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We find the symmetry generators for the Friedman equations emanating from a perfect fluid source in the
presence of a cosmological constant term. The relevant dynamics are shown to be governed by two
coupled, first order ordinary differential equations, the continuity and the quadratic constraint equation.
Arbitrary functions appear in the components of the symmetry vector, indicating the infinity of the group.
When the equation of state is considered as arbitrary but ab initio given, previously known results are
recovered and/or generalized. When the pressure is considered among the dynamical variables, solutions
for models with different equations of state are mapped to each other, thus enabling the presentation of
solutions to models with complicated equations of state starting from simple known cases.
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I. INTRODUCTION

An interesting discussion on the appearance of symmetry
in nature and in various motifs of art is presented by
H. Weyl in [1]. A symmetric structure usually represents an
economical process in nature and an aesthetically pleasing
object to the human mind. In art, usually the symmetry is an
expression of an invariance under some form of translation,
rotation, or reflection. The (ancient) greek word for art,
“τε

0
χνη,” can be translated today as science. In the latter, the

concept of symmetry is appealing for it leads to a
characterization of the system under consideration. The
invariance associated with the symmetry produces a sim-
plification which makes understanding easier.
The concept of symmetry played an important role in the

development of physical theory. Kepler attempted to impose
the idea of symmetry for the description of the motion of the
planets. Furthermore, Newton’s laws of mechanics embod-
ied symmetry principles, such as the Galilean invariance or
the principle of equivalence of inertial frames [2]. Another
example isMaxwell’s equations, which describe the electro-
magnetic theory: while they possess the Lorentz invariance
and the gauge invariance, these symmetries were explicitly
developed a few decades after Maxwell’s work [3].
The first systematic approach for the description of

symmetry in modern science was constructed by Sophus

Lie towards the end of 19th century [4–6]. The novelty of
Lie’s work was to consider the infinitesimal representations
of the finite transformations induced on a manifold by
continuous groups, thereby moving from the group to a
local algebraic representation in terms of vector fields on
the tangent space of the manifold. The study of the
invariance properties of various geometrical objects is then
performed using the Lie derivative with respect to the
aforementioned fields (generators). This resulted in a
linearization of all equations describing the symmetry
conditions. The original work of Lie was motivated by
geometric considerations; he commenced with point trans-
formations, and so point symmetries, and then extended his
work by use of contact transformations [7].
EmmyNoether in her revolutionarywork on the invariance

of the action integral of the calculus of variations under
infinitesimal transformations [8] introduced routine depend-
ence of the transformation on the derivatives, without the
requirement that the transformation be contact, and thus,
the use of generalized transformations has become well-
established as a tool in the study of differential equations,
particularly partial differential equations. In addition,
Noether’s work provides a systematic method for the con-
struction of conservation laws for dynamical systems that
follow fromavariation principle. In particular, there is a direct
relation of the infinitesimal transformations which leave the
form invariant in the action integral with the conservation
laws for the equations of motion; for a recent review and
discussion on Noether’s work, we refer the reader to [9].
Since Lie’s theory provides a systematic way for the

treatment of nonlinear differential equations, by determining
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exact and analytic solutions or conservation laws, it plays
a significant role in the development of the fundamental
modern physics, such as analytic mechanics, quantum
mechanics, general relativity, and cosmology [10–14].
In gravitational physics, specifically in general relativity,

the context of symmetry is essential for the determination
of exact solutions to the Einstein field equations [15]. The
assumption of existence of a collineation, such as an
isometry, affects the Einstein tensor so that to simplify
the corresponding nonlinear Einstein field equations. For
instance, in Bianchi models, the gravitational field equa-
tions reduce from partial differential equations to ordinary
differential equations because of the existence of the three-
dimensional isometry group for the metric tensor. Indeed,
there are exact solutions for the Einstein field equations
without any isometry [16]; however, other kind of sym-
metries can exist for these spacetimes [17].
Other types of symmetries have also been used before in

order to study and solve the Einstein field equations:
the infinitesimal transformations of the phase space of
the dynamical variables for the field equations appear in the
literature [18–29], while in the recent review [30], the
various approaches have been categorized, and a discussion
is given for the geometric character of the symmetries of the
field equations. The invariants, which follow from the latter
analysis, have been used for the quantization process in
quantum cosmology and the solution of the corresponding
Wheeler-DeWitt equation [31].
A group of infinitesimal transformations, which leave

invariant a given dynamical system, can be used to
determine invariants and conservation laws. The later are
applied to simplify the dynamical system and reduce it to a
known integrable class or to write the differential equations
in an algebraic form. Moreover, if a solution for a given
dynamical system is known, then symmetries can be
applied to construct new solutions. For instance, the
Gasperini-Veneziano duality property of the dilaton field
[32], in a spatially flat Friedmann-Lemaître-Robertson-
Walker (FLRW) background space, is a discrete symmetry,
which is directly related to a continuous symmetry [33].
Specifically the Oðd; dÞ invariance of the two-dimensional
linear system of Lorentzian signature can be transformed to
the Gasperini-Veneziano duality invariance [34].
Maybe the first formal study on Lie-point symmetries of

cosmological equations can be found in [35]. In [36], a
group of point transformations under which the Einstein
field equations are invariant have been applied for the
construction of new solutions from known ones in the case
of spatially flat FLRW spacetime. While a family of
transformations which relate various inflationary behaviors
in the presence of a scalar field were discussed in [37], an
alternative reconstruction method of inflationary solutions
from other known solutions was studied in [38]. In
particular, in the case of a spatially flat FLRW, a map
was found that transforms solutions into solutions, while

the different physical models result into equivalent systems
which are characterized by the admitted SLð3; RÞ Lie algebra
as invariant infinitesimal transformations. Recently, in [39],
there appeared a new point transformation, which keeps
invariant the cosmological field equations of a spatially flat
FLRW background space, where the matter source is that
of an ideal gas.
In this work, we consider the gravitational field equa-

tions of FLRW spacetime, without imposing the vanishing
of spatial curvature, while for the matter source, we
consider the existence of a cosmological constant and of
a perfect fluid with an arbitrary equation of state. We find
three different infinite families of symmetries that leave
invariant the field equations when a corresponding con-
straint equation is satisfied by the unknown functions
appearing in the generators. We recover and generalize
previous results from the literature, while we demonstrate
how the new results can be used to determine new solutions
from old.
In particular, we show how the symmetry generators

found can be used to connect models with different
equations of state and thus, to collectively describe the
main epochs of the cosmological evolution, starting from
the early inflation era, passing to the radiation, and then to
matter eras; these solutions can also be used to describe the
late-time acceleration phase of the Universe. Moreover,
starting from the exact solution of a massless scalar field—
which is described by a stiff fluid—we show that under a
specific transformation, the exact solution which corre-
sponds to a modified Chaplygin gas model is recovered.
This later model is known to be describable by a quintes-
sence scalar field with a nonzero potential. Last but not
least, we show how an exact solution of a parametric dark
energy model can be constructed by starting from the
matter dominated era. The plan of the paper is as follows.
In Sec. II, we define the gravitational model of our

consideration, we discuss the concept of symmetry in the
resulting ordinary differential equations, and we perform a
detailed derivation of the symmetry vectors in the most
generic scenario. The generators of the transformations that
leave invariant the field equations are determined. In
Sec. III, we recover previous results of the literature, which
can be seen as special cases of our analysis. Our general
results are applied in Sec. IV. Finally in Sec. V, we discuss
our results and draw our conclusions.

