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We investigate the appropriateness of the use of different Lagrangians to describe various components of
the cosmic energy budget, discussing the degeneracies between them in the absence of nonminimal
couplings to gravity or other fields, and clarifying some misconceptions in the literature. We further
demonstrate that these degeneracies are generally broken for nonminimal coupled fluids, in which case the
identification of the appropriate on-shell Lagrangian may become essential in order to characterize the
overall dynamics. We then show that models with the same on-shell Lagrangian may have different proper
energy densities and use this result to map dark energy models into unified dark energy models in which
dark matter and dark energy are described by the same perfect fluid. We determine the correspondence
between their equation of state parameters and sound speeds, briefly discussing the linear sound speed
problem of unified dark energy models as well as a possible way out associated with the nonlinear
dynamics.
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I. INTRODUCTION

The detection of a Higgs-like particle [1,2] reinforces the
idea that scalar fields play a fundamental role in physics. In
cosmology scalar fields are central to the primordial
inflation paradigm [3–7] and potential candidates to explain
the current accelerated expansion of the universe [8–12] or
even cold dark matter (CDM) [13–15] (see also [16–19]
for recent reviews). More generally, scalar fields have
also been proposed in the literature to unify primordial
inflation and dark energy (DE) [20] or to account for the
entire dark sector [DE and dark matter (DM)] [21–31] (see
also [32–34] for a unified description of primordial
inflation, DE and DM).
It is well known that a minimally coupled scalar field in

general relativity admits a perfect fluid description [35].
Perfect fluids often provide a sufficiently general frame-
work to model the source of the gravitational field. In
particular, at cosmological scales (with homogeneity and
isotropy being assumed) it is common to model the energy
content of the Universe as a collection of perfect isentropic
and irrotational fluids or, equivalently (under certain

conditions, which we will consider in the present paper),
as a collection of purely kinetic scalar fields [36–38].
A number of action functionals, corresponding to at least

three different on-shell Lagrangians (Lon–shell ¼ −ρ, p or T,
where ρ, p, and T represent, respectively, the proper
density, the proper pressure, and the trace of the energy-
momentum tensor of the fluid), have been shown to define
the dynamics of a perfect fluid [39–48]. Although some of
these models may be used to describe the same physics in
the context of general relativity, in general this degeneracy
is broken in the presence of a nonminimal coupling (NMC)
to gravity [49–57] or to the other fields [58–71]. Therefore,
in these theories the identification of the correct form of the
on-shell Lagrangian can be essential in order to extract
meaningful predictions [72,73].
Here, we will explore the degeneracies between the

energy-momentum tensor of a perfect fluid and the corre-
sponding on-shell Lagrangian. We shall use them to
establish a correspondence between DE and unified dark
energy (UDE) models, clarifying some misconceptions in
the literature. The outline of this paper is as follows.
In Sec. II we start by considering several different models
for a perfect fluid, discussing the degeneracies between
them, in the absence of a NMC to gravity or other fields,
and the appropriateness of the use of the corresponding
Lagrangians to describe different components of the cosmic
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energy budget. In Sec. III we present several examples
featuring a NMC between DE or gravity with the matter or
radiation fields, and showcase the importance of the use of
the appropriate on-shell Lagrangian. In Sec. IV we define a
mapping between DE models described by purely kinetic
Lagrangians and UDE models. We also characterize the
correspondence between their equation of state and sound
speed parameters, briefly discussing the linear sound speed
problem of UDE models and a possible way out associated
with the nonlinear dynamics. Finally, we conclude in
Sec. V.
Throughout this paper we use units such that 8πG ¼ c ¼

kB ¼ 1, whereG is Newton’s gravitational constant, c is the
value of the speed of light in vacuum, and kB is the
Boltzmann constant. We also adopt the metric signature
ð−;þ;þ;þÞ. The Einstein summation convention will be
used whenever a Greek or a Latin index variable appears
twice in a single term, once in an upper (superscript) and
once in a lower (subscript) position.

II. PERFECT FLUID LAGRANGIAN
DESCRIPTIONS

Consider a fluid characterized by the following intensive
variables, defined in the local comoving inertial frame: the
proper particle number density n, energy density ρ, iso-
tropic pressure p, and entropy per particle s [74]. Also,
assume that there are no creation or annihilation processes,
so that the particle number is conserved (or equivalently
n ∝ V−1, where V is the physical volume). In this case, the
local form of the first law of thermodynamics may be
written as

d

�
ρ

n

�
¼ −pd

�
1

n

�
þ Tds: ð1Þ

In the case of an isentropic flow, the entropy per particle is
conserved and, consequently, Eq. (1) simplifies to

d

�
ρ

n

�
¼ −pd

�
1

n

�
: ð2Þ

Defining an equation of state ρ ¼ ρðnÞ and solving Eq. (2)
with respect to p leads to

pðnÞ ¼ μn − ρðnÞ; ð3Þ

where μ ¼ dρ=dn is the chemical potential. On the other
hand, if p ¼ pðnÞ is given, then Eq. (2) implies that

ρðnÞ ¼ mnþ n
Z

n pðn0Þ
n02

dn0; ð4Þ

where m is an integration constant.

A. Model I

The derivation of the equations of motion of a perfect
fluid from an action functional has been studied by several
authors [39–44]. Here we shall consider a model described
by the action (see, e.g., [44])

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðgαβ; jα;ϕÞ; ð5Þ

where

L ¼ FðjjjÞ þ jα∇αϕ; ð6Þ

g ¼ detðgαβÞ, gαβ are the components of the metric tensor,
jα are the components of a timelike vector field j, ϕ is a
scalar field, F is a function of jjj, and

jjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−jαjα

p
: ð7Þ

Varying the action with respect to jα and ϕ one obtains
the following equations of motion:

δS
δjα

¼ 0 ¼ −
1

jjj
dF
djjj jα þ∇αϕ; ð8Þ

δS
δϕ

¼ 0 ¼ ∇αjα: ð9Þ

The energy-momentum tensor is given by

Tαβ ¼ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LÞ

δgαβ
¼ 2

δL
δgαβ

þ Lgαβ: ð10Þ

Substituting the Lagrangian defined in Eq. (6) into Eq. (10)
and using Eq. (8), one obtains

