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We present a concrete realization of the sound speed resonance (SSR) mechanism for primordial black
hole (PBH) formation within a specific model of Dirac-Born-Infeld (DBI) inflation. We perform a
perturbative approach to phenomenologically construct such a viable DBI inflation model that involves the
nonoscillating stage and the oscillating stage, with a type of specific forms of the warp factor and the
potential. We show that the continuous but nonsmooth conjunction of sound speed between two stages does
not yield manifest effects on the phenomenology of SSR, and thus, our model gives rise to the same PBH
mass spectrum as the original predictions of SSR. Additionally, we also demonstrate that the violation of
adiabaticity of the Mukhanov-Sasaki equation does not affect the comoving curvature perturbation after
Hubble crossing in the nonresonant region. Making use of observational data, we derive various
cosmological constraints on the parameter space. Our analyses show that the predicted tensor-to-scalar
ratio is typically small, while the amplitude of primordial non-Gaussianity can meet with cosmic
microwave background bounds, and additionally, the consistency relation for single-field slow-roll
inflation is softly violated in our case due to the small sound speed variations.
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I. INTRODUCTION

Primordial black holes (PBHs) may be formed from
density fluctuations in the very early Universe [1–3], which
can be tested through their effects on a variety of cosmo-
logical and astronomical processes. In this regard, PBHs
can serve as an inspiring tool to probe physics in the very
early Universe [4,5]. In particular, PBHs could be a
candidate for (a fraction of) dark matter (DM), which
has drawn a lot of attention [6,7]. With various forthcoming
experimental facilities in gravitational-wave (GW)
astronomy, the GW survey has become a promising
window to reveal physical processes of PBH formation.
There are already many works upon GWs associated with
PBHs, for instance, GWs generated by PBH mergers
[8–10], and the induced GWs from the enhanced primordial
density perturbations associated with PBH formation
[11–20]. Some high-density regions of the very early
Universe are expected for PBH formation. One possibility
is that there were large primordial inhomogeneities and
the resulting overdense regions might collapse to form

PBHs [21]. This motivates many studies of generating
PBHs, which require a power spectrum of primordial
density perturbations to be suitably large on certain scales
that are associated with a particularly tuned background
dynamics of quantum fields in the very early Universe (e.g.,
see [22–38] for studies within inflation, see [39–42] for
discussions within bounce, and see [5] for recent compre-
hensive reviews).
Recently, a novel mechanism for PBH formation by virtue

of sound speed resonance (SSR)was proposed in [43], where
itwas found that an oscillating sound speed squared canyield
nonperturbative parametric amplification on certain pertur-
bation modes during inflation. Accordingly, the power
spectrum of primordial density perturbations can have a
narrow major peak on small scales, while it remains nearly
scale invariant on large scales as predicted by inflationary
cosmology. Several minor peaks of the power spectrum on
smaller scales are also predicted in this mechanism and can
yield secondary contributions. As a result, the formation of
PBHs caused by the resulting peaks in SSR can be much
efficient. Moreover, it was found in [17] that the GWs
inducedwithin SSR at the sub-Hubble scales during inflation
could become crucial at critical frequency band due to a
narrow resonance effect, and hence the spectrum of GWs
with double peaks is typically predicted. Additionally, the
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SSR mechanism can also be generalized to the inflaton-
curvaton mixed scenario [44], in which the curvaton
propagates with a time-oscillating sound speed during
inflation, while the inflaton leads to the standard adiabatic
perturbations.
So far, the underlying physics as well as the model

realization of SSR, however, are not yet clear. Therefore, in
this paper we perform a preliminary investigation on the
phenomenological realization of SSR. The nontrivial sound
speed is a distinctive feature of noncanonical inflationary
scenarios, e.g., k-inflation [45,46], Dirac-Born-Infeld
(DBI) inflation [47,48] and so on. Specifically, we consider
a DBI type of inflation models, which are inspired by string
theory with the inflaton field being regarded as the radial
position of branes moving inside a warped throat. The
scenario of DBI inflation requires the velocity of inflaton to
be restricted by the combined effects of the speed limit
inherent in the DBI model and the shape of the inflaton’s
potential, such as the UV [47,48] and IR models [49]. Thus,
by allowing the inflaton’s sound speed to oscillate for a
while during inflation, the specific forms of the warp factor
and the potential are expected. Accordingly, the crucial step
of our attempt on realizing the SSR mechanism is to pin
down these two quantities. To do so, we develop a
perturbative approach to search for a viable DBI model
in the context of a modified anti–de Sitter (AdS) throat, and
the corresponding potential is derived by using the
Hamilton-Jacobi formalism. To confront with current
observations of primordial power spectra and non-
Gaussianities, we can obtain the constraints on the param-
eter space of this model.
This article is organized as follows. In Sec. II, we

describe semianalytically the background evolution of
DBI inflation. Then, we in Sec. III derive the requirements
for the warp factor and the evolution of inflaton that allows
an oscillating sound speed. A perturbative approach is
developed to accomplish the requirements on background
dynamics, and the potential is acquired by resorting the
Hamilton-Jacobi formalism. Afterwards, we in Sec. IV
discuss the theoretical viability of the reconstructed DBI
realization of the SSR mechanism. After that, we in Sec. V
derive observational constraints of our model by analyzing
the power spectra, spectrum index, tensor-scalar ratio and
non-Gaussianities. We summarize our results with a dis-
cussion in Sec. VI. Throughout the article, we work in
natural units c ¼ ℏ ¼ 1 and the reduced Planck mass is
defined as Mp ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
. Additionally, a dot denotes the

cosmic time derivative, a prime denotes the derivative with
respect to the inflaton ϕ, and the notation of a comma
means the derivative.