II. COSMOLOGICAL FIELD EQUATIONS AND
THEIR SYMMETRIES

We adopt the Friedmann-Lemaître-Robertson-Walker
line element,

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdφ2Þ

�
;

ð2:1Þ
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and consider a perfect fluid with energy density ρ and
pressure P. The energy momentum tensor is

Tμν ¼ ðρþ PÞuμuν þ Pgμν; ð2:2Þ
where uμ ¼ ðN; 0; 0; 0Þ is the comoving velocity,
uμuμ ¼ −1.
The system to be solved is composed by Einstein’s field

equations,

Rμν −
1

2
gμνRþ Λgμν ¼ 8πTμν; ð2:3Þ

together with the continuity equation ∇μTμν ¼ 0 (we adopt
the unitsG ¼ c ¼ 1). The latter, together with the temporal
component of (2.3), are first order ordinary differential
equations which can be written as

E1 ≔ Λ −
3k
a2

þ 8πρ − 3

�
_a
Na

�
2

¼ 0 ð2:4Þ

E2 ≔ 3
_a
a
ðPþ ρÞ þ _ρ ¼ 0: ð2:5Þ

The spatial components of (2.3) comprise the unique (due
to the high symmetry) equation,

E3 ≔ Λ −
k
a2

− 8πP − 3

�
_a
Na

�
2

−
2

N
d
dt

�
_a
Na

�
¼ 0; ð2:6Þ

which, however, does not constitute an independent rela-
tion; i.e., it can be obtained by use of (2.4), (2.5), and the
time derivative of the first.
Since the system is described by purely first order

equations, namely (2.4) and (2.5), we expect it to admit
an infinite number of Lie-point symmetries [40,41]. We
briefly review the basic aspects of obtaining the Lie-point
symmetries of a system of differential equations; for the
interested reader, we refer to the textbooks [40,41]. Assume
a set of ordinary differential equations of the form
EIðt; x; _x; ẍÞ ¼ 0 like the ones we have here.1

A vector,

X ¼ χðt; xÞ ∂∂tþ ξiðt; xÞ ∂
∂xi ; ð2:7Þ

in the space of the dependent and independent variables,
x and t, respectively, is called a Lie-point symmetry of the
system EI ¼ 0 if it satisfies the infinitesimal criterion of
invariance,

pr2XðEIÞ ¼ 0; mod EJ ¼ 0; for all I; J: ð2:8Þ
The pr2X is the second (due to considering up to second
order equations) prolongation of the vector X, i.e., an

extension of the original X vector to the space of the
derivatives _x and ẍ, and it is given by the formula,

pr2X ¼ X þ
�
dξi

dt
− _xi

dχ
dt

� ∂
∂ _xi

þ
�
d
dt

�
dξi

dt
− _xi

dχ
dt

�
− ẍ

dχ
dt

� ∂
∂ẍi : ð2:9Þ

The extended coefficients of pr2X in the space of ð_x; ẍÞ are
such so that it is guaranteed that the transformation law
maps functions to functions [42]: given a generator X that
sets a transformation law in the space of ðt; xÞ and the fact
that the x are functions of t at the level of the equations, the
_x ¼ dx

dt and ẍ ¼ d2x
dt2 obviously cannot transform in a random

manner. The correct transformation law for the derivatives
is assured by the formula (2.9).
Let us now proceed into applying this general theory

onto the Friedmann equations. We are going to deal with
two distinct situations: in the first, we assume some generic,
but supposedly specific equation of state during the trans-
formation. In the second case, we treat the pressure as a
dynamical variable, and we allow it to transform together
with the rest of the variables, thus enabling connections
between models described by different equations of state.

A. Invariance that preserves the equation of state

We begin our study by considering a fixed equation
of state for P in (2.4)–(2.6). This means that we do not
allow for P to variate under the transformation. Thus, our
dependent variables are x ¼ ðN; a; ρÞ, and the generator
has the general form,

X ¼ χðt; N; a; ρÞ ∂∂tþ ξ1ðt; N; a; ρÞ ∂
∂N

þ ξ2ðt; N; a; ρÞ ∂
∂aþ ξ3ðt; N; a; ρÞ ∂

∂ρ : ð2:10Þ

As we mentioned, our system is completely character-
ized by the first order equations E1 ¼ 0 and E2 ¼ 0. The
symmetry condition (2.8) states that the prolongation of the
vector has to annihilate the equations modulo the equations
themselves. We realize it in the following manner: we
demand that the action of the prolongation vector returns
multiples of the equations, which of course are bound to be
zero and thus satisfy (2.8). In other words, we require

pr2XðE1Þ ¼ ðσ1 _aþ σ2 _ρþ σ3ÞE1 þ ðσ4 _a2 þ σ5 _aþ σ6ÞE2

ð2:11aÞ
pr2XðE2Þ ¼ ðσ7 _aþ σ8 _ρþ σ9ÞE1

þ ðσ10 _a2 þ σ11 _aþ σ12 _ρþ σ13 _N þ σ14ÞE2;

ð2:11bÞ
where all the σi, i ¼ 1;…; 14 are functions of t, a, ρ, andN.
The specific dependence on the derivatives _a, _ρ, and _N in

1For the needs of the general context, we assume second order of
ordinary differential equations, even though for ourmain result, we
need only consider first order ones: E1 ¼ 0 and E2 ¼ 0.
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the right-hand side of (2.11) has been chosen so that it is in
accordance with the terms produced by the left-hand side,
hence avoiding any trivial multipliers σi. Since the χ and ξ
functions of the vector (2.10) have no dependence on
derivatives (we search for point symmetries), the coeffi-
cients of the terms involving derivatives in (2.11) must be
separately set equal to zero. This forms a set of partial
differential equations for χ, ξ’s, and algebraic in the σi to be
solved.
Refraining from presenting the specific solutions for the

σi—since the latter are multipliers of zeros and are not
important in our considerations—the general symmetry
vector satisfying (2.11) can be of the following three
general categories,
(1) The vector

X1¼ χ1ðtÞχ2ða;ρÞ
∂
∂t−N _χ1ðtÞχ2ða;ρÞ

∂
∂N ; ð2:12Þ

with χ1ðtÞ an arbitrary function and χ2ða; ρÞ satisfy-
ing the condition,

a
∂χ2
∂a − 3ðPða; ρÞ þ ρÞ ∂χ2∂ρ ¼ 0: ð2:13Þ

The special solution χ2 ¼ constant results in the
parametrization invariance generator,

Xpar ¼ χ1ðtÞ
∂
∂t − N _χ1ðtÞ

∂
∂N : ð2:14Þ

It describes the well-known property of (2.4), (2.5),
and (2.6) being invariant under arbitrary changes in
the time variable; a symmetry that is present in all
cosmological systems [43].