Tαβ ¼ −
dF
djjj

jαjβ

jjj þ
�
F − jjj dF

djjj
�
gαβ: ð11Þ

Once the following identifications are made:

n ¼ jjj; ð12Þ

ρðnÞ ¼ −F; ð13Þ

pðnÞ ¼ F − n
dF
dn

; ð14Þ

uα ¼ jα

n
; ð15Þ

the energy-momentum tensor may be written in a perfect
fluid form

Tαβ ¼ ðρþ pÞuαuβ þ pgαβ; ð16Þ
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where ρ and p are the proper density and pressure, and
uα are the components of the 4-velocity (satisfying
uαuα ¼ −1). With the identifications made above Eq. (8)
now defines the 4-velocity of the fluid

uα ¼ −
∇αϕ

μ
; ð17Þ

associated with an irrotational flow (meaning that the
spatial components of uα are curl-free in the local comov-
ing inertial frame) while Eq. (9) represents the particle
number conservation equation. Note that the condition
uαuα ¼ −1 implies that

μ2 ¼ 2X; ð18Þ

where

X ≡ −
1

2
∇αϕ∇αϕ > 0: ð19Þ

On the other hand, Eq. (3) may be obtained from Eqs. (13)
and (14), thus implying that the Lagrangian given in Eq. (6)
describes an isentropic flow satisfying

∇αðsjαÞ ¼ 0: ð20Þ

Since the entropy per particle s is not a dynamical variable
of our model, Eq. (20) is, in this case, equivalent to the
particle number conservation equation given in Eq. (9).

B. Model II

Using Eqs. (12), (13), (14), (15), and (17), it is possible
to show that the on-shell Lagrangian, defined off-shell in
Eq. (6), is equal to

Lon–shell ¼ −ρþ n
dρ
dn

¼ p: ð21Þ

If μðnÞ is a strictly monotonic function of n (such that there
is a one-to-one relation between μ and n), Eq. (3) may be
written as

pðμÞ ¼ μn − ρ; ð22Þ

where pðμÞ is the Legendre transform of ρðnÞ. The
conjugate variables are related through

n ¼ dp
dμ

; μ ¼ dρ
dn

: ð23Þ

Taking into account that μ ¼ � ffiffiffiffiffiffi
2X

p
and assuming μ > 0

one finally obtains

nðXÞ ¼ dX
dμ

p;X ¼
ffiffiffiffiffiffi
2X

p
p;X: ð24Þ

where a comma denotes a partial derivative (e.g., p;X≡
dp=dX). In combination with Eq. (21) this implies that the
pure k-essence Lagrangian LðXÞ ¼ pðXÞ may be used to
describe an irrotational perfect fluid with conserved particle
number and constant entropy per particle [36–38].
The equation of motion of the scalar field

∇αðL;X∇αϕÞ ¼ 0 ð25Þ

provides the equivalent in the scalar field theory of the
particle number conservation, given by Eq. (9). Interestingly,
the identifications L ¼ p, uα ¼ −∇αϕ=

ffiffiffiffiffiffi
2X

p
, in combina-

tion with ρ ¼ 2XL;X − L are also required in order that the
energy momentum tensor

Tαβ ¼ L;X∇αϕ∇βϕþ Lgαβ; ð26Þ

associated with an arbitrary scalar field Lagrangian Lðϕ; XÞ
may be written in a perfect fluid form.

C. Model III

The transformation

L → L −∇αðϕjαÞ ð27Þ

leaves the action in Eq. (5) unchanged up to surface terms.
This implies that the equations of motion given in Eqs. (8)
and (9) are insensitive to this transformation. The resulting
off-shell Lagrangian is given by

L ¼ FðnÞ þ jα∇αϕ −∇αðϕjαÞ ¼ FðnÞ − ϕ∇αjα: ð28Þ

Varying the matter action with respect to the metric
components one obtains

δS ¼
Z

d4x
δð ffiffiffiffiffiffi−gp

LÞ
δgαβ

δgαβ ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Tαβδgαβ; ð29Þ

where

δð ffiffiffiffiffiffi
−g

p
LÞ¼ ffiffiffiffiffiffi

−g
p

δLþLδ
ffiffiffiffiffiffi
−g

p ¼ ffiffiffiffiffiffi
−g

p
δLþL

2

ffiffiffiffiffiffi
−g

p
gαβδgαβ;

ð30Þ

with

δL ¼ −
1

2

dF
djjj

jαjβ

jjj δgαβ − ϕδð∇νjνÞ ð31Þ

and
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ϕδð∇νjνÞ ¼ ϕδ

�∂νð ffiffiffiffiffiffi−gp
jνÞffiffiffiffiffiffi−gp

�

¼ −
1

2
gαβδgαβ∇νðϕjνÞ

þ 1

2
∇νðϕjνgαβδgαβÞ: ð32Þ

Discarding the last term in Eq. (32)—this term gives rise to
a vanishing surface term in Eq. (29) (δgαβ ¼ 0 on the
boundary)—and using Eqs. (8) and (9) it is simple to show
that the energy-momentum tensor associated with the
transformed Lagrangian defined in (28) is still given by
Eq. (11). However, in this case the on-shell Lagrangian is
equal to

Lon–shell ¼ F ¼ −ρ: ð33Þ

Using this result, in combination with Eq. (4), it is possible
to write the on-shell Lagrangian as

Lon–shell ¼ −mn − n
Z

n pðn0Þ
n02

dn0 ð34Þ

(see also [46] for an alternative derivation of this result).

D. Model IV

A more general Lagrangian often considered in the
literature to describe a perfect fluid is given by [44] (see
also [68,69,75–81] for examples of its use in different
scenarios)

L ¼ −ρðn; sÞ þ jαð∇αϕþ s∇αθ þ Ba∇αAaÞ; ð35Þ

where ρðs; nÞ is the energy density of the fluid, which
depends both on the number density n and on the entropy
per particle s. Comparing Eq. (35) with the model defined
in Eqs. (5) and (6), there are additional dynamical variables
s, θ, Ba, and Aa, respectively, with the corresponding
equations of motion

δS
δs

¼ 0 ¼ −
∂ρ
∂s þ jα∇αθ; ð36Þ

δS
δθ

¼ 0 ¼ ∇αðsjαÞ; ð37Þ

δS
δAa ¼ 0 ¼ jα∇αAa; ð38Þ

δS
Ba

¼ 0 ¼ ∇αðjαBaÞ: ð39Þ

These equations, in addition to Eq. (9) and

δS
δjα

¼ 0 ¼ ∂ρ
∂n uα þ∇αϕþ s∇αθ þ Ba∇αAa; ð40Þ

which replaces Eq. (8), describe the dynamics of the fluid.
Here, the scalar field θ works as a Lagrange multiplier,
ensuring that the entropy exchange constraint in Eq. (37) is
satisfied. In combination with the particle number con-
servation equation [i.e., Eq. (9)] it implies that jα∇αs ¼ 0,
which defines an adiabatic flow [74]. The Lagrange multi-
pliers Ba (where a ¼ 1, 2, 3) restrict the fluid 4-velocity to
be directed along the flow lines of constant Aa [Eq. (38)],
where Aa are the Lagrangian coordinates of the fluid.
The Lagrangian defined in Eq. (35) incorporates some of

the most important information for the characterization of a
perfect fluid undergoing an adiabatic flow, in the sense that
the corresponding dynamical and thermodynamical rela-
tions can be elegantly derived from the equations of
motion. Despite the extra degrees of freedom present in
Eq. (35), the energy-momentum tensor of a perfect fluid is
still recovered with the identifications given in Eqs. (12)–
(15)—even when ρ is a function of both n and s. Also, the
on-shell Lagrangians given in Secs. II B and II C can be
obtained from Eq. (35), using Eq. (9) and Eqs. (36)–(40).
Although further degrees of freedom can be added (see,
e.g., [82,83]), the Lagrangian presented in Sec. II B (which
does not have s, θ, Ba, and Aa as dynamical variables) will
be sufficient for our discussion of particle conserving
isentropic irrotational perfect fluids and their connection
with pure k-essence scalar field models.

