependence of Z in f, we have qc ¼ 1,
ϵc ¼ 0, and c2S ¼ ĉ2S, so the CDM gravitational coupling
(4.36) reduces to the value (4.40) of baryons.
In the presence of the coupling fðZÞ, we observe in

Eq. (4.36) that Gcc and Gcb are multiplied by the factor
ĉ2S=ðqcc2SÞ. The quantity qc ¼ 1þ ϕf;Z=ρc should be close
to 1 during the matter-dominated epoch (ϕf;Z ≪ ρc), but
the magnitude of qc becomes greater than 1 after the
dominance of the vector-field density as dark energy
(ϕf;Z ≳ ρc). Moreover, as long as qSĉ2S > 0, the ratio
ĉ2S=c

2
S is smaller than 1. Then, it is anticipated that the

interaction fðZÞ may suppress the values of Gcc and Gcb at
low redshifts. The term α2B=ν̂S in the square bracket of
Eq. (4.36) works to enhance the CDM gravitational
coupling, but there are also additional terms proportional
to αB in Eq. (4.36). We will show that the terms propor-
tional to αB, which arise from the mixture of couplings
G3ðXÞ and fðZÞ, can play an important role to modify the
values of Gcc and Gcb during the epoch of cosmic
acceleration. In Sec. V, we will consider a concrete model
of coupled dark energy and investigate whether the reali-
zation of Gcc and Gcb smaller than G is possible. Before
doing so, we compute the values of Gcc and Gbb on the de
Sitter background.

B. Gravitational couplings on de Sitter background

The background Eqs. (2.26)–(2.28) allow the existence
of de Sitter solutions, along which ϕ and H are constant
with ρI ¼ 0 ¼ PI . On this de Sitter background, we have

ϵϕ ¼ 0; ϵH ¼ 0; ϵB ¼ 0; ϵS ¼ 0; ϵc ¼ 3:

ð4:41Þ

As the solutions approach the de Sitter fixed point, the
quantity (4.6) behaves as qc ≃ ϕf;Z=ρc → ∞, where the
positivity of qc requires that ϕf;Z > 0. Of course, this
behavior of qc does not mean the divergence of physical
quantities. Indeed, on the de Sitter background satisfying
Eq. (4.41), Eq. (4.36) reduces to

ðGccÞdS ¼ ðGcbÞdS ¼ −2
αB
ν̂S

ĉ2S
c2S

G: ð4:42Þ

In the regime where qc ≫ 1, the terms proportional to αB in
the square bracket of Eq. (4.36) completely dominates over
α2B=ν̂S. This means that the gravitational coupling of CDM
is very different from that of baryons around the de Sitter
solution. The quantities (4.29) and (4.38) are given,
respectively, by

ν̂S ¼
1

4M4
plH

2

�
2Hϕ3M2

plG3;X

− ϕ6G2
3;X

�
1þ 4M2

pl

w3

�
− 2ϕM2

plf;Z

�
; ð4:43Þ

c2S
ĉ2S

¼ 1þ ϕf;Z
2M2

plH
2ν̂S

: ð4:44Þ

As long as the condition ĉ2S > 0 is satisfied in addition to
the absence of ghosts (qS > 0 and ϕf;Z > 0), we have
ν̂S ¼ qSĉ2S=ð4M4

plH
2Þ > 0 and c2S=ĉ

2
S > 1. Then, from

Eq. (4.42), ðGccÞdS < 0 for αB > 0 and ðGccÞdS > 0 for
αB < 0. Substituting Eqs. (4.28), (4.43) and (4.44) into
Eq. (4.42), it follows that

ðGccÞdS ¼ ðGcbÞdS ¼
4HM2

plw3

ϕ3G3;Xð4M2
pl þ w3Þ − 2HM2

plw3

G;

ð4:45Þ

while the baryon gravitational coupling (4.40) yields

ðGbbÞdS ¼ ðGbcÞdS ¼
�
1þ ϕ6G2

3;X

4M4
plH

2ν̂S

�
G; ð4:46Þ

where ν̂S is given by Eq. (4.43). One can express Eq. (4.45)
in terms of qV [see Eq. (3.42)] and αB, as