(2) The second case we distinguish is characterized by

X2 ¼
4πa2Nfða; ρÞ

3k − a2ðΛþ 8πρÞ
∂
∂N þ fða; ρÞ ∂

∂ρ ; ð2:15Þ

under the condition that fða; ρÞ satisfies

3fða;ρÞ
�∂P
∂ρþ1

�
−3

∂f
∂ρ ðPða;ρÞþρÞþa

∂f
∂a¼ 0:

ð2:16Þ

(3) Finally, we have the symmetry generator,

X3¼N

�∂ξ
∂a−

3

a
ðPða;ρÞþρÞ∂ξ∂ρ

það12πPða;ρÞþ4πρ−ΛÞ
a2ðΛþ8πρÞ−3k

ξða;ρÞ
� ∂
∂N

þξða;ρÞ ∂∂a−
3ðPða;ρÞþρÞ

a
ξða;ρÞ ∂∂ρ; ð2:17Þ

with ξða; ρÞ an arbitrary function. Unlike the
χ2ða; ρÞ and fða; ρÞ we introduced previously, the
ξða; ρÞ here does not depend on the equation of
state P ¼ Pða; ρÞ.

By enforcing the resulting generators on the third equation,
we derive

pr2XiðE3Þ ¼ ΣjEj; i; j ¼ 1; 2; 3; ð2:18Þ

where the Σi are multiplying functions. Thus, the resulting
vector fields are automatically symmetries of the third
equation since they satisfy condition (2.8).
We thus have three distinct infinite dimensional groups.

It can be easily checked, with the help of conditions (2.13)
and (2.16), that the subalgebras spanned by each of the X1,
X2, and X3 vectors separately are closed. For example, the
commutator of two type X1 vectors produces again a type
X1 vector, etc. In regards to cross commutation relations, it
can be shown that ½X1; X2� is an X1 vector, ½X2; X3� is a type
X3 vector, while ½X1; X3� ¼ 0 by virtue of (2.16).
Especially in regards to the vector X3, involving the free

function ξða; ρÞ, we can directly see why it leaves invariant
the continuity equation E2 ¼ 0 of (2.5). The latter is
sensitive only in changes in a and ρ.2 By calculating the
integral curve of X3 in the ða; ρÞ surface, we obtain

da
ξ

¼ dρ

− 3ðPða;ρÞþρÞ
a ξ

⇒
dρ
da

¼ −
3ðPða; ρÞ þ ρÞ

a
; ð2:19Þ

but this is none other than Eq. (2.5) itself.
In the above setting, we considered P ¼ Pða; ρÞ.

However, the process can be generalized to include an
equation of state that also incorporates the Hubble function.
To this end, we may assume that we have a pressure of the
form P ¼ Pða; ρ; _a

NÞ. The combination _a
N is chosen due to

being a scalar under time transformations and since the
Hubble function in a generic time gauge reads: H ¼ 1

N
_a
a.

Let us assume for simplicity that the equation involves just
some power of this term, i.e.,

P ¼ P1ða; ρÞ þ P2ða; ρÞ
�
_a
N

�
μ

: ð2:20Þ

With such an expression, by considering P2 ∝ a−μ, we
can create a dependence on the μth power of the Hubble
function. But, irrespectively of the latter and avoiding the
meticulous details, it can be verified that the following
generators are symmetries of the Friedmann equations
when the expression (2.20) is considered:

2Since a change in t, for example, transforms _a and _ρ in the
same manner.
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(1) The generator X1 of (2.12) under the condition,

a
∂χ2
∂a −3½ρþP1ða;ρÞþ3P2ða;ρÞΣða;ρÞμ=2�

∂χ2
∂ρ ¼0: ð2:21Þ

(2) The X2 of (2.15), whenever

3fða;ρÞ
�∂P1

∂ρ þ1þΣða;ρÞμ=2 ∂P2

∂ρ þ4μπ

3
a2Σða;ρÞμ−22 P2ða;ρÞ

�
−3½P1ða;ρÞþρþP2ða;ρÞΣða;ρÞμ=2�

∂f
∂ρþ

∂f
∂a¼ 0:

ð2:22Þ

The comparison to the previous cases is direct, since setting P2 ¼ 0 in (2.21) and (2.22) leads to (2.13) and (2.16),
respectively.

(3) Finally, we have the symmetry generator,

X3 ¼ N
�∂ξ
∂a −

3ðP1 þ P2Σða; ρÞμ=2 þ ρÞ
a

∂ξ
∂ρþ

að12πðP1 þ P2Σða; ρÞμ=2Þ þ 4πρ − ΛÞ
3Σða; ρÞ ξða; ρÞ

� ∂
∂N

þ ξða; ρÞ ∂
∂a −

3ðP1 þ P2Σða; ρÞμ=2 þ ρÞ
a

ξða; ρÞ ∂
∂ρ ; ð2:23Þ

with ξða; ρÞ an arbitrary function and where for
simplification, we have set Σða; ρÞ ¼ 1

3
a2ðΛþ

8πρÞ − k in all the previous relations. Obviously
setting P2 ¼ 0, again we return to the previous case
and specifically to the generator (2.17).

It is easy to verify that all of the above generators satisfy
pr2XiðEjÞ ¼ 0, i, j ¼ 1, 2, 3, whenever E1 ¼ 0, E2 ¼ 0,
and E3 ¼ 0. Once more, the invariance of the two first leads
directly to the invariance of the third.

B. Invariance connecting different models

Up to now, we discussed invariance of our equations for
a given (even though not explicitly specified) equation of
state. It is more interesting however to allow for P to be
dynamical and thus change under a symmetry transforma-
tion. In this manner, we can use a symmetry vector in order
to map known solutions corresponding to simple equations
of state, to other theories involving more complicated
expressions for the latter.
To this end, let us consider the following possible

generator:

X ¼ χðt; N; a; ρ; PÞ ∂∂tþ ξ1ðt; N; a; ρ; PÞ ∂
∂N

þ ξ2ðt; N; a; ρ; PÞ ∂
∂aþ ξ3ðt; N; a; ρ; PÞ ∂

∂ρ
þ ξ4ðt; N; a; ρ; PÞ ∂

∂P : ð2:24Þ

So we extended the vector by assuming a ∂P component,
while all the coefficients may additionally depend on P.
The symmetry condition (2.8) is now expressed as

pr2XðE1Þ ¼ ðσ1 _aþ σ2 _ρþ σ3ÞE1 þ ðσ4 _a2 þ σ5 _aþ σ6ÞE2

ð2:25aÞ
pr2XðE2Þ ¼ ðσ7 _aþ σ8 _ρþ σ9ÞE1 þ ðσ10 _a2 þ σ11 _aþ σ12 _ρ

þ σ13 _N þ σ14 _Pþ σ15ÞE2; ð2:25bÞ
the difference being just in the addition of a linear in the _P
term on the right-hand side of the second equation.
The above system is solved in terms of the functions σi

and the coefficients of the generator X and yields (again we
refrain from giving the multipliers σi),
(1) The parametrization invariance vector Xpar of (2.14).
(2) The symmetry generator,

X4 ¼ X2 þ
�
ðPþ ρÞ ∂f∂ρ −

a
3

∂f
∂a − fða; ρÞ

� ∂
∂P ;

ð2:26Þ
where the X2 is the one of (2.15), but with the
difference that now the fða; ρÞ appearing here is not
bound by condition (2.16); it is an arbitrary function.

