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We revisit the problem of generality of Starobinsky and Higgs inflation. The known results obtained in
the Einstein frame are generalized for the case of an arbitrary initial energy of the scalar field. These results
are compared with the results obtained directly in the Jordan frame, which, to our knowledge, has not been
thoroughly explored in the literature previously. We demonstrate that the qualitative picture of initial
conditions zone in the ðϕ; _ϕÞ plane, which leads to sufficient amount of inflation, is quite similar for both
the frames in the case of Higgs inflation. For Starobinsky inflation, the conformal transformation between
the frames relates the geometrical variables in the Jordan frame with the properties of an effective scalar

field in the Einstein frame. We show that the transformation ðH;RÞ → ðϕ; _ϕÞ is not regular everywhere,
leading to some peculiarities in the zone of good initial conditions in the ðH;RÞ plane.
DOI: 10.1103/PhysRevD.102.063523

I. INTRODUCTION

Recent progress in observations of CMB has led to
significant constraints on the viable models of inflation [1].
Very popular models with reasonable physical motivations
like the quadratic 1

2
m2ϕ2 and the quartic λϕ4 potentials are

now strongly disfavored. The absence of any detection of
the primordial tensor modes leads to the conclusion that the
inflaton potential should rather be shallow. Other possibil-
ities include the case of λϕ4 potential with the inflaton field
nonminimally coupled to the scalar curvature R (this model
allows us to consider the Standard Model Higgs field as the
inflaton) or the absence of any fundamental scalar field at
all, with inflation induced by the R2 term in the gravitation
Lagrangian (Starobinsky inflation [2].) Note that these two
models allow conformal transformation of the metric into
the Einstein frame where the action takes the form of the
usual general relativity action with a minimally coupled
canonical scalar field (in the case of R2 inflation this field is
purely an effective one). The potential required is again a
shallow potential. That is why a detailed analysis of the
inflaton dynamics with shallow potentials has recently
become very important. In particular, old classic results
of initial conditions which yield sufficient amount of
inflation (that is inflation with at least 60 e-foldings) should
be reexamined for the case of shallow potentials. Recent
works on this topic have already indicated certain important

differences from the classic case of the massive quadratic
potential. In particular, starting from Planckian initial
energy, initial scalar field values that lie close to ϕ ¼ 0
for the shallow potentials yield, in contrast to the case of
the massive scalar field potential, sufficient amount of
inflation.
The goal of the present paper is to study the generality of

inflation while starting from an energy different from the
Planckian one. It has already been remarked that the
requirement of initial Planckian energy for models with
asymptotically flat potentials leads to initial dominance of
the kinetic term. This might be considered to be not so
natural, if we believe in initial equipartition between the
kinetic and the potential term [3]. Starting from Planckian
energy is even less reasonable in the case of Higgs and
Starobinsky inflation—in both the models considered in the
Jordan frame effective gravitational constant can change in
time, and its present value and the value at the early stages
of evolution of the Universe can differ by orders of
magnitude. This means that the Planck scale, being
inversely proportional to the effective gravitational con-
stant, changes during the cosmological evolution and there
is no reason to take its present value while describing the
early Universe. We can alternatively use the Einstein frame
for description of these inflationary models, where the
Planck scale remains constant. However, the conformal
transformation to the Einstein frame does not conserve the
energy. Hence if we use the Einstein frame as an effective
description of Higgs or Starobinsky inflation (considering
the corresponding Jordan frames as the physical ones),
initial energy may again have no connection with the

*swagat@iucaa.in
†muller@fis.unb.br
‡atopor@rambler.ru

PHYSICAL REVIEW D 102, 063523 (2020)

2470-0010=2020=102(6)=063523(11) 063523-1 © 2020 American Physical Society

https://orcid.org/0000-0003-4057-145X
https://orcid.org/0000-0003-3162-3801
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.063523&domain=pdf&date_stamp=2020-09-18
https://doi.org/10.1103/PhysRevD.102.063523
https://doi.org/10.1103/PhysRevD.102.063523
https://doi.org/10.1103/PhysRevD.102.063523
https://doi.org/10.1103/PhysRevD.102.063523


present value of the Planckian energy, despite the fact that
the latter is conserved in the Einstein frame.
Quadratic gravity was first addressed by Weyl in 1918

[4], later reappearing in the 1960s and 1970s, for example
in [5–7]. After that it has been investigated by many [8–18],
for a historical review see [19]. Starobinsky inflationary
model is realized in the particular case of R2 Lagrangian
[2]. Also in this connection there is the Ruzmaikina,
Ruzmaikin solution [20].
On the other hand, in the context of inflation, analysis is

usually carried out in the Einstein frame, see for instance
[21]. The intention of this present work is to have specific
emphasis on the Jordan frame. This frame is considered as
the physical one, and hence, the results obtained in the
Jordan frame have more direct physical meaning.
Moreover, if quadratic gravity could be considered as a
low-energy approximation of some more general theory
(for a particular example of such theory, see [22]), the initial
conditions good for inflation should be attractors for
dynamics in such a full theory which can be used to check
its consistency. Since there is no a priori reason for this
underlying general theory to have an Einstein frame
description, it is important that the results for initial
conditions to be presented in the Jordan frame. In the
present paper we consider initial conditions leading to
successful Starobinsky inflation (we choose 60 e-folds as a
criterion for inflation to be successful) in the Einstein frame
in Sec. II as well as in the Jordan frame in Sec. III before
describing the correspondence between these two frames in
Sec. IV. Since the scalar field potential in the Einstein frame
for Staroninsky inflation shares some common features
with the scalar field potential in the Einstein frame for the
Higgs inflation, it is reasonable to consider the same
problem for the Higgs inflation also. We then discuss
similarities and differences in the results obtained for these
two popular models.1 Our results are concluded in Sec. V.