ðGccÞdS ¼ ðGcbÞdS ¼ 2qVu2

ðαB − 1ÞqVu2 − 2αB
G; ð4:47Þ

where

u ¼ ϕ

Mpl
: ð4:48Þ

In the expression (4.47), u should be evaluated on the de
Sitter fixed point. Our theory corresponds to qV ¼ 1, but
we explicitly write qV in Eq. (4.47) to accommodate more
general intrinsic vector-mode Lagrangians like LF ¼
−qVFμνFμν=4. As we already mentioned, the sign of
ðGccÞdS depends on αB. When αB ¼ 1, for example,
we have ðGccÞdS ¼ −qVu2G, while, for αB ≫ 1 and
qVu2 ≫ 1, ðGccÞdS ≃ ð2=αBÞG. The self-accelerating
solution in cubic-order extended Galileon scalar-tensor
theory [73,74] can be regarded as the weak-coupling limit
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qV → ∞ in Eq. (4.47), so that ðGccÞdS ¼ 2G=ðαB − 1Þ.
Since our coupled GP theory gives the value ðGccÞdS ¼
2u2G=½ðαB − 1Þu2 − 2αB�, its observational signatures
associated with the cosmic growth measurements are
different from those in its scalar-tensor counterpart.

V. CONCRETE MODELS

To study the cosmological dynamics relevant to the late-
time cosmic acceleration, we consider a concrete model of
coupled dark energy given by the action (2.2) with

fðX; ZÞ ¼ b2Xp2 þ βð2XÞnZm; G3ðXÞ ¼ b3Xp3 ;

ð5:1Þ

where b2, b3, p2, p3 and β, n, m are constants. In this
model, the background Eq. (2.28) yields

21−p2b2p2ϕ
2p2−1 þ 3 · 21−p3b3p3Hϕ2p3

þ βð2nþmÞϕ2nþm−1 ¼ 0: ð5:2Þ

In uncoupled GP theories (β ¼ 0), Eq. (5.2) shows that
H is related to ϕ according to

ϕpH ¼ λ ¼ constant; ð5:3Þ

where p ¼ 2p3 − 2p2 þ 1. Provided that p > 0, the tem-
poral vector component ϕ grows with the decrease ofH. As
the vector-field density dominates over the background
fluid density, the solutions enter the epoch of cosmic
acceleration and finally approach the de Sitter fixed point
characterized by constant ϕ [25].
In coupled GP theories which contain the Z dependence

in f, we would like to consider the cosmological back-
ground possessing the same property as Eq. (5.3). This can
be realized for the powers,

p3 ¼
1

2
ðpþ 2p2 − 1Þ; n ¼ p2 −

m
2
: ð5:4Þ

In this case, the three terms in Eq. (5.2) have the same
power-law dependence of ϕ. Then, from Eq. (5.2), the
constants b2, b3, and β are related with each other, as

b3 ¼ −
2ðpþ1Þ=2p2ðb2 þ 2p2βÞ

3λðpþ 2p2 − 1Þ : ð5:5Þ

In the following, we study the dynamics of background and
perturbations for the functions (5.1) with the powers (5.4).

A. Background dynamics and theoretically
consistent conditions

To study the background dynamics, we take CDM,
baryons, and radiation into account as perfect fluids. The
dark energy density parameter defined in Eq. (2.35) yields