(3) The generator,

X5 ¼ N

�∂σ
∂a −

3ðPþ ρÞ
a

∂σ
∂ρ

−
aðΛþ 8πρÞ

a2ðΛþ 8πρÞ − 3k
σða; ρÞ

� ∂
∂N þ σða; ρÞ ∂

∂a
þ
�
3ðPþ ρÞ2

a
∂σ
∂ρ − ðPþ ρÞ ∂σ∂a

þ ðPþ ρÞ
a

σða; ρÞ
� ∂
∂P ; ð2:27Þ

where σða; ρÞ is another free function.
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Thus, we obtain two new point symmetry generators that
involve transformations at the level of the pressure P as
well. That is two new infinite dimensional symmetry
groups characterized by the free functions fða; ρÞ and
σða; ρÞ. As far as the algebra properties are concerned, it is
easy to see that ½X4; X4� is also a X4 vector, ½X5; X5� belongs
to the same class as X5, while ½X4; X5� gives a composition

of the two vectors. In particular, for two vectors XðfÞ
4 and

XðσÞ
5 corresponding to some particular fða; ρÞ and σða; ρÞ,

respectively, we obtain

½XðfÞ
4 ; XðσÞ

5 � ¼ −ðX ˜ðfÞ
4 þ X

˜ðσÞ
5 Þ;

where f̃ða; ρÞ and σ̃ða; ρÞ are functions related to fða; ρÞ
and σða; ρÞ by the differential equations,

σða; ρÞ ∂f∂a ¼ f̃ða; ρÞ; fða; ρÞ ∂σ∂ρ ¼ −σ̃ða; ρÞ:

III. RELATION TO PREVIOUS RESULTS

In this section, we explore how our result is connected
to what is previously encountered in the literature and how
it generalizes some known symmetry properties of the
Friedmann equations.
Recently, a new symmetry for the Friedmann equations

in the spatially flat FLRW case without cosmological
constant and with P ¼ wρ was reported in [39]. Let us
demonstrate how the latter is a particular case of a generator
X3 as expressed by (2.17). The symmetry transformation
introduced in [39] is

ã¼as; ρ̃¼a−3ðwþ1Þðs−1Þρ; dt̃¼sa
3
2
ðwþ1Þðs−1Þdt; ð3:1Þ

with s ¼ constant being the parameter of the transforma-
tion. The above transformation is mentioned as a symmetry
of the Friedmann equations in the cosmological time gauge,
where Ñ ¼ 1. In our language, where we use a generic time
gauge, the last of the three relations can be viewed as a
change in the lapse function while t itself remains
unchanged. In this case, this implies that we may take

Ñ ¼ sa
3
2
ðwþ1Þðs−1ÞN; t̃ ¼ t: ð3:2Þ

With this consideration, the symmetry generator of the
above transformation reads

�
dt̃
ds

����
s¼1

� ∂
∂tþ

�
dÑ
ds

����
s¼1

� ∂
∂N

þ
�
dã
ds

����
s¼1

� ∂
∂aþ

�
dρ̃
ds

����
s¼1

� ∂
∂ρ

¼ N

�
1þ 3

2
ðwþ 1Þ lnðaÞ

� ∂
∂N þ a lnðaÞ ∂

∂a
− 3ðwþ 1Þρ lnðaÞ ∂

∂ρ :

But this is exactly the generator you obtain from X3

when you set in (2.17), P ¼ wρ, k ¼ Λ ¼ 0, and
ξða; ρÞ ¼ a lnðaÞ.
We can see now how the symmetry, reported in [39] for

the k ¼ 0 case, can now be extended in a spatially curved
universes. By considering k ≠ 0 ≠ Λ, from (2.17), we
derive

X3 ¼ N

�
1þ 3 lnðaÞðk − 4πa2ρðwþ 1ÞÞ

3k − a2ðΛþ 8πρÞ
� ∂
∂N

þ a lnðaÞ ∂
∂a − 3ðwþ 1Þρ lnðaÞ ∂

∂ρ ; ð3:3Þ

which leads to the transformation,

ã¼ as; ρ̃¼ a−3ðwþ1Þðs−1Þρ;

Ñ ¼ sNa
1
2
sð3wþ5Þ−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3k− a2ðΛþ 8πρÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ka3sðwþ1Þ − 8πρa2sþ3ðwþ1Þ −Λasð3wþ5Þp ; t̃¼ t:

ð3:4Þ
Alternatively, if we want to consider just invariance starting
from the time gauge Ñ ¼ 1 and considering a time trans-
formation, the above should be interpreted as

ã ¼ as; ρ̃ ¼ a−3ðwþ1Þðs−1Þρ;

dt̃ ¼ sa
1
2
sð3wþ5Þ−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3k − a2ðΛþ 8πρÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ka3sðwþ1Þ − 8πρa2sþ3ðwþ1Þ − Λasð3wþ5Þp dt; ð3:5Þ

which is the generalization of (3.1) in the case of a nonzero
spatial curvature and cosmological constant.
In [36], another symmetry property of the Friedmann

equations in the spatially flat case and without a cosmo-
logical constant is given. It involves an arbitrary function
and thus is related to an infinite dimensional symmetry
group. Specifically, it is stated that the transformation,

ρ̄ ¼ ρ̄ðρÞ ð3:6aÞ

H̄ ¼
�
ρ̄

ρ

�
1=2

H ð3:6bÞ

P̄ ¼ −ρ̄þ
�
ρ

ρ̄

�
1=2

ðρþ PÞ dρ̄
dρ

; ð3:6cÞ
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where H ¼ _a
a is the Hubble function in the gauge N ¼ 1

leaves the corresponding equations,

3H2 − 8πρ ¼ 0 and _ρþ 3HðPþ ρÞ ¼ 0; ð3:7Þ

invariant.
Surprisingly, this symmetry transformation does not

have an exact equivalent in the study we did in the previous
section, and this is because the treatment of H as a basic
variable changes the formalism. But let us proceed to see in
detail what happens and how the aforementioned symmetry
can also be recovered.
The generator X4 of (2.26) can induce a change in the

pressure like the one implied by (3.6) if we consider the
particular case k ¼ 0 ¼ Λ and f ¼ fðρÞ, then,

X4 ¼ −
NfðρÞ
2ρ

∂
∂N þ fðρÞ ∂

∂ρþ ½ðPþ ρÞf0ðρÞ − fðρÞ� ∂
∂P :

ð3:8Þ

The infinitesimal change implied by the latter up to first
order in the parameter of the transformation, say λ, is

ρ̄ ∼ ρþ λfðρÞ ð3:9Þ

N̄ ∼ N − λ
NfðρÞ
2ρ

ð3:10Þ

P̄ ∼ Pþ λ½ðPþ ρÞf0ðρÞ − fðρÞ�: ð3:11Þ

If we use (3.9) and (3.10), we may write

H̄ ¼ _̄a
N̄ā

∼
1

Nð1 − λ fðρÞ
2ρ Þ

_a
a
∼
�
1þ λ

fðρÞ
2ρ

�
H; ð3:12Þ

which is exactly the infinitesimal change emanating from
(3.6b) for the ρ̄ðρÞ given by (3.9), since

H̄ ¼
�
ρ̄

ρ

�
1=2

H ∼H
�
1þ λ

fðρÞ
2ρ

�
: ð3:13Þ

So the necessary transformation of H that keeps invariant
(2.4) is attributed to a change of the gauge variable N (or
alternatively, as we said before, it can also be seen as a
change in dt). The situation however for the pressure is not
the same: by introducing (3.9) into (3.6c), we obtain