E. Model V

In many situations of interest, a fluid (not necessarily
a perfect one) may be simply described as a collection
of many identical point particles undergoing quasi-
instantaneous scattering from time to time [47,48].
Hence, before discussing the Lagrangian of the fluid as
a whole, let us start by considering the action of a single
point particle with mass m

S ¼ −
Z

dτm; ð41Þ

and energy-momentum tensor

T�αβ ¼ 1ffiffiffiffiffiffi−gp
Z

dτmuαuβδ4ðxμ − ξμðτÞÞ; ð42Þ

where the � indicates that the quantity refers to a single
particle, ξμðτÞ represents the particle worldline, and uα are
the components of the particle 4-velocity. If one considers
its trace T� ¼ T�αβgαβ and integrates over the whole of
spacetime, we obtain
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Z
d4x

ffiffiffiffiffiffi
−g

p
T� ¼ −

Z
d4x dτm δ4ðxμ − ξμðτÞÞ ¼ −

Z
dτm;

ð43Þ

which can be immediately identified as the action for a
single massive particle, and therefore implies that the
corresponding Lagrangian is simply given by

L�
on–shell ¼ T�: ð44Þ

If a fluid can be modeled as a collection of point
particles, then its on-shell Lagrangian at each point will
be the average value of the single-particle Lagrangian over
a small macroscopic volume around that point

hL�
on−shelli ¼

R
d4x

ffiffiffiffiffiffi−gp
L�
on−shellR

d4x
ffiffiffiffiffiffi−gp ð45Þ

¼
R
d4x

ffiffiffiffiffiffi−gp
T�R

d4x
ffiffiffiffiffiffi−gp ¼ hT�i; ð46Þ

where hT�i ¼ T is now the trace of the energy momentum
of the perfect fluid. This provides a further possibility for
the on-shell Lagrangian of a perfect fluid:

Lon–shell ¼ T ¼ −ρþ 3p; ð47Þ

where p ¼ ρhv2i=3 ¼ ρT ,
ffiffiffiffiffiffiffiffiffi
hv2i

p
is the root-mean-square

velocity of the particles and T is the temperature. Notice
that only in the case of dust (p ¼ 0) do we recover the result
obtained for model III (Lon−shell ¼ −ρ).

F. Which Lagrangian?

We have shown that models I, II, III, IV, and V,
characterized by different Lagrangians, may be used to
describe the dynamics of a perfect fluid. If the matter fields
couple only minimally to gravity, then these models may
even be used to describe the same physics. However, this
degeneracy is generally broken in the presence of NMC
either to gravity [49–57] or to other fields [58–66,68–71],
in which case the identification of the appropriate on-shell
Lagrangian may become essential in order to characterize
the overall dynamics [72,73] (note that this is not an issue if
the form of the off-shell Lagrangian is assumed a priori, as
in [68,69,75–81]). Models I, II, III, and IV, described in the
previous section, imply both the conservation of particle
number and entropy. However, both the entropy and the
particle number are in general not conserved in a fluid
described as a collection of point particles. Hence, model V
has degrees of freedom that are not accounted for by
models I, II, III, and IV. In model V the pressure depends
both on the temperature T (or, equivalently, the root-mean-
square velocity of the particles) and on the energy density ρ,
with p ¼ ρT , while in models I, II, and III p is a function

of the number density alone [p ¼ pðn; sÞ in the case of
model IV]. Still, in model V the equation of state parameter
w ¼ p=ρ must be in the interval ½0; 1=3�, which while
appropriate to describe a significant fraction of the energy
content of the Universe, such as CDM, baryons, photons,
and neutrinos, cannot be used to describe DE. On the other
hand, models I, II, III, IV are specially suited for DE, both
because they allow for values of w ∼ −1 and also because
the requirement that X > 0 can be met only if the spatial
variations of the scalar field ϕ are sufficiently small. In
Sec. IV we shall use model II to describe both DE and
UDE. However, one should bear in mind that any success-
ful UDE model must account for the observed large scale
structure of the Universe, and that a scalar field description
of UDE in terms of a perfect fluid is expected to break
down on small nonlinear scales [84].

III. THE ROLE OF THE LAGRANGIAN
IN NMC MODELS

As discussed in Sec. II F, the energy-momentum tensor
does not provide a complete characterization of nonmini-
mally coupled matter fields, since the Lagrangian will also
in general explicitly appear in the equations of motion. To
further clarify this point, we present a few examples of
models in which there is a NMC between matter or
radiation with DE or gravity.

A. NMC between matter and DE

Consider the model described by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ Lþ LFϕ�; ð48Þ

where R is the Ricci scalar, ϕ is the DE scalar field
described by the Lagrangian

L ¼ X − VðϕÞ; ð49Þ

and LFϕ is the Lagrangian of the matter term featuring a
NMC with DE [85–88]

LFϕ ¼ fðϕÞLF: ð50Þ

Here, fðϕÞ > 0 is a regular function of ϕ and LF is the
Lagrangian that would describe the matter component in the
absence of aNMC togravity (inwhich casefwould be equal
to unity). Using the variational principle it is straightforward
to derive the equations of motion for the gravitational and
scalar fields. They are given, respectively, by

Gαβ ¼ fTαβ
F þ∇αϕ∇βϕ −

1

2
gαβ∇μϕ∇μϕ − gαβV; ð51Þ

□ϕ −
dV
dϕ

þ df
dϕ

LF ¼ 0; ð52Þ
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whereGαβ is the Einstein tensor,□≡∇α∇α is the Laplace-
Beltrami operator, and