ΩDE ¼ −
ð2−p2b2 þ βÞϕ2p2

3M2
plH

2
: ð5:6Þ

By imposing the conditionΩDE > 0, the constants b2 and β
are constrained to be

2−p2b2 þ β < 0: ð5:7Þ

From Eq. (2.37), we have

Ωb ¼ 1 − ΩDE − Ωc −Ωr: ð5:8Þ

On using Eqs. (2.32) and (2.33), it follows that

ϵϕ ¼ 3 − 3ΩDE þ Ωr

2pð1þ sΩDEÞ
; ð5:9Þ

ϵH ¼ −
3 − 3ΩDE þΩr

2ð1þ sΩDEÞ
; ð5:10Þ

where

s ¼ p2

p
: ð5:11Þ

Then, the density parameters ΩDE, Ωc, and Ωr obey the
differential equations,

Ω0
DE ¼ ð1þ sÞΩDEð3 − 3ΩDE þΩrÞ

1þ sΩDE
; ð5:12Þ

Ω0
c ¼

Ωc½Ωr − 3ð1þ sÞΩDE�
1þ sΩDE

; ð5:13Þ

Ω0
r ¼ −

Ωr½1 − Ωr þ ð3þ 4sÞΩDE�
1þ sΩDE

; ð5:14Þ

where a prime represents a derivative with respect to
N ¼ ln a. For a given value of s and initial conditions
of ΩDE, Ωc, and Ωr, each density parameter is known by
integrating Eqs. (5.12)–(5.14) with Eq. (5.8).
The dark energy equation of state in Eq. (2.36) and

effective equation of state in Eq. (2.38) are given by

wDE ¼ −
3ð1þ sÞ þ sΩr

3ð1þ sΩDEÞ
; ð5:15Þ

weff ¼
Ωr − 3ð1þ sÞΩDE

3ð1þ sΩDEÞ
; ð5:16Þ

respectively. Apart from the fact that nonrelativistic matter
is separated into CDM and baryons, the background
dynamics is the same as that studied in Ref. [25]. As we
observe in Eq. (5.6), the effect of new coupling β can be
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simply absorbed into the definition of ΩDE at the back-
ground level.
During the cosmological sequence of radiation (Ωr ¼ 1,

weff ¼ 1=3), matter (Ωc þ Ωb ¼ 1, weff ¼ 0), and de Sitter
(ΩDE ¼ 1, weff ¼ −1) epochs, the dark energy equation of
state (5.15) changes as wDE ¼ −1 − 4s=3 → −1 − s → −1,
respectively, see the left panel of Fig. 1 for the case
s ¼ 1=5. Thus the background dynamics is solely deter-
mined by the single parameter s, which characterizes the
deviation from the ΛCDM model.
We define the density parameter associated with the

coupling β, as

Ωβ ¼
βϕ2p2

3M2
plH

2
: ð5:17Þ

Then, the no-ghost conditions (3.63) and (3.64) translate,
respectively, to

qS ¼ 12M4
plH

2p2sΩDEð1þ sΩDEÞ > 0; ð5:18Þ

qc ¼ 1þmΩβ

Ωc
> 0: ð5:19Þ

To satisfy the condition (5.18) in the asymptotic past
(ΩDE → þ0), the parameter s is in the range,

s > 0: ð5:20Þ

This means that wDE is always in the phantom region
(wDE < −1). Around the future de Sitter fixed point, the
parameter (5.19) behaves as qc ≃mΩβ=Ωc, so its positivity
requires that

mΩβ > 0: ð5:21Þ

For positivem, the inequality (5.21) implies that β > 0. The
condition (5.21) is not obligatory for the cosmic expansion
history by today, but we impose it to ensure the stability
around the future de Sitter solution.
As for the no strong-coupling condition, the quantity

given by Eq. (3.57) reduces to

K11 ¼
3p2sM2

plH
2ΩDEð1þ sΩDEÞ

ð1 − psΩDEÞ2ϕ2
: ð5:22Þ

At early times (ΩDE ≪ 1), K11 has the dependence,

K11 ∝ Ωðps−1Þ=½pðsþ1Þ�
DE ; ð5:23Þ

so that the strong coupling can be avoided for

0 < ps ≤ 1; or 0 < p2 ≤ 1: ð5:24Þ

We remind the reader that we are considering the case
p > 0, in order for the Proca field to be responsible for the
late-time cosmic acceleration.
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FIG. 1. (Left) Evolution of wDE, weff and ΩDE, Ωc, Ωb, Ωr versus zþ 1 for s ¼ 1=5, where z ¼ 1=a − 1 is the redshift with today’s
scale factor a ¼ 1. The initial conditions of ΩDE, Ωc, and Ωr are chosen to realize their today’s values ΩDEðz ¼ 0Þ ¼ 0.68,
Ωcðz ¼ 0Þ ¼ 0.27, Ωbðz ¼ 0Þ ¼ 0.05, and Ωrðz ¼ 0Þ ¼ 10−4, respectively. (Right) Evolution of qc, Q̃S ¼ K11M