P̄¼−ρ̄þ
�
ρ

ρ̄

�
1=2

ðρþPÞdρ̄
dρ

∼Pþλ½ðPþρÞf0ðρÞ−fðρÞ�þλðPþρÞf0ðρÞ; ð3:14Þ

which is different from what we see in (3.11).
The reason for the above discrepancy rests in the

difference of considering H in place of a and N, or

equivalently dt, as the basic variable. The Hubble function
in a generic time gauge is H ¼ _a

Na. Any transformation of
H, when seen at the level of its components, can be
attributed to a or to N and dt interchangeably. In the case at
hand, of (3.8), the corresponding change in H is owed to a
transformation in N, or equivalently the time in the
a-formalism if we want to keep N fixed (e.g., N ¼ 1).
For maximum compatibility, let us turn to Eqs. (3.7) written
in the gauge N ¼ 1 and thus consider that the change in H
is owed to a transformation in the time variable. When you
perform such a transformation, the _ρ that we see in the
second of (3.7) is also going to be transformed. On the
other hand, if you forget thatH is made up by some specific
components and treat it as the basic variable, you have no
reason to enforce a transformation of the _ρ in Eq. (3.7).
Hence, the observed difference between the two situations
is passed on to the pressure of each case that now needs to
be different in order to keep the equations invariant during
these two distinct scenarios. This is the essence of the
“discrepancy” we see between (3.14) and (3.11).
As we did in the previous sections, we can proceed and

derive the general symmetry generator whose special case
is transformation (3.6) in theH formalism of the Friedmann
equations. For this to happen, we need to consider a
generator of the form,

X ¼ χðt; H; ρ; PÞ ∂∂tþ ξ1ðt; H; ρ; PÞ ∂
∂H

þ ξ2ðt; H; ρ; PÞ ∂
∂ρþ ξ3ðt; H; ρ; PÞ ∂

∂P ; ð3:15Þ

which we require to be a symmetry of the equations,

EH
1 ≔ −3H2 þ 8πρþ Λ ¼ 0 ð3:16aÞ

EH
2 ≔ 3HðPþ ρÞ þ _ρ ¼ 0 ð3:16bÞ

EH
3 ≔ −3H2 − 2 _H þ Λ − 8πP ¼ 0: ð3:16cÞ

We additionally include the cosmological constant in our
considerations.
Since the first equation is algebraic, we start from the last

two demanding, i.e.,

pr1XðEH
2 Þ ¼ 0; mod EH

2 ¼ 0; EH
3 ¼ 0; ð3:17Þ

pr1XðEH
3 Þ ¼ 0; mod EH

2 ¼ 0; EH
3 ¼ 0: ð3:18Þ

The resulting symmetry generator has the additional
property XðE1Þ ¼ 0, and it can be split into two parts:
(1) The first is related to the effect that transformations

in the time variable produce to the rest of the
quantities, and it has the rather complicated form,
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X6 ¼ χ
∂
∂t − 4π

Z
ðρþ PÞ ∂χ∂PdP

∂
∂H − 3H

Z
ðρþ PÞ ∂χ∂PdP

∂
∂ρþ

�
3H

Z
ðρþ PÞ ∂χ∂PdP

− 4πðρþ PÞ
Z

ðρþ PÞ ∂2χ

∂P∂HdPþ
Z

ðρþ PÞ ∂2χ

∂P∂t dP − 3HðPþ ρÞ
Z

ðρþ PÞ ∂2χ

∂P∂HdP

− ðρþ PÞð∂tχ þ 3HχÞ þ ðρþ PÞ2
�
3H

∂χ
∂ρþ 4π

∂χ
∂H

�� ∂
∂P ; ð3:19Þ

where χ ¼ χðt; H; ρ; PÞ is an arbitrary function.
(2) The second is the vector,

X7 ¼ hðt; H; ρÞ ∂
∂H þ 3H

4π
hðt; H; ρÞ ∂

∂ρþ
1

4π

�
ðρþ PÞ

�
3H

∂h
∂ρ þ 4π

∂h
∂H

�
−
∂h
∂t − 3Hhðt; H; ρÞ

� ∂
∂P ; ð3:20Þ

where hðt; H; ρÞ is an arbitrary function of its arguments.
The particular case of the symmetry transformation (3.6) arises when one considers hðt; H; ρÞ ¼ 4πfðρÞ

3H , which yields

X7 ¼
4πfðρÞ
3H

∂
∂H þ fðρÞ ∂

∂ρþ
�
ðPþ ρÞf0ðρÞ − fðρÞ − 4πðPþ ρÞ

3H2
fðρÞ

� ∂
∂P : ð3:21Þ

Now this generator is completely compatible with the
transformation (3.6) in the pressure, with the additional
use of the H2 ¼ 8πρ

3
, since the first was written in [36] for

the Λ ¼ 0 case. However, simply by mere application of
H2 ¼ 8πρ

3
þ Λ

3
in (3.21), the generalization of (3.6) in the

Λ ≠ 0 case can be derived. We thus see how usingH as the
basic variable leads to different symmetry generators than
when applying the theory with the equations expressed in
terms of the scale factor.

IV. GENERATION OF NEW SOLUTIONS
FROM KNOWN ONES

It is widely known that symmetry generators can serve in
reducing the order of differential systems of equations. The
truth here however is that we deal with a rather simple
system. Especially if we use (2.4) to solve algebraically
with respect to the lapseN, we need only solve a single first
order relation for a given equation of state, i.e., Eq. (2.5).
The integrable classes of such relations are well known
from the theory of ordinary differential equations. The
situation can become challenging if we want to obtain the
solution in a particular time gauge (e.g., the cosmic or
cosmological time case, N ¼ 1). Still however, the known
cases for which the solution can be derived in terms of
known functions have been widely studied. For example, in
[44], it is shown that for a spatially nonflat universe with a
simple equation of state like P ¼ wρ, only for rational
values of w can you write the solution in terms of known
functions when N ¼ 1. A generalization of the previous
study for nonlinear equations of state can be found in [45].
Thus, the main use of generators like those we derived in
previous section is into mapping known solutions to new

ones. More importantly, it is interesting to see what effect
the symmetry we use has in the base theory which produces
the pressure and the energy density that we study in
a model.
As a demonstration and a consistency check, we will

start with a few simple examples, where the generators X4

and X5 are used to connect models with different equations
of state and hence different cosmological epochs. In the end
of the section, we will provide a connection of the
symmetries we previously derived to the scalar field model,
and with a simple example, we will see how a change based
on a symmetry can affect the action principle and the
context of the theory.
But let us first start with some generic considerations.

