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We study a coupled dark energy scenario in which a massive vector field A, with broken U(1) gauge
symmetry interacts with the four-velocity u of cold dark matter (CDM) through the scalar product
Z = —uA,. This new coupling corresponds to the momentum transfer, so that the background vector and
CDM continuity equations do not have explicit interacting terms analogous to the energy exchange. Hence
the observational preference of uncoupled generalized Proca theories over the ACDM model can be still
maintained at the background level. Meanwhile, the same coupling strongly affects the evolution of
cosmological perturbations. While the effective sound speed of CDM vanishes, the propagation speed and
no-ghost condition of a longitudinal scalar of A, and the CDM no-ghost condition are subject to nontrivial
modifications by the Z dependence in the Lagrangian. We propose a concrete dark energy model and show
that the gravitational interaction on scales relevant to the linear growth of large-scale structures can be
smaller than the Newton constant at low redshifts. This leads to the suppression of growth rates of both
CDM and total matter density perturbations, so our model allows an interesting possibility for reducing the

tension of matter density contrast og between high- and low-redshift measurements.

DOI: 10.1103/PhysRevD.102.063531

I. INTRODUCTION

The energy density of today’s Universe is dominated by
dark energy and dark matter, besides a small amount of
baryons (~5%). The standard paradigm of this dark sector
is known as the ACDM model [1,2], in which the origins of
two dark components are a cosmological constant (A) and
the cold dark matter (CDM). The cosmological constant is
the simplest possibility for realizing late-time cosmic
acceleration, but there has been a growing tension regard-
ing today’s Hubble expansion rate H, between cosmic
microwave background (CMB) temperature anisotropies
and low-redshift measurements [3—9]. Moreover, the obser-
vational data associated with galaxy clusterings and weak
lensing typically favor the amplitude of matter density
contrast og smaller than that constrained by CMB [10-13].

The cosmological constant predicts a constant dark
energy equation of state wpg = —1, but dynamical models
of late-time cosmic acceleration generally lead to the time
variation of wpg [14]. For example, a canonical scalar field
dubbed quintessence [15—-19] gives rise to the time-varying
wpg in the range wpg > —1. However, there has been no
significant observational evidence that quintessence is
favored over the ACDM model [20,21]. Meanwhile, the
phantom equation of state (wpg < —1) allows a possibility
for exhibiting better compatibility with the data in com-
parison to the ACDM model. In the presence of scalar or
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vector fields with derivative self-interactions or nonmini-
mal couplings to gravity, it is possible to realize wpg < —1
without the appearance of ghosts [22-25].

The gravitational-wave (GW) event GW170817 [26],
together with its electromagnetic counterparts [27], showed
that the speed of gravity cy is very close to that of light ¢ in
the redshift range z < 0.009. If we strictly demand that
cr = ¢ without any tunings among functions, a large set of
nonminimal couplings to gravity are forbidden in scalar-
tensor and vector-tensor theories [28-34]. In generalized
Proca (GP) theories, which correspond to vector-tensor
theories with second-order equations of motion [35-42],
the resulting action should contain the minimally coupled
Ricci scalar R and the Galileon-like Lagrangians up to
cubic order, besides intrinsic vector modes [43]. Dark
energy models in GP theories predict wpg less than —1
in the matter era, which is followed by a self-accelerating
de Sitter attractor with wpg = —1 [25,44,45]. At the
background level, such models can show better compati-
bility with the current observational data in comparison to
the ACDM model by reducing the tension of H, [45—47].

As for the evolution of cosmological perturbations
relevant to galaxy clusterings, the cubic-order GP theories
predict the effective gravitational coupling G with matter
larger than the Newton constant G [43,44,46]. In this case,
the growth of matter perturbations is enhanced by the cubic
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derivative coupling, so the og tension present in the ACDM
model tends to get worse in general. This also limits the
compatibility of GP theories against cross-correlation data
between the integrated Sachs-Wolfe (ISW) signal and the
galaxy distribution. Indeed, the Markov-chain-Monte-
Carlo analysis of Ref. [46] showed that inclusion of the
data of ISW-galaxy cross-correlations and redshift-space
distortions does not improve constraints derived from the
background expansion history. This situation is even
severer in cubic-order scalar-tensor (Horndeski) theories
[48,49], for which the absence of vector degrees of freedom
does not render G close to G.

If the vector field A, is coupled to CDM, there may be a
possibility that the gravitational coupling with CDM is
smaller than G. In Ref. [50], the coupled dark energy
scenario with the interacting Lagrangian Ly, = Qf(X)p.
was proposed, where Q is a coupling constant, f is a
function of X = —A¥A, /2, and p,. is the CDM density (see
also Ref. [51]). This is analogous to the Lagrangian £;, =
Qd)pc [52,53] studied in the context of scalar-tensor
theories, where ¢ is the time derivative of scalar field ¢.
These interactions correspond to the energy transfer,
which typically works to enhance the gravitational cou-
pling with CDM. In coupled quintessence, for example,
the gravitational coupling with CDM is given by G =
(1+20%)G [54].

There is yet other kind of interactions associated with the
momentum transfer. In scalar-tensor theories, the field-
derivative coupling with the CDM four-velocity u}, which
is quantified by the scalar combination Z = w0,
[55-58], can give rise to the CDM gravitational coupling
smaller than G [59-64] on scales relevant to the linear
growth of large-scale structures. In GP theories, the
interaction analogous to the momentum transfer in sca-
lar-tensor theories is quantified by the scalar combination
Z = —u’C‘AM. The existence of intrinsic vector modes in GP
theories generally affects the gravitational coupling with
CDM [44,46], and it has not been clarified yet whether the
weak cosmic growth can be realized in coupled GP theories
with the momentum transfer.

To shed some light on this issue, in this paper, we study
the cosmology of cubic-order GP theories with the inter-
acting Lagrangian of the form f(X,Z), where f is a
function of X and Z. We consider the case in which the
vector field is only coupled to CDM, but uncoupled to
baryons or radiation. Then, there are no conflicts with local
gravity experiments [65]. The CDM, baryons, and radiation
are assumed to be perfect fluids, which are described by a
Schutz-Sorkin action [66—68]. At the background level, the
interacting terms do not explicitly appear on the right-hand
sides of vector-field and CDM continuity equations, so it is
possible to maintain the good cosmological background
known for uncoupled GP theories [25,45-47]. We also
derive the general expression of effective gravitational

couplings for CDM and baryon perturbations on scales
deep inside the sound horizon. Finally, we propose a
concrete coupled dark energy model with the explicit Z
dependence in the Lagrangian and show that the weak
cosmic growth of both CDM and total matter density
perturbations can be realized by the momentum exchange
between the vector field and CDM.

Throughout the paper, we adopt the units for which the
speed of light ¢, the reduced Planck constant #, and the
Boltzmann constant k5 are set to unity. The reduced Planck
mass M, is related to the Newton gravitational constant G,

as Mﬁl = 1/(87G). The Greek and Latin indices represent

components in four-dimensional space-time and in a three-
dimensional space, respectively.

II. COUPLED GENERALIZED PROCA THEORIES
WITH MOMENTUM TRANSFER

We consider cubic-order GP theories with a vector field
A,. The vector field breaks a U(1) gauge symmetry due to
the existence of Lagrangians G, (X) and G5(X)V,A*, where
G, and Gj are functions of X = —A*A,/2 and V,, is the
covariant derivative operator. In this case, the vector field can
play arole of dark energy with late-time cosmic acceleration
[25,44,45]. We assume that CDM is described by a perfect
fluid with the four-velocity u/. Given the unknown proper-
ties of dark sectors, we would like to consider possible
interactions between them which are present at the level of
Lagrangian. In coupled GP theories, there exists a simple
interaction quantified by a scalar combination,

Z = —uA,. (2.1)
As we will explicitly show in this paper, this new coupling
allows a possibility for realizing the weak cosmic growth.
Whether or not this type of coupling can arise from some
fundamental particle theories is an open question, which
deserves for a future study.

The action of our coupled GP theories is given by

R-1p f(X.Z)+G5(X)V,A¥

My
2 g

S= / d4x\/—g{

+Su, (2.2)
where g is the determinant of metric tensor g,,, R is the
Ricci scalar, and F,, =V,A, —V,A,. The function f,
which is the generalization of G,(X), depends on both
X and Z. For the matter action Sj;, we consider the perfect
fluids of CDM, baryons, and radiation, which are labeled

by I =c¢, b, r, respectively. The perfect fluids can be
described by the Schutz-Sorkin action’ [67,68],

'An equivalent action with respect to a four vector instead of
the vector density J% has been introduced in Ref. [66].
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Sy =-— Z /d4x[\/_—9,01<”1) + 770,21

I=c,b,r

+ An0,Bp + Apd,Bp)l, (2.3)
where the operator 0, represents the partial derivative with
respect to the coordinate x*. The fluid density p; depends
on its number density n;, which is related to the vector field

JY, as
ny = [0
g

The scalar quantity #; is a Lagrange multiplier, whose
variation leads to a constraint of the particle number
conservation. The quantities A4;,, A;, and By, B, are
the Lagrange multipliers and Lagrange coordinates of
fluids, respectively, both of which can be regarded as
the two components of spatial vector fields A;; and By,
(j = 1,2, 3). Since these fields are associated with intrinsic
vector modes, the divergence-free conditions give the two
independent components A;;, A, and By, B, for each of
them. Since there exists a dynamical vector field in GP
theories, we need to take the Lagrangian —J4 (A;,0,B;, +
Ap0,B,) into account for the analysis of vector pertur-
bations [25,44]. In Sec. III B, we will study the dynamics of
vector perturbations by varying the action (2.3) with respect
to Ay, Ap, By, Bp.
The fluid four-velocity u,, is defined by

(2.4)

= L (2.5)

u
Iu n[\/——g,

which obeys uju;, = —1 from Eq. (2.4). The scalar
combination Z is expressed as

gﬂy‘,c;tAu

nc\/ -9 '

Neither radiation nor baryons are assumed to be coupled to
the vector field.

