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Motivated by the discrepancy in measurements of H0 between local and global probes, we investigate
whether teleparallel gravities could be a better model to describe the present-day observations or at least to
alleviate the H0 tension. Specifically, in this work we study and place constraints on three popular fðTÞ
models in light of the Planck-2018 cosmic microwave background data release. We find that the fðTÞ
power-law model can alleviate the H0 tension from 4.4σ to 1.9σ level, while the fðTÞ model of two
exponentials fails to resolve this inconsistency. Moreover, for the first time, we obtain constraints on the
effective number of relativistic species Neff and on the sum of the neutrino masses Σmν in fðTÞ gravity. We
find that the constraints obtained are looser than in ΛCDM. However, the introduction of massive neutrinos
into the cosmological model alleviates the H0 tension for the power-law model. Finally, we find that
whether a viable fðTÞ theory can mitigate the H0 tension depends on the mathematical structure of the
distortion factor yðz; bÞ. These results could provide a clue for theoreticians to write a more physical-
motivated expression of fðTÞ function.
DOI: 10.1103/PhysRevD.102.063530

I. INTRODUCTION

With more extensive surveys at different scales and
improved measuring techniques, measurements of late-time
cosmic acceleration and growth of gravitational struc-
ture have sharpened considerably in recent years [1].
Independent observations from Planck-2018 cosmic micro-
wave background (CMB) radiation have been tighter than
before [2–4]. Type Ia supernovae (SNe Ia) [5,6] and baryon
acoustic oscillations (BAO) [7,8] have been measured up to
redshift z < 3, and we now have obtained data better than
1% precision for z < 1. Based on several large weak
lensing experiments including the Kilo-Degree Survey
[9], the Dark Energy Survey [10], and the Subaru
Hyper-Suprime Camera [11], measurements of effects of
dark matter clustering have approached 2%–3% precision.
On one hand, all the above probes verify the correctness of
the standard cosmological paradigm, the Λ-cold dark
matter (ΛCDM) model under the framework of general
relativity (GR), in describing the evolution of the Universe
at both small and large scales. On the other hand, the
ΛCDM scenario faces at least two intractable problems,
namely the coincidence and fine-tuning problems (see [12]
for details), and at least two tensions emerged from
cosmological observations, namely the Hubble constant
(H0) and matter fluctuation amplitude (σ8) tensions. The

H0 tension is that the indirectly derived Hubble expansion
rate from Planck-2018 CMB data release [2] is 4.4σ lower
than the direct measurement from Hubble Space Telescope
(HST) [13], while the σ8 one indicates that the amplitude of
density fluctuations today in the linear regime from Planck-
2018 data is, nonetheless, higher than the same quantity
measured by several low-redshift probes including weak
gravitational lensing [14], cluster counts [15] and redshift
space distortions [16]. So far, it is still unclear that these
tensions are originated from unknown systematic errors in
data processing, or new physics beyond ΛCDM at all.
Since the H0 tension recently became more severe than
before [13], much more attention in the community is paid
to alleviating or even solving this large discrepancy. From a
point of view of pure theory, except finding out possible
systematic uncertainties or using other independent probes
to give a resolved determination of H0, we argue that the
most direct way is to check the model dependence of
Planck-2018 CMB data. Along this line, a great deal of
effort has been implemented by cosmologists under the
hypothesis of dark energy or, equivalently, modified gravity
[17–27].
In this work, we are motivated by exploring that whether

the teleparallel equivalent of GR [28] can resolve the
current H0 tension. Starting from the Lagrangian, the
simplest representative of teleparallel gravity is fðTÞ
gravity [29], which is completely equivalent to GR at
the level of equations. Since fðTÞ gravity was first*cstar@sjtu.edu.cn
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proposed [30], many authors have placed constraints on its
extensions using the cosmological observations [31–37].
However, the question is that CMB data are always
combined with BAO, SNe Ia, local H0 observation and
other probes to implement strict constraints. More or less,
this kind of constraint can only provide the indirect test of
H0 tension in the framework of fðTÞ gravity. Therefore,
there is still a lack of a direct test of the ability to resolve the
H0 tension for fðTÞ gravity in light of Planck CMB data.
Especially after the final data release of Planck-2018 full
mission, this is an urgent issue needed to be addressed. By
implementing numerical analysis, we find that the power-
law fðTÞ gravity can efficiently resolve current H0 tension,
but the exponential fðTÞ gravity fails to do this.
This work is outlined in the following manner. In the

next section, we introduce the formalism of fðTÞ gravity
and specify three fðTÞ gravity models to be constrained by
cosmological observations. In Sec. III, we describe the data
and methodology used in this analysis. In Sec. IV, we
display our numerical results and discussions. The con-
clusions are presented in the final section.