II. DBI INFLATION

Inflation is a prevailing theoretical paradigm of the very
early Universe and is strongly favored by cosmological
observations, such as cosmic microwave background

(CMB) surveys [50,51]. However, the microscopic nature
of the inflaton remains mysterious. In the standard model of
single-field slow-roll inflation, the slow-roll condition
requires a sufficiently flat potential to drive the inflationary
expansion. Therefore, it is a key question to find a
dynamical realization of such a flat potential in funda-
mental theory. An attractive attempt is to embed inflation
into string theory and the corresponding models are
roughly separated into two categories, depending on
whether inflation is a closed string mode (e.g., Kähler
moduli inflation [52]) or an open string mode (e.g., brane
inflation [53,54], DBI inflation [47,48]). In particular, the
DBI model that yields a deviation of primordial sound
speed from unity has attracted numerous phenomenological
interest, namely, the applications to the curvaton [55–57],
the multiple sound speed propagations [58–60], and the
interpretation of the hemispherical asymmetry anomaly
[61–63].
The DBI action is written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðϕÞ−1ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2fðϕÞX

p
Þ − VðϕÞ�; ð1Þ

where X ¼ − 1
2
gμν∇μϕ∇νϕ, and fðϕÞ is the redefined warp

factor. For the well-studied AdS throat [64], fðϕÞ ¼ λ=ϕ4

with λ being a positive constant, and the form can be
phenomenologically deformed depending on the desired
model construction. In the spatially flat Friedmann-
Lemaître-Robertson-Walker background, there is X ¼
_ϕ2=2 for a homogeneous scalar field ϕ. Moreover, the
homogeneous part of the equation of motion (EoM) for a
DBI scalar field can be derived from the action (1) by
variational principle:

ϕ̈þ3Hc2s _ϕþc3sV 0ðϕÞþ f0ðϕÞ
2fðϕÞ

�
1−

2c2s
1þcs

�
_ϕ2 ¼ 0; ð2Þ

where H is the Hubble parameter and the sound speed
squared is defined as

c2s ¼ 1 − fðϕÞ _ϕ2; ð3Þ

measures the propagation speed of the field fluctuations
[46]. The energy density and the pressure of the DBI field
are given by

ρ ¼ γ2

1þ γ
_ϕ2 þ VðϕÞ; P ¼ γ

1þ γ
_ϕ2 − VðϕÞ; ð4Þ

where we have introduced the Lorentz factor γ as follows:

γ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðϕÞ _ϕ2

q ¼ 1

cs
; ð5Þ
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which tracks the motion of the mobile brane in a warped
throat [47]. Since the proper velocity of the brane is
vp ¼ ffiffiffiffiffiffiffiffiffiffi

fðϕÞp
_ϕ, a large value with γ ≫ 1 corresponds to

the relativistic motion of the brane. Oppositely, in the
nonrelativistic limit with f _ϕ2 ≪ 1, the DBI action (1)
reduces back to the standard canonical form, which is the
regular single-field slow-roll model with the action
being S ¼ R

d4x
ffiffiffiffiffiffi−gp ðX − VðϕÞÞ.

The most intriguing feature of the DBI field is that the
positivity of the square roots in DBI action (1) and the
Lorentz factor (5) impose a constraint upon the time-
varying ϕ:

_ϕ2 ≤
1

fðϕÞ : ð6Þ

This constraint is irrespective of the shape of inflaton’s
potential VðϕÞ and only subject to the structure of the warp
factor fðϕÞ. It is easy to see from (6) that the larger fðϕÞ
leads to the smaller rolling velocity for ϕ. For instance, for
an AdS-like warp factor, fðϕÞ ¼ λ=ϕ4 becomes large in the
IR regime of the throat and hence, inflation could happen
near the tip of the throat even with a steep potential of VðϕÞ
[49]. The nontrivial sound speed squared c2s intrinsically
appears in DBI inflation (3), which is expected to yield the
SSR phenomenology as shall be discussed.
The Friedmann equations read

H2 ¼ 1

3M2
p

�
γ2

1þ γ
_ϕ2 þ VðϕÞ

�
; ð7Þ

_H ¼ −
1

2M2
p
γ _ϕ2: ð8Þ

In order to solve the coupled Friedman equations (7)
and (8) more conveniently, we resort to the Hamilton-
Jacobi formalism [47], in which the field ϕ is regarded as
the time variable, and this requires that ϕ is monotonic.
From now on, all the undetermined functions ðH;V; γ; fÞ in
the above equations are functions of ϕ. Note that the EoM
(2) can also be obtained from the above Friedmann
equations (7) and (8), so that one can avoid using the
complicated form of the EoM (2) explicitly in the
Hamilton-Jacobi formalism.
Using the relationship H;ϕ

_ϕ ¼ _H, Eq. (8) becomes

H0ðϕÞ ¼ −γðϕÞ
_ϕ

2M2
p
: ð9Þ

In the standard inflationary scenario where γ ¼ 1, one
acquires the relation H0ðϕÞ ¼ − _ϕ=2M2

p. Using Eq. (7), the
potential VðϕÞ is given by

VðϕÞ ¼ 3M2
pHðϕÞ2 − 1

fðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M4

pfðϕÞ½H0ðϕÞ�2
q

þ 1

fðϕÞ : ð10Þ

In the following section, one can see that the phenomeno-
logical oscillating sound speed determines the evolution of
inflaton ϕ by the relationship (3) when the specific form of
the warp factor fðϕÞ is given. Then, the parametrized
Hubble parameterHðϕÞ is derived from (9). Finally, we can
obtain the inflaton’s potential VðϕÞ by plugging the
functions fðϕÞ and HðϕÞ into (10). Note that the inflaton’s
potential in principle comes from brane tensions and
interactions [65,66], but the form of potential is not known
in general. In this regard, we think of the inflaton’s potential
as an undetermined function in our model.

III. DBI REALIZATION OF SSR

In this section, we expect to construct a viable DBI
action that can realize the SSR mechanism by choosing the
specific forms of the warp factor fðϕÞ and the inflaton’s
potential VðϕÞ. It is suggested in SSR [43,44] that the
sound speed squared for the inflaton field is time evolving
during inflation and is parametrized as follows:

c2s ¼ 1 − 2ξ½1 − cosð2k�τÞ�; with τ > τs; ð11Þ

where ξ is a small dimensionless quantity that measures the
oscillation amplitude and k� is the oscillation frequency.
Note that ξ < 1=4 is required such that c2s is positively
definite, and the oscillation begins at τs, where k� needs to
be deep inside the Hubble radius with jk�τsj ≫ 1.
To realize the oscillating pattern (11) with DBI inflation,

the following matching condition derived from (3) and (11)
ought to be satisfied:

fðϕÞ
�
dϕ
dτ

�
2

¼ 2ξaðτÞ2½1 − cosð2k�τÞ�

≃
2ξ

ðϵ − 1Þ2
1 − cosð2k�τÞ

H2τ2
; ð12Þ

where we have adopted the quasi–de Sitter approximation
for the background evolution, i.e., the slow-roll parameter
is assumed to be a small constant, while the Hubble
parameter varies slowly, and then the scale factor behaves
as aðτÞ ≃ 1=ðϵ − 1ÞHτ. We show the validity of this
approximation in the later discussions. The analytic sol-
utions of fðϕÞ and ϕðτÞ can in principle be obtained by
solving Eqs. (2), (7), (9), and (12) simultaneously.
However, it is not easy to solve these strongly coupled
equations analytically. Also, since the warped geometry is
determined by the unknown compactification, the form of
the warp factor is not fixed in general, and it is convenient
to start with the well-studied AdS warp factor. Therefore,
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we perform a perturbative approach to solve the inflaton
evolution ϕðτÞ approximately, and the AdS throat is
allowed to be deformed slightly to yield the oscillating
pattern for the sound speed squared. As we shall see below,
the numerical results and the semianalytic ones match
reasonably well.
In the first step, the constant sound speed squared,

c2s ¼ 1 − 2ξ, can be realized in the AdS-like throat when
a specific evolution of ϕðτÞ is satisfied. Similar to the
matching condition (12), we derive the relation