2p
pl =λ

2, and c2S for
p2 ¼ 1, p ¼ 5, m ¼ 2, and rβ ¼ 0.05 with the same initial conditions of density parameters as those used in the left panel, with today’s
dimensionless temporal vector component uðz ¼ 0Þ ¼ 0.459.
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During the radiation, matter, and de Sitter epochs, the
sound speed squared (3.72) reduces, respectively, to

ðc2SÞra ¼
pð3þ 4sÞ − 2

3p2
−

mrβ
2p2s

; ð5:25Þ

ðc2SÞma ¼
pð5þ 6sÞ − 3

6p2
−

mrβ
2p2s

; ð5:26Þ

ðc2SÞdS ¼
1

3pð1þ sÞ
�
1 − ps −

4psM2
pl

w3

�
; ð5:27Þ

where

rβ ¼
Ωβ

ΩDE
¼ −

β

2−p2b2 þ β
: ð5:28Þ

As long as ΩDE > 0, the condition (5.21) translates to
mrβ > 0. The constant rβ characterizes the contribution of
the coupling β to the total dark energy density. We note that
the difference (3.73) between c2S and ĉ2S is given by

Δc2S ¼
m2r2βΩDE

2p2sðΩc þmrβΩDEÞð1þ sΩDEÞ
: ð5:29Þ

This quantity vanishes on the radiation and matter
fixed points (ΩDE ¼ 0), so ðĉ2SÞra and ðĉ2SÞma are identical
to ðc2SÞra and ðc2SÞma, respectively. On the de Sitter solution,
there is the difference ðΔc2SÞdS ¼ mrβ=½2p2sð1þ sÞ�, so
that

ðĉ2SÞdS ¼
1

3pð1þ sÞ
�
1 − ps −

4psM2
pl

w3

�
−

mrβ
2p2sð1þ sÞ :

ð5:30Þ

In Eq. (5.27), the coupling β disappears from ðc2SÞdS due to
the contribution ðΔc2SÞdS to ðĉ2SÞdS. To avoid the Laplacian
instability during the whole cosmological evolution, we
require that ðc2SÞra, ðc2SÞma, and ðc2SÞdS are all positive.
In the right panel of Fig. 1, we plot the evolution of qc,

Q̃S ¼ K11M
2p
pl =λ

2, and c2S for the model parameters p2 ¼ 1,
p ¼ 5, m ¼ 2, and rβ ¼ 0.05. Today’s values of density
parameters (at the redshift z ¼ 0) are the same as those in
the left panel, with uðz ¼ 0Þ ¼ ϕðz ¼ 0Þ=Mpl ¼ 0.459.
Since sð¼ 1=5Þ,m,ΩDE, and rβ ¼ Ωβ=ΩDE are all positive,
the no-ghost conditions (5.18) and (5.19) are automatically
satisfied. Indeed, the positivities of Q̃S and qc can be
confirmed in Fig. 1. Since the numerical simulation of
Fig. 1 corresponds to ps ¼ 1, K11 stays constant in the
asymptotic past (ΩDE ≪ 1), see Eq. (5.23). As we observe
in Fig. 1, the quantity Q̃S ¼ K11M

2p
pl =λ

2 continues to
grow toward the future de Sitter attractor, so there is no

strong-coupling problem for the Proca field. This is also the
case for CDM, where the quantity K22ρ

2
c ¼ a2ðρc þ

ϕf;ZÞ=2 approaches 0 neither in the asymptotic past nor
in the future.
For the model parameters used in the numerical simulation

of Fig. 1, the analytic estimations (5.25) and (5.26) give
ðc2SÞra ¼ 0.217 and ðc2SÞma ¼ 0.177, which agree well with
their numerical values in Fig. 1. On using the asymptotic
value udS ¼ ϕdS=Mpl ¼ 0.474 on the de Sitter solution, we
obtain ðc2SÞdS ¼ 0.494 and ðĉ2SÞdS ¼ 0.485 from Eqs. (5.27)
and (5.30). Again, they are in good agreement with their
numerical values. As we observe in Fig. 1, the scalar sound
speed squared c2S is always positive from the radiation era to
the de Sitter epoch. Hence, for the model parameters and
initial conditions used in Fig. 1,we realize a viable cosmology
without ghosts or Laplacian instabilities.