II. f ðTÞ COSMOLOGICAL MODELS

The dynamical variable of fðTÞ gravity is the vierbein
field eμA, which constructs an orthonormal basis for the
tangent space at each point xμ of the space-time manifold
M. Note that here we, respectively, use Greek and capital
Latin indices to denote the space-time coordinates and the
coordinates of the tangent space. Utilizing the components
of vierbein vector, the metric in fðTÞ gravity can be written
as gμν ¼ ηABeAμeBν , where ηAB is the Minkowski metric for
the tangent space at each xμ. Furthermore, through replac-
ing the nonzero-curvature Levi-Civita connection with the
torsional Weitzenböck one [38], one can express the torsion
tensor as

Tγ
μν ≡ eγAð∂μeAν − ∂νeAμÞ: ð1Þ

By contractions of the torsion tensor, the torsion scalar T in
the Lagrangian density can be shown as

T ≡ 1

4
TγμνTγμν þ

1

2
TγμνTνμγ − Tγμ

γTνμ
ν: ð2Þ

Very similar to the case of fðRÞ gravity, the idea of fðTÞ
gravity is to generalize T to an arbitrary function fðTÞ,
when the action is constructed by the teleparallel
Lagrangian density T. Specifically, the action of fðTÞ
gravity in a universe can be written as

S ¼
Z

d4xjejT þ fðTÞ
16πG

þ SðmÞ; ð3Þ

where jej ¼ ffiffiffiffiffiffi−gp
and SðmÞ denotes the matter field. One

can easily find that GR is recovered when fðTÞ ¼ 0 and

GR with a cosmological constant is restored when
fðTÞ ¼ const. Varying Eq. (3) with respect to the vierbein
field eμA, the field equations of fðTÞ can be obtained as

e−1∂μðeeγASγμνÞð1þ fTÞ þ eγASγμν∂μðTÞfTT
− eλAT

γ
μλSγ

νμð1þ fTÞ þ
1

4
eνA½T þ fðTÞ�

¼ 4πGeγAT ðmÞγ
ν; ð4Þ

where fT ≡ ∂f=∂T, fTT ≡ ∂2f=∂T2, and T ðmÞγ
ν denotes

the energy-momentum tensor of matter fields including
baryons, dark matter and radiation in the Universe.
If the background space-time manifold is a spatially

flat, homogeneous and isotropic one, using the vierbein
form eAμ ¼ diagð1; a; a; aÞ, one shall naturally obtain a
Friedmann-Robertson-Walker (FRW) metric

ds2 ¼ dt2 − a2ðtÞδijdxidxj; ð5Þ

where t and a denote the cosmic time and the scale factor of
the Universe, respectively. Substituting the chosen vierbein
into Eq. (4), the Friedmann equations of fðTÞ gravity read

3H2 ¼ 8πGðρb þ ρcdm þ ρrÞ þ TfT −
f
2
; ð6Þ

_H ¼ −
4πGðρb þ ρcdm þ ρr þ Pb þ Pcdm þ PrÞ

2TfTT þ fT þ 1
; ð7Þ

where ρi and Pi ði ¼ b; cdm; rÞ denote the energy densities
and pressures of different matter components including
baryons (b), cold dark matter (cdm) and radiation (r). H is
the Hubble parameter and the dot represents the derivative
with respect to the cosmic time t. Different from the case of
fðRÞ gravity, we have a more elegant expression between
Hubble parameter H and torsional scalar T:

T ¼ −6H2; ð8Þ

which can be naturally derived from Eq. (2) in the FRW
vierbein. At the present time, this simple relation reads
T0 ¼ −6H2

0. As a consequence, we have dimensionless
Hubble parameter E2ðzÞ≡H2ðzÞ=H2

0 ¼ T=T0.
It is not difficult to see that the latter two terms in Eq. (6)

are responsible for explaining the cosmic acceleration. The
torsional fluid can be regarded as an effective dark energy
fluid. Hence, one can obtain the effective energy density
ρde and pressure Pde of dark energy as, respectively,

ρde ¼
1

16πG
ð2TfT − fÞ; ð9Þ

Pde ¼
1

16πG

�
2T2fTT − TfT þ f
2TfTT þ fT þ 1

�
: ð10Þ
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As a consequence, the effective equation of state (EOS) of
dark energy ωde is written as

ωde ¼
2T2fTT − TfT þ f

ð2TfT − fÞð2TfTT þ fT þ 1Þ : ð11Þ

Subsequently, since matter and dark energy are indepen-
dent components in the dark sector of the Universe, the
energy conservation equation for dark energy can also be
shown as

_ρde þ 3Hð1þ ωdeÞρde ¼ 0: ð12Þ
In order to perform constraints on fðTÞ gravity models

using data, one can rewrite Eq. (6) in the following manner:

E2ðzÞ ¼ Ωm0ð1þ zÞ3 þ Ωr0ð1þ zÞ4
þ ð1 − Ωm0 −Ωr0Þyðz;wÞ; ð13Þ

whereΩm0 andΩr0 are, respectively, the present-day values
of matter and radiation densities. The factor yðz;wÞ ¼
ðT0 − 2TfTÞ=½T0ð1 −Ωm0 −Ωr0Þ� [32], where w is a set of
typical parameters of a specific fðTÞ model, characterizes
the modification effect of fðTÞ gravity relative to ΛCDM.
An underlying and subtle rule to construct an alternative

cosmological model is that this new model can be reduced
to ΛCDM when its typical parameter takes some certain
value. For instance, the ωCDM model comes back to
ΛCDMwhen the EOS of perfect dark energy fluid ω ¼ −1.
Similarly, we will consider this kind of fðTÞ models in our
treatment.
In order to investigate whether fðTÞ gravity can alleviate

the H0 tension, specifically, we will constrain three fðTÞ
alternatives commonly used in the literature, which can
successfully pass the constraints from the Solar System and
produce the late-time cosmic acceleration well. These
models are still alive in light of current cosmological
observations. For the convenience of expression, we use
a universal parameter b to rewrite the modification factor
as yðz; bÞ.