λ

ϕ4

�
dϕ
dτ

�
2

¼ 2ξaðτÞ2 ≃ 2ξ

H2ðϵ − 1Þ2τ2 ; ð13Þ

and it is straightforward to solve ϕðτÞ to be

ϕðτÞ ≃
�
1

ϕi
�

ffiffiffiffiffi
2ξ

p

Hð1 − ϵÞ ffiffiffi
λ

p ln
τ

τi

�
−1
; ð14Þ

where ϕi is the field value at the conformal time τi that is set
to the beginning moment of inflation. Note that we also
adopt the approximation that H is regarded as a constant
when we solve for ϕðτÞ in (14), this is reasonable as H
varies slowly in the quasi–de Sitter expansion. The solution
(14) is also confirmed by the numerical results in Figs. 3
and 4. A more rigorous treatment is performed in the
Appendix, which also shows the validity of the approxi-
mated solution (14). Since the term lnðτ=τiÞ is always
negative during inflation, the “þ” sign refers to an
increasing ϕ associated with the case of IR DBI, while
“−” represents a decreasing solution corresponding to the
case of UV DBI. As the model UV DBI suffers from over
large non-Gaussianity [67,68], in the present study we
focus on the case of IR DBI. Therefore, we stick to the
increasing solution

ϕðτÞ ≃
�
1

ϕi
þ

ffiffiffiffiffi
2ξ

p

Hð1 − ϵÞ ffiffiffi
λ

p ln
τ

τi

�
−1
: ð15Þ

Moreover, the conformal time can be expressed in terms of
the inflaton field ϕ as

τ ¼ τi exp

�
Hð1 − ϵÞ ffiffiffi

λ
pffiffiffiffiffi

2ξ
p ðϕ−1 − ϕ−1

i Þ
�
: ð16Þ

The next step is to involve the oscillating feature
cosð2k�τÞ into the sound speed squared. Since the ampli-
tude of oscillation can be quite small (i.e., ξ < 1=4) from
(11), the natural consideration is to regard this oscillating
term as a consequence of small classical perturbation of the
warp factor fðϕÞ or inflaton’s evolution ϕðτÞ or both of
them in the above step. As the dynamical evolution of ϕðτÞ
must satisfy Eq. (2), which is quite difficult to be solved
analytically, we suggest to phenomenologically modify
fðϕÞ to embed the additional oscillating term into the

sound speed squared. We would like to clarify that the
search for such a solution of the warp factor from some
exact string compactification is beyond the scope of this
article, and leave it as an open question for future study.
In our perturbative approach, the evolution of ϕðτÞ in

(15) remains almost unchanged. Thus, the small deviation
of the warp factor fðϕÞ is written as

fðϕÞ ¼ λþ δðϕÞ
ϕ4

: ð17Þ

Note that the classical perturbative function δðϕÞ can be
solved from the matching conditions (12) and (13), and the
solution of ϕ in (15), which yield

δðϕÞ ¼ −λCðϕÞ;

CðϕÞ≡ cos

�
2k�τs exp

�
Hð1 − ϵÞ ffiffiffi

λ
pffiffiffiffiffi

2ξ
p

�
1

ϕ
−

1

ϕs

���
; ð18Þ

where ϕs ¼ ϕðτsÞ is the field value at the beginning
moment of the oscillating stage. Accordingly, the warp
factor becomes

fðϕÞ ¼ λ½1 − Θðϕ − ϕsÞCðϕÞ�
ϕ4

; ð19Þ

where the Heaviside step function Θðϕ − ϕsÞ is introduced
to simply represent the beginning moment of sound speed
oscillation in (11). Thus, our model involves the non-
oscillating stage and the oscillating stage regarding the
sound speed squared c2s for the inflaton field during
inflation, which is shown in Fig. 1 schematically. Before
the beginning time τs of sound speed oscillation, the sound
speed squared is fixed to c2s ¼ 1 − 2ξ with an AdS warp

FIG. 1. The schematic diagram of the sound speed squared c2s
of SSR within DBI inflation. The red straight line refers to the
nonoscillating stage before the beginning moment of SSR τs,
while the blue curve represents the oscillating stage required by
SSR from τs to a moment near the end of inflation τend. The warp
factor takes the standard form fðϕÞ ¼ λ=ϕ4 in the nonoscillating
stage, and then deforms to fðϕÞ ¼ ðλþ δðϕÞÞ=ϕ4 in the oscillat-
ing stage.
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factor fðϕÞ ¼ λ=ϕ4; when entering the oscillating stage
τs < τ < τend, c2s oscillates periodically between 1 − 4ξ and
1 with the deformed warp factor fðϕÞ ¼ ðλþ δðϕÞÞ=ϕ4.
We stress that the time evolution of inflaton ϕðτÞ over the
whole stages including the nonoscillating stage and the
oscillating stage has the unique solution (15). We also
notice that, as opposed to the original SSRmechanism [43],
where the sound speed is assumed to start oscillating from
c2s ¼ 1 to c2s ¼ 1 − 2ξ½1 − cosð2k�τÞ� smoothly, the con-
junction of the sound speed in our model here is slightly
different, i.e., converting from c2s ¼ 1 − 2ξ to c2s ¼
1 − 2ξ½1 − cosð2k�τÞ�, which is continuous but not smooth
(the first time derivative of sound speed is not continuous).
However, our analysis in Sec. IV shows that the narrow
resonance effect in the SSR mechanism is barely influenced
by this nonsmoothing conjunction of sound speed at the
beginning moment of the oscillating stage.
The warp factors in the nonoscillating stage and in the

oscillating stage are shown in Fig. 2, and in light of the
observational bounds on the parameter space of our model
discussed in Sec. V, we choose the values of parameters as
λ ¼ 2 × 109, H0 ¼ 10−5Mp, ξ ¼ 0.1 and Ns ¼ 21. One
can read from the plot that the warp factors share the same
power-law form of fðϕÞ ∝ ϕ−4 in both stages after modul-
ing the oscillating feature. Also, we mention that the warp
factor fðϕÞ starts to oscillate rapidly when it enters the
oscillating phase and then behaves like fðϕÞ ∝ ϕ−4 near the
end of inflation.
After that, we solve the Hubble parameter HðϕÞ and the

potential VðϕÞ with the Hamilton-Jacobi formalism. Using
the solution (15), Eq. (9) reads