Tαβ
F ¼ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LFÞ
δgαβ

ð53Þ

are the components of the energy-momentum tensor asso-
ciated with the Lagrangian LF. Note that the Lagrangian is
featured explicitly in the equation of motion for ϕ. Thus,
knowledge of the energy-momentum tensor alone is not
enough to fully describe the dynamics of any of the fields.
Consider the coupled matter energy-momentum tensor

defined by Tαβ
Fϕ ¼ fðϕÞTαβ

F . By taking the covariant deriva-
tive of Eq. (51) and using the Bianchi identities one obtains

∇αT
αβ
Fϕ ¼ −∇βð∂βϕ∂αϕÞ þ 1

2
∇βð∂μϕ∂μϕÞ þ dV

dϕ
∂αϕ;

ð54Þ

thus showing that the coupled matter energy-momentum
tensor is in general not conserved. Using Eq. (52) it is
possible to rewrite this equation in such a way as to
highlight the explicit dependence on the Lagrangian

∇βT
αβ
Fϕ ¼ df

dϕ
LF∂αϕ: ð55Þ

If LF describes a fluid of particles with fixed rest mass mF,
then one must have LF ¼ TF, as per Sec. II E. Also, LFϕ ¼
fðϕÞLF will describe a fluid with particles of variable rest
mass mðϕÞ ¼ fðϕÞmF. In this case, Eq. (55) may also be
written as

∇μT
αμ
Fϕ ¼ −βTF∂αϕ; ð56Þ

where

βðϕÞ ¼ −
d lnmðϕÞ

dϕ
: ð57Þ

In the present paper we shall focus on the macroscopic fluid
dynamics, but the NMC between matter and DE also affects
the dynamics of the individual particles (see, for example,
[65] for more details).

1. Coupling between DE and neutrinos

A related model featuring a NMC between neutrinos and
DE, so-called growing neutrino quintessence, where the
neutrinos are described the Lagrangian

LV ¼ iψ̄ðγα∇α þmðϕÞÞψ ð58Þ

has been investigated in [65]. Here, ψ̄ is the Dirac
conjugate, mðϕÞ is a DE-field dependent neutrino rest

mass, the quantities γαðxÞ are related to the usual Dirac
matrices γa via γα ¼ γaeαa where eαa are the vierbein, with
gαβ ¼ eαae

β
bη

ab and ηab ¼ diagð−1; 1; 1; 1Þ, and ∇α is the
covariant derivative that now takes into account the spin
connection (see [89] for more details on the vierbein
formalism). The classical equations of motion for the
neutrinos, derived from the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ Lþ LV �; ð59Þ

may be written as

γα∇αψ þmðϕÞψ ¼ 0; ð60Þ

∇αψ̄γ
α −mðϕÞψ̄ ¼ 0: ð61Þ

The components of the corresponding energy-momentum
tensor are [65]

Tαβ
V ¼ −

i
2
ψ̄γðβ∇αÞψ þ i

2
∇ðαψ̄γβÞψ ; ð62Þ

where the parentheses represent a symmetrization over the
indices α and β. The trace of the energy-momentum tensor
is given by [65]

TV ¼ iψ̄ψmðϕÞ ¼ −mðϕÞn̂; ð63Þ

where n̂ ¼ −iψ̄ψ is a scalar that in the nonrelativistic limit
corresponds to the neutrino number density.
Taking the covariant derivative of Eq. (62) one obtains

∇μT
αμ
V ¼ −βðϕÞTV∂αϕ; ð64Þ

where βðϕÞ is defined in Eq. (57). A comparison between
Eqs. (56) and (64) implies that LFϕ and LV provide
equivalent on-shell descriptions of a fluid of neutrinos in
the presence of a NMC to gravity. The same result could be
achieved by analyzing the dynamics of individual neutrino
particles [65].

2. Coupling between DE and the electromagnetic fields

Consider now a model described by Eqs. (48) and (50)
with

LF ¼ LEM ¼ −
1

4
FαβFαβ; ð65Þ

where Fαβ is the electromagnetic field tensor [58,59,64].
This model will naturally lead to a varying fine-structure
“constant”

αðϕÞ ¼ α0
fðϕÞ ; ð66Þ
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whose evolution is driven by the dynamics of the DE scalar
field ϕ. Equation (52) implies that the corresponding
equation of motion is given by

□ϕ −
dV
dϕ

þ α0
4α2

dα
dϕ

FαβFαβ ¼ 0 ð67Þ

or, equivalently,

□ϕ −
dV
dϕ

−
α0
α2

dα
dϕ

LEM ¼ 0: ð68Þ

Electromagnetic contributions to baryon and lepton mass
mean that in general LEM ≠ 0. However, Lphotons ¼ ðE2 −
B2Þphotons ¼ 0 (here, E and B represent the magnitude of
the electric and magnetic fields, respectively) and, there-
fore, electromagnetic radiation does contribute to LEM.
Note that the last term on the left-hand side of Eq. (67) is
constrained, via the equivalence principle, to be small [90].
Therefore, the contribution of this term to the dynamics of
the DE field is often disregarded (see, e.g., [60–62]).
It is common, in particular in cosmology, to describe a

background of electromagnetic radiation as a fluid of point
particles whose rest mass is equal to zero (photons). In this
case one should use the appropriate on-shell Lagrangian of
this fluid in Eq. (68). In Sec. II we have shown that if the
fluid is made of particles of fixed mass, then the appropriate
on-shell Lagrangian is LEM ¼ T ¼ 3p − ρ. For photons
(with p ¼ ρ=3) this again implies that the on-shell
Lagrangian LEM vanishes, thus confirming that photons
do not source the evolution of the DE scalar field ϕ.

B. NMC between matter and gravitational fields

A different type of NMC occurs in theories that feature a
direct coupling between a function of the Ricci scalar and
the Lagrangian of the matter fields [49–53]. The simplest of
these models is described by the Lagrangian

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ fðRÞLm�: ð69Þ

The corresponding equations of motion for the gravitational
field are given by

ð1þ f0LmÞGαβ ¼ 1

2
fTαβ þ Δαβðf0LmÞ −

1

2
Rf0Lmgαβ;

ð70Þ

where a prime denotes a derivative with respect to R and
Δαβ ≡∇α∇β − gαβ□ and

Tαβ ¼ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δgαβ
ð71Þ

are the components of the energy-momentum tensor. The
covariant derivative of Eq. (70) gives

∇βTαβ ¼ ðgαβLm − TαβÞ∇β ln f; ð72Þ

where the explicit dependence on the Lagrangian is once
again evident—notice that due to the NMC to gravity the
energy-momentum tensor is no longer conserved.
Moreover, since the matter fields are nonminimally coupled
to the geometry, an additional acceleration term should be
added to the geodesic equation

duα

dτ
þ Γα

μνuμuν ¼ aα; ð73Þ

which, in the case of a perfect fluid, can be written as

aα ¼ 1

ρþ p
½ðLm − pÞ∇β ln f −∇βp�hαβ; ð74Þ

where hμν ¼ gμν þ uμuν is the projection operator. The
use of the appropriate Lagrangian is then crucial when
constraining these theories, in particular using cosmic
microwave background or big-bang nucleosynthesis obser-
vations [47,72] (see also [73,91]).
As demonstrated in Sec. II and illustrated in the previous

examples (NMC between neutrinos or photons and DE),
the condition Lm ¼ T needs to be satisfied in any equiv-
alent on-shell fluid description of models featuring point
particles of fixed mass. This condition, however, does not
generally hold in the case of DE or UDE.