II. STAROBINSKY INFLATION IN
THE EINSTEIN FRAME

In the following we will be studying quadratic gravity
given by the action

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p m2
p

2
½Rþ βR2�; ð1Þ

wheremp ¼ 1ffiffiffiffiffiffi
8πG

p is the reduced Planck mass. Note that (1)
is written in the Jordan framewhich is usually considered to
be the physical frame with metric gab, being used to obtain
spatial distances and time lapses. On the other hand,
following Barrow and Cotsakis [25], the Einstein frame
metric is conformally related to the Jordan frame metric as
g̃ab ¼ eϕ̃gab ¼ f0gab. The conformal factor f0 stands for

the derivative of the particular fðRÞ with respect to the
argument. While the Lagrangian given in (1) reduces in the
isotropic cases to the corresponding fðRÞ ¼ Rþ βR2, R
being the Ricci scalar.
The intention is to analyse the initial conditions for

inflation for zero spatial curvature case in the Jordan frame
and compare the results obtained with those in the Einstein
frame which have been found before (for instance in [21]).
Action (1) in the Einstein frame is given by

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p m2
p

2

�
R̃ −

3

2
g̃ab∂aϕ̃∂bϕ̃ − Ṽðϕ̃Þ

�
: ð2Þ

We have

R ¼ eϕ̃ − 1

2β
; ð3Þ

and the potential depends on the particular type of fðRÞ

Ṽðϕ̃Þ ¼ Rf0 − f
ðf0Þ2 ; ð4Þ

which, for fðRÞ ¼ Rþ βR2, becomes

Ṽðϕ̃Þ ¼ ð1 − e−ϕ̃Þ2
4β

: ð5Þ

We also follow the same units chosen in [21], in order to
obtain the canonical kinetic term in (9) as well as to keep
the appropriate dimension of the scalar field by choosing

ϕ̃ ¼ 2ffiffiffi
6

p ϕ

mp
; ð6Þ

and potential

VðϕÞ ¼ m2
p

2

1

4β

�
1 − exp

�
−

2ffiffiffi
6

p ϕ

mp

��
2

: ð7Þ

By expressing β in terms of the mass of the scalaron given
by m ¼ 1=

ffiffiffiffiffi
6β

p
, the potential takes the form

VðϕÞ ¼ 3

4
m2m2

p

�
1 − exp

�
−

2ffiffiffi
6

p ϕ

mp

��
2

; ð8Þ

which is shown in Fig. 1 to possess an asymptotically flat
right wing suitable for inflation. The action in the Einstein
frame takes the familiar form

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
m2

p

2
R̃ −

1

2
g̃ab∂aϕ∂bϕ − VðϕÞ

�
; ð9Þ

which coincides with the action given by Eq. (61) of [21]
with VðϕÞ given by (8).1For investigations in fðRÞ gravity, see [23,24].
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Analysis of generality of inflation for the action (9),
thoroughly carried out in [21], leads to results rather
different from the already known old results for a massive
scalar field with 1

2
m2ϕ2 potential. Initial conditions were

chosen by keeping the initial energy of the scalar field to be
of the order of Planckian energy, so that initial value of the
scalar field ϕ fixes the initial value of _ϕ up to its sign. The
central result of [21] regarding the action (9) is that inflation
is sufficient (with 60 or higher number of e-folds), if the
initial ϕ ≥ 15mp for both possible signs of _ϕ. More
interesting is the fact that sufficient inflation can be
achieved even starting from ϕ ≥ −4mp if we fix initial
_ϕ to be positive. Note that it implies starting from initial
ϕ ¼ 0 with positive _ϕ, we get enough inflation—a feature
clearly different from the massive scalar field case.
Qualitatively this occurs because starting from ϕ ¼ 0 the

scalar field has enough kinetic energy to climb the shallow
right wing of the potential in Fig. 1. This also means that if
we consider similar potential, but possessing both left and
right wings (this is the potential for Higgs inflation in the
Einstein frame as shown in Fig. 2), then sufficient inflation
can occur for any initial ϕ, the only restriction being for
4mp ≤ jϕj ≤ 15mp, we would need sgnð _ϕÞ ¼ sgnðϕÞ,
while for ϕ outside this range the sign of initial _ϕ does
not matter (see Fig. 16 of [21]).2

Such striking difference between the power-law and the
asymptotically flat potentials requires qualitative explan-
ation. Since a symmetric potential is easier to study and it
has its own significance being the Einstein frame potential
for the Higgs inflation, we start our consideration from the

symmetric potential before resuming the study of
Starobinsky inflation in the Sec. III.