The method of generating new solutions from old ones
[40,41] will be implemented. Let us outline the method.
Suppose the following Lie point symmetry generator is
known for some system of partial differential equations:

Z ¼ ξiðxj; uβÞ ∂
∂xi þ ηαðxj; uβÞ ∂

∂uα ; ð4:1Þ

with ξiðxj; uβÞ, ηαðxj; uβÞ known functions. The finite
transformation can be obtained through the integral curves
of the system,

ξl½x̃jðλÞ; ũβðλÞ� ¼ dx̃lðλÞ
dλ

; ηα½x̃jðλÞ; ũβðλÞ� ¼ dũαðλÞ
dλ

;

ð4:2Þ

with the initial conditions,
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x̃ið0Þ ¼ xi; ũαð0Þ ¼ uα: ð4:3Þ

The result will read, in general,

x̃i ¼ x̃iðxj; uβ; λÞ; ũα ¼ ũαðxj; uβ; λÞ; ð4:4Þ

and since the transformation is invertible,

xi ¼ xiðx̃j; ũβ; λÞ; uα ¼ uαðx̃j; ũβ; λÞ; ð4:5Þ

where λ the parameter.
Some simple special solution of the differential equation

will have the form,

uα ¼ fαðxiÞ; or; uα−fαðxiÞ¼ 0⇔Fðuα;xiÞ¼ 0: ð4:6Þ

Hence, the solution is a surface described by (4.6) in the
space with variables ðxi; uαÞ. Due to (4.5), we get

Fðuα; xiÞ ¼ 0 ⇒
ðIV.5Þ

F½xiðx̃j; ũβ; λÞ; uαðx̃j; ũβ; λÞ� ¼ 0 ⇒

F̃ðx̃j; ũβ; λÞ ¼ 0: ð4:7Þ

The surface (4.7) will represent a new form of solution, and
hopefully, we will be able to bring it in the form,

ũβ ¼ f̃βðx̃j; λÞ; ð4:8Þ

where λ will act as an integration constant.
When do we expect to find a different form of solution?

The surface that represents the original solution should not
be invariant under the action of the generator, that is

Z½Fðuα; xiÞ� ≠ 0: ð4:9Þ

If the above does not hold, then we get the same form of
solution in the variables x̃i; ũα.

A. Cosmological epochs

The starting point is the solution of the Einstein’s plus
perfect fluid equations for flat FLRW (k ¼ 0), in the
absence of cosmological constant ðΛ ¼ 0Þ. The assumed
equation of state is ðP ¼ w1ρÞ with w1 < − 1

3
, correspond-

ing to the inflation epoch. Furthermore, we are going to
choose the gauge (N ¼ 1). To this end, the equations
become

8πρ − 3

�
_a
a

�
2

¼ 0; ð4:10Þ

3ð1þ w1Þ
_a
a
ρþ _ρ ¼ 0; ð4:11Þ

with solutions,

P ¼ w1ρ; ð4:12Þ

N ¼ 1; ð4:13Þ

ρ ¼ ρ0a−3ð1þw1Þ; ð4:14Þ

aðtÞ ¼ ½6πð1þ w1Þ2ρ0�1=3ð1þw1Þt2=3ð1þw1Þ: ð4:15Þ

To achieve our goal, we form the generator,

Z ¼ X4 þ X5: ð4:16Þ

The functions σða; ρÞ; fða; ρÞ are arbitrary; hence, we can
choose them properly. We demand the ∂N component of the
generator to be equal to zero in order to remain at the same
gauge Ñ ¼ 1, where Ñ the transformed lapse function. This
implies that the observers remain comoving in the trans-
formed system as well. Additionally, we choose the
component ∂ρ to be equal to ρ, which also leads the
component of ∂P to be independent of the scale factor a.
Thus, the transformed equation of state will remain only a
function of ρ̃, P̃. These requirements reduce the form of the
functions and the generator to

σða; ρÞ ¼ a
2
ln a; fða; ρÞ ¼ ρ; ð4:17Þ

Z ¼ a
2
ln a∂a þ ρ∂ρ þ

P − ρ

2
∂P: ð4:18Þ

The Eqs. (4.2) for the generator Z read

dt̃
dλ

����
λ¼0

¼ 0;
dÑ
dλ

����
λ¼0

¼ 0;
dã
dλ

����
λ¼0

¼ ã
2
ln ã;

dρ̃
dλ

����
λ¼0

¼ ρ̃;
dP̃
dλ

����
λ¼0

¼ P̃ − ρ̃

2
; ð4:19Þ

where λ the parameter of the curves, chosen so that at λ ¼ 0
the transformation is the identity. The transformation as
well as the inverse are

t̃ ¼ t; Ñ ¼ N; ã ¼ ae
λ=2
;

ρ̃ ¼ eλρ; P̃ ¼ −eλρþ eλ=2ðPþ ρÞ; ð4:20Þ

t ¼ t̃; N ¼ Ñ; a ¼ ãe
−λ=2

;

ρ ¼ e−λρ̃; P ¼ e−λ½−ρ̃þ eλ=2ðP̃þ ρ̃Þ�: ð4:21Þ

All we have to do now is to use (4.21) in (4.12)–(4.15) and
solve with respect to the new variables,

P̃ ¼ ð−1þ ð1þ w1Þe−λ=2Þρ̃; ð4:22Þ

Ñ ¼ 1; ð4:23Þ
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ρ̃ ¼ eλρ0ã−3ð1þw1Þe−λ=2 ; ð4:24Þ

ãðt̃Þ ¼ ½6πð1þ w1Þ2ρ0�1=3ð1þw1Þeλ=2 ˜t2=3ð1þw1Þeλ=2 : ð4:25Þ

By the choice λ ¼ 2 ln 3ð1þw1Þ
4

and the redefinition ρ0 ¼
16

9ð1þw1Þ2 ρ̃0, the inflation transforms to the radiation epoch

solution,

P̃ ¼ 1

3
ρ̃; ð4:26Þ

Ñ ¼ 1; ð4:27Þ

ρ̃ ¼ ρ̃0ã−4; ð4:28Þ

ãðt̃Þ ¼ 2

�
2π

3
ρ̃0

�
1=4

t̃1=2: ð4:29Þ

Now we can repeat the transformation (4.21) with a
different parameter λ and as known solutions the (4.26)–
(4.29). There exists a parameter λ that can transform
the radiation epoch solution into the dust epoch. In
Table I, we present the values of the parameters λ and
the corresponding epoch’s, as well as the equations
of state.
As we can see, the last transition can be obtained only as

a limit of λ.

B. Stiff plus generalized (anti-)Chaplygin fluid
from stiff equation of state

Let us assume an equation of state describing stiff matter
P ¼ ρ and k ¼ 0 with arbitrary Λ. The solution is

P ¼ ρ; ð4:30Þ

N ¼ 1; ð4:31Þ

ρ ¼ ρ0a−6 ð4:32Þ

aðtÞ ¼
ffiffiffi
2

p �
πρ0
Λ

�
1=6

sinh1=3 ð
ffiffiffiffiffiffi
3Λ

p
tÞ: ð4:33Þ

For this case, only the X4 generator will be used, with the
function fða; ρÞ chosen to have the form,

fða; ρÞ ¼ ρ−ν; ð4:34Þ

X4 ¼ −
4πNρ−ν

Λþ 8πρ
∂N þ ρ−ν∂ρ − ρ−1−ν½νPþ ð1þ νÞρ�∂P;

ð4:35Þ

where ν some arbitrary constant. The transformed solutions
read

P̃ ¼ ρ̃ −
2λð1þ νÞ

ρ̃ν
; ð4:36Þ

Ñ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 8πρ̃

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 8π½ð1þ νÞλþ ρ̃1þν� 1

1þν

q ; ð4:37Þ

ρ̃ ¼ ½ðρ0ã−6Þ1þν þ ð1þ νÞλ�1=ð1þνÞ; ð4:38Þ

ã ¼
ffiffiffi
2

p �
πρ0
Λ

�
1=6

sinh1=3 ð
ffiffiffiffiffiffi
3Λ

p
t̃Þ: ð4:39Þ

From (4.36), the generalized anti-Chaplygin matter can be
obtained if λ < 0 while the Chaplygin for λ > 0 (assuming
of course for the power of ρ̃ in the second term ν > 0).
Notice however, that in this case, the observers are not
comoving any more since there is a lapse function Ñ ≠ 1.