IV. MAPPING DE INTO UDE

The main feature of most UDE models is that of
mimicking DE and CDM with a single underlying perfect
fluid or scalar field (see [92] for a discussion of the single
fluid hypothesis). To construct a model with these proper-
ties we shall consider the Lagrangian

Lude ¼ Lde þ Lm: ð75Þ

Here, we shall assume that Lde ≡ LdeðXÞ is an arbitrary
pure kinetic DE Lagrangian and that the ratio between Lm
and Lde vanishes on-shell (or is extremely small, so that the
contribution of Lm to the total pressure can be neglected).
Therefore, the UDE Lagrangian Lude describes a fluid with
proper pressure pude ¼ Ludeðon–shellÞ ¼ Ldeðon–shellÞ ¼ pde

and energy density

ρude ¼ ρde þ ρm; ð76Þ

where ρde ¼ 2XLde;X − Lde. The new Lagrangian may be
regarded as a UDE model provided that wde ¼ pde=ρde ∼
−1 or, equivalently, ρde ¼ Ldeðon–shellÞ=wde ∼ −Ldeðon–shellÞ.
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A. ΛCDM as a UDE model

One possible choice for Lcdm would be to consider

Lcdm ¼ λðX − VðϕÞÞ; ð77Þ

where λ is a Lagrange multiplier and VðϕÞ > 0 is a function
of ϕ [13,28]. This choice ensures that the constraint X ¼
VðϕÞ is always satisfied on-shell, thus implying that
Lcdmðon–shellÞ ¼ 0 or, equivalently, that pude¼Ludeðon–shellÞ¼
Ldeðon–shellÞ¼pde. On the other hand, the density of the
UDE fluid is given by Eq. (76) with

ρcdm ¼ λðX þ VðϕÞÞ ¼ 2λX: ð78Þ

Note that the Lagrange multiplier λ is a dynamical field
whose evolution is such as to ensure that the energy-
momentum tensor of the UDE fluid, subject to the con-
straint X ¼ VðϕÞ, is covariantly conserved. In the particular
case with VðϕÞ ¼ V0 ¼ const one would get X ¼ V0 ¼
const, thus implying that pude ¼ Ldeðon–shellÞ would be a
constant. Hence, such a UDE model would be totally
equivalent to ΛCDM [92,93]. In general, however, ρude is a
function of X and λ, where both are dynamical variables.
Hence, these models do not generally belong to the class of
irrotational perfect fluid models with the conserved particle
number and constant entropy per particle considered in
Sec. II B which have ρ ¼ ρðXÞ and p ¼ pðXÞ.
An alternative would be to consider a class of purely

kinetic Lagrangians given by [94,95]

LðXÞ ¼ AXγ; ð79Þ

where A and γ are positive real constants. These models
describe an isentropic perfect fluid with pressure p ¼ LðXÞ
and energy density

ρ ¼ 2XL;X − L ¼ ð2γ − 1ÞAXγ; ð80Þ

with the equation of state parameter

w≡ p
ρ
¼ 1

2γ − 1
ð81Þ

being a constant. In the γ → ∞ limit w → 0. Hence, this
fluid mimicks pressureless dust in this limit. Thus another
possible choice for Lm would be

LmðXÞ ¼ lim
γ→∞

AðγÞXγ: ð82Þ

The function AðγÞ is chosen in such a way that pm vanishes
at every spacetime point in this limit, but

ρm ¼ lim
γ→∞

ð2γ − 1ÞAðγÞXγ ð83Þ

is essentially unrestricted. Note that by choosing AðγÞ such
that the function CðγÞ ¼ ð2γ − 1ÞAðγÞ tends to a constant
C∞ in the γ → ∞ limit, X must be equal to unity in this
limit. Note, however, that the density may take any value in
this limit since 1∞ is indeterminate. On the other hand, in
the γ → ∞ limit the equation of motion of the scalar field

ðL;Xgαβ þ L;XX∇αϕ∇βϕÞ∇α∇βϕ ¼ 0 ð84Þ

reduces to

∇αϕ∇βϕ∇α∇βϕ ¼ −∇αϕ∇αX ¼ 0; ð85Þ

thus implying that the equation of motion does indeed
preserve the condition X ¼ 1 in this limit. Also, note
that since the condition X > 0 is always satisfied, this
model describes the dynamics of a perfect fluid. The caveat
is that the corresponding UDE model would have pude ¼
Ldeðon−shellÞðX ¼ 1Þ ¼ const and, therefore, would again be
totally equivalent to ΛCDM.

B. Mapping k-essence models with the
same on-shell Lagrangian

Consider an isentropic perfect fluid with proper pressure
and density p ¼ pðμÞ, ρ ¼ ρðμÞ [with μ ¼ μðnÞ], and
4-velocity u at each spacetime point. The transformation

ρ̃ ¼ ρþmn; ð86Þ

μ̃ ¼ μþm; ð87Þ

at every point with the 4-velocity unchanged leads to a
different perfect fluid, but leaves the proper pressure
unaltered, so that p̃ðμ̃Þ ¼ pðμÞ (here, m > 0 is a con-
stant)—i.e., the transformations given in Eqs. (86) and (87)
leave Eq. (22) invariant. Note that, if the original fluid
represented a constant density with p ¼ −ρ ¼ const (a
cosmological constant), then this transformation would
simply add a pressureless dustlike component to the
original DE fluid.
Consider the case in which one starts with a perfect fluid

described by a purely kinetic Lagrangian LðXÞ ¼ pðXÞ,
with μ2 ¼ 2X. Let us also write the Lagrangian of the new
fluid as L̃ðX̃Þ ¼ LðXÞ and its 4-velocity as ũα ¼ −∇αϕ̃=ffiffiffiffiffiffi
2X̃

p
, where X̃ ¼ −∇αϕ̃∇αϕ̃=2 and μ̃2 ¼ 2X̃. Writing

Eq. (87) as
ffiffiffiffiffiffi
2X̃

p
¼ ffiffiffiffiffiffi

2X
p þm we get the following relation

between the kinetic terms X and X̃:

X̃ ¼ X þm
ffiffiffiffiffiffi
2X

p
þm2

2
: ð88Þ

The energy-momentum tensor of the new fluid may be
written as
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T̃αβ ¼ L̃;X̃∇αϕ̃∇βϕ̃þ L̃gαβ ¼ 2X̃L̃;X̃ũ
αũβ þ L̃gαβ

¼
ffiffiffiffiffiffi
2X

p
ð

ffiffiffiffiffiffi
2X

p
þmÞL;Xuαuβ þ Lgαβ

¼ Tαβ þ Tαβ
m ; ð89Þ

where Tαβ is the energy-momentum tensor of the original
fluid given in Eq. (26) and

Tαβ
m ¼ ρmuαuβ; ρm ¼ mn ¼ m

ffiffiffiffiffiffi
2X

p
L;X; ð90Þ

is an additional dustlike component. Here, we have used
Eq. (88) and the relations

X;X̃ ¼ ðX̃;XÞ−1 ¼
ffiffiffiffiffiffi
2X

pffiffiffiffiffiffi
2X

p þm
; ð91Þ

uα ¼ −
∇αϕffiffiffiffiffiffi
2X

p ¼ −
∇αϕ̃ffiffiffiffiffiffi
2X̃

p ¼ ũα: ð92Þ

Equation (92) is equivalent to

∇αϕ̃ ¼
ffiffiffiffiffiffi
2X

p þmffiffiffiffiffiffi
2X

p ∇αϕ; ð93Þ

but, unfortunately, given a scalar field ϕ it may not always
be possible to find another scalar field ϕ̃which satisfies this
equation. However, in a perfectly homogeneous and
isotropic Friedmann-Lemaître-Robertson-Walker (FLRW)
universe ϕ and X are functions of cosmic time alone,
making it possible to define a scalar field ϕ̃ fulfilling
Eq. (93). Given that the DE field is expected to be nearly
homogeneous, this will turn out to be the most relevant
case, which will be further explored later in the paper. Also,
having defined L̃ðX̃Þ it is possible to explore the full
consequences of the model, taking into account cosmo-
logical perturbations.
The energy momentum tensor is covariantly conserved

or, equivalently, ∇αT̃αβ ¼ 0. This implies that

∇αTαβ ¼ Qβ; ð94Þ

∇αT
αβ
m ¼ −Qβ; ð95Þ

where Qβ is the coupling between the two components.
Contracting the equation ∇αT̃αβ ¼ 0 with ũβ, one obtains
the continuity equation

ũα∇αρ̃þ ðρ̃þ p̃Þ∇αũα ¼ 0; ð96Þ

which is equivalent to the equation of conservation of the

particle number ∇αðL̃;X̃

ffiffiffiffiffiffi
2X̃

p
ũαÞ ¼ 0 [see Eq. (25)]. Given

that n ¼ ffiffiffiffiffiffi
2X

p
L;X ¼

ffiffiffiffiffiffi
2X̃

p
L̃;X̃ ¼ ñ and ũβ ¼ uβ, the par-

ticle number conservation equation may also be written as

∇αðL;X

ffiffiffiffiffiffi
2X

p
uαÞ ¼ 0. Taking this into account, it is simple

to show thatQβuβ ¼ 0. The contraction of ∇αT̃αβ ¼ 0 with
hνβ ¼ δνβ þ uνuβ (where δνβ ¼ gναgαβ is the Kronecker delta)
results in

ðgνα þ ũνũαÞ∇αp̃ ¼ −ðρ̃þ p̃Þãν; ð97Þ
with ãα ¼ ũβ∇βũα ¼ aα being the components of the
4-acceleration (notice that ũαãα ¼ 0). From the contraction
of hνβ with Eq. (95) one finds that

ρmaν ¼ −hνβQβ: ð98Þ
In a perfectly homogeneous and isotropic FLRW back-
ground u0 ¼ 1 and aν ¼ 0. Hence, Eq. (98) in combination
with the condition Qβuβ ¼ 0 implies that Qν ¼ 0. In this
case, the energy-momentum tensors of the matter and DE
components are separately conserved.

1. Background evolution

In a FLRW homogeneous and isotropic universe Eq. (25)
has the known solution [25,96]

XL2
;X ∝ a−6 ∝ ð1þ zÞ6; ð99Þ

where a is the scale factor and z≡ 1=a − 1 is the redshift
(the scale factor a is normalized to unity at the present
time). Therefore, we may write n ¼ ffiffiffiffiffiffi

2X
p

L;X ¼
n0ð1þ zÞ3, where n0 ≡ nðz ¼ 0Þ. Hence, ρm ¼ mn ¼
mn0ð1þ zÞ3, irrespective of the original pure k-essence
model. Thus, the equation of state parameter of the trans-
formed fluid is given by

w̃≡ p̃
ρ̃
¼ p

ρþmn
¼ w

1þmn0ð1þ zÞ3=ρ ; ð100Þ

where w≡ p=ρ is the equation of state parameter of the
original fluid. On the other hand, the sound speed of the
transformed fluid, defined by c̃2s ≡ p̃;X̃=ρ̃;X̃ [97] is equal to

c̃2s ¼
p̃;z

ρ̃;z
¼ c2s

1þ 3mn0ð1þ zÞ2=ρ;z
; ð101Þ

where c2s ≡ p;X=ρ;X is the sound speed of the original fluid.
Hence, given m and n0, the evolution of the sound speed
squared of the transformed fluid c̃2s with the redshift is
completely determined by the evolution of the sound speed
squared c2s and of the density of the original model.

2. Cosmological perturbations

In this subsection we shall briefly consider the linear
evolution of metric and density perturbation in these
models (see, e.g., [98,99]). In the longitudinal gauge the
line element may be written as
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ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ðtÞð1 − 2ΨÞδijdxidxj: ð102Þ

In the case of a perfect fluid the anisotropic stress vanishes,
thus implying that Φ ¼ Ψ [94] (here, Φ is the Newtonian
gravitational potential).
Let us write ϕ ¼ ϕðbÞ þ δϕ, where the subscript “(b)”

refers to the purely time dependent background value of ϕ
and δϕ denotes the fluctuation of ϕ with respect to the
background value (we shall use the same notation in the
case of the other variables). At first order in δϕ, the energy-
momentum tensor defined in Eq. (89) may be written as

T̃α
β ¼ T̃α

βðbÞ þ δT̃α
β; ð103Þ

where T̃0
0ðbÞ ¼ −ρ̃ðbÞ, T̃i

jðbÞ ¼ p̃ðbÞδij, δαβ ¼ gαγgβγ is the

Kronecker delta, and

δT̃0
0 ¼ −δρ̃ ¼ −ðL;XðbÞ þ 2XðbÞL;XXðbÞÞ

�
1þ mffiffiffiffiffiffiffiffiffiffiffi

2XðbÞ
p �

δX;