(2.6)

A. Covariant equations of motion
We derive the covariant equations of motion by varying
(2.2) with respect to several variables in the action.
Variation with respect to #; leads to

8#‘]/; =0, (2.7)

which holds for each I = ¢, b, r. On using the property
Ji = n;/=guj and the relation 9, (\/=guy) = \/=gV ,uj,
Eq. (2.7) translates to

nV,uf +ufo,n; = 0. (2.8)

Since p; depends only on n;, there is the relation,

(pl + Pl)a;tnl = nlaﬂplv (29)
where P; is the fluid pressure defined by
Py =npr,, —pr. (2.10)

with the notation p; , = dp;/On;. On using Egs. (2.8) and
(2.9), we obtain

We vary the action (2.2) with respect to J% by keeping in
mind that the scalar combination Z of Eq. (2.6) depends
on J¢. On using the property dn;/dJy = J;,/(n;g), it
follows that

aﬂf() =UcuPeon, _% (A[l - Zucu) - Aclaﬂgcl - AcZayBL‘Z'

c

(2.12)

For baryons and radiation, there is no dependence of J, and
J% in the function f, so that
8,/1 = UnPrn, — -/4118”311 - -/4123”312’ (2-13)
where I = b, r.
The covariant Einstein equations of motion follow by

varying the action (2.2) with respect to ¢g**. In doing so, we
use the following properties,

ny

5"1 = ? (g/w - u]yulv)(sglw’ (214)
1 v
OX = S AABG". (2.15)
1 v
67 = | 3 Zucytes = ey, ) 59", (2.16)

together with &6,/—g = —(1/2)\/=g9,,0¢". Then, the
resulting covariant equations are given by

1 A
MG, = > T + 15, (2.17)
I=c.b,r
where G, is the Einstein tensor, and
I
T/(u/) = (p; + Pp)ugup, + Prg,,, (2.18)
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1
y/;Fup - Z.g/wF/m'F/m + fgpw + f,XA,uAD
+ f,ZZMCﬂuCD + G3.X (AﬂAvvap

+ guA'A VAP — A AN, AP — A AN A).

(2.19)

T = F

Varying the action (2.2) with respect to A,, the equation for
the vector field yields

V;;F/“’ — fxAY — f zul + G3.X<AﬂvyA/4 - AyvﬂA#) =0.
(2.20)

Taking the covariant derivative of Eq. (2.17) leads to

S v + T =o. (2.21)
I=c.b,r
On using the property (2.11), it follows that
VAT =0 (2.22)
Vit =Y, :

which holds for I =¢, b, r. This corresponds to the
continuity equation for each perfect fluid. If CDM is the
only fluid component, we have u*V* T,%) =—utV# T,(ﬁ) =0
from Egs. (2.21) and (2.22). Since we are considering
coupled GP theories with the momentum transfer alone,
there are no explicit interacting terms associated with the
energy exchange. This property is different from interacting
GP theories with the energy transfer studied in Ref. [50].
We note that the momentum exchange between the vector
field and CDM occurs through Eq. (2.21).

B. Background equations of motion

We derive the background equations on the flat

Friedmann-Lemaitre-Robertson-Walker (FLRW) space-
time given by the line element,
dS2 = —dtz + az(t)5,»jdxidxj, (223)

where a is the scale factor that depends on the cosmic time
t. The vector-field profile and the fluid four-velocities
consistent with this background are given, respectively, by

A" = (¢(1),0,0,0), uf = (1,0,0,0), (2.24)
where ¢ is a function of z. We introduce the Hubble-
Lemaitre expansion rate H = a/a, where a dot denotes a
derivative with respect to ¢. Since V,u; = 3H, the fluid
continuity Eq. (2.22), which is equivalent to Eq. (2.11),
reduces to

pr+3H(p;+ Pp) =0, (2.25)

with I = ¢, b, r.

From the (00) and (ii)) components of Einstein equa-
tions (2.17), we obtain

3BMAH? = Y pr—f+ (Fxd + f 2 + 3G xHp) .

I=c.,b,r
(2.26)
MY(2H +3H?) == > Py = [+ Gsxd?d.  (2.27)
I=c,b,r
The v = 0 component of Eq. (2.20) translates to
f.)(¢ + fﬁz + 3G3.XH¢2 - O (228)

We define the dark energy density ppg and pressure Ppg, as

poe =—f+ (fx+fz+3GxHP*)p = —f,  (2.29)

Pog = f = Gy x¢*. (2.30)
where we used Eq. (2.28) in the second equality of
Eq. (2.29). Taking the time derivative of Eq. (2.29) and
exploiting Eq. (2.28), we obtain

ppe + 3H(ppg + Ppe) = 0, (2.31)
which corresponds to the continuity equation in the dark
energy sector.

Taking the time derivative of Eq. (2.28) and combining it
with Eq. (2.27), it follows that

4
; G
¢= # Csx (Bpc +3pp +4p,). (2.32)
qs
. -3 6G2
"= —%61”# (3p.+3ps+4p,).  (233)
plds
where
a5 = 30° QHP* MG xx + §*G3 x + 4HMA G x)
+ 2¢2M§] ((bzf,XX + Z(Iﬁf,XZ + f.ZZ + f’X). (234)

As we will show later in Sec. III, the quantity gg must be
positive to avoid the ghost in the scalar sector. In this case,
the right-hand sides of Eqs. (2.32) and (2.33) do not cross
the singular point gg = 0.

We also introduce the density parameters,

PI PDE

Q=—"tl_ Qup=-rPE_ (235
ETVEN e S VEN R (2.35)
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as well as the equations of state

P P Gs.x¢*q
wp=—,  wpp=—(=-] L Gxb 0 (2.36)
Pi PDE f
Then, Eq. (2.26) is expressed as
> Q4+ Qpp=1. (2.37)
I=c.,b,r
The effective equation of state is given by
2H
Wet = Z W]Q] + WDEQDE =-1- 3?, (238)

I=c.,b,r

where we used Eq. (2.27) in the second equality. The Z
dependence in f affects the evolution of ¢ through the term
f.zin Eq. (2.28). The dark energy equation of state wpg is
also modified by the vector-CDM interaction.

III. COSMOLOGICAL PERTURBATIONS AND
THEORETICALLY CONSISTENT CONDITIONS

We proceed to the study of cosmological perturbations
on the flat FLRW background (2.23). The linear perturba-
tions can be decomposed into tensor, vector, and scalar
modes, which evolve independently from each other. The
perturbed line element in the flat gauge is given by

ds? = —(1 + 2a)di® + 2(dyy + V;)drdx’

+ a*(2)(8;j + hyj)dx'dx/, (3.1)
where a and y are scalar perturbations with the notation
Oy = Oy/Ox', V; is the vector perturbation obeying the
transverse condition 9'V; = 0, and h;; is the tensor per-
turbation satisfying the transverse and traceless conditions
d'h;; =0 and hi = 0.

The vector field J% in the Schutz-Sorkin action (2.3)
contains both scalar and vector modes, such that

Ji = b

1 — az ([)
where 6J; and §j; are scalar perturbations, and W/; is the
vector perturbation satisfying &/W;; = 0. Here, N is the
background particle number of each matter species, which

is constant from Eq. (2.7). We also decompose the vector
field A#, as

I
a(t)

where 6¢) and yy are scalar perturbations, and E; is the
vector perturbation satisfying &/E 7 = 0. Substituting

A= (1) +5p, A=

goi = Ox + Vi, gij = a*(1)6;;, and Eq. (3.3) into A; =
goiA° + g;jAJ, the spatial component of A, yields

A =0w+Y, (3.4)

where
w=xv+oN)r. (3.5)
Y, =E +¢(t)V,. (3.6)

The perturbations y and Y; correspond to the dynamical
scalar and vector degrees of freedom, respectively.
The spatial component of u;, can be expressed in the
form
upp = —0v; + vy, (3.7)
where v; is the scalar velocity potential, and v;; is the
intrinsic vector mode satisfying d'v;; = 0.