(i) In order to obtain an accelerated expansion without
invoking dark energy but driven by torsion, the
authors in Ref. [30] proposed a simple power-law
model (hereafter M1)

fðTÞ ¼ αð−TÞb; ð14Þ
where α and b denote two free parameters, but only
one is independent. Substituting the above expres-
sion into Eq. (6), one can easily obtain

α ¼ ð1 − Ωm0 −Ωr0Þð6H2
0Þ1−b

2b − 1
ð15Þ

and get the corresponding factor

yðz; bÞ ¼ E2bðz; bÞ: ð16Þ

It is noteworthy that, for this model, the necessary
limitation b < 1 corresponds to the cosmic accel-
eration and that the ΛCDM scenario recovers
when b ¼ 0.

(ii) In order to keep the variation of the gravitational
coupling small within fðTÞ theory, Linder also
proposed an exponential model (hereafter M2) by
analogy with his exponential fðRÞ gravity [39],
which is shown as

fðTÞ ¼ ξT0

�
1 − e−p

ffiffiffiffiffiffiffiffi
T=T0

p �
; ð17Þ

where xi and p are two parameters. In the same light,
c can be expressed as

ξ ¼ 1 −Ωm0 − Ωr0

1 − ð1þ pÞe−p ; ð18Þ

and consequently, after some algebraic manipula-
tions, the modification factor is written as

yðz; bÞ ¼ 1 − ð1þ E
bÞe−E=b

1 − ð1þ 1
bÞe−1=b

; ð19Þ

where p ¼ 1=b. It is easy to see that M2 is reduced
to ΛCDM when the distortion parameter b → 0þ
and GR is recovered when b → þ∞.

(iii) Similar to M2 inspired by exponential fðRÞ gravity,
Bamba et al. [40] also proposed another exponential
model (hereafter M3)

fðTÞ ¼ ηT0ð1 − e−qT=T0Þ; ð20Þ
where η and q denote two parameters. Similarly, one
can have

η ¼ 1 −Ωm0 − Ωr0

1 − ð1þ 2qÞe−q ; ð21Þ

yðz; bÞ ¼ 1 − ð1þ 2E2

b Þe−E2=b

1 − ð1þ 2
bÞe−1=b

; ð22Þ

where q ¼ 1=b. One can easily find that M2 and M3
have almost the same fðTÞ structures and distortion
factors yðz; bÞ. Therefore, M3 also exhibits the same
behaviors when b → 0þ or þ∞.

It is worth noting that these models we consider can
effectively avoid the Lorentz noninvariance problem and
pass the Solar System test [32], since they can be reduced to
ΛCDM when the key parameter b → 0.
The cosmological perturbations in the framework of

fðTÞ gravity are first investigated in Ref. [41], where the
authors derive the gauge-invariant perturbation equations
and study the large-scale structure for a specific fðTÞ
model. In Ref. [42], the authors generalize the effective
field theory approach to torsional modified gravity, which
is a formalism that allows for the systematic investigation
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of the background and perturbation levels separately. Most
recently, full sets of linear perturbation equations in fðTÞ
gravity were also derived in Ref. [43]. In this analysis, we
would like to focus on the background evolution of the
Universe in fðTÞ gravity.
Using the above-mentioned rule to construct a viable

fðTÞ model with more parameters may be a good solution
to alleviate or even solve the H0 tension. However, an
elegant cosmological model should have as few parameters
as possible. As a consequence, the most important for us is
to check whether these three fðTÞ models (M1, M2 and
M3) with two parameters in hand can resolve such a large
H0 discrepancy.

III. DATA AND METHOD

Asmentioned above, the most straightforward way to test
the ability of amodel in resolvingH0 tension is to investigate
its model dependence on CMB data. Hence, we shall
constrain these three models by using the final Planck-
2018 CMB data release. In principle, one should utilize the
original CMB temperature and polarization data to directly
constrain these alternatives. Based on the fact thatH0 is only
sensitive to the distance information extracted from CMB

data, one can also use the distance-related information
instead. In order to save computational effort and improve
the investigation efficiency, in this analysis, wewould like to
use the distance prior from TTTEEEþ lowlþ lowEþ
lensing data, i.e., compressed CMB data obtained in
Ref. [44] to implement constraints on fðTÞ gravity.
Compared to the Planck-2015 results, in the Planck-2018

release, improved measurements of large-scale polarization
and improved modeling of small-scale polarization lead to
better constraints on cosmological parameters. The con-
tribution from CMB data in likelihood analysis can be
expressed with the corresponding shift parameters