B. Dynamics of matter perturbations

We proceed to the study of matter density perturbations
relevant to the observations of galaxy clusterings, weak
lensing, and CMB. Since we are interested in the late-time
evolution of perturbations, we ignore the contributions of
radiation to the background and perturbation equations.
During the matter-dominated epoch in which ΩDE is less

than the order 1, we compute the CDM and baryon
gravitational couplings by expanding Eqs. (4.36) and
(4.40) in terms of ΩDE. Then, it follows that

ðGccÞma ¼ ðGcbÞma ¼ ½1þ FΩDE þOðΩ2
DEÞ�G; ð5:31Þ

ðGbbÞma ¼ ðGbcÞma ¼
�
1þ s

3ðc2SÞma
ΩDE þOðΩ2

DEÞ
�
G;

ð5:32Þ

where

F ¼ s
3ðc2SÞma

−
mrβf4pð1þ sÞ − 1g

2p2ðc2SÞmaΩc
; ð5:33Þ

and ðc2SÞma is given by Eq. (5.26). In the early matter era
(ΩDE ≪ 1), both ðGccÞma and ðGbbÞma are close to G. With
the increase of ΩDE, the gravitational couplings (5.31) and
(5.32) start to deviate from G. Since the factor s=½ð3c2SÞma�
in Eq. (5.32) is positive under the absence of ghosts and
Laplacian instabilities, ðGbbÞma is larger than G.
For ðGccÞma given in Eq. (5.31), there is an extra term

arising from the coupling β besides the positive factor
s=½ð3c2SÞma�. As long as mrβf4pð1þ sÞ − 1g > 0, the
coupling β works to reduce ðGccÞma. If F < 0 in the early
matter era (Ωc ≃ 1), the factor F remains negative due to
the decrease of Ωc. If F > 0 initially, then there is the
moment at which F crosses 0. This moment of transition
can be quantified by the CDM density parameter, as
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ΩT
c ¼ 3mrβ½4pð1þ sÞ − 1�

2p2s
: ð5:34Þ

After Ωc drops below ΩT
c, Gcc becomes smaller than G.

This transition from Gcc > G to Gcc < G occurs for the
model parameters satisfying ΩT

c < 1, i.e., 2p2s >
3mrβ½4pð1þ sÞ − 1�. We note that, if ΩT

c is much smaller
than 1, the expansion ofGcc of Eq. (5.31) up to first order in
ΩDE loses its validity. We are interested in the case where
the weak gravitational interaction for CDM (Gcc < G) is
realized by today. In this case, ΩT

c is larger than today’s
CDM density parameter Ωcðz ¼ 0Þ ≃ 0.27, so that

ΩT
c > 0.27; ð5:35Þ

which can be regarded as a criterion for the realization of
weak gravity.
The parameter αB defined in Eq. (4.28) is related to

ΩDE, as

αB ¼ p2ΩDE: ð5:36Þ
Since we are considering the theory with qV ¼ 1, the CDM
gravitational coupling (4.47) on the de Sitter background
reduces to

ðGccÞdS ¼ ðGcbÞdS ¼ 2u2dS
ðp2 − 1Þu2dS − 2p2

G; ð5:37Þ

where udS ¼ ϕdS=Mpl. Meanwhile, the baryon gravitational
coupling (4.40) on the de Sitter solution yields