ð104Þ

δT̃0
i ¼ L;XðbÞð _ϕðbÞ þmÞ _ϕðbÞδui; ð105Þ

δT̃i
0 ¼ −a−2L;XðbÞð _ϕðbÞ þmÞ _ϕðbÞδui; ð106Þ

δT̃i
j ¼ δp̃δij ¼ L;XðbÞδijδX: ð107Þ

Here, a dot denotes a derivative with respect to physical
time, δui ¼ a2δui, and it has been taken into account that,
up to first order in δϕ, the perturbation to the kinetic term X
is given by

δX ¼ 2XðbÞ

�
_δϕ
_ϕðbÞ

−Φ
�
: ð108Þ

Given the energy-momentum tensor defined by
Eqs. (103)–(107), the Einstein equations imply that, up
to first order in δϕ and Φ,

−
ΔΦ
a2

þ 3Hð _ΦþHΦÞ ¼ 4πGδT̃0
0; ð109Þ

∇ið _ΦþHΦÞ ¼ 4πGδT̃0
i ; ð110Þ

½Φ̈þ 4H _Φþ ð2 _H þ 3H2ÞΦ�δij ¼ 4πGδT̃i
j; ð111Þ

where Δ denotes the Laplacian. Equations (109) and (111)
may then be combined to obtain the following equation for
the evolution of the gravitational potential:

Φ̈þH _Φð4þ 3c̃2sÞ þ 2 _HΦþ 3H2ð1þ c̃2sÞΦ ¼ c̃2s
ΔΦ
a2

;

ð112Þ

with

c̃2s ¼
ffiffiffiffiffiffiffiffiffiffiffi
2XðbÞ

pffiffiffiffiffiffiffiffiffiffiffi
2XðbÞ

p þm

L;XðbÞ
L;XðbÞ þ 2XðbÞL;XXðbÞ

: ð113Þ

It is straightforward to show that this expression for c̃2s is
consistent with the one given in Eq. (101) and that, for
m ≫ XðbÞ (or, equivalently, jρ;z=n;zj ≪ m), one has
c̃2s ≪ c2s . Also, from the Fourier transform of Eq. (112)
one may check that small scale pathological instabilities are
avoided as long as c̃2s ≥ 0.

C. Nontrivial map between DE and UDE models

In this subsection we shall assume that the original
Lagrangian LðXÞ describes a DE fluid with equation of
state parameter w0 ¼ wde0 ∼ −1, so that the transformed
Lagrangian L̃ðX̃Þ defines a UDE fluid with equation of
state parameter w̃ ¼ wude (in the following, we shall use the
subscripts “de” and “ude,” respectively, when referring to
DE and UDE). In this context, the equation of state
parameter of the UDE fluid may be written as [see
Eq. (100)]

wudeðzÞ ¼
wdeðzÞ

1þmn0ð1þ zÞ3=ρdeðzÞ
: ð114Þ

Since this model is defined by a purely kinetic Lagrangian,
the sound speed coincides with the adiabatic sound speed
given by

c2sðudeÞ ¼
pude;z

ρude;z
¼

�
1þ 3

mn0ð1þ zÞ2
ρde;z

�−1
c2sðdeÞ; ð115Þ

where c2sðdeÞ ¼ pde;X=ρde;X ¼ pde;z=ρde;z is the sound speed

of the original DE fluid. Notice that, as long as the sound
speed squared c2sðdeÞ of the input DE fluid is positive, the

same is verified in the case of the resulting UDE fluid, thus
ensuring that no pathological instabilities occur (at a
nonlinear level it is guaranteed a priori by the fact that
the behavior of UDE is similar to that of CDM in the high
density regime). If ρde;z > −3mn0ð1þ zÞ2, then c2sðdeÞ > 0

is required in order to guarantee that c2sðudeÞ > 0. On the

other hand, if ρde;z < −3mn0ð1þ zÞ2 < 0, the condition
c2sðudeÞ > 0 would be satisfied if, and only if, c2sðudeÞ < 0.

However, we shall not explore this case in the present
paper, since it would require the consideration of phantom
DE models.

1. Input DE model: wde = const

It is instructive to start by examining a DE model with
constant wde ∼ −1 (here, we shall consider a nonphantom
DE model with wde > −1) defined by the Lagrangian
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LðXÞ ¼ CX
1þwde
2wde ; ð116Þ

where C < 0 is a constant (notice that a constant wde

implies that c2sðdeÞ ¼ wde). In this case,

L̃ðX̃Þ ¼ C

� ffiffiffiffi
X̃

p
−

mffiffiffi
2

p
�1þwde

wde ð117Þ

describes a UDE model with proper energy density

ρudeðX̃Þ ¼ 2X̃L̃;X̃ − L̃ ¼ C

� ffiffiffiffi
X̃

p

wde
þ mffiffiffi

2
p

�� ffiffiffiffi
X̃

p
−

mffiffiffi
2

p
� 1

wde

ð118Þ

and proper pressure pudeðX̃Þ ¼ L̃ðX̃Þ ¼ LðXÞ. Notice that
ρude → ∞ for X̃ → m2=2 (dark matter limit, with
pude → 0), and that

ρude ∼
C
wde

X
wdeþ1

wde → 0 ð119Þ

in the X̃ → ∞ limit (dark energy limit, satisfying
pude ∼ wdeρude ∼ −ρude)—for X̃ ∈�m2=2;þ∞½ the perfect
fluid correspondence is always verified. However, the
sound speed squared of the UDE fluid

c2sðudeÞ ¼
pude;

eX
ρude;eX ¼ wude

�
1 −

mffiffiffiffiffiffi
2X̃

p
�

ð120Þ

is negative for X̃ ∈�m2=2;þ∞½. Although this may appear
to constitute a no-go condition for this model, that may not
be the case. Indeed, for wde sufficiently close to −1, the
negative sound speed would only become significant in
extremely underdense regions (note that c̃2s → 0 when
X̃2 → m2=2). In any case, UDE models with a negative
sound speed may be avoided by starting with a nonphantom
DE model satisfying the condition c2sðdeÞ > 0.