R ¼ rðz⋆ÞH0

ffiffiffiffiffiffiffiffiffi
Ωm0

p
c

; ð23Þ

la ¼
rðz⋆Þπ
rsðz⋆Þ

; ð24Þ

where c is the speed of light, rðzÞ is the comoving distance
at redshift z, rsðzÞ is the comoving sound horizon at z, and
z⋆ is the redshift to the photon-decoupling surface. These
two parameters combined with baryon density ωb ¼ Ωb0h2

(h≡H0=100 km s−1Mpc−1) and the spectral index of

FIG. 1. Marginalized 1σ (68%) and 2σ (95%) constraints on the ΛCDM model using the Planck-2018 CMB data.
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primordial power spectrum ns can provide a brief and
efficient extraction from full CMB data for us to implement
constraints on dark energy. The comoving sound horizon
rsðzÞ reads

rsðzÞ ¼
c
H0

Z
a

0

dã

ã4EðãÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R̄b ã

p ; ð25Þ

where R̄ba ¼ 3ρb=ð4ρrÞ, R̄b ¼ 31500ωbðTCMB=2.7 KÞ−4
and we have assumed the CMB temperature TCMB ¼

2.7225 K. It is worth noting that we cannot neglect the
effect of radiation when using CMB data to con-
strain dark energy. Its contribution can be obtained through
the so-called matter-radiation equality relation Ωr0 ¼ Ωm0=
ð1þ zeqÞ, where zeq ¼ 2.5 × 104 Ωm0h2ðTCMB=2.7 KÞ−4.
Subsequently, the decoupling redshift z⋆ is calculated by

the following fitting formula [45]:

z⋆ ¼ 1048ð1þ g1ω
g2
m Þð1þ 0.00124ω−0.738

b Þ; ð26Þ

TABLE I. The constraining results of free parameters of five different cosmological models from Planck-
2018 CMB data. Particularly, we quote 2σ upper bounds on the parameters b, Neff and Σmν.

Parameters ΛCDM M1 M2 M3 M1ν

H0 67.35� 0.54 66.51� 3.65 67.11� 0.56 67.12� 0.56 66.52� 3.80
Ωm0 0.315� 0.007 0.324� 0.032 0.318� 0.007 0.317� 0.007 0.319� 0.037
Ωb0 0.0493� 0.0006 0.0506� 0.0048 0.0493þ0.0006

−0.0008 0.0496þ0.0008
−0.0006 0.0502þ0.0059

−0.0048
b � � � 0.05� 0.19 <0.217ð2σÞ <0.215ð2σÞ 0.07� 0.21
Neff � � � � � � � � � � � � 3.04þ0.41

−0.45 ð2σÞ
Σmν � � � � � � � � � � � � <0.50ð2σÞ

FIG. 2. Marginalized 1σ (68%) and 2σ (95%) constraints on the M1 model using the Planck-2018 CMB data.

CAN FðTÞ GRAVITY RESOLVE THE H0 TENSION? PHYS. REV. D 102, 063530 (2020)

063530-5



where ωm ¼ Ωm0h2 and

g1 ¼
0.0783ω−0.238

b

1þ 39.5ω0.763
b

; ð27Þ

g2 ¼
0.560

1þ 21.1ω1.81
b

: ð28Þ

To perform the common χ2 statistics, we express χ2 for
CMB data as follows:

χ2 ¼ ðvth − vobsÞC−1ðvth − vobsÞtr; ð29Þ

where the subscript tr represents the transpose of a vector
or a matrix, C is the covariance matrix, and vth and vobs
denote the theoretical and observational values, respec-
tively, of data vector v ¼ ðR; la;ωb; nsÞtr. Specifically, for
a spatially flat universe, vobs ¼ ð1.74963; 301.80845;
0.02237; 0.96484Þtr and

C ¼ 10−8 ×

0
BBBBB@

1598.9554 17112.007 −36.311179 −1122.4683
17112.007 811208.45 −494.79813 −11925.120
−36.311179 −494.79813 2.1242182 23.779841

−1122.4683 11925.120 23.779841 1725.4040

1
CCCCCA
: ð30Þ

Determining the mass and species of neutrinos is a very important task in the fields of particle physics and cosmology.
Combining BAO data with the latest CMB data, the mass sum of three active neutrinos Σmν and the effective number of

FIG. 3. Marginalized 1σ (68%) and 2σ (95%) constraints on the M2 model using the Planck-2018 CMB data.
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relativistic speciesNeff have been, respectively, tightened to Σmν < 0.12 eV andNeff ¼ 2.99þ0.34
−0.33 at the 2σ confidence level

by the Planck Collaboration [2]. Since these two neutrino parameters have direct impacts on the sound horizon when the
Universe is radiation dominated, they also have effects on H0. Therefore, we also attempt to check whether changes in the
neutrino sector can help us alleviate the H0 discrepancy in fðTÞ gravity. Through the energy density of radiation after
electron-positron annihilation [46], Neff can be defined as