Substituting Egs. (3.4) and (3.7) into the spatial compo-
nent of Eq. (2.12), it follows that

aifc + Aclachl + AL‘ZaiBCZ
= _pc,ncaivc - % (all// + ¢aivc) + pc,n( Uei

_%(Yi - $v.i),

c

(3.8)

up to linear order in perturbations. The coefficients in front
of the perturbed quantities in Eq. (3.8) (e.g., p »,) are time-
dependent background quantities. The rotational-free scalar
part 0;Z,. needs to be identical to the spatial derivative of
scalar perturbations on the right-hand side of Eq. (3.8),
while the divergence-free vector part A, 0; 5., + A0;B.
is equivalent to the corresponding intrinsic vector pertur-
bations on the same right-hand side. This gives the
following relations,

aifc = _pc,ncaivc - ];l (azl// + ¢aivc)’ (39)
Aclachl +Ac2ai802 :pc.nl.vci _‘%(Yi _¢vci)' (310)

c

The integrated solution to Eq. (3.9)is £, = ¢(t) — p,, v.—
(f z/n.)(w + ¢v.). The time-dependent function c(7) is
determined by the u = 0 component of Eq. (2.12), as
c(t) == ["pen ()di. Then, the scalar quantity ¢, is
given by

L2 guy. )

c

t
bom= [ e 0= .
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which contains the velocity potential v, and the dynamical
perturbation yw. We recall that the energy-momentum
tensors (2.18) and (2.19) were obtained after elimina-
ting £, on account of Eq. (2.12). The terms —p., v,
and —(fz/n.)(w+ ¢v.) in Eq. (3.11) contribute to
Egs. (2.18) and (2.19), respectively, as the perturbed
energy-momentum tensors.

Since the linear perturbations with different wave num-
bers do not mix on the FLRW background, we can consider
a configuration with which all the perturbations propagate
in one direction, x3. Then, the vector perturbations X; =V,
Wi, E;, v.; depend on t and x3. The components of X;
consistent with the divergence-free conditions 9'X; = 0 are
chosen to be

X; = (Xi(t,x3), X5(1,x3),0). (3.12)

For the Lagrange multiplers A;, A, By, B, we can
choose them in the following forms [69]

Ap = 8A5 (1. x3), Ap =08Ap(t.x3),  (3.13)

By = x; + 6B (t,x3), Bp = x; + 6B (1, x3),

(3.14)

where 6A;,, 6.A;,, 6B, 6B, are perturbed quantities. The
vector perturbations 8A;; = (8A; (1, x3),8A5,(t,x3),0)
and 8B = (6B1(t,x3),88p(t,x3),0) satisfy the trans-
verse conditions 9’84, = 0 and 0'68;; = 0. The vector
field B;;, which is orthogonal to the x; direction, can be
chosen to have the background components Bj; =
(byx1,byx,,0) with arbitrary constants b, and b,. In
Eq. (3.14) both b; and b, are normalized to be 1, in which
case the left-hand side of Eq. (3.10) reduces to the linear
perturbation 8§.A4,; (with i = 1, 2). This is consistent with
the fact that the right-hand side of Eq. (3.10) consists of the
perturbations at linear order. Then, it follows that

[z

n_(Yi_¢vci)' (315)

5~Aci =PenVei —

On using Eq. (2.13), the relations for baryons and
radiation analogous to Egs. (3.11) and (3.15) are given,
respectively, by

t
= —/ P, ()T = pp vy, (3.16)

0A; = Pr.n,VIis (3.17)

where I = b, r.

A. Tensor perturbations

The tensor perturbations /;;, which are transverse and
traceless, can be expressed in terms of the sum of two
polarization modes, as h;; = h+e;; + hye;;. The unit vec-
tors e;; and e7; satisfy the normalizations e;; (k)ej; (k)" =1,
efi(k)efi(=k) =1, and e;(k)ejs(~k)* =0 in Fourier
space with the comoving wave number k. Expanding
(2.2) up to quadratic order in /&, (where A = +, X), integrat-
ing the action by parts, and using the background
Eq. (2.27), we end up with the second-order action of tensor
perturbations,

2

M . 1
sP=3 / dtd3x?pla3 [hﬁ—;(ahm]. (3.18)

A=+,%

This is equivalent to the corresponding action of tensor
perturbations in standard general relativity, so the speed of
gravitational waves cy is equivalent to that of light. Hence
our coupled GP theories are consistent with the bound of ¢y
constrained by the GW 170817 event [26].

B. Vector perturbations

The intrinsic vector modes appear in each term of (2.2),
so we sum up all those contributions to the action. For this
purpose, we use the fact that £; (I = c, b, r) are scalar
quantities satisfying Eqs. (3.11) and (3.16), so the term
Jy 8// ; in the matter action (2.3) does not contribute to the
quadratic-order action of vector perturbations. Vary the
resulting second-order action with respect to W;; and 6.4;;,
it follows that

Wli - <%_Vi>-/\/‘iv (319)
pl,n,
0A; = Pl,n,(Vi - 0252311')- (3-20)

The perturbations 6.4.; and §.4;; (I = b, r) are related to the
spatial components of four-velocities according to
Egs. (3.15) and (3.17), respectively. Then, we have

[z

V- a?5B,.; =
l . “ pC+PC

Yi—dva),  (3:21)

VUei —

V[ - az(SBH = Uy, (fOI‘ 1= b, r), (322)

where we used Eq. (2.10). In the following, we exploit
Egs. (3.19) and (3.20) to eliminate the variables W;; and
6A,;; from the second-order action. On using the back-

ground Egs. (2.26) and (2.28), the second-order action of
vector perturbations yields
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2
o1
S = / drdx ) g{Y%—?(aYi)Z
i=1

1 . M2
—E(G3,x¢¢—f,z)yz 2f ,ViY; +2

+ (V= 025Bci)2(ﬂc +P.+of 7) + 2a2f,zYi5Bci

+Z i — a*5By,) (P1+P1)]-

2 (aV)?

(3.23)

In Fourier space with the comoving wave number
k = |k|, we vary the action (3.23) with respect to V;,
6B,;, and 6B;; (I = b, r). This leads to

M2 K
261 (pc+P +¢fZ)(

—fz¥i+ Z(P1+P1)(

1=b,r

- 6125.5’“')

V,—ad®B;) =0, (3.24)

[(pe + P+ df 2)(Vi — a*6B.;) — f 1Y }]a® = Coiv (3.25)

(pr + P)(V,; — a?6B;)a® = Cy;. (for I =b,r),

(3.26)

where C;; (with I = ¢, b, r) are constants in time. Notice
that all the combinations in the form V; — azéB,,» (with
I = ¢, b, r) can be rewritten in terms of the perfect fluid and
Proca physical quantities by means of Egs. (3.21) and
(3.22). Substituting Egs. (3.25) and (3.26) into Eq. (3.24),
we obtain

Vi = M2 k2 Z C[l, (327)

I=c,b,r

which decays as |V;| < a~!. Plugging Egs. (3.21) and
(3.22) into Egs. (3.25) and (3.26), it follows that

_ (pc + Pc)cci + [2(pc + Pc) + ¢f,Z]f.Za3Yi

Ve = P
(pc + Pc + ¢f,Z)2a3
(3.28)
oy = S (for I =b,r). (3.29)
1i (pl —|—P1)a3 ’ ) . .

While v,,; stays constant, the CDM velocity v,; is instead
affected by the dynamical field Y.

Integrating out the Lagrange multiplier V; by means of
Eq. (3.24), the action gets its reduced form, with the field Y,
and the contributions from 6Bci, and 5B,i (I =0b, r). On
taking the small-scale limit k — oo, the dominant contri-
butions to the second-order action of vector perturbations
are given by

2 2
2 a . k

+ (pe + Pe+ bf 2)a*sB2; + Z (pr + Pl)a453%i}7

I=b.r
(3.30)

where

qy =1, cy = (3.31)
Hence there are neither ghosts nor Laplacian instabilities
for the dynamical perturbations Y;, with the propagating
speed equivalent to that of light. As we are going to see in
Sec. III C, the same no-ghost condition for the field 65,,,
will reappear in the scalar perturbation sector, so that we
will postpone its study for later. Since the instability of Y is
absent, the violent growth of v,.; does not occur through
Eq. (3.28). This is the same conclusion as that found for
uncoupled GP theories [44]. Hence the existence of
dynamical vector perturbations does not affect the
anisotropy in structure formation. The constant g different
from 1 arises for more general Lagrangians containing
intrinsic vector modes, say, Lr = —qy F,, F** /4.

The above discussion shows that the new interaction
associated with the momentum transfer affects the small-
scale stability conditions of neither tensor nor for the Proca
vector perturbations.

C. Scalar perturbations

Let us derive conditions for the absence of ghosts and
Laplacian instabilities for scalar perturbations. From
Eq. (2.4), the perturbation of each fluid number density
n;, which is expanded up to second order, is given by

£ \2
opr _ (N1Ox + 95jr) ’ (332)

on; =
! pl.n, 2./\/1615

where Jp; is the density perturbation related to 6J;, as

pl,n
5o, (3.33)

op =

The fluid sound speed squares are defined by

nPrnn
C% — 1" ,

(3.34)
pl.n,

which are ¢2 =40, ¢; =40, and ¢? = 1/3 for CDM,
baryons, and radiation, respectively.