2. Input DE model: Chaplygin gas

Consider the case of the generalized Chaplygin gas
defined by the Lagrangian [24]

LðXÞ ¼ −A 1
1þαð1 − ð2XÞ1þα

2α Þ α
1þα; ð121Þ

where 0 < α < 1 and A > 0 are constants (in the following
we shall also assume that variables with dimensions of
mass are measured in some arbitrary mass unit munit).
Although the generalized Chaplygin gas is a UDE proto-
type, here we shall take it as our input DE model—the
corresponding equation of state parameter and sound speed
squared are given, respectively, by

wde ¼ −
A

ρ1þα ; c2sðdeÞ ¼ −αwde; ð122Þ

with −1 < wde < 0 and 0 < c2s < 1 (assuming that
ρ > A

1
1þα). In this case,

L̃ðX̃Þ ¼ −A 1
1þαξðX̃Þ α

1þα ð123Þ

with

ξðX̃Þ ¼ 1 − ð
ffiffiffiffiffiffi
2X̃

p
−mÞ

1þα
α ð124Þ

describes a UDE model with proper pressure pudeðX̃Þ ¼
L̃ðX̃Þ and proper energy density

ρudeðX̃Þ ¼ 2X̃L̃;X̃ − L̃ ¼ ρmðX̃Þ þ ρdeðX̃Þ; ð125Þ

ρdeðX̃Þ ¼ A
1

1þαξðX̃Þ− 1
1þα; ð126Þ

ρmðX̃Þ ¼ mn ¼ mð
ffiffiffiffiffiffi
2X̃

p
−mÞ

1
αρde: ð127Þ

At late times X̃ → m2=2, thus implying that both ρude and
−pude approach the constant value A1=ð1þαÞ. On the other
hand, at early times X̃ approaches ðmþ 1=2Þ2=2. As a
result, the energy density becomes large and ρm is roughly
proportional to ρde—this behavior is explained by the fact
that the Chaplygin gas behaves as CDM for densities much
greater than A1=ð1þαÞ. Notice that for m sufficiently large it
is always possible to ensure that ρude ∼ ρm at early times.
As previously discussed, the positive sound speed squared
of the input generalized Chaplygin model implies that
c2sðudeÞ > 0, thus guaranteeing that the resulting UDE model

is free from pathological instabilities associated with an
imaginary sound speed.

3. Restrictions on isentropic UDE models

Let us now consider the following parametrization of the
equation of state of the original DE fluid [100]:

wdeðzÞ ¼ w0 þ Δw
z

1þ z
; ð128Þ

where w0 ≡ wdeðz ¼ 0Þ, w∞ ≡ wdeðz ¼ ∞Þ, and Δw≡
w∞ − w0. It is possible to show that this parametrization
of wðzÞ admits a purely kinetic Lagrangian formulation
[101]. The energy density of the corresponding UDE fluid
is equal to

ρude¼ρude0½ð1þzÞ3ð1þw∞Þe3Δw=ð1þzÞ þQð1þzÞ3�; ð129Þ

and the sound speed squared is
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c2sðudeÞ ¼
ð1þ w∞ÞwdeðzÞ þ ð1 − 3wdeðzÞÞ Δw

3ð1þzÞ
1þ wdeðzÞ þQð1þ zÞ−3w∞e−3Δw=ð1þzÞ ; ð130Þ

where Q≡mn0=ρude0 and ρude0 ≡ ρudeðz ¼ 0Þ. At the
present time

c2sðudeÞ0 ¼
Δwþ 3w0ð1þ w0Þ
3ð1þ w0 þQe−3ΔwÞ : ð131Þ

If one assumes that the original fluid is a DE fluid with w0

sufficiently close to −1, one finds

c2sðudeÞ0 ¼
w∞ þ 1

3Q
e3ðw∞þ1Þ: ð132Þ

In order for the transformed fluid to play a UDE roleQ∼
Ωcdm0=Ωde0 ∼ 3=7, where Ωcdm0 and Ωde0 are the fractional
DM and DE densities inferred from the observations. This
in turn implies that c2sðudeÞ0 ∼ ðw∞ þ 1Þe3ðw∞þ1Þ. Therefore,
large sound speeds at recent times would be unavoidable,
unless jw∞ þ 1j ≪ 1. One can estimate how small this
value has to be in order to be consistent with the standard
growth of perturbation on linear scales by imposing that
csðudeÞ0 ≲ 10−3 [102].
Hence the variation of w is limited to j1þ w∞j≲ 10−6,

meaning that the original fluid has to follow very closely
the behavior of a cosmological constant. More generally,
Eq. (130) implies that large sound speeds at low redshifts
can be avoided only if both jw∞ þ 1j and jw0 þ 1j are
extremely small. Such stringent constraints regarding a
non-null sound speed are typical for UDE models as far as
linear perturbation theory is concerned [102,103] (see also
[104]). However, it has been shown that the clustering on
nonlinear scales can have a potential impact on the large
scale evolution of the Universe, specially in UDE scenarios
[105–107]. Taking into account nonlinear effects may
render these models (ruled out in a linear analysis)
consistent with cosmological observations [108–110].

V. CONCLUSIONS

In this paper we have investigated the degeneracies
between the energy-momentum tensor and the on-shell
Lagrangian of a perfect fluid, explicitly showing that one
does not univocally determine the other. We have discussed
the appropriateness of various Lagrangians to describe the
dynamics of different components of the cosmic energy
budget, distinguishing those that may be essentially mod-
eled as a collection of point particles, such as baryons,
photons, or neutrinos, from those that do not, such as DE.
We have explicitly shown that aforementioned distinction is
particularly relevant if a NMC exists with the gravitational
field or other matter fields, in which case the knowledge of

the on-shell Lagrangian can be essential to compute the
overall dynamics. This point has been overlooked in the
literature, where it is often wrongly assumed that there is a
freedom of choice of the on-shell Lagrangian, even when
describing standard model particles.
We have also explored the fact that models with the

same on-shell Lagrangian may have different proper
energy densities. We have used this result to establish a
map between DE models described by purely kinetic
Lagrangians and UDE models, characterizing the corre-
spondence between their equation of state and sound speed
parameters. Successful UDEmodels are essentially required
tomatch the observed evolution of the proper pressure at low
redshifts, while, at the same time, accounting for the
observed large scale structure of the Universe. The simplest
way to accomplish this, followed in Secs. IV B and IV C, is
to combine DM and DE into a single perfect fluid—i.e., a
perfect fluid with proper pressure equal to the observed
proper pressure (usually attributed to the DE) and proper
density approximately equal to ∼95% of the energy density
of the Universe at the present time (thus accounting for both
the CDM and DE energy densities). This allows one to map
DE into UDE and to build well-defined models beyond
ΛCDM which can be confronted with observations.
Furthermore, we have shown that the sound speed squared
of the resulting UDE models are always positive, as long as
that is also verified in the case of the input nonphantom DE
models, thus ensuring the avoidance of pathological insta-
bilities at a linear level—notice that at the nonlinear level this
is guaranteed by the fact that if the density is large, UDE
behaves essentially as CDM.We have also briefly discussed
the linear sound speed problem of UDE models as well as a
possible way out associated with their nonlinear dynamics,
arguing that, depending on the level of nonlinear clustering,
they may turn out to be compatible with observations.
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