ρr ¼ ργ

�
1þ Neff

7

8

�
4

11

�
4=3

�
; ð31Þ

where ργ denotes the energy density of a photon. If considering the effects of neutrinos on the CMB spectrum, for a flat
universe, the authors in Ref. [47] also give the corresponding data vector vobs ¼ ð1.7661; 301.7293; 0.02191;
0.1194; 2.8979Þtr and

C ¼ 10−8 ×

0
BBBBBB@

33483.54 −44417.15 −515.03 −360.42 −274151.72
−44417.15 4245661.67 2319.46 63326.47 4287810.44

−515.03 2319.46 12.92 51.98 7273.04

−360.42 63326.47 51.98 1516.28 92013.95

−274151.72 4287810.44 7273.04 92013.95 7876074.608

1
CCCCCCA
: ð32Þ

FIG. 4. Marginalized 1σ (68%) and 2σ (95%) constraints on the M3 model using the Planck-2018 CMB data.
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Note that the data vector v here has been changed
to v ¼ ðR; la;ωb;ωc; NeffÞtr.
For the purpose to perform conveniently Bayesian

parameter estimation for three fðTÞ models, we employ
the online package EMCEE [48], which is an extensible
pure-python affine invariant Markov chain Monte Carlo
(MCMC) ensemble sampler. Meanwhile, to analyze the
MCMC chains, we take the public package GetDist [49].
In order to check the validity of distance prior method,

we constrain the ΛCDM model and see whether the results
from the Planck Collaboration [2] can be recovered. The
corresponding marginalized constraints on ΛCDM are
shown in Fig. 1 and Table I. One can easily that the
constraining results is very consistent with those given by
the Planck team. Therefore, the above data and method can
be used to constrain fðTÞ theories.

FIG. 5. Marginalized 1σ (68%) and 2σ (95%) constraints on the M1ν model using the Planck-2018 CMB data.

FIG. 6. The H0 − b plane in the M1 (green) and M1ν (red)
models constrained by the Planck-2018 CMB data. The magenta
band represents the direct measurement H0 ¼ 74.03�
1.42 km s−1 Mpc−1 from the HST project [13], while the orange
line is b ¼ 0 corresponding to the ΛCDM case.
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IV. RESULTS

Our marginalized constraining results of three fðTÞ
models are displayed in Figs. 2–5 and Table I. In light
of constraints on the distortion parameter b in three
scenarios, we find that there is not any departure from
the standard cosmology under the framework of GR and
that the constraining results in this analysis are consistent
with those in Refs. [31–33,35–37]. It is very interesting that
current H0 tension can be effectively resolved from 4.4σ to
1.9σ in the power-law model M1. However, two exponen-
tial models M1 and M2 can hardly alleviate the H0 tension
and the constraining results of them are very close to those
of ΛCDM using CMB data. Based on the fact that M1 can
effectively mitigate the H0 tension, we attempt to go a
further step to alleviate this tension by considering the
effects of free-streaming neutrinos in the Universe. As a
consequence, for the first time, we place constraints on Σmν

and Neff in fðTÞ gravity. For a degenerate hierarchy as
taken by the Planck team, we find that the constraint on b in
M1ν is naturally a little looser than that in M1 and that the
2σ error of effective number of relativistic species Neff ¼
3.04þ0.41

−0.45 and 2σ upper bound on the mass sum of three
active neutrinos Σmν < 0.50 eV is larger than the predic-
tion Neff ¼ 2.89þ0.36

−0.38 and Σmν < 0.24 eV given by the
Planck Collaboration [2], respectively. Especially, the
improvement in resolving H0 tension in M1ν is just small
from 1.9σ to 1.8σ relative to M1. To show the alleviation of
H0 tension in fðTÞ gravity better, we plot the H0 − b
contour for M1 and M1ν. From Fig. 6, it is easy to see that
the addition of neutrinos enlarges the parameter space but
does not give an obvious enlargement in the H0 direction.
A very important task in fðTÞ gravity is to study the

degeneracy between the distortion parameter b and other
cosmological parameters. In Fig. 2, for M1, one can easily
find that H0 is strongly anticorrelated with b, which
indicates that the Universe has a larger expansion rate
with decreasing b. One the contrary, b is positively
correlated with Ωm0 and Ωb0, which implies that matter
and baryon densities of the Universe increase with increas-
ing b. Very different from M1, in M2 and M3, b is still

strongly degenerated with other parameters. This tells us
that, in M2 andM3, high-redshift information indicates that
the parameter b is very insensitive to the cosmic expansion
rate H0.
Note that previous works [31–34] also obtain similar

results for M2 and M3 by using low-redshift data. It is very
strange that M1 can resolve the H0 tension but M2 and M3
cannot. This issue has always been not noticed for a long
time. In the following analysis, we shall explain this in a
simple way. The most straightforward to address this issue
is to study the effect of variation of H0 on the distortion
factor yðz; b;Ωm0;Ωr0; H0Þ. Firstly, we choose H0 ¼
70 km s−1 Mpc−1 as the baseline value, assume b ¼ 0.1,
Ωm0 ¼ 0.3 and Ωr0 ¼ 8.47 × 10−5 for three fðTÞ models,
and then define the relative difference of distortion factor
ϵ as