H0ðϕÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ

2λ½1 − 2ξð1 − Θðϕ − ϕsÞCðϕÞÞ�

s
ϕ2

M2
p
: ð20Þ

Although the above equation is quite complicated to get
an exact analytical solution, one can still solve it in the
nonoscillating stage by applying c2s ¼ 1 − 2ξ, which yields

H0ðϕÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ

2λð1 − 2ξÞ

s
ϕ2

M2
p
; ð21Þ

and thus, one obtains

HðϕÞ ¼ H0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ

2λð1 − 2ξÞ

s
ϕ3

3M2
p
; ð22Þ

where H0 ¼ HðϕiÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ
2λð1−2ξÞ

q
ϕ3
i

3M2
p
. Plugging (22) into

(10) to obtain the approximate solution of the potential,

VðϕÞ ¼ 3H2
0M

2
p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξ

λð1 − 2ξÞ

s
H0ϕ

3 þOðϕ4Þ: ð23Þ

0.05 0.10 0.15 0.20 0.25

0

5

10
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10

15

FIG. 2. Thewarp factors in the nonoscillating stagefðϕÞ ¼ λ=ϕ4

(the blue curve) and in the oscillating stage fðϕÞ ¼ ðλþ δðϕÞÞ=ϕ4

(the orange curve). The green dashed line represents the beginning
moment of the oscillating stage. The parameter values are chosen to
be λ ¼ 2 × 109, H0 ¼ 10−5Mp, ξ ¼ 0.1 and Ns ¼ 21.
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FIG. 3. The forms of the Hubble parameter and the inflaton’s
potential as functions of ϕ from the beginning ϕi to the end of
inflation ϕend. The green dashed lines refer to the beginning of the
oscillating stage. The comparisons between the approximate
results (22) and (23) and the numerical results in the oscillating
stage are made by the blue dashed curves and the orange curves,
respectively. The parameter values are chosen to be λ ¼ 2 × 109,
H0 ¼ 10−5Mp, ξ ¼ 0.1 and Ns ¼ 21.
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As a long period of inflation can occur near the top of the
potential, the first two terms in the potential (23) dominate.
Moreover, due to the fact that throughout the whole

analysis ξ is a small quantity, the solutions of the Hubble
parameter HðϕÞ in (22) and the potential VðϕÞ in (23) can
approximately hold in both the nonoscillating and the
oscillating stages, which have been confirmed by numerical
analyses, see Fig. 3. We integrate Eq. (20) numerically in
the oscillating stage and then insert the corresponding result
into (10) to calculate the potential. One can see that, when
inflaton occurs around the top of the potential in (23), the
Hubble parameter in (22) is nearly a constant H ≃H0.
The inflaton’s potential VðϕÞ ≃ 3H2

0M
2
p is roughly a con-

stant as well at the beginning of inflation. Therefore, the
assumption of the quasi–de Sitter background made in the
semianalytical calculation is reliable, which can also be
read from the comparison with numerical estimations.

IV. THEORETICAL VIABILITY

According to the previous section, we have arrived at a
concrete DBI realization for SSR with a specific warp
factor in (19) and the inflaton’s potential in (23). Moreover,
in order to test the theoretical viability of this reconstructed
model, we in this section make the detailed investigations
combined with relevant discussions.

A. The numerical analysis of inflaton evolution

For a set of different values for λ [or equivalently,
different values of the field value ϕend at the end of inflation
through Eq. (34)], the comparisons between the numerical
results and the semianalytical approximations of the evo-
lutions of inflaton field ϕ along with the e-folding number
N (15) are presented in Fig. 4. In the numerical calcu-
lations, the expressions of the warp factors in the

nonoscillating stage and the oscillating stage are regarded
as the inputs of our model. After that, the numerical
analyses for the evolutions of ϕ are accomplished by virtue
of the matching conditions (12) and (13), and also the
background equation (9), for the phenomenological sound
speed squared c2s . One can read from Fig. 4 that our
semianalytical solution in (15) is good enough to describe
the evolution of the inflaton field in both the nonoscillating
and oscillating stages. Note that the e-folding number here
is defined as N ≡ ln aðτendÞ=aðτÞ which measures the
number of e-folds from the moment τ to the end of
inflation τend. Hence, N ¼ 0 represents the end of inflation
and larger N corresponds to the earlier time during
inflation. These results also demonstrate the validity of
our perturbative approach that was used to reconstruct such
a concrete DBI realization for SSR.

B. PBH mass function

As we have mentioned in Sec. III, the conjunction of the
sound speed at the beginningmoment of the oscillating stage
in our model is continuous but not smooth in contrast to the
original SSRmechanism.Thus, it is necessary to examine the
possible influence of this nonsmooth conjunction of sound
speed on the SSR phenomenology. Analogous to the
treatments in [43,44], we introduce a canonical variable
v≡ zζ for the comoving curvature perturbation ζ, where
z ¼ ffiffiffiffiffi

2ϵ
p

Mpa=cs. The evolution of a Fourier mode of this

variable vkðτÞ satisfies theMukhanov-Sasaki equation d2vk
dτ2 þ

ðc2sk2 − 1
z
d2z
dτ2Þvk ¼ 0 [69,70]. We numerically solve this

equation by setting the initial mode in the nonoscillating
stage to the renormalized Bunch-Davies (BD) vacuum, i.e.,
vkðτÞ ¼ e−i

ffiffiffiffiffiffiffiffi
1−2ξ

p
kτ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ξ

p
k

p
. The results in the upper

panel of Fig. 5 imply that in the quasi–de Sitter approxima-
tion, the evolutions ofvkðτÞ in the resonant regime around the
characteristic scale k� (the grey solid curve) in theDBImodel
match very well with the results of the original SSR (the blue
dashed curve) [43,44], as well as the exact numerical results
of DBI SSR (the red solid curve), which can be solved out by
combining the matching condition (12), the background
evolution (9) and the warp factor (19). The above compar-
isons indicate that SSR is dominated by the narrow resonance
effect in the oscillating stage, and insensitive to the non-
smooth conjunction of sound speed at the beginningmoment
of the oscillation. Consequently, the fraction of PBH against
the total dark matter density fPBH ≡ΩPBH=ΩDM, where
ΩPBH and ΩDM are the corresponding normalized energy
densities of PBHs and dark matter at the present time, is
expected to be the same as the original SSR [43,44], which is
presented in the lower panel of Fig. 5.
Additionally, regarding the general speed limit on DBI

models (6), we derive the bound on the amplitude of sound
speed oscillation ξ in SSR by the background solution (15)
and the warp factor (17), i.e.,