On using the property n;\/=gu; =J;; = J0go; +
J{gi ;= N0y + 9;6j; for linear perturbations, it follows
that
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This relation is used to eliminate the nondynamical

variable ;.

action (2.2) up to second order in scalar perturbations and
integrating it by parts, the quadratic-order action yields

In total, there are ten perturbed quantities associated with S(Sz) = / drd®x(Lgp + Lz + Ly), (3.36)
the scalar mode: a, y for the metric components, d¢,
w(=yv + ¢(t)y) for the vector field, and v;, dp; (with
I =c, b, r) for each matter component. Expanding the = where
|
5 Oa)? 5 0*
Lep=a’ Kw,a—l- W2¢¢> —f—w3 ( a) + wya? — {(3Hw1 —2wy) 5 ¢ (25 + 0M) + w(,a;l/}a
ws (05¢)° (54’) (We +wa)y w3 .| P(6p)  ws (O)*  wy (Oy)?
_22+ 2 Ty Ve R R s B (3.37)
4 ¢ 45 2 a“¢ 4¢= a 2 a
9?2 . ov,.)? 0? .
=a [/lﬁi {(/)C + PC)—;(_ 5/)c - 3H(l + C%)5pc}vc - ¢fZ ( 2612) +fZl//—;( +/) ];_ZP Wapc
fxz¢¢+fzz¢+3fz | P ) 5¢ fz
—(2 ow)?|, 3.38
oo+ P. +2(¢f,xz+¢f.zz ¢fz)| @ ¢ +2¢a2<l//) (3.38)
2 2
pe+ P (9v))? 71
Ly = ZH@ P 31+ Doy by = PO a]. (339
with
¢ .
wy = —¢’G3 x — 2HM}, (3.40) W= = —$Gs x. (3.46)
Wy = Wy + ZHMgl = _¢3G3.X? (341)
For the variables wy, ..., w;, the same notations as those
wy = =2¢°qy, (3.42)  given in Ref. [25] are used. The contribution of intrinsic
1 3 vector modes to the scalar perturbation equations appears
Wy :§¢4f,xx_§H¢3<G3.X_¢2G3,xx) —3M§IH2, (3.43) only through the quantity wy = —2¢?qy. In our theory, gy
is equivalent to 1.
There are six nondynamical variables «, y, ¢, v, vy, v,,
Ws = Wy — EH (w1 +wa), (3.44) while the dynamical perturbations correspond to the four
fields v, op., Opy, Op,. Varying the action (3.36) with
We = 1W2 = G5 x (3.45)  respect to the six nondynamical fields in Fourier space, it
¢ - follows that
|
o5p  k? 3 ) o
Spr = 2waa+ BHwW, =2wy) —+ = (V+wiy —weyw) = ¢’ fxz + & f 22 —df 2) | a+— ), (3.47)
¢ a ¢
I=c,b,r
o¢p
Z (P1+P1)01+W10+W2$: =f z(dve +w), (3.48)
I=c.b,r
q’) k2 1 /w o
(3Hw, —2wy)a — 2ws —- ¢ pe y‘f' WX =5 Ez‘f' we |W| = QO fxz+ & fzz—df2)| @ +$ ; (3.49)
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i K2
dp; + 3H(1 +C1)5PI+ s+ P +v) =0, forl=cb,r,

where

y:%(u‘/+5¢+2¢a).

Variations of the action (3.36) with respect to the dynamical perturbations lead to

. y S
yt (H - g)y T 2w+ wiy) + (ws + waﬁ)f = 2f v+ ).
. op. 1 0
_ 2, 2 ¢ o __ - 3
Ve SHCCDC CC[)C+PC a (,DC—FP )8 [ fZ(¢/U +l//)}
—3Hcv, —c? o1 _ a=0, forl=bh,r.

"pr+ P,

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

We eliminate the nondynamical perturbations from the action (3.36) by solving Egs. (3.47)—(3.50) for a, y, ¢, v, vy, v,
After the integration by parts, the resulting second-order action in Fourier space can be expressed in the form,

SY = / dd3xa’ (X KX - k— X'GX - X'MX - 55(’35() ,

(3.55)

where K, G, M and B are 4 x 4 matrices. The leading-order contributions to the matrix component M are at most of the

order k°. The vector field X" is composed of the dynamical perturbations, as

X' = (y. 8p./ k. Spy k. 3p, /).

In the small-scale limit (k — o), the nonvanishing components of K and G are given, respectively, by

H>M}
Ky = 2— [Bwi +4MZwy 4 2M 24 f xz + 6 f 22 — OF 2));
P (W) —2w,)?
a*(p.+P.+ a’ a?
K22: (pc c d;f.Z)’ K33 — , K44 =,
2(pe +P.) 2(py + Py) 2(p, + P,)
and
af H>M?,
Gy =G+p+Hu- P)-——r
n=96+p+Hu 20m, —2w 2¢21;r(p1+ 1) 2wy = 2w0)%0
a*c? a*c? a*c?
Gy=——°_, Gypy=— bt Guyy=—1
27 2p. +P,) P 2(py + Py) 7 2(p, +P))
where
g 4H> Myw3 ¢ HM3w,
=— ——= Wy, U= .
P*ws(wy —2wp)?  2¢° $*(wy —2w)

The antisymmetric matrix B has the leading-order off-  diagonal components, which are given by
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aHM?\ f 7

B, =By = — .
2 2 (Wl - 2W2)<pc + Pc)

(3.62)

The diagonal components of B are lower than the order £°.

In the following, we will consider perfect fluids obeying
the weak energy conditions p; + P; > 0 (with I = ¢, b, r).
In this case, the no-ghost conditions for baryons and
radiation (K33 > 0 and K44 > 0) are automatically satis-
fied. The absence of ghosts for the dynamical perturbations
y and dp, requires that

qs = 3w +AMEwy +2M3 207 f xz + ¢ f 22— Df 2) > O,
(3.63)

¢f 2
Pe + Pc

g. =1+ >0, (3.64)

respectively. By using Eq. (2.28), one can easily confirm
that g given by Eq. (3.63) is identical to the quantity (2.34)
appearing in the denominators of background Egs. (2.32)
and (2.33). The Z dependence in the coupling f affects the
no-ghost conditions of both the Proca field and CDM.

To avoid a strong-coupling problem for the Proca field,
we need to impose at any time, for high k’s, that the
diagonal term K;; never vanishes or approaches zero.
Similarly, the element K,,p? should satisfy the same no
strong-coupling condition.” Other matter fields trivially
satisfy the no strong-coupling condition.

The propagation of baryons and radiation is not modified
by the matrix B, so their sound speeds are (:127 = G33/Kx3
and ¢? = G4/ K44, respectively. On the other hand, the off-
diagonal components (3.62) affect the propagation of
dynamical perturbations X, =y and X, =dp./k. We
substitute the solutions X; = X/~ (with j =1, 2
and w is a frequency) to their equations of motion following
from the action (3.55). To derive the dispersion relations in
the small-scale limit, we pick up terms of the orders »?, wk,
and k2. Then, we obtain

K - kB
2X1—c5 X, - ia);K—lez_O (3.65)
3 K - kB
0 Xy = 25X, — iw —K—ﬂx,_o (3.66)
a oy

where

’We have multiplied K,, by p2, as this corresponds to the
kinetic term for the density contrast 8, = dp./p..

SR
T 2wy —2wa) 27 —2w2 ¢2,;rp’+P’
L
p_On_c (3.68)

‘ K> qc.

Since we are considering the case c2 = 40, it follows that
¢z = +0. Then, the two solutions to Eq. (3.66) are given by

(3.69)

(3.70)

The CDM has the dispersion relation (3.69), so its sound
speed squared cZpy = @w?a?/k? is

ctpm = 0. (3.71)

The perturbation y associated with the longitudinal scalar
mode of A, corresponds to the other branch (3.70), so
substitution of Eq. (3.70) into Eq. (3.65) results in the
dispersion relation @* = c}k?/a?, with

§ + AcS, (3.72)

where

B}, 2M3(¢f 2)?

Ack = = .
KKy qsq.(pc +P,)

(3.73)

Thus the interaction between the Proca field and CDM
gives rise to an additional contribution Ac% to the total
sound speed squared c%. The small-scale Laplacian insta-
bility is absent for

¢ > 0. (3.74)

Under the no-ghost conditions (3.63) and (3.64), Ac?9 is
positive. This means that, as long as 6% defined by
Eq. (3.67) is positive, the Laplacian instability is always
absent for the perturbation .

In summary, there are neither ghosts nor Laplacian
instabilities for scalar perturbations under the conditions
(3.63), (3.64), and (3.74). As long as c2 = +0, the coupling
between the Proca field and CDM does not modify the

effective CDM sound speed squared cZpy;.

063531-10



SUPPRESSED COSMIC GROWTH IN COUPLED VECTOR-TENSOR ...

PHYS. REV. D 102, 063531 (2020)

IV. EFFECTIVE GRAVITATIONAL COUPLINGS
FOR CDM AND BARYONS

To confront coupled dark energy models in GP theories
with the observations of galaxy clusterings and weak
lensing, we need to understand the evolution of matter
density perturbations at low redshifts. For this purpose, we
derive the effective gravitational couplings felt by CDM
and baryon density perturbations by employing the so-
called quasistatic approximation. The contribution of radi-
ation to the background and perturbation equations of
motion is ignored in the following discussion.