ϵ≡ Δy
y

¼ yðz; 0.1; 0.3; 8.47 × 10−5; H0Þ − yðz; 0.1; 0.3; 8.47 × 10−5; 70Þ
yðz; 0.1; 0.3; 8.47 × 10−5; 70Þ ¼ yðz; 0.1; 0.3; 8.47 × 10−5; H0Þ

yðz; 0.1; 0.3; 8.47 × 10−5; 70Þ − 1: ð33Þ

The numerical results are displayed in Fig. 7. One can
easily find that the ϵ value always remains zero for M2 and
M3, while it increases gradually with increasing redshift for
M1. It indicates that the distortion factor y is insensitive to
theH0 variation at all redshifts for M2 and M3 but becomes
more and more sensitive to the H0 value with increasing
redshift for M1. This is the reason why the power-law
model M1 can resolve the H0 tension more efficiently than

exponential models M2 and M3 do. Actually, the insensi-
tivity of H0 to y for M2 and M3 can also be seen from
Eqs. (19) and (22). When z approaches z⋆ ∼ 1090, for given
parameters b, Ωm0 and Ωr0, the dimensionless Hubble
parameter EðzÞ tends to be very large, which naturally leads
to y ≈ 1. Differently, for M1, y and EðzÞ monotonically
increase with increasing z. Furthermore, by comparing
Eq. (16) with Eqs. (19) and (22), we obtain a conclusion

FIG. 7. The relation between the relative difference of dis-
tortion factor ϵ and redshift z for M1 (top), M2 (medium) and M3
(bottom). The magenta solid, blue dashed and red dotted
lines denote the ϵ − z relations when H0 ¼ 70, 67 and
73 km s−1 Mpc−1, respectively. For three fðTÞ models, we have
assumed b ¼ 0.1 and Ωm0 ¼ 0.3.
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that whether a viable fðTÞ theory can mitigate the H0

tension depends on the mathematical structure of y, i.e., the
specific choice of distortion factor.
As a complementary analysis, we also investigate the

evolutionary behaviors of effective EOS of dark energy in
three fðTÞ models in Fig. 8. For M1, we find that, when
adopting a larger redshift z, the EOS of dark energy tends to
depend linearly on the distortion parameter b and that,
when adopting a more positive or negative value of b, the
EOS not only monotonically increases but also deviates
from −1 more largely. Using the same analysis method for
M2 and M3, we find that, when taking a larger value of z,
their EOSs tend to have the same behavior as the EOS of
ΛCDM with increasing b and that, when fixing b, their

EOSs will converge to −1 quickly, regardless of the values
of b. This indicates that M2 and M3 have the same
behaviors as ΛCDM at high redshifts, which can also help
explain why M2 and M3 cannot relieve the H0 tension
at all.
It is worth noting that the alleviation of H0 in M1 is

based on the fact that we have obtained a lower mean value
of H0 but with a larger uncertainty than those in ΛCDM by
using the Planck CMB distance information. This implies
that the free parameter b in M1 is insensitive to CMB
distance data, enlarges the parameter space and conse-
quently leads to a large growth of uncertainty of H0. To be
more specific, the insensitiveness could be ascribed to the
power-law form ð−TÞb, where b is the power and,

FIG. 8. The effective equations of state of dark energy ωde as a function of the model parameter b or redshift z are shown for M1 (top),
M2 (medium) and M3 (bottom) models, respectively. The symbol “⋆” denotes the ΛCDMmodel in all cases. For three fðTÞmodels, we
have assumed H0 ¼ 70 km s−1 Mpc−1 and Ωm0 ¼ 0.3.
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generally, could not be well constrained by CMB data. We
think that it is still hard to compress the error of H0 in M1,
even if future CMB data have a higher precision than
Planck. In order to obtain a higher mean value and lower
error of H0 than those in ΛCDM, one may consider some
useful power-law forms of torsional scalar T or other
specific fðTÞ functions. As described above, our results
provide a good clue for theoreticians to construct a
physically reasonable fðTÞ function, which can be well
constrained by observations and give a great alleviation of
the Hubble tension.

V. CONCLUSIONS

Motivated by the large discrepancy in measurements of
H0 between local and global probes, we investigate
whether the teleparallel gravity equivalent to GR could
be a better solution to describe the present-day observations
or at least could alleviate the H0 tension. Specifically, in
this work we study and place constraints on three popular
fðTÞmodels in light of the Planck-2018 CMB data release.
We find that the fðTÞ power-law model can alleviate the

H0 tension from 4.4σ to 1.9σ level, while the fðTÞmodel of
two exponentials fails to resolve this inconsistency.
For the first time, using the Planck-2018 temperature,

polarization and lensing data, we obtain constraints on the
effective number of relativistic species Neff and on the sum
of the masses of three active neutrinos Σmν in fðTÞ gravity.