2. 109
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2. 1010

0 10 20 30 40 50
0.0
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FIG. 4. Numerical (the dashed curves) and semianalytical
results (the solid curves) of the evolutions of the inflaton field
ϕ with different values of λ. The green dashed line denotes the
beginning of the oscillating stage. The parameter values are
chosen to be H0 ¼ 10−5Mp, ξ ¼ 0.1 and Ns ¼ 21.
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ξ ≤
λ

2ðλþ δðϕÞÞ ; ð24Þ

and thus, ξ < 1
2
is required in the nonoscillating stage

τ < τs and ξ ≤ 1
4
in the oscillating stage τs < τ < τend.

Accordingly, in the SSR mechanism where ξ < 1
4

is
required for the positivity of c2s [17,43,44], the speed limit
(6) is always satisfied. In the nonoscillating stage, Eq. (24)
also implies that a small amplitude of ξ corresponds to the
nonrelativistic motion of DBI inflaton. In fact, from the

string theory perspective, the velocity of a brane in
the oscillating stage may be estimated as vp ¼ffiffiffiffiffiffiffiffiffiffi
fðϕÞp

_ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξð1þ δ=λÞp

, which evolves between 0 and
2

ffiffiffi
ξ

p
.

C. Parameter space

Furthermore, we would like to comment that there are
three categories of model parameters. The first class is the
microscopic parameter λ, which appears in the warp factor.
Making use of experimental bounds on the amplitude of
primordial density perturbation, we derive λ≳ 1.3 × 109

for ξ ¼ 0.1, which can be seen from the constraint (43) and
the discussions in Sec. V B. The second class is the
parameter of the inflationary background, namely, H0 ¼
10−5Mp is applied in this work. The values of H0 and λ
restrict the slow-roll parameter (26) to be around ϵ̃ ≃ 0.001,
which will be shown in Sec. V B. The last class concerns
the SSR parameters. For the characteristic scale k�, we fix
−k�τs ≃ eΔN� ¼ 200 or ΔN� ≃ 5.3, which corresponds to
the e-folding number from τs to Hubble exit of k�
[17,43,44]. It is straightforward to convert the conformal
time into the numbers of e-folds: −k�τ ≃ −k�τseN−Ns ,
where N is the e-folding number from τ to the end of
inflation τend, and Ns is the e-folding number from τs to
τend. Using the horizon-mass approximation for the PBH
mass at the reentry of Hubble radius, one can relate the Ns

to the PBH mass M� as Ns ¼ lnðτs=τendÞ ≃ 40þ
1
2
lnðM�=M⊙Þ [5], where M� is the horizon mass at the

scale k� andM⊙ is the solar mass. For instance, a PBH with
mass 1017 g corresponds to the e-folding number Ns ≃ 21.
Accordingly, the evolution of ϕ with the numbers of

e-folds can be expressed roughly as ϕðNÞ ≃ ½ϕ−1
i þffiffiffiffi

2ξ
p

Hð1−ϵÞ ffiffi
λ

p ðN − NendÞ�−1 from the solution (15), where N

is the e-folding number from τ to the end of inflation τend,
and then the approximate field value at the beginning of the
oscillating phase is calculated as, for example, ϕs ¼
ϕðτsÞ ¼ ϕðNs ¼ 21Þ ≃ 0.04Mp by setting λ ¼ 2 × 109,
Ns ¼ 21 and Nend ¼ 55.

D. Adiabaticity analysis

One may be concerned about whether the adiabatic
condition of the Mukhanov-Sasaki equation d2vk

dτ2 þ
ðc2sk2 − 1

z
d2z
dτ2Þvk ¼ 0 is violated or not when the time-

oscillating sound speed (11) is introduced in SSR mecha-
nism, i.e., we need to examine the adiabatic condition
jω0=ω2j ≪ 1 holds or not during the oscillating stage
τs < τ < τend, where ω2 ≡ c2sk2 − 1

z
d2z
dτ2. The following

analysis demonstrates that the evolution of the curvature
perturbation ζk is not affected by the violation of adiabatic
condition of vk. The key point is that the Mukhanov-Sasaki
variable vk is not a true physical quantity, and the apparent
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FIG. 5. Upper: Mode functions derived from the original SSR
and the DBI SSR models, respectively. The evolutions of the
resonating modes under the quasi–de Sitter approximation for the
nonsmooth conjunction of DBI SSR (the grey dashed curve) and
for the smooth conjunction of original SSR (the blue dashed
curve) match well, and the exact numerical results in DBI SSR
(the red solid curve) also match with them to a certain extent. The
brown solid line denotes a nonresonating mode k ≠ k�. The
growth of mode function is estimated as jvkcðτÞj ∝ expðξk�τ=2Þ
(the green solid curve). Lower: The mass spectrum of PBH fPBH
in the DBI SSR, for different values of k�. The colored shadow
areas refer to various astronomical constraints displayed in Fig. 1
of [71]: constraints from evaporations (red), lensing (blue),
gravitational waves (grey), dynamical effects (green), accretion
(purple) and CMB distortions (orange).
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violation stems from the definition vk ≡
ffiffiffiffiffi
2ϵ

p
Mpla=csζk

involving the nontrivial sound speed cs which oscillates
rapidly at the early stage of the oscillation, while the real
physical mode ζk behaves well (similar to the BD vacuum in
the nonresonant region). We also show that the final power
spectra in the nonresonant region k < k� are barely affected
by the nontrivial sound speed (11) after Hubble crossing.
In the usual slow-roll case, the sound speed is equal to

the speed of light cs ¼ 1 during the whole inflationary
expansion, and we yield jω0=ω2j ¼ 2