We consider the case in which the equations of state and
the sound speed squares of CDM and baryons are given by
c2=0. (4.1)

WC:O? Wb:O, C%:O,

We also introduce the CDM and baryon density contrasts,

5, =P 5, = (4.2)
Pec Pb
From Eq. (3.50), we obtain
. k2
512—;()("—1}]), fOI'I:C,b. (43)
We can express Egs. (3.53) and (3.54) in the forms,
1 H
ijc = a_i{qcec + (1 - QC)E)}W
a.l ¢ ’
1 .
—"_E(l _q(:)l//_Hq{,'eC/UC ’ (44)
i)b =a, (45)
where
go=1+Y2 (4.6)
Pe
o= be Uzt sl + 120 +3HOf 7 (o
‘ Hg, H(pf 2+ pe) ’
¢

If there is no Z dependence in f, we have g. =1 and
€. = 0, in which case v, = a.
The gauge-invariant Bardeen potentials are defined by
¥Y=a+y, ® = Hy. (4.9)
Taking the time derivatives of Eq. (4.3) and using
Egs. (4.4)-(4.5), it follows that

8. + (2 + €.)H.

RY K 1\ /D

SNSRI I O T Y (S @
+a2qc+az{< qc><H o )+€° ]

K H 1Y (v
24 {(1 —q—c> (%—e,ﬁw) +€Cl//:| =0, (4.10)

2

.. . k
8y + 2HE, + ¥ =0, (4.11)
a

where

(4.12)

€g = ? .
In contrast to Eq. (4.11) of baryon perturbations, the
evolution of CDM density contrast is nontrivially affected
by the Z dependence in f through the quantities containing
®, ®, y, y in Eq. (4.10). By using the quasistatic
approximation in the following, we derive the closed-form
expressions of W, @, and y to estimate the gravitational
couplings of CDM and baryon density perturbations.

A. Quasistatic approximation

We employ the quasistatic approximation for the modes
deep inside the horizon, under which the dominant con-
tributions to the perturbation equations are the terms
containing k?/a’ as well as &p., dp, and their time
derivatives [70-72]. Then, from Egs. (3.47) and (3.49),
it follows that

2

Spe +0pp = =5 (Y +wix —wey),  (4.13)
YV~ (% - w6> W —2woy. (4.14)

Substituting Eq. (4.14) into Eq. (4.13) and using 6; (I =
¢, b) and ® defined in Egs. (4.2) and (4.9), respectively,
we obtain

kK (w; — 2w
Pcbe + ppop = 2 <¥

— (D+%l//>. (4.15)

From Eqgs. (3.51) and (4.14), it follows that

. Wy +wed
o~ ———

wy ©
w—2¢(a+—
w3

2

", H) o. (4.16)
We differentiate Eq. (4.15) with respect to ¢ and resort to

Egs. (4.3) and (4.16) to remove SC, Sb, and . The

perturbation 8¢ can be eliminated by exploiting

Eq. (3.48). After this procedure the CDM velocity potential

v, still remains, so we employ Eq. (4.3) to express it in

terms of Sc and @, as
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a? . b

UC:—P(sC—ﬁ. (417)

Then, we obtain

2 a 2 ;
¢ (w1 = 2w)w3¥ + i @ + poyr =~ pwﬂﬁ (ge = 1)pcbe, (4.18)
where
2

M= (W1 = 20, + Hwy = p, = qopc)ws — 2wy (wy + Hws)], (4.19)
py = (W3 + Hwaws + Wwows) + wy (wed? — W3¢) + pwip.(q. — 1). (4.20)

We also substitute Eq. (4.14) and its time derivative into Eq. (3.52) by exploiting the relations (4.16) and (4.17). This
procedure leads to

2a? .
20° W)Y + 3@ + pgy ~ —71152(% - 1)p.6.. (4.21)
where
2¢
_ , 4.22
H3 Hw, H2 ( )
1 . . . .

Ha = s [0 (W + 2wywr) + > (2wawg + Hwswe + w3we) + ¢p{wi + Hwaws + w3 (W — dpwe) } — 2w ws]

- 2¢ﬂc<‘]c - 1) (423)

Since q. — 1 = ¢f ;/p., the Z dependence in f gives rise to the new terms containing 5C on the right-hand sides of
Egs. (4.18) and (4.21). Combining Eq. (4.18) with (4.21) to eliminate the time derivative (.36, we obtain

20 (wy —wa)w3¥ + (2u1 4 p3w3)® + (2p5 + paws )y = 0. (4.24)

On using the definitions of wy, ..., w7 in Egs. (3.40)—(3.46) and the background Eqgs. (2.26)—(2.27), the following equalities
hold

27 (wy = wa)ws = 2y + psws = —4HG* My ws, (4.25)
245 + paws = 0. (4.26)

Then, Eq. (4.24) reduces to
¥ — _o, (4.27)

which shows the absence of an anisotropic stress.
It is convenient to introduce the two dimensionless variables,

$*Gsx

ag = — (428)
2MAH

by = qﬁf? - (4.29)
AMALH
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where

P 2 5 3 672 4M§1
qsCs = 2Mpl[H¢ €4Gaxx + HP (1 +2€4)G3 x —p.(q. — 1)] — #°G5 ¢ <1 + Wa) (4.30)
Then, the quantities wy, w,, y;, and u, appearing in Eqs. (4.15) and (4.18) are expressed, respectively, as
wy = —2HM} (ag + 1), wy = —2HM a5, (4.31)
1 = 2HP*Myws(ag + s — 1), o = =2H>pM w3 (o + D). (4.32)

On using Eq. (4.27), we can solve Egs. (4.15) and (4.18) for ¥, @, v, as

Yoo~ O [(11% (Pebe + PoBy) + 2 (g, — 1) o (4.33)
- - 2M§lk2 lA/S PcOc PbOp ﬁS qc ch s .
a’> ¢ ag(ag — 1) ag — 1 5,
& 1) ) — (g, — Dp.—]|. 4.34
v 2M§1k2H |:{ + ﬁS }(pc e+ Pp b) + ZA/S (QL )/)c H:| ( )

The time derivatives of Egs. (4.33) and (4.34) give rise to the terms containing 5'0, which contribute to Eq. (4.10) of the
CDM density contrast. After eliminating ¥, ®, @, y, and y from Eq. (4.10), we obtain the second-order differential
equation for §,., as

. 2 3(q. — 1)Q . 3Hag(q.—1)¢% .
b, +HS|24+¢, — 21 2% -1)(1+42 -2 b, +—2t 250,65
c + C% |: + €. ZIQSQC {(QC )( + €y + €S) QCGC}:| c + 21’)qu C% bYb
3H?
- % (Gccgcéc + Gcbgb5b) = 0’ (435)
where
ay  ap 1¢%
Goe =Gy = |1+—+——{(q. = 1)(1 + ey +es—€p) —qee.} | —5G, (4.36)
Vs g cCs
with
& Ds
=—) = . 4.37
€B HaB 65 Hﬁs ( )

From Egs. (3.72) and (3.73), the ratio between ¢ and &3 is

Ac? 3 -1)Q
,\—czszl‘i‘ (QCA ) c'
Cg 2VSQC

(4.38)

2
C
So1y
C

S

The difference Ac? between ¢ and ¢%, which arises from the off-diagonal components of matrix B in Eq. (3.55), vanishes
for f,=0.
Substituting Eq. (4.33) into Eq. (4.11), we obtain

3Hag(q.—1) . . 3H?

Sy + 2HS, — %5, Qb =5 = (G Qb + G y6y) =0, (4.39)
where
052
Gpp = Gy = (1 + A—B> G. (4.40)
Vg
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As long as ¢ is positive with the absence of ghosts

(gs > 0), the quantity o is positive. In coupled GP theories
the Laplacian instability is absent for ¢2 = ¢ + Ac% > 0,
so the condition ¢5 > 0 is not mandatory. To ensure the
stability during the whole cosmic expansion history, how-
ever, we do not consider the special case where the two
inequalities ¢% < 0 and ¢ > 0 hold. As long as gs¢% > 0,
the gravitational couplings G, and G,. of baryons are
larger than the Newton constant G. This enhancement of
Gy, is attributed to the cubic-derivative coupling G;(X)
[44]. If there is no dependence of Z in f, we have g, = 1,
€. =0, and ¢§ = &3, so the CDM gravitational coupling
(4.36) reduces to the value (4.40) of baryons.

In the presence of the coupling f(Z), we observe in
Eq. (4.36) that G,.. and G, are multiplied by the factor
¢%/(q.c%). The quantity g. = 1 + ¢f z/p,. should be close
to 1 during the matter-dominated epoch (¢f ; < p.), but
the magnitude of ¢. becomes greater than 1 after the
dominance of the vector-field density as dark energy
(@f zZ pe). Moreover, as long as qSE% > 0, the ratio
¢%/c% is smaller than 1. Then, it is anticipated that the
interaction f(Z) may suppress the values of G, and G, at
low redshifts. The term a3/Pg in the square bracket of
Eq. (4.36) works to enhance the CDM gravitational
coupling, but there are also additional terms proportional
to ag in Eq. (4.36). We will show that the terms propor-
tional to ag, which arise from the mixture of couplings
G3(X) and f(Z), can play an important role to modify the
values of G.. and G., during the epoch of cosmic
acceleration. In Sec. V, we will consider a concrete model
of coupled dark energy and investigate whether the reali-
zation of G, and G_;, smaller than G is possible. Before
doing so, we compute the values of G.. and G, on the de
Sitter background.