C. Scale-factor dependent equation of state
from dust solution

The only difference with the first subsection is to choose
different functions σða; ρÞ; fða; ρÞ, and our starting point is
the dust solution corresponding to P ¼ 0. Again, we want
to maintain the lapse gauge but there is no other restriction.
The functions and the generator are

σða; ρÞ ¼ α2; fða; ρÞ ¼ 2aρ; ð4:40Þ

Z ¼ α2∂a þ 2aρ∂ρ þ a

�
P −

5

3
ρ

�
∂P: ð4:41Þ

The induced transformation reads

t ¼ t̃; N ¼ Ñ; a ¼ ã
1þ λã

;

ρ ¼ ρ̃

ð1þ λãÞ2 ; P ¼ 3P̃ð1þ λãÞ þ 5λãρ̃
3ð1þ λãÞ2 ; ð4:42Þ

and the new solution are

P̃ ¼ −
5λã

3ð1þ λãÞ ρ̃; ð4:43Þ

Ñ ¼ 1; ð4:44Þ

TABLE I. Mappings between solutions for various values of λ.

Transitions λ Equations of state

Inflation → radiation, 2 ln 3ð1þw1Þ
4

wi < − 1
3
→ wr ¼ 1

3

Radiation → dust, ln 16
9

wr ¼ 1
3
→ wd ¼ 0

Dust → de Sitter, → ∞ wd ¼ 0 → wdS ¼ −1
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ρ̃ ¼ ð1þ λãÞ5
ã3

ρ0; ð4:45Þ

ãðt̃Þ ¼ ð6πρ0Þ1=3t̃2=3
1 − λð6πρ0Þ1=3 t̃2=3

: ð4:46Þ

As we can observe from (4.43), the equation of state
depends on the scale factor. Furthermore, by use of (4.46)
and the redefinition of the parameter λ as follows:
λ ¼ − 32=3

5ð2πρ0Þ1=3 w, the equation of state may be written as

P̃ ¼ wt̃2=3ρ̃: ð4:47Þ

The equation of state is time dependent, and this depend-
ence is similar to the dependence of the original’s solution,
scale factor.
The infinite symmetry freedom offers infinite possibil-

ities. The ability to obtain different equations of state from
the simplest original one (P ¼ 0) is due to the assumption
that ρ and P are independent variables.

D. Effects of symmetries on the base theory

With generators like Xi, i ¼ 1, 2, 3, we derived sym-
metry transformations that keep you in the same theory, in
the sense that the equation of state remains invariant. On the
other hand, transformations derived from Xi, i ¼ 4;…; 7
provide us with a connection between different types of
fluids. The first set can mostly serve in the reduction of the
order of equations, although due to the simplicity of the
latter, such reductions are expected to fall into known
integrable classes. Alternatively, these generators can, in
principle, be used to derive a more general solution from a
partial solution which is known, e.g., a solution for a
specific value of the integration constants. The significance
of the second set of generators however is much more
ample, since they are able to provide a correspondence
between different models. More importantly, we can derive
information over the base theory as the effect of such a
transformation. In the literature, there have been interesting
cases where new solutions are derived from old through the
application of transformations [37].
Let us take as an example generatorX7 from (3.20), which

is a symmetry of (3.16). Consider thatwe have in our hands a
given model with a Hubble function HðtÞ and assume that
wewant to study whichmodel would result in a newHubble
expansion rate H ↦ H̄ ¼ Hλ. We know that a power law
transformation in the H variable can be generated by
utilizing in (3.20) a function hðt; H; ρÞ ¼ H lnH. With such
a choice, the generator X7 is written as

X7 ¼ H lnH
∂
∂H þ 3

4π
H2 lnH

∂
∂ρ

þ
��

−
3H2

4π
þ Pþ ρ

�
lnH þ Pþ ρ

� ∂
∂P ; ð4:48Þ

which straightforwardly provides us with the necessary
transformation law in ρ ↦ ρ̄ andP ↦ P̄. In total, we obtain

H ¼ H̄
1
λ; ð4:49aÞ

ρ ¼ ρ̄þ 3

8π
ðH̄2

λ − H̄2Þ; ð4:49bÞ

P ¼ H̄
1−λ
λ

λ
ðP̄þ ρ̄Þ − ρ̄ −

3

8π
ðH̄2

λ − H̄2Þ; ð4:49cÞ

where λ is the parameter of the transformation; the identity
mapping is obtained for λ ¼ 1.
Note that the above transformation is generic; i.e., it does

not depend on a specific initial model. Our starting
assumption is that whatever H we have, we want to find
which theory would reproduce an Hλ expansion rate. In
order to find the latter, we need to set some specific initial
state. For example, if we start from a theory with P ¼ wρ,
then with the use of (4.49b), (4.49c), and the constraint
equation −3H̄2 þ 8πρ̄þ Λ ¼ 0 to substitute H̄ from, we
can easily find that the new equation of state reads

P̄ðρ̄Þ¼ 3−
λþ1
2λ λðwþ1Þ
8π

ðΛþ8πρ̄Þλ−12λ ð3ðΛþ8πρ̄Þ1λ −3
1
λΛÞ− ρ̄:

ð4:50Þ

It is true that in this form not a lot can be said about the
theory that produces such a complicated equation of state.
But we must keep in mind the various different matter
contents may produce the effective fluids’ pressure and
energy density that we see in Einstein’s equations.
To get an example of such a situation let us consider that

the base theory producing the fluid is a single scalar field
which is minimally coupled to gravity. We have the well-
known relations,

P ¼
_ϕ

2
− VðϕÞ; ρ ¼

_ϕ

2
þ VðϕÞ; ð4:51Þ

for the pressure and energy density of the effective fluid.
The above expressions give a transformation rule that can
translate the symmetry vector X7 we previously used on
new variables ðt; H; ρ; PÞ ↦ ðt; H; _ϕ; VÞ. Note that the
presence of _ϕ in the coordinates does not make this a
higher order symmetry in the new variables because V is
considered independent of _ϕ [and it is so as long as we do
not choose a specific VðϕÞ]. In the new coordinates, the
vector X7 from (4.48) reads
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X7 ¼ H lnH
∂
∂H þ 1