A. Generality of higgs inflation revisited

The action for a scalar field φ which couples non-
minimally to gravity is given by [21,26–28]

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðφÞR −

1

2
gab∂aφ∂bφ − UðφÞ

�
ð10Þ

where R is the Ricci scalar and gab is the metric in
the Jordan frame. The potential for the SM Higgs field
is given by

UðφÞ ¼ λ

4
ðφ2 − σ2Þ2 ð11Þ

where σ is the vacuum expectation value of the Higgs field

σ ¼ 246 GeV ¼ 1.1 × 10−16mp ð12Þ

and the Higgs self-coupling constant has the value λ ¼ 0.1.
Furthermore

fðφÞ ¼ 1

2
ðm2 þ ξφ2Þ ð13Þ

where m is a mass parameter given by [28]

m2 ¼ m2
p − ξσ2

ξ being the nonminimal coupling constant whose value

ξ ¼ 1.62 × 104 ð14Þ

agrees with CMB observations [1,21]. For the above
values3 of σ and ξ, one finds m ≃mp, so that

fðφÞ ≃ 1

2
ðm2

p þ ξφ2Þ ¼ m2
p

2

�
1þ ξφ2

m2
p

�
: ð15Þ

We now transfer to the Einstein frame by means of the
following conformal transformation of the metric [21]

gab → g̃ab ¼ Ω2gab ð16Þ

where the conformal factor is given by

Ω2 ¼ 2

m2
p
fðφÞ ¼ 1þ ξφ2

m2
p
: ð17Þ

FIG. 1. Starobinsky inflation potential in the Einstein frame (8)
is shown in this figure to possess an asymptotically flat right wing
and a steep left wing.

2Please note that we are quoting the field values χA and χB
described in [21] starting from Planckian initial energy.

3Note that since the observed vacuum expectation value of the
Higgs field σ ¼ 1.1 × 10−16mp is much smaller compared to
the energy scale of inflation we have neglected it from our
subsequent calculations.
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After the field redefinition φ → ϕ the action in the Einstein
frame is given by [21]

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
m2

p

2
R̃ −

1

2
g̃ab∂aϕ∂bϕ − VðϕÞ

�
ð18Þ

where

VðϕÞ ¼ U½φðϕÞ�
Ω4

ð19Þ

and

∂ϕ
∂φ ¼ � 1

Ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 6ξ2φ2

m2
p

s
: ð20Þ

Equation (18) describes general relativity (GR) in the
presence of a minimally coupled scalar field ϕ with the
potential VðϕÞ. (The full derivation of the action in
the Einstein frame is given in [21,28].)
While considering Higgs inflation in the Einstein frame,

there is an approximate analytical form of the potential (19)
given in [21] which we reproduce here

VðϕÞ ≃ V0

�
1 − exp

�
−

2ffiffiffi
6

p jϕj
mp

��
2

; ð21Þ

where V0 ¼ λm4
p=ð4ξ2Þ. The symmetric potential (21) is

shown in Fig. 2 to possess two asymptotically flat wings.
We know from Fig. 16 in [21] that the region near ϕ ¼ 0
gives adequate amount of inflation in contrast to the
massive scalar field case.

1. The worst initial condition for inflation

We start our consideration by noting that, contrary to the
widespread opinion, the ϕ ¼ 0 initial condition is not the
worst for inflation even for a massive scalar field case. To
support this view let us consider the number of e-folds
when starting from Planck energy for different initial ϕ (see
Fig. 3 below) with the velocity of the scalar field is directed
downward i.e., sgnð _ϕÞ ¼ −sgnðϕÞ. We can see clearly that
ϕ ¼ 0 initial condition is not the worst for inflation, though
it indeed gives us insufficient number of e-foldings of
inflation for VðϕÞ ¼ 1

2
m2ϕ2 case. However, zero inflation

corresponds to some finite value of initial ϕ at Planck scale
given by ϕi ≃ 11mp. Moreover, this value is roughly the
same both for the massive and the asymptotically flat (21)
potentials. The goal of the present subsection is to find this
value analytically.
To do this we remind the reader another situation

different from our problem here which, however, as we
will show below, can be used to achieve our goal. Namely,
consider the hypothetical case of the contracting regime of
the Universe filled with a scalar field. It is known that the
equation of state wϕ has a different asymptote during
contraction as compared to expansion. In particular, if the
potential of the scalar field is less steep than the exponential
one, the field is effectively massless during contraction for
almost all initial conditions fixed at the beginning of the

FIG. 2. The symmetric Higgs inflation potential in the Einstein
frame (21) is shown in this figure to possess two asymptotically
flat wings. FIG. 3. The number of e-foldings obtained before the end of

inflation, estimated numerically, starting from the Planckian
initial energy is plotted as a function of the initial field value
ϕi with _ϕi < 0 for the case of massive quadratic potential VðϕÞ ¼
1
2
m2ϕ2 in red