ðk2−2=τ2Þ3=2ð−τÞ3.
Obviously, the adiabatic condition is always violated at
the Hubble crossing (around the singularity k ¼ −

ffiffiffi
2

p
=τ),

which is consistent with the usual statement that the
classical perturbations generate at the horizon crossing.
In the SSR mechanism, this adiabatic condition is indeed
violated, as shown in Fig. 6. It is clear that the adiabatic
condition of vk is badly violated in the nonresonant region
k < k�, i.e., jω0=ω2j ≪ 1 does not hold even at the super-
Hubble scale for some small kmodes, which seems to mean
that the long-wave perturbations would still evolve after
Hubble crossing in the SSR mechanism.
It is not surprising that the evolution of vk violates the

adiabatic condition, the major reason is that the time-
oscillating cs is introduced in the definition of vk. However,
the real physical quantity ζk always behaves well, freezes
after Hubble crossing. Figure 7 shows that the evolution of
ζk oscillates inside the Hubble radius due to the Mathieu
solution of vk in the SSR mechanism [43,44], and stops at
Hubble crossing, which matches well with the evolutions of
BD vacua (ξ ¼ 0) which are represented by the dashed
lines. The evolutions of vk are also similar to the BD modes
at the sub- and super-Hubble scales. So, the violation of the
adiabatic condition of vk does not affect the evolution of the
curvature perturbation ζk at the super-Hubble scales in SSR

mechanism. However, the violation of the adiabatic con-
dition seems to be problematic when we embed the SSR
mechanism into an effective field theory framework [72].
Let us stress that the goal of this paper is to present a
phenomenological realization of the SSR mechanism in the
context of single field DBI inflation, which is a preliminary
investigation on the phenomenological realization of SSR.
In this sense, embedding the SSR mechanism into a UV
completion theory is still a compelling problem in the
follow-up study.

V. CONSTRAINTS

In the previous section, we have performed a perturba-
tive approach to achieve SSR in the context of DBI inflation
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FIG. 6. j ω0
ω2 j as a function of k at different conformal times

τ ¼ ð−100;−20;−1;−0.01Þ in the SSR mechanism (de Sitter
approximation for the background evolution) with the time-
oscillating sound speed (11). The vertical lines at k ¼ −

ffiffiffi
2

p
=ðτcsÞ

and the horizontal lines at the small value 0.01. We fix ξ ¼ 0.1
and k� ¼ 10.
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FIG. 7. The comparison of the evolutions of mode functions vk
and ζk in the nonresonant region kð¼ 0.1; 1Þ < k�ð¼ 10Þ be-
tween the SSR mechanism (ξ ¼ 0.1) and the BD vacua (ξ ¼ 0).
The solid lines represent the evolutions of vk and ζk in the de
Sitter background in the SSR mechanism [43,44], both of which
match well with that of the BD vacua that are depicted by the
dashed lines.
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with a specific warp factor (19) and the inflaton’s potential
(23). It is well known that, for noncanonical inflation
models, a nontrivial sound speed of inflaton can yield
observable effects that are distinct from that of the regular
model of canonical slow-roll inflation, e.g., a modified
inflationary consistency relation and potentially large
primordial non-Gaussianities [47,68,73,74]. In the follow-
ing, we shall discuss these observables and their constraints
on our model.

A. The number of e-folds

In order to study the power spectra generated in DBI
inflation, we introduce the following set of slow-roll
parameters:

ϵ≡ −
_H
H2

; η≡ _ϵ

ϵH
; κ ≡ _cs

Hcs
; ð25Þ

which measure the variations of the Hubble parameter H,
the first slow-roll parameter ϵ, the sound speed cs, with
respect to each Hubble time, respectively. After that, we
also introduce the following redefined slow-roll parameters
in the context of the Hamilton-Jacobi formalism that we
have used in the previous section,

ϵ̃≡ 2M2
p

γ

�
H0ðϕÞ
HðϕÞ

�
2

; ð26Þ

η̃≡ 2M2
p

γ

H00ðϕÞ
HðϕÞ ; ð27Þ

κ̃≡ 2M2
p

γ

H0ðϕÞ
HðϕÞ

γ0ðϕÞ
γðϕÞ : ð28Þ

Using Eqs. (5) and (9), we can relate the above two sets of
slow-roll parameters as follows [73,74]:

ϵ̃ ¼ ϵ; η̃ ¼ 2ϵ − η − κ; κ̃ ¼ κ: ð29Þ
In the nonrelativistic limit (γ → 1), the slow parameters
(26), (27) and (28) relate to the usual slow-roll parameters

ϵsr ≡ M2
p

2
ðV 0ðϕÞ
VðϕÞÞ2 and ηsr ≡M2

p
V 00ðϕÞ
VðϕÞ : ϵ → ϵsr, η → ηsr − ϵsr

and κ ≃ 0.
For one thing, we follow [66] to check whether our

model can produce a sufficiently long duration of infla-
tionary expansion. Afterwards, we compare the observable
predictions with the latest experimental data to narrow
down the parameter space. In our case, the model belongs
to the IR-type DBI inflation, and a long period of inflation
can take place near the top of the potential. A quantitative
check can be made to ensure the sufficient e-folding
number from the time CMB quadruple exits the horizon
to the end of inflation, i.e., Ncmb ∈ ½50; 60� [50,51]. Using
the solution of ϕðτÞ (15), one obtains the total number of
e-folds from the start of inflation to the end of inflation,

Nend ≡ ln
aend
ai

¼ −
Z

ϕi

ϕend

HðϕÞ
_ϕ

dϕ

≃
H0ð1 − ϵÞ ffiffiffi

λ
pffiffiffiffiffi

2ξ
p ðϕ−1

i − ϕ−1
endÞ; ð30Þ

where ϕend ¼ ϕðτendÞ is the field value of inflaton at the end
of inflation. The observational constraint then gives
Nend ≥ Ncmb. We also notice that the total e-folding number
Nend can also be derived directly from the solution of ϕðτÞ
in (15) by considering τend=τi ≃ e−Nend . One direct con-
straint from the e-folding number is the lower bounds on
the inverse field range (ϕ−1

i − ϕ−1
end) as follows:

ðϕ−1
i − ϕ−1

endÞ≳ 55

ffiffiffiffiffi
2ξ

p

H0ð1 − ϵÞ ffiffiffi
λ

p : ð31Þ

Here, we have taken a conservative value for the number of
e-folds with Ncmb ¼ 55 [51].
In the usual situation, inflaton ends when the slow-roll

parameter ϵ tends to unity. However, in most models of DBI
inflation ϵ remains less than 1, and inflation ends for
different reasons depending on the underlying fundamental
physics [74]. Despite the underlying fundamental theory, in
our model inflaton ends subject to the condition of the
second slow-roll parameter jηj ¼ 1 (25).
Using the Hubble parameter (20) and (22), the slow-roll

parameter ϵ (26) can be rewritten as

ϵ̃ ≃
ξ

λ

ϕ4

H2
0M

2
p
: ð32Þ

Here it is shown that ϵ̃ ∝ ϕ4 is quite small. Inserting the
inflaton’s solution in (15), the second slow-roll parameter η
is therefore calculated to be