2
ðlnH þ 1Þ _ϕ ∂

∂ _ϕ
þ
�
1

4π
ð3H2 − 2π _ϕ2Þ lnH −

_ϕ2

2

� ∂
∂V ; ð4:52Þ

and it can be easily verified that it is a Lie-point symmetry
of Eqs. (3.16) when (4.51) are used [the same of course can
be checked for the transformed version of the generic
vector (3.20)].
The induced transformation ð _ϕ; VÞ ↦ ð _ψ ; UÞ to a new

scalar field model, apart from the (4.49a) which remains
unchanged, is

_ϕ ¼
ffiffiffi
1

λ

r
H̄

1
2
ð1λ−1Þ _ψ ; ð4:53aÞ

V ¼ U þ 3

8π
ðH̄2

λ − H̄2Þ þ ðλH̄ − H̄1=λÞ
2Gλ

_ψ2: ð4:53bÞ

Again our objective is to see what theory, i.e., which
scalar field potential UðψÞ can change our Hubble expan-
sion rate from H [which is given by a VðϕÞ] to Hλ. Of
course, we need to set our initial point through a startingH.
To achieve this, let us take as an example the well-known
exact solution of an exponential potential when the cos-
mological constant is zero, i.e., from now on we assume
Λ ¼ 0,

HðtÞ¼ κ

t
; ϕðtÞ¼−

ffiffiffi
κ

p
2

ffiffiffi
π

p ln t; VðϕÞ¼ κð3κ−1Þ
8π

e
4
ffiffi
π

p
ϕffiffi
κ

p
:

ð4:54Þ

Please notice that this is a partial solution; the full general
solution of an exponential scalar field can be derived in a
rather complicated form [46,47]. However, the partial
solution (4.54) is sufficient for the needs of our example,
and apart from being simpler, it also corresponds to a linear
equation of state P ¼ ð 2

3κ − 1Þρ.
By using the known solution (4.54), it is easy to derive

from (4.49a) and (4.53); so that in order to obtain an
expansion rate H̄ ¼ Hλ ¼ κλ

tλ
, we need a potential of the

form,

UðψÞ ¼ 3

8
π

λþ1
λ−1

�ðλ − 1Þ4
κ2λ2

� λ
λ−1
ψ

4λ
λ−1

−
λ2

8
π

2
λ−1ðλ − 1Þ2ðλþ1Þ

λ−1

�
1

κ2λ2

� λ
λ−1
ψ

2ðλþ1Þ
λ−1 ; ð4:55Þ

while the scalar field is

ψðtÞ ¼
ffiffiffi
λ

p
κλ=2ffiffiffi

π
p ðλ − 1Þ t

1
2
−λ
2: ð4:56Þ

For the values 0 < λ < 1, this type of potentialUðψÞ is said
to describe an “intermediate” inflation [48], in the sense
that the expansion rate is something between a power law
and an exponential; the solution is extensively studied in
[48,49]. We just note, that in the parametrization we use
here the limit λ ≫ 1; κ ∼ λ reproduces a Higgs type of
scalar field potential. In addition, if you allow λ to be
negative, then the solution corresponds to a phantom field
with ψðtÞ becoming imaginary.
This is how a symmetry transformation may help us to

obtain in an algorithmic manner the background theory that
we would need in order to change the expansion rate in a
desired way. We demonstrated it with a simple example;
however, as we see by the form of the generators, one can
choose more complicated combinations among the func-
tions involved in a model. The symmetry generators,
depending on the change we want to enforce in some of
the observed parameters, can lead us to certain modifica-
tions in the action of the underlying theory which we need
to study.
The above process for which we got the corresponding

generator expressed in term of the scalar field potential and
velocity can also be applied with the other generators
expressed in the ðt; N; a; ρ; PÞ variables. But in this case,

the parametrization invariant expressions, P ¼ _ϕ
2N − VðϕÞ

and ρ ¼ _ϕ
2N þ VðϕÞ need to be used instead of (4.51).

V. CONCLUSION

Symmetries of differential equations are of wide interest
since they provide an effective method of simplifying and
solving a given set of equations. Among other things, they
can be used to reduce the order of the equations, find
symmetry invariant solutions, or utilize already known
solutions to acquire new ones.
Given the continually rising interest in cosmological

solutions, especially in regards to the nature of dark energy,
we thoroughly studied the point symmetries of the
Friedmann equations. Due to the fact that the system
basically comprises of first order equations, namely (2.4)
and (2.5), the resulting symmetry groups are infinite
dimensional. In order to be as generic as possible, we
considered the equations in their original form, prior to
assuming any gauge fixing condition.
We separately examined two main scenarios: in the first

case, a specific equation of state is given and substituted
inside the equations of motion. As a result, the emanating
symmetry vector has the property of leaving the equation of
state invariant as well. The second, more intriguing,
possibility involved taking the pressure as being a separate
dynamical variable, which is allowed to take part in the
transformation. Performing such a change of variables can
lead to a set of Friedmann equations corresponding to a
fluid governed by a different equation of state than that of
the initial system.
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In the first scenario—where we assumed some ab initio
given equation of state—we derived the general symmetry
vectors corresponding to dependences of the form
P ¼ Pða; ρÞ, plus an additional possibility where we
considered dependence from some power of the first
derivative of the scale factor a. To the above general forms
of equations of state, there corresponds a wide class of
fluids that can be considered in various cosmological
configurations.
However, the most interesting situation emerges when

the pressure is allowed to be affected by the transformation.
This leads to a distinct class of symmetry vectors that can
be used to map solutions among models with different
equations of state. Again infinite dimensional symmetry
groups are involved, whose generators we derived. To
demonstrate their possible applications, we used a trans-
formation to “scan” through the solutions of the various
epochs of the Universe (see the example of Sec. IVA). We
also started from a simple solution corresponding to a
typical linear equation of state, like P ¼ ρ, and showed
how—through an appropriate symmetry transformation—it
can be turned into the corresponding solution of a more
complicated type of fluid of stiff matter plus Chaplygin gas
(see Sec. IV B). We even used this approach to pass into a
solution linked to a time dependent equation of state
parameter (see example IV C). Considering that the afore-
mentioned symmetry groups are infinite dimensional, there
is an immensely large set of possibilities to be explored in
this respect, where simple solutions can be used to derive
those of more perplexing configurations.
In the case of spatially flat space-times, k ¼ 0, where the

equations can be formulated purely in terms of the Hubble
parameter H, we observed that the symmetry generator
changes when H is to be considered as the basic variable
of the transformation in place of the scale factor a. Aswe saw,
this genuinely results into distinct symmetry transformations.

To underline the generalization that our work offers, we
compared with previously known results of symmetry
transformations of the Friedmann equations. We showed
how these known symmetries emerge as special cases from
the generators we derived and how they can be extended to
a wider class of cases (e.g., nonvanishing k and/or Λ) since
they are part of more general transformations. Additionally,
we considered the connection to a single scalar field theory
and the effective fluid that it creates. Through a simple
example, we demonstrated how one can induce trans-
formations based on a desired expression for an observable
quantity, like the Hubble function, to obtain information on
the underlying theory that is needed to produce it as a
result. It is quite interesting to note at this point that the
Friedmann equations are seen to have a wider spectre than
cosmology. There are various recent works that relates
them to other interesting physical problems [50,51]. Thus,
the study of their symmetry groups is expected to have a
wide application.
Lastly, it is noteworthy to mention that even larger

symmetry groups for the system under consideration can be
achieved: if one allows N to be simply defined by the
quadratic constraint E2, then the initial vector will not have
a ∂

∂N component, and it would only have to satisfy one
symmetry condition, namely that for E1. The application of
this idea to this, as well as other cosmological systems, is
currently under investigation.
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