ðGbbÞdS ¼ ðGbcÞdS ¼
�
1þ s

3ð1þ sÞðĉSÞ2dS

�
G; ð5:38Þ

where ðĉSÞ2dS is given by Eq. (5.30). As expected, ðGbbÞdS is
always larger than G, but this is not the case for ðGccÞdS.
In the left panel of Fig. 2, we show the evolution of Gcc

and Gbb for z < 50 by using the same model parameters
and initial conditions as those given in the caption of Fig. 1.
At high redshifts, we have ΩDE ≪ 1 and hence both Gcc
and Gbb are close to G from Eqs. (5.31) and (5.32). In this
case the quantity (5.33) is given by F ¼ 0.377−
0.260=Ωc, so F is initially positive. The CDM density
parameter (5.34) at which F crosses 0 is ΩT

c ¼ 0.69.
Numerically, we find that Gcc becomes smaller than G
at the redshift z < 1.06. The numerical value of CDM
density parameter at z ¼ 1.06 is Ωc ¼ 0.71, which is close
to ΩT

c ¼ 0.69 derived by the analytic estimation (5.34). As
we observe in Fig. 2, Gcc starts to be smaller than G at
z ¼ 1.06 and decreases toward an asymptotic negative
constant after crossing Gcc ¼ 0. Since this case corre-
sponds to p2 ¼ 1 in Eq. (5.37), we have ðGccÞdS ¼
−u2dSG ¼ −0.225G, where we used the numerical value
udS ¼ 0.4743 on the de Sitter attractor. This analytic
estimation of ðGccÞdS is in good agreement with the
asymptotic numerical value seen in Fig. 2. As we estimated
in Eqs. (5.32) and (5.38), the baryon gravitational coupling
Gbb is always larger than G. For the model parameters used
in Fig. 2, we have ðGbbÞdS ¼ 1.114G from Eq. (5.38),
which agrees well with the numerical result.
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FIG. 2. Evolution of Gcc, Gbb (left) and δc, δb, δM, Φ (right) versus zþ 1 for p2 ¼ 1, s ¼ 1=5, m ¼ 2, and rβ ¼ 0.05, with the same
initial conditions of density parameters as those used in Fig. 1. We choose today’s value of the total matter density contrast δM, as
σ8ðz ¼ 0Þ ¼ 0.811. The gravitational potential Φ is normalized by its initial value at z ¼ 50.
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For larger mrβ, the density parameter (5.34) at transition
tends to be larger, so that the CDM perturbation enters the
regime Gcc < G earlier. This means that, for increasing
values of m and β, the realization of weak gravity by the
momentum transfer starts to occur from higher redshifts.
The gravitational coupling (5.37) on the de Sitter back-
ground depends on p2 and udS. Meanwhile, the condition
for the no strong-coupling problem at early times imposes
that 0 < p2 ≤ 1, under which the denominator of Eq. (5.37)
is always negative. Then, ðGccÞdS is negative, as seen in the
numerical simulation of Fig. 2. In this case the gravitational
interaction is no longer attractive, by reflecting the fact that
CDM interacts with the self-accelerating vector field
through the momentum transfer. As we mentioned in
Sec. IV, this behavior of ðGccÞdS is mostly attributed to
the mixture of couplings G3ðXÞ and fðZÞ, i.e., the terms
proportional to αB in Eq. (4.36). Today’s CDM gravita-
tional coupling depends on when the transition to the
regime Gcc < G occurs as well as on the value of ðGccÞdS.
The numerical simulation of Fig. 2 corresponds to
Gccðz ¼ 0Þ ¼ 0.815G, with Gbbðz ¼ 0Þ ¼ 1.095G.
In the right panel of Fig. 2, we plot the evolution of δc,

δb, δM, and Φ for the same model parameters and back-
ground initial conditions as those used in the left. Here, δM
is the total density contrast defined by