η≡ _ϵ

ϵH
≃ −

4ϕ;N

ϕ
¼ 4

ffiffiffiffiffi
2ξ

p

H0ð1 − ϵÞ ffiffiffi
λ

p ϕ: ð33Þ

Accordingly, ϕend is given by the condition jηj ¼ 1, i.e.,

ϕend ≃
H0ð1 − ϵÞ ffiffiffi

λ
p

4
ffiffiffiffiffi
2ξ

p : ð34Þ

Inserting the expression of ϕend (34) into the solution (15)
or the constraint on field range from the e-folding number
(31), we acquire the initial value for ϕi as

ϕi ≲ 0.017
H0ð1 − ϵÞ ffiffiffi

λ
pffiffiffiffiffi

2ξ
p : ð35Þ

As a result, by introducing the field range Δϕ≡ ϕend − ϕi,
it is straightforward to derive the bound on this field range
Δϕ following Eqs. (34) and (35):
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0.23
H0ð1 − ϵÞ ffiffiffi

λ
pffiffiffiffiffi

2ξ
p ≲ Δϕ≲H0ð1 − ϵÞ ffiffiffi

λ
p

4
ffiffiffiffiffi
2ξ

p : ð36Þ

Taking the values of the parameters, λ ¼ 2 × 109,
H0 ¼ 10−5Mp, ξ ¼ 0.1 and ϵ ¼ 0.001, the approximate
field values of (34) and (35) are determined to be ϕi ≲
0.017Mp and ϕend ≃ 0.25Mp, and the field range is given
by 0.233Mp ≲ Δϕ≲ 0.25Mp.

B. Power spectra

Due to the narrow resonance effect of the SSR mecha-
nism, primordial density perturbations are exponentially
amplified near the characteristic scale k�, while the per-
turbation modes in the nonresonant regime k ≠ k� behave
like the Bunch-Davis vacuum, which is consistent with the
scale-independent feature of the primordial density pertur-
bations at the large scales. Thus, at the CMB scales, the
power spectra for primordial scalar and tensor perturbations
in our model are the same as that of the noncanonical
inflation [46],

Pζ ¼
1

8π2
H2

M2
p

1

csϵ
; Pt ¼

2

π2
H2

M2
p
; ð37Þ

and their spectra indices are given by [66,67,73]

ns − 1≡ d lnPζ

d ln k
¼ −2ϵ − 2η − κ; ð38Þ

nt ≡ d lnPt

d ln k
¼ −2ϵ; ð39Þ

respectively. Scalar perturbations freeze when they exit the
sound horizon csk ¼ aH, while tensor perturbations freeze
when they exits the Hubble horizon k ¼ aH. In DBI
inflation, the scalar spectral index is related to the total
e-folding number as ns − 1 ∼ 1=Nend [49], which is con-
sistent with observational data [50,51]. Additionally, for
DBI models, the tensor-scalar ratio on CMB scales is given
by [66,67,73]

r≡ Pt

Pζ
¼ 16csϵ; ð40Þ

which also implies the modified consistency relation
[46,68]

r ¼ −8csnt: ð41Þ

All the above formalisms reduce to the cases in the standard
canonical inflation scenario when cs ¼ 1.
Given the observational fact with Pζ ∼ 10−9, we show

below that this can impose a lower bound on the param-
eter λ. Since there is ϕ ≤ ϕend, we can use Eqs. (32) and
(34) and then get

ϵ̃≲ λ

1024ξ

H2
0

M2
p
: ð42Þ

Then, to combine Pζ ∼ 10−9 in Eqs. (37) and (42), we
obtain

λ≳ 1.3ξ × 1010: ð43Þ

Figure 8 shows the bounds on λ in terms of the amplitude
ξ. For instance, setting ξ ¼ 0.1, one gets λ≳ 1.3 × 109. The
relation (42) is presented in Fig. 9, providing the bounds on
H0 and λ in order for ϵ̃ < 1 during inflation. Moreover, if
one takes H0 ¼ 10−5Mp and λ ¼ 2 × 109, the slow-roll
parameter in (32) is approximately given by ϵ̃ ≃ 0.001 for
primordial power spectra in (37).
Furthermore, it is known that the Lyth bound of DBI

inflation is the same as the case in the standard slow-roll
inflation [67,75]

Δϕ
Mp

¼
Z

Nend

0

ffiffiffi
r
8

r
dN: ð44Þ

Due to Eq. (41), r is a slowly varying small quantity
during inflation, the Lyth bound (44) is expressed approx-
imately as

Δϕ
Mp

≃
ffiffiffi
r
8

r
Nend: ð45Þ

In light of the constraint on the field range (36) and the
sufficient e-folding number NCMB ¼ 55, we can find

r < 1.5 × 10−4; ð46Þ
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FIG. 8. The lower bound on λ in terms of ξ after adopting the
observational fact with Pζ ∼ 10−9.
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which implies that relic gravitational waves are generally
extremely small in our model. We mention that the
constraint on r from Planck 2018 data is r < 0.1.

C. Primordial non-Gaussianity

A distinctive theoretical prediction of DBI inflation is the
possible large level of primordial non-Gaussianity, with the
nonlinear parameter of the equilateral type fNL ∝ c−2s when
cs ≪ 1. The explicit form of the nonlinear parameter fNL in
DBI model (1) is given by [76]

fNL ¼ 35

108

�
1

c2s
− 1

�
; ð47Þ

and according to the Planck 2018 experiment [77], the
related observational constraint takes fNL ¼ −26� 47
(68% confidence level), which directly imposes the lower
bound on the sound speed squared as follows:

c2s ≥ 0.015: ð48Þ

Thus, the phenomenological sound speed squared shown in
Fig. 1 safely lives within this limit.
Moreover, we can see below that the primordial non-

Gaussianities predicted by our constructed model are far
less than the current observational bounds. In the non-
oscillating stage where c2s ¼ 1 − 2ξ, the non-Gaussianity
(47) is estimated as

fNL ¼ 35

108

�
1

1 − 2ξ
− 1

�
; ðnonoscillatingÞ: ð49Þ

Namely, for ξ ¼ 0.1, there is fNL ≃ 0.081. Note that the
blue solid curve in Fig. 10 shows the dependence of fNL
on ξ.