B. Gravitational couplings on de Sitter background

The background Egs. (2.26)—(2.28) allow the existence
of de Sitter solutions, along which ¢ and H are constant
with p; = 0 = P;. On this de Sitter background, we have

€5 =0, ey =0, eg =0, €5 =0, €, =3.
(4.41)

As the solutions approach the de Sitter fixed point, the
quantity (4.6) behaves as q.~¢f z/p. = oo, where the
positivity of g, requires that ¢f ; > 0. Of course, this
behavior of g, does not mean the divergence of physical
quantities. Indeed, on the de Sitter background satisfying
Eq. (4.41), Eq. (4.36) reduces to

~2
ag ¢
(Gcc)ds = (Gcb)ds = —2A_B—§G'

4.42
Ug CS ( )

In the regime where g, > 1, the terms proportional to ag in
the square bracket of Eq. (4.36) completely dominates over
a3 /D. This means that the gravitational coupling of CDM
is very different from that of baryons around the de Sitter
solution. The quantities (4.29) and (4.38) are given,
respectively, by

1

——— |2H* M2 G ¢
4M3 H? { P

IDS:

2

aM
— G2, <1 + W—;’l) — 29 M?, f_z} . (4.43)

¢f 2

—. (4.44)
2M} HDg

2
Soq
Cs
As long as the condition ¢ > 0 is satisfied in addition to
the absence of ghosts (gg > 0 and ¢f ; > 0), we have
Ds = qs¢5/(4MyH?*) > 0 and c5/¢5 > 1. Then, from
Eq. (442), (G..)4s <O for ag > 0 and (G,.)4s > 0 for
ap < 0. Substituting Egs. (4.28), (4.43) and (4.44) into
Eq. (4.42), it follows that

4HM?ws
PG x(4ME + w3) — 2HM2 ws
(4.45)

(Gcc)ds = (Gcb)ds G,

while the baryon gravitational coupling (4.40) yields

¢°Gix

(Gip)as = (Gpe)as = (1 + W) G,  (4.406)

where g is given by Eq. (4.43). One can express Eq. (4.45)
in terms of gy [see Eq. (3.42)] and ag, as

Zunz

(Gcc)dS = G, (4'47)

G, =
(Gedes (ag = 1)gyu® = 2ag

where
(4.48)

In the expression (4.47), u should be evaluated on the de
Sitter fixed point. Our theory corresponds to gy = 1, but
we explicitly write gy in Eq. (4.47) to accommodate more
general intrinsic vector-mode Lagrangians like Lp =
—qyF, " /4. As we already mentioned, the sign of
(Gee)gs depends on ag. When ag =1, for example,
we have (G..)ss = —qyu’G, while, for ag>1 and
gy’ > 1, (G.)ys =~ (2/ag)G. The self-accelerating
solution in cubic-order extended Galileon scalar-tensor
theory [73,74] can be regarded as the weak-coupling limit
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qy — o in Eq. (4.47), so that (G..)4s = 2G/(ag —1).
Since our coupled GP theory gives the value (G..)4 =
2u*G/|(ag — 1)u* — 2ag], its observational signatures
associated with the cosmic growth measurements are
different from those in its scalar-tensor counterpart.

V. CONCRETE MODELS

To study the cosmological dynamics relevant to the late-
time cosmic acceleration, we consider a concrete model of
coupled dark energy given by the action (2.2) with

f(X,Z) = by X" + p(2X)"Z"™, G3(X) = b3 XP3,

(5.1)

where by, b3, p,, p3 and f, n, m are constants. In this
model, the background Eq. (2.28) yields

217P2by a7t +3 - 213 by ps Hp?Ps

+B2n + m)p* 1 = 0. (5.2)

In uncoupled GP theories (f = 0), Eq. (5.2) shows that
H is related to ¢ according to

¢P?H = A = constant, (5.3)
where p = 2p; —2p, + 1. Provided that p > 0, the tem-
poral vector component ¢» grows with the decrease of H. As
the vector-field density dominates over the background
fluid density, the solutions enter the epoch of cosmic
acceleration and finally approach the de Sitter fixed point
characterized by constant ¢ [25].

In coupled GP theories which contain the Z dependence
in f, we would like to consider the cosmological back-
ground possessing the same property as Eq. (5.3). This can
be realized for the powers,

m
n=p,——. (54)

1
p3=5((p+2p—1), >

2

In this case, the three terms in Eq. (5.2) have the same
power-law dependence of ¢. Then, from Eq. (5.2), the
constants b,, bs, and S are related with each other, as

2(1’“)/2p2(b2 4 2P23)
32(p + 22— 1)

by =-— (5.5)

In the following, we study the dynamics of background and
perturbations for the functions (5.1) with the powers (5.4).

A. Background dynamics and theoretically
consistent conditions

To study the background dynamics, we take CDM,
baryons, and radiation into account as perfect fluids. The
dark energy density parameter defined in Eq. (2.35) yields

(2772by + )
3MLH?

Q. = - (5.6)

By imposing the condition Qpg > 0, the constants b, and
are constrained to be

27P2hy 4+ < 0. (5.7)
From Eq. (2.37), we have
Q,=1-Qpg —Q.—Q,. (5.8)
On using Egs. (2.32) and (2.33), it follows that
3 -3Qpg + Q,
= " s 5-9
€¢ 2p(1 + SQDE) ( )
3-3Qps + Q,
€y =—————2 7 5.10
" 2(1 + sQpg) (510)
where
P2
s =—. 5.11
. (5.11)

Then, the density parameters Qpg, €., and Q, obey the
differential equations,

(1 + 5)Qpg(3 — 3Qpg + Q)

Q= , 5.12
DE 1+SQDE ( )
Q.[Q, —3(1 Q
Q/c — C[ r ( +S) DE]’ (513)
1+SQDE
Q.1 -Q 34 4s5)Q
Q;. — _ r[ r+( + S) DE], (514)

1 + SQDE

where a prime represents a derivative with respect to
N =1Ina. For a given value of s and initial conditions
of Qpg, Q., and Q,, each density parameter is known by
integrating Egs. (5.12)—(5.14) with Eq. (5.8).

The dark energy equation of state in Eq. (2.36) and
effective equation of state in Eq. (2.38) are given by

3(1+5) +sQ,
=, 5.15
YDE 3(1 +SQDE) ( )
Q, —3(1 +5)Qpg
3(1+sQpg)

(5.16)

Wetf =

respectively. Apart from the fact that nonrelativistic matter
is separated into CDM and baryons, the background
dynamics is the same as that studied in Ref. [25]. As we
observe in Eq. (5.6), the effect of new coupling f can be
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FIG. 1. (Left) Evolution of wpg, wey and Qpg, Q.., Q;, Q, versus z + 1 for s = 1/5, where z = 1/a — 1 is the redshift with today’s

scale factor a = 1. The initial conditions of Qpg, Q., and Q, are chosen to realize their today’s values Qpg(z = 0) = 0.68,
Q.(z=0)=0.27, Q,(z =0) =0.05, and Q,(z = 0) = 107, respectively. (Right) Evolution of ¢,, Qg = KHM;F/AZ, and c} for
p» =1,p =35, m =2, and ry = 0.05 with the same initial conditions of density parameters as those used in the left panel, with today’s

dimensionless temporal vector component #(z = 0) = 0.459.

simply absorbed into the definition of Qpg at the back-
ground level.

During the cosmological sequence of radiation (Q, = 1,
Wweip = 1/3), matter (Q. + Q;, = 1, wy = 0), and de Sitter
(Qpg = 1, wey = —1) epochs, the dark energy equation of
state (5.15) changes as wpg = —1 —4s/3 > -1 — 5 > —1,
respectively, see the left panel of Fig. 1 for the case
s = 1/5. Thus the background dynamics is solely deter-
mined by the single parameter s, which characterizes the
deviation from the ACDM model.

We define the density parameter associated with the
coupling f, as

ﬁ¢zﬁz
=, 5.17
P 3MAH? G-17)
Then, the no-ghost conditions (3.63) and (3.64) translate,
respectively, to

4s = leg]HZPQSQDE(l =+ SQDE) > 0, (518)

C

(5.19)

To satisfy the condition (5.18) in the asymptotic past
(Qpg — +0), the parameter s is in the range,

s> 0. (5.20)

This means that wpg is always in the phantom region
(Wwpg < —1). Around the future de Sitter fixed point, the
parameter (5.19) behaves as g, ~ mQ;/€Q,, so its positivity
requires that
mQs > 0. (5.21)
For positive m, the inequality (5.21) implies that # > 0. The
condition (5.21) is not obligatory for the cosmic expansion
history by today, but we impose it to ensure the stability
around the future de Sitter solution.
As for the no strong-coupling condition, the quantity
given by Eq. (3.57) reduces to

B 3p25M§1HZQDE(1 + SQDE)
! (1- PSQDE)2¢2

At early times (Qpg < 1), Kq; has the dependence,

(5.22)

K, Q](DI’];—1>/[I’(S+1)], (523)
so that the strong coupling can be avoided for
O<ps<l, or O0<p,<l. (5.24)

We remind the reader that we are considering the case
p > 0, in order for the Proca field to be responsible for the
late-time cosmic acceleration.
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During the radiation, matter, and de Sitter epochs, the
sound speed squared (3.72) reduces, respectively, to

p(3+4s)=2 mry

2) = — , 5.25
(CS)ra 3p2 2[9 s ( )
p(5+6s)—3 mr
(Cg)ma = 2 2ﬂ , (5'26)
6p 2p-s
1 4psM>,
2) = 1—-ps— L 5.27
s =155 (105 o). (520
where
Q p
/4
= =—- 5.28
T Qs 2P, 1 p (5-28)

As long as Qpg > 0, the condition (5.21) translates to
mrg > 0. The constant r; characterizes the contribution of
the coupling /3 to the total dark energy density. We note that
the difference (3.73) between c% and ¢2 is given by

mzr/%QDE
2p?s(Qc + mryQpg)(1 + sQpg)

A = (5.29)

This quantity vanishes on the radiation and matter
fixed points (Qpg = 0), so (¢2),, and (&%), are identical
to (¢%),, and (c3) ., respectively. On the de Sitter solution,
there is the difference (Ac})ys = mrg/[2p*s(1 4 5)], so

that

1 4 psM>
(6§)ds =5 |1l-ps— P2 - 2mrﬁ :
3p(1+s) w3 2p*s(1+s)
(5.30)

In Eq. (5.27), the coupling /3 disappears from (c%),g due to
the contribution (Ac?)4s to (£3)gs- To avoid the Laplacian
instability during the whole cosmological evolution, we
require that (c%).,, (€2)ma» and (c})ys are all positive.

In the right panel of Fig. 1, we plot the evolution of ¢,
Qs = K”Mﬁl”/ﬂz, and ¢ for the model parameters p, = 1,
p =35, m=2, and rzy = 0.05. Today’s values of density
parameters (at the redshift z = 0) are the same as those in
the left panel, with u(z =0) = ¢(z = 0)/M, = 0.459.
Since s(= 1/5), m, Qpg, and r5 = Q43/Qp are all positive,
the no-ghost conditions (5.18) and (5.19) are automatically
satisfied. Indeed, the positivities of Qg and g, can be
confirmed in Fig. 1. Since the numerical simulation of
Fig. 1 corresponds to ps = 1, K;; stays constant in the
asymptotic past (Qpg < 1), see Eq. (5.23). As we observe
in Fig. 1, the quantity Qg =K 11M§f7 /A% continues to
grow toward the future de Sitter attractor, so there is no

strong-coupling problem for the Proca field. This is also the
case for CDM, where the quantity K,p2 = a’(p, +
@f 7)/2 approaches 0 neither in the asymptotic past nor
in the future.

For the model parameters used in the numerical simulation
of Fig. 1, the analytic estimations (5.25) and (5.26) give
(€3);a = 0.217 and (c3%),,, = 0.177, which agree well with
their numerical values in Fig. 1. On using the asymptotic
value ugs = ¢hgs/ My = 0.474 on the de Sitter solution, we
obtain (c3)gs = 0.494 and (¢3) 45 = 0.485 from Eqs. (5.27)
and (5.30). Again, they are in good agreement with their
numerical values. As we observe in Fig. 1, the scalar sound
speed squared ¢ is always positive from the radiation era to
the de Sitter epoch. Hence, for the model parameters and
initial conditions used in Fig. 1, we realize a viable cosmology
without ghosts or Laplacian instabilities.

B. Dynamics of matter perturbations

We proceed to the study of matter density perturbations
relevant to the observations of galaxy clusterings, weak
lensing, and CMB. Since we are interested in the late-time
evolution of perturbations, we ignore the contributions of
radiation to the background and perturbation equations.

During the matter-dominated epoch in which Qp is less
than the order 1, we compute the CDM and baryon
gravitational couplings by expanding Egs. (4.36) and
(4.40) in terms of Qpg. Then, it follows that

(Gcc)ma = (Gcb)ma = [1 + fQDE + O(Q]ZDE)]G7 (531)
(Ghb)ma = (th)ma =1+ %QDE + O(QzDE) G’
3(cs)ma
(5.32)
where
4p(1 -1
Fo S mptplys) 21} g

3(C%)ma 2p2(6§)magc ’

and (c3)n, is given by Eq. (5.26). In the early matter era
(Qpg < 1), both (G,..) e and (G ) na are close to G. With
the increase of Qpg, the gravitational couplings (5.31) and
(5.32) start to deviate from G. Since the factor 5/[(3¢3) )
in Eq. (5.32) is positive under the absence of ghosts and
Laplacian instabilities, (Gp),,, is larger than G.

For (G..), given in Eq. (5.31), there is an extra term
arising from the coupling f# besides the positive factor
5/[(3¢%)mal- As long as mrg{4p(1+s)—1} >0, the
coupling g works to reduce (G..) .- If F < 0 in the early
matter era (€. ~ 1), the factor F remains negative due to
the decrease of Q.. If F > 0O initially, then there is the
moment at which F crosses 0. This moment of transition
can be quantified by the CDM density parameter, as
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_ 3mrgldp(l +s)—1] ‘

Qr
2p°s

C

(5.34)

After Q. drops below Q], G, becomes smaller than G.
This transition from G.. > G to G.. < G occurs for the
model parameters satisfying QI <1, ie, 2p’s>
3mrgl4p(1 + s) — 1]. We note that, if Q is much smaller
than 1, the expansion of G, of Eq. (5.31) up to first order in
Qpg loses its validity. We are interested in the case where
the weak gravitational interaction for CDM (G, < G) is
realized by today. In this case, Q7 is larger than today’s
CDM density parameter Q.(z = 0) ~0.27, so that

Qf > 0.27, (5.35)

which can be regarded as a criterion for the realization of
weak gravity.

The parameter ap defined in Eq. (4.28) is related to
Qpg, as

ag = p2S2pE. (5.36)

Since we are considering the theory with ¢, = 1, the CDM
gravitational coupling (4.47) on the de Sitter background
reduces to

2u3g
(P2 — l)ués -2p;

(Gee)as = (Gep)as = G, (5.37)
where u4s = ¢as/ M. Meanwhile, the baryon gravitational

coupling (4.40) on the de Sitter solution yields

1.0

0.80

0.60

0.40

0.20

0.0

-0.20

-0.40 ‘ ‘ ‘
0.01 0.1 1 10

z+1

(Gpp)as = (Gpe)gs = |1+ G, (538)

3(149)(8s)3s

where (&) is given by Eq. (5.30). As expected, (G )gs iS
always larger than G, but this is not the case for (G,.)ys-

In the left panel of Fig. 2, we show the evolution of G,
and Gy, for z < 50 by using the same model parameters
and initial conditions as those given in the caption of Fig. 1.
At high redshifts, we have Qpg < 1 and hence both G,
and Gy, are close to G from Egs. (5.31) and (5.32). In this
case the quantity (5.33) is given by F =0.377-
0.260/Q., so F is initially positive. The CDM density
parameter (5.34) at which F crosses 0 is QI = 0.69.
Numerically, we find that G.. becomes smaller than G
at the redshift z < 1.06. The numerical value of CDM
density parameter at z = 1.06 is Q. = 0.71, which is close
to QI = 0.69 derived by the analytic estimation (5.34). As
we observe in Fig. 2, G_. starts to be smaller than G at
z=1.06 and decreases toward an asymptotic negative
constant after crossing G.. = 0. Since this case corre-
sponds to p, =1 in Eq. (5.37), we have (G.. )y =
—u3G = —0.225G, where we used the numerical value
ugs = 0.4743 on the de Sitter attractor. This analytic
estimation of (G,..)ys is in good agreement with the
asymptotic numerical value seen in Fig. 2. As we estimated
in Egs. (5.32) and (5.38), the baryon gravitational coupling
Gy, 1s always larger than G. For the model parameters used
in Fig. 2, we have (Gp;)ys = 1.114G from Eq. (5.38),
which agrees well with the numerical result.