δM ¼ Ωc

Ωc þ Ωb
δc þ

Ωb

Ωc þΩb
δb: ð5:39Þ

We numerically solve Eqs. (4.35) and (4.39) with
Eqs. (4.36) and (4.40) derived under the quasistatic
approximation for linear perturbations deep inside the
sound horizon. We start to integrate the perturbation
equations around the redshift z ¼ 50 by choosing the
initial conditions δc ¼ δ0c ¼ δi and δb ¼ δ0b ¼ δi. The
initial amplitude δi is determined by reproducing today’s
observed matter density contrast δMðz ¼ 0Þ, where we
adopt the Planck2018 best-fit value δMðz ¼ 0Þ ¼ 0.811 [4].
Since neither Gcc nor Gbb depends on the wave number

k, the CDM and baryon perturbations exhibit scale-inde-
pendent growth. In Fig. 2, we observe that the growth of δc
is suppressed relative to that of δb for the redshift z≲ 1.
This behavior is attributed to the gravitational interaction of
CDM weaker than that of baryons. Since the CDM density
is about five times as large as the baryon density, the total
density contrast δM is mostly affected by CDM perturba-
tions and hence its growth is suppressed in comparison to
the standard case with Gcc ¼ Gbb ¼ G. This should allow
the possibility for alleviating the tension of σ8 between
CDM and low-redshift measurements.
In our theory there is no anisotropic stress, so the

gravitational potential Ψ and the weak lensing potential
ψWL ¼ ðΨ −ΦÞ=2 are equivalent to each other, i.e., Ψ ¼
ψWL ¼ −Φ. In some models like cubic-order uncoupled
scalar Galileons where both Gcc and Gbb are larger than G,

jψWLj grows even after the onset of cosmic acceleration
[48,49]. This typically induces a negative ISW-galaxy
cross-correlation, which is disfavored observationally
[75]. In our coupled GP theory, Gcc can be smaller than
G at low redshifts, so it is possible to avoid the enhance-
ment of jψWLj. In the numerical simulation of Fig. 2, we
observe that Φð¼ −ψWLÞ decreases at low redshifts.
In Fig. 3, we show the evolution of the matter growth rate

fM ¼ _δM=ðHδMÞ for three different values of m, with the
other model parameters and initial conditions same as those
used in Fig. 2. When m ¼ 0, we have qc ¼ 1, ϵc ¼ 0, and
c2S ¼ ĉ2S in Eqs. (4.35) and (4.36), so the equation of CDM
density contrast reduces to the same form as that of baryons
with the gravitational couplingGcc ¼ ð1þ α2B=ν̂SÞG. Since
Gcc ¼ Gbb > G in this case, the growth rate fM is larger
than that in the ΛCDM model, see Fig. 3. In contrast, for
mβ > 0, the CDM gravitational coupling Gcc can be
smaller than G at low redshifts. In the numerical simulation
of Fig. 3, the growth rate fM for m ¼ 2 becomes smaller
than that in the ΛCDM model at the redshift z < 0.62. For
increasing m, the suppression of fM tends to be more
significant, see the case m ¼ 4 in Fig. 3. Thus, our coupled
dark energy model with the momentum transfer offers a
versatile possibility for realizing the weak cosmic growth
rate. When our model is confronted with the observations
of redshift-space distortions, however, we need to caution
that the growth rates of δc and δb are different from each
other. The analysis of how to constrain the model with the
redshift-space distortion data is left for future work.
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FIG. 3. Evolution of fM ¼ _δM=ðHδMÞ versus z for the same
background initial conditions of density parameters as those used
in Fig. 1. The model parameters are s ¼ 1=5, p2 ¼ 1, and rβ ¼
0.05 with three different values ofm. The dotted line corresponds
to the evolution of fM in the ΛCDM model.
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VI. CONCLUSIONS

We studied the cosmology in coupled cubic-order GP
theories given by the action (2.2) for the purpose of
realizing the weak gravitational interaction on scales
relevant to the growth of large-scale structures. The new
interaction between the CDM four velocity uμc and the
vector field Aμ, which is weighed by the scalar product
Z ¼ −uμcAμ, exhibits very different properties in compari-
son to the standard coupled dark energy with the energy
transfer. The perfect fluids of CDM can be described by the
Schutz-Sorkin action (2.3), which contains a vector density
field Jμc related to the four velocity as J

μ
c ¼ nc

ffiffiffiffiffiffi−gp
uμc. After

deriving general covariant equations of motion in the forms
(2.17) and (2.20), we applied them to the flat FLRW
background (2.23). As we observe in Eqs. (2.25) and
(2.31), the Z dependence in the coupling f does not give
rise to explicit interacting terms on the right-hand sides of
background continuity equations, by reflecting the fact that
the interaction corresponds to the momentum transfer.
In Sec. III, we derived the second-order actions of tensor,

vector, and scalar perturbations by choosing the flat gauge
given by the line element (3.1). Tensor perturbations
propagate in the same way as in the standard general
relativity, so the theory is consistent with the observational
bound of speed of gravity constrained by the GW170817
event. The new interaction does not affect small-scale
stability conditions of vector perturbations either. For scalar
perturbations, we obtained the full linear perturbation
equations of motion and eliminated nondynamical variables
from the second-order action. The resulting action for
dynamical perturbations can be expressed in the form
(3.55), which was exploited for the derivation of small-
scale stability conditions. Under the conditions (3.63),
(3.64), and (3.74) there are neither ghosts nor Laplacian
instabilities, with the vanishing effective CDM sound speed.
In Sec. IV, we studied the effective gravitational cou-

plings for CDM and baryon density perturbations by
employing the quasistatic approximation for the modes
deep inside the sound horizon. In our theory, there is no
anisotropic stress between the two gravitational potentials
Ψ and Φ, but the Z dependence in f induces the time
derivative _δc to Φ and the longitudinal scalar ψ of Aμ, see
Eqs. (4.33) and (4.34). DifferentiatingΦ and ψ with respect
to t gives rise to the second derivative δ̈c in Eq. (4.10) of the
CDM density contrast. After closing the second-order
differential equation of δc, the gravitational coupling for
CDM is given by the form (4.36). In contrast to the baryon
gravitational coupling (4.40), there are extra terms propor-
tional to αB in Gcc, besides the overall factor ĉ2S=ðqSc2SÞ.
The terms proportional to αB, which correspond to the
mixture of couplings G3ðXÞ and fðZÞ, lead to a value of
Gcc very different from Gbb on the de Sitter background,
see Eq. (4.42).

In Sec. V, we proposed a concrete coupled dark energy
model given by the functions (5.1). For the powers (5.4),
the background cosmology satisfying the relation ϕpH ¼
constant (p > 0) can be realized, with the new coupling
constant β being absorbed into the definition of ΩDE. In
other words, the interaction associated with the momentum
transfer does not modify the cosmological background of
uncoupled GP theories. We also showed that the ghosts are
absent under the conditions (5.20) and (5.21). The scalar
propagation speed squared in each cosmological epoch is
given by Eqs. (5.25), (5.26), and (5.27), which are required
to be all positive. The case shown in Fig. 1 is an example of
the viable cosmology satisfying all the stability conditions.
During the matter dominance, the CDM gravitational

coupling Gcc is expanded in the form (5.31), which can be
used to estimate the moment after which Gcc gets smaller
than G. Provided that the condition (5.35) is satisfied, the
transition to the regime Gcc < G occurs by today. On the
future de Sitter attractor, Gcc is given by Eq. (5.37), which
is always negative in the allowed parameter space con-
strained by the no-ghost and no-strong-coupling conditions
(0 < p2 ≤ 1). In the numerical simulation of Fig. 2, which
corresponds to the power p2 ¼ 1, Gcc enters the region
Gcc < G around z < 1 and finally approaches the value
ðGccÞdS ¼ −u2dSG ¼ −0.225G. In contrast, Gbb is always
larger than G. The weak gravitational interaction for CDM
leads to the suppressed growth of total matter density
contrast δM, see Fig. 2. The lensing gravitational potential
ψWLð¼ −ΦÞ does not exhibit the enhancement at low
redshifts, whose property should be consistent with the
observations of ISW-galaxy cross-correlations. For increas-
ing values ofm and β, the growth rates of δc and δM tend to
be smaller in comparison to the ΛCDM model, see Fig. 3.
We thus showed that the coupled GP theories with the

momentum transfer offers a novel possibility for achieving
the weak cosmic growth for CDM, in spite of the enhance-
ment of baryon gravitational coupling. It will be of interest
to investigate further whether the interacting model pro-
posed in this paper reduces the observational tensions of
σ8 and H0 present in the ΛCDM model.
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