We find that the constraints obtained are looser than those
given by the Planck Collaboration under the assumption of
ΛCDM. The introduction of massive neutrinos into the
cosmological model does not improve theH0 tension in the
case of the exponential-law model. However, for the fðTÞ
power-law model, it does indeed alleviate the H0 tension.
Very interestingly, we find that whether a viable fðTÞ
theory can mitigate the H0 tension depends on the
mathematical structure of the distortion factor yðz; bÞ.
These results could provide a clue for theoreticians to
write a physically motivated expression of the fðTÞ
function.

ACKNOWLEDGMENTS

D.W. thanks Xiaodong Li and Ji Yao for useful
communications in HOUYI workshop. D.W. also thank
Shihong Liao and Jiajun Zhang for helpful discussions on
dark matter. D. W. is supported by the Super Postdoc
Project of Shanghai City, Ministry of Science
and Technology of China under Grant
No. 2017YFB0203300, National Nature Science
Foundation of China under Grants No. 11988101 and
No. 11851301. D. M. thanks the Research Council of
Norway for their support and the UNINETT Sigma2—
the National Infrastructure for High Performance
Computing and Data Storage in Norway.

[1] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[2] N. Aghanim et al. (Planck Collaboration), arXiv:1807
.06209.

[3] C. L. Bennett et al. (WMAP Collaboration), Astrophys. J.
Suppl. Ser. 208, 20 (2013).

[4] P. Ade et al. (Planck Collaboration), Astron. Astrophys.
571, A16 (2014).

[5] A. G. Riess et al. (Supernova Search Team), Astron. J. 116,
1009 (1998).

[6] S. Perlmutter, M. S. Turner, and M. White (Supernova
Cosmology Project), Phys. Rev. Lett. 83, 670 (1999).

[7] C. Blake and K. Glazebrook, Astrophys. J. 594, 665 (2003).
[8] H. J. Seo and D. J. Eisenstein, Astrophys. J. 598, 720

(2003).
[9] H. Hildebrandt et al., Mon. Not. R. Astron. Soc. 465, 1454

(2017).
[10] T. M. C. Abbott et al. (DES Collaboration), Phys. Rev. D 98,

043526 (2018).
[11] T. Hamana et al. (HSC Collaboration), Publ. Astron. Soc.

Jpn. 72, 16 (2020).
[12] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[13] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D.

Scolnic, Astrophys. J. 876, 85 (2019).

[14] N. Aghanim et al. (Planck Collaboration), Astron. As-
trophys. 596, A107 (2016).

[15] R. A. Battye, T. Charnock, and A. Moss, Phys. Rev. D 91,
103508 (2015).

[16] E. Macaulay, I. K. Wehus, and H. K. Eriksen, Phys. Rev.
Lett. 111, 161301 (2013).

[17] J. L. Bernal, L. Verde, and A. G. Riess, J. Cosmol. Astro-
part. Phys. 10 (2016) 019.

[18] G. Benevento, W. Hu, and M. Raveri, Phys. Rev. D 101,
103517 (2020).

[19] D. Wang and X. H. Meng, arXiv:1709.04141.
[20] S. Kumar, R. C. Nunes, and S. K. Yadav, Eur. Phys. J. C 79,

576 (2019).
[21] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski,

Phys. Rev. Lett. 122, 221301 (2019).
[22] D. Wang and X. H. Meng, Phys. Rev. D 96, 103516

(2017).
[23] D. Wang, Y. J. Yan, and X. H. Meng, Eur. Phys. J. C 77, 660

(2017).
[24] J. C. Hill, E. McDonough, M.W. Toomey, and S.

Alexander, Phys. Rev. D 102, 043507 (2020).
[25] S. Ghosh, R. Khatri, and T. S. Roy, arXiv:1908.09843.
[26] A. De Felice, C. Q. Geng, M. C. Pookkillath, and L. Yin,

J. Cosmol. Astropart. Phys. 08 (2020) 038.

CAN FðTÞ GRAVITY RESOLVE THE H0 TENSION? PHYS. REV. D 102, 063530 (2020)

063530-11

https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://arXiv.org/abs/1807.06209
https://arXiv.org/abs/1807.06209
https://doi.org/10.1088/0067-0049/208/2/20
https://doi.org/10.1088/0067-0049/208/2/20
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1103/PhysRevLett.83.670
https://doi.org/10.1086/376983
https://doi.org/10.1086/379122
https://doi.org/10.1086/379122
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1093/pasj/psz138
https://doi.org/10.1093/pasj/psz138
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.3847/1538-4357/ab1422
https://doi.org/10.1051/0004-6361/201628890
https://doi.org/10.1051/0004-6361/201628890
https://doi.org/10.1103/PhysRevD.91.103508
https://doi.org/10.1103/PhysRevD.91.103508
https://doi.org/10.1103/PhysRevLett.111.161301
https://doi.org/10.1103/PhysRevLett.111.161301
https://doi.org/10.1088/1475-7516/2016/10/019
https://doi.org/10.1088/1475-7516/2016/10/019
https://doi.org/10.1103/PhysRevD.101.103517
https://doi.org/10.1103/PhysRevD.101.103517
https://arXiv.org/abs/1709.04141
https://doi.org/10.1140/epjc/s10052-019-7087-7
https://doi.org/10.1140/epjc/s10052-019-7087-7
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1103/PhysRevD.96.103516
https://doi.org/10.1103/PhysRevD.96.103516
https://doi.org/10.1140/epjc/s10052-017-5212-z
https://doi.org/10.1140/epjc/s10052-017-5212-z
https://doi.org/10.1103/PhysRevD.102.043507
https://arXiv.org/abs/1908.09843
https://doi.org/10.1088/1475-7516/2020/08/038