Furthermore, it deserves mentioning that in the oscillat-
ing stage τs < τ < τend, the specific mode of BD vacuum is
amplified due to the narrow resonance effect of SSR, and
then the common formula (47) is no longer valid. However,
as this topic is beyond the scope of the present work, we
would like to leave it to be addressed in the follow-up study.
Using the modified consistency relation (41) and (47),

we obtain the following generic expression in terms of
observables [67,68]:

8nt ¼ −r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 108

35
fNL

r
: ð50Þ

Reference [68] has demonstrated that Eq. (50) is model
independent in the sense that it holds for arbitrary inflaton’s
potential and warp factor in DBI inflation. Thus, in
principle Eq. (50) can serve as a smoking gun for DBI
inflation with more and more accurate cosmological data.
Note that, in the single-field slow-roll inflation, primordial
non-Gaussianities are generally quite small [78], and

FIG. 9. The parameter space for ϵ̃, H0 and λ bounded by the
constraints in (42) and (43).
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FIG. 10. The nonlinear parameter fNL as a function of ξ in the
nonoscillating stage where c2s ¼ 1 − 2ξ.
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FIG. 11. The general consistency relation (50) with different
values of fNL and ξ is fixed to 0.1. The blue line refers to the
corresponding fNL in the nonoscillating stage. The red line
represents the standard consistency relation r ¼ −8nt.
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Eq. (50) is exactly the standard consistency relation
r ¼ −8nt. The general relation (50) is shown in Fig. 11
in terms of a set of values: fNL ¼ ð0; 0.081; 0.2; 1; 5Þ. One
can read that the deviation from the standard consistency
relation r ¼ −8nt (i.e., fNL ¼ 0) becomes larger with the
increasing tensor-scalar ratio, while the red tilt of the tensor
power spectrum nt goes up slightly.

VI. CONCLUSION

In the present study, we have developed the model
realization of the SSR mechanism for primordial black hole
formation by reconstructing the appropriate form of DBI
inflation. In DBI inflation, the noncanonical kinetic term
naturally leads to the nontrivial sound speed. Inspired by
this feature, we acquire the matching condition for the
phenomenological oscillating sound speed in SSR, which is
related to a deformed warp factor and the detailed time
evolution of inflaton. In order to solve the complicated
EoM for DBI inflaton, we have developed a perturbative
approach to analyze the background dynamics. The whole
inflationary stage is separated into the nonoscillating and
the oscillating stages in terms of the evolution of sound
speed squared. In the first stage, the sound speed squared is
assumed to be a constant slightly deviated from unity, and
we have solved the evolution of inflaton by adopting an
AdS type of warp factor. Naturally, the inclusion of the
oscillating terms in sound speed squared requires a deli-
cately deformation on the AdS-like warp factor. To obtain
the form of this warp factor, we restrict the evolution of
inflaton to remain almost unchanged, and then the warp
factor is solved from the matching condition for the
oscillating sound speed. Resorting to the Hamilton-
Jacobi formalism, the Hubble parameter and the inflaton’s
potential are derived. A numerical method is performed to
solve the evolution of inflaton, which matches very well
with semianalytic results. We also investigate the influence
of the nonsmooth conjunction of sound speed at the
beginning moment of the oscillating stage on SSR phe-
nomenology, and it turns out that SSR is barely affected by
this nonsmooth type of conjunction, and consequently, the
same PBH mass spectrum as the case in the original SSR is
predicted in our DBI inflation. Regarding the adiabatic
condition of the Muhanov-Sasaki equation, we show that
the real physical quantity—the comoving curvature per-
turbation—behaves as the BD vacuum in the nonresonant
region after Hubble crossing, although the violation of
adiabaticity of the Muhanov-Sasaki equation apparently
exists.
In light of the Planck 2018 experiment, we derive the

constraints on the field range during inflation and show that
there exists a quite comparable parameter space of the
model to yield the sufficient number of e-folds for a
successful inflationary phase. By setting the amplitude
of primordial density perturbations to be in order of the
observed one, the model parameters λ can be limited from

below and our model typically predicts that the amplitude
of primordial gravitational waves is too small to have
observable interest. Additionally, the primordial non-
Gaussianity predicted in our model depends on the oscil-
lation amplitude of sound speed squared ξ, and can easily
satisfy the current observational bound. Last but not least,
the consistency relation for single-field slow-roll inflation
is softly violated in our case due to the small variations of
sound speed squared.
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APPENDIX: THE PRECISE SOLUTION FOR
INFLATON ϕðτÞ

We take the approximation thatH is treated as a constant
when we solve the matching condition (13), and obtain the
approximated solution (14). In this Appendix, we will solve
ϕðτÞ rigorously and compare the precise solution with the
approximated one.
Starting from the definition of the slow-roll parameter

ϵ≡ − _H=H2 and the assumption that ϵ is regarded as a
constant in the quasi–de Sitter expansion, we can yield
three equivalent expressions for scale factor in the con-
formal time

aðτÞ ¼ a
ϵ

ϵ−1
0

1

½−τH0ð1 − ϵÞ� 1
1−ϵ

; ðA1Þ

and

aðτÞ ¼ 1

τHðτÞðϵ − 1Þ ; ðA2Þ

and

aðτÞ ¼ a0

�
τ

τi

� 1
ϵ−1
: ðA3Þ

Note that the second one (A2) is what we used in this paper.
The Hubble parameter H0 and the scale factor a0 are
valuated at the initial time τi which is set to be the
beginning moment of inflation. For the purpose of yielding
the precise solution of ϕðτÞ, it is convenient to adopt the last
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expression (A3) for the scale factor. Plugging (A3) into the
matching condition (13), we yield

ϕðτÞ ¼
�
1

ϕi
þ

ffiffiffiffiffi
2ξ

λ

r
1

ϵH0

�
1 −

�
τ

τi

� ϵ
ϵ−1
��

−1
; ðA4Þ

which can also be written in terms of e-folding number,

ϕðNÞ ¼
�

1

ϕend
þ

ffiffiffiffiffi
2ξ

λ

r
1

ϵH0

ðeϵNend − eϵðNend−NÞÞ
�
−1
: ðA5Þ

Note that only the increasing solution is remained as for the
IR DBI model. It is straightforward to check that the
leading order of the precise solution (A5) in terms of ϵ is
the same as our original solution (14) which can be
written as

ϕðNÞ ≃
�
1

ϕi
þ

ffiffiffiffiffi
2ξ

p

H0ð1 − ϵÞ ffiffiffi
λ

p ðN − NendÞ
�
−1

≃
�

1

ϕend
þ

ffiffiffiffiffi
2ξ

p

H0ð1 − ϵÞ ffiffiffi
λ

p N

�
−1
: ðA6Þ

Figure 12 shows a comparison between these two results,
it is very clear that our original solution is reasonably good
for the description of inflaton evolution.
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