1.2

e S —
0.80
0.60
0.40

0.20

0.0

z+1

FIG. 2. Evolution of G, Gy, (left) and &, &, 6, ® (right) versus z 4 1 for p, = 1, s = 1/5, m = 2, and rz = 0.05, with the same
initial conditions of density parameters as those used in Fig. 1. We choose today’s value of the total matter density contrast 5;,, as
o3(z = 0) = 0.811. The gravitational potential @ is normalized by its initial value at z = 50.
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For larger mry, the density parameter (5.34) at transition
tends to be larger, so that the CDM perturbation enters the
regime G.. < G earlier. This means that, for increasing
values of m and f, the realization of weak gravity by the
momentum transfer starts to occur from higher redshifts.
The gravitational coupling (5.37) on the de Sitter back-
ground depends on p, and uy5. Meanwhile, the condition
for the no strong-coupling problem at early times imposes
that 0 < p, < 1, under which the denominator of Eq. (5.37)
is always negative. Then, (G )4 i negative, as seen in the
numerical simulation of Fig. 2. In this case the gravitational
interaction is no longer attractive, by reflecting the fact that
CDM interacts with the self-accelerating vector field
through the momentum transfer. As we mentioned in
Sec. 1V, this behavior of (G..)4s is mostly attributed to
the mixture of couplings G3(X) and f(Z), i.e., the terms
proportional to ag in Eq. (4.36). Today’s CDM gravita-
tional coupling depends on when the transition to the
regime G,.. < G occurs as well as on the value of (G, )4s-
The numerical simulation of Fig. 2 corresponds to
G..(z=0) =0.815G, with G,,(z = 0) = 1.095G.

In the right panel of Fig. 2, we plot the evolution of &,
dp, Oy, and @ for the same model parameters and back-
ground initial conditions as those used in the left. Here, o,
is the total density contrast defined by

QC Qb

Sy = 5
M= +q, C+QC+Qb

5. (5.39)

We numerically solve Egs. (4.35) and (4.39) with
Egs. (4.36) and (4.40) derived under the quasistatic
approximation for linear perturbations deep inside the
sound horizon. We start to integrate the perturbation
equations around the redshift z =50 by choosing the
initial conditions 6. =6, =4; and 6, =, = ;. The
initial amplitude §; is determined by reproducing today’s
observed matter density contrast 5,,(z = 0), where we
adopt the Planck2018 best-fit value §;,(z = 0) = 0.811 [4].

Since neither G, nor Gy, depends on the wave number
k, the CDM and baryon perturbations exhibit scale-inde-
pendent growth. In Fig. 2, we observe that the growth of &,
is suppressed relative to that of §, for the redshift z < 1.
This behavior is attributed to the gravitational interaction of
CDM weaker than that of baryons. Since the CDM density
is about five times as large as the baryon density, the total
density contrast d,, is mostly affected by CDM perturba-
tions and hence its growth is suppressed in comparison to
the standard case with G.. = G, = G. This should allow
the possibility for alleviating the tension of og between
CDM and low-redshift measurements.

In our theory there is no anisotropic stress, so the
gravitational potential ¥ and the weak lensing potential
wwL = (¥ — ®@)/2 are equivalent to each other, i.e., ¥ =
ywr = —D. In some models like cubic-order uncoupled
scalar Galileons where both G ... and G, are larger than G,

lwwr| grows even after the onset of cosmic acceleration
[48,49]. This typically induces a negative ISW-galaxy
cross-correlation, which is disfavored observationally
[75]. In our coupled GP theory, G.. can be smaller than
G at low redshifts, so it is possible to avoid the enhance-
ment of |y |. In the numerical simulation of Fig. 2, we
observe that ®(= —yy; ) decreases at low redshifts.

In Fig. 3, we show the evolution of the matter growth rate
fu = 6/ (Hb)y,) for three different values of m, with the
other model parameters and initial conditions same as those
used in Fig. 2. When m = 0, we have ¢, = 1, ¢, = 0, and
c% = ¢% in Egs. (4.35) and (4.36), so the equation of CDM
density contrast reduces to the same form as that of baryons
with the gravitational coupling G.. = (1 + a3 /#5)G. Since
G.. = Gy, > G in this case, the growth rate f, is larger
than that in the ACDM model, see Fig. 3. In contrast, for
mf > 0, the CDM gravitational coupling G.. can be
smaller than G at low redshifts. In the numerical simulation
of Fig. 3, the growth rate f); for m = 2 becomes smaller
than that in the ACDM model at the redshift z < 0.62. For
increasing m, the suppression of f,, tends to be more
significant, see the case m = 4 in Fig. 3. Thus, our coupled
dark energy model with the momentum transfer offers a
versatile possibility for realizing the weak cosmic growth
rate. When our model is confronted with the observations
of redshift-space distortions, however, we need to caution
that the growth rates of d, and §,, are different from each
other. The analysis of how to constrain the model with the
redshift-space distortion data is left for future work.

1.1

1.0

0.90

0.80

= 0.70

0.60

0.50

0.40

0.30 L L L

FIG. 3. Evolution of fy; = 8,/(H5y) versus z for the same
background initial conditions of density parameters as those used
in Fig. 1. The model parameters are s = 1/5, p, = 1, and ry =
0.05 with three different values of m. The dotted line corresponds
to the evolution of f), in the ACDM model.
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VI. CONCLUSIONS

We studied the cosmology in coupled cubic-order GP
theories given by the action (2.2) for the purpose of
realizing the weak gravitational interaction on scales
relevant to the growth of large-scale structures. The new
interaction between the CDM four velocity uf and the
vector field A,, which is weighed by the scalar product
zZ= —u’éAﬂ, exhibits very different properties in compari-
son to the standard coupled dark energy with the energy
transfer. The perfect fluids of CDM can be described by the
Schutz-Sorkin action (2.3), which contains a vector density
field J% related to the four velocity as J% = n.,/—gu’.. After
deriving general covariant equations of motion in the forms
(2.17) and (2.20), we applied them to the flat FLRW
background (2.23). As we observe in Egs. (2.25) and
(2.31), the Z dependence in the coupling f does not give
rise to explicit interacting terms on the right-hand sides of
background continuity equations, by reflecting the fact that
the interaction corresponds to the momentum transfer.

In Sec. III, we derived the second-order actions of tensor,
vector, and scalar perturbations by choosing the flat gauge
given by the line element (3.1). Tensor perturbations
propagate in the same way as in the standard general
relativity, so the theory is consistent with the observational
bound of speed of gravity constrained by the GW170817
event. The new interaction does not affect small-scale
stability conditions of vector perturbations either. For scalar
perturbations, we obtained the full linear perturbation
equations of motion and eliminated nondynamical variables
from the second-order action. The resulting action for
dynamical perturbations can be expressed in the form
(3.55), which was exploited for the derivation of small-
scale stability conditions. Under the conditions (3.63),
(3.64), and (3.74) there are neither ghosts nor Laplacian
instabilities, with the vanishing effective CDM sound speed.

In Sec. 1V, we studied the effective gravitational cou-
plings for CDM and baryon density perturbations by
employing the quasistatic approximation for the modes
deep inside the sound horizon. In our theory, there is no
anisotropic stress between the two gravitational potentials
Y and @, but the Z dependence in f induces the time
derivative 5C to @ and the longitudinal scalar y of A, see
Egs. (4.33) and (4.34). Differentiating ® and y with respect
to ¢ gives rise to the second derivative 6, in Eq. (4.10) of the
CDM density contrast. After closing the second-order
differential equation of J,, the gravitational coupling for
CDM is given by the form (4.36). In contrast to the baryon
gravitational coupling (4.40), there are extra terms propor-
tional to ag in G, besides the overall factor ¢%/(ggc3).
The terms proportional to ag, which correspond to the
mixture of couplings G3(X) and f(Z), lead to a value of
G.. very different from G, on the de Sitter background,
see Eq. (4.42).

In Sec. V, we proposed a concrete coupled dark energy
model given by the functions (5.1). For the powers (5.4),
the background cosmology satisfying the relation ¢?H =
constant (p > 0) can be realized, with the new coupling
constant f# being absorbed into the definition of Qpg. In
other words, the interaction associated with the momentum
transfer does not modify the cosmological background of
uncoupled GP theories. We also showed that the ghosts are
absent under the conditions (5.20) and (5.21). The scalar
propagation speed squared in each cosmological epoch is
given by Eqs. (5.25), (5.26), and (5.27), which are required
to be all positive. The case shown in Fig. 1 is an example of
the viable cosmology satisfying all the stability conditions.

During the matter dominance, the CDM gravitational
coupling G... is expanded in the form (5.31), which can be
used to estimate the moment after which G.. gets smaller
than G. Provided that the condition (5.35) is satisfied, the
transition to the regime G.. < G occurs by today. On the
future de Sitter attractor, G... is given by Eq. (5.37), which
is always negative in the allowed parameter space con-
strained by the no-ghost and no-strong-coupling conditions
(0 < pp £ 1). In the numerical simulation of Fig. 2, which
corresponds to the power p, =1, G.. enters the region
G.. < G around z < 1 and finally approaches the value
(Gee)gs = —u3sG = —0.225G. In contrast, G, is always
larger than G. The weak gravitational interaction for CDM
leads to the suppressed growth of total matter density
contrast ), see Fig. 2. The lensing gravitational potential
ywi(= —®) does not exhibit the enhancement at low
redshifts, whose property should be consistent with the
observations of ISW-galaxy cross-correlations. For increas-
ing values of m and f, the growth rates of 6, and d,, tend to
be smaller in comparison to the ACDM model, see Fig. 3.

We thus showed that the coupled GP theories with the
momentum transfer offers a novel possibility for achieving
the weak cosmic growth for CDM, in spite of the enhance-
ment of baryon gravitational coupling. It will be of interest
to investigate further whether the interacting model pro-
posed in this paper reduces the observational tensions of
og and H present in the ACDM model.
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