[27] W. E. V. Barker, A. N. Lasenby, M. P. Hobson, and W. J.
Handley, Phys. Rev. D 102, 024048 (2020).

[28] R. Aldrovandi and J. G. Pereira, Teleparallel Gravity: An
Introduction (Springer, Dordrecht, 2013).

[29] Y. F. Cai, S. Capozziello, M. De Laurentis, and E. N.
Saridakis, Rep. Prog. Phys. 79, 106901 (2016).

[30] G. R. Bengochea and R. Ferraro, Phys. Rev. D 79, 124019
(2009).

[31] P. Wu and H.W. Yu, Phys. Lett. B 693, 415 (2010).
[32] S. Nesseris, S. Basilakos, E. N. Saridakis, and L.

Perivolaropoulos, Phys. Rev. D 88, 103010 (2013).
[33] R. C. Nunes, S. Pan, and E. N. Saridakis, J. Cosmol.

Astropart. Phys. 08 (2016) 011.
[34] F. K. Anagnostopoulos, S. Basilakos, and E. N. Saridakis,

Phys. Rev. D 100, 083517 (2019).
[35] A. Awad, W. El Hanafy, G. G. L. Nashed, and E. N.

Saridakis, J. Cosmol. Astropart. Phys. 02 (2018) 052.
[36] V. F. Cardone, N. Radicella, and S. Camera, Phys. Rev. D

85, 124007 (2012).
[37] S. Camera, V. F. Cardone, and N. Radicella, Phys. Rev. D

89, 083520 (2014).

[38] R. Weitzenböck, Invariantentheorie (Noordhoff, Gronningen,
1923).

[39] E. V. Linder, Phys. Rev. D 81, 127301 (2010); 82, 109902
(E) (2010).

[40] K. Bamba, C. Q. Geng, C. C. Lee, and L. W. Luo, J. Cosmol.
Astropart. Phys. 01 (2011) 021.

[41] B. Li, T. P. Sotiriou, and J. D. Barrow, Phys. Rev. D 83,
104017 (2011).

[42] C. Li, Y. Cai, Y. F. Cai, and E. N. Saridakis, J. Cosmol.
Astropart. Phys. 10 (2018) 001.

[43] A. Golovnev and T. Koivisto, J. Cosmol. Astropart. Phys. 11
(2018) 012.

[44] Z. Zhai and Y. Wang, J. Cosmol. Astropart. Phys. 07 (2019)
005.

[45] W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996).
[46] J. Lesgourgues and S. Pastor, New J. Phys. 16, 065002 (2014).
[47] Z. Zhai, C. G. Park, Y. Wang, and B. Ratra, J. Cosmol.

Astropart. Phys. 07 (2020) 009.
[48] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J.

Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013).
[49] A. Lewis, arXiv:1910.13970.

DENG WANG and DAVID MOTA PHYS. REV. D 102, 063530 (2020)

063530-12

https://doi.org/10.1103/PhysRevD.102.024048
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1016/j.physletb.2010.08.073
https://doi.org/10.1103/PhysRevD.88.103010
https://doi.org/10.1088/1475-7516/2016/08/011
https://doi.org/10.1088/1475-7516/2016/08/011
https://doi.org/10.1103/PhysRevD.100.083517
https://doi.org/10.1088/1475-7516/2018/02/052
https://doi.org/10.1103/PhysRevD.85.124007
https://doi.org/10.1103/PhysRevD.85.124007
https://doi.org/10.1103/PhysRevD.89.083520
https://doi.org/10.1103/PhysRevD.89.083520
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.82.109902
https://doi.org/10.1103/PhysRevD.82.109902
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1088/1475-7516/2011/01/021
https://doi.org/10.1103/PhysRevD.83.104017
https://doi.org/10.1103/PhysRevD.83.104017
https://doi.org/10.1088/1475-7516/2018/10/001
https://doi.org/10.1088/1475-7516/2018/10/001
https://doi.org/10.1088/1475-7516/2018/11/012
https://doi.org/10.1088/1475-7516/2018/11/012
https://doi.org/10.1088/1475-7516/2019/07/005
https://doi.org/10.1088/1475-7516/2019/07/005
https://doi.org/10.1086/177989
https://doi.org/10.1088/1367-2630/16/6/065002
https://doi.org/10.1088/1475-7516/2020/07/009
https://doi.org/10.1088/1475-7516/2020/07/009
https://doi.org/10.1086/670067
https://arXiv.org/abs/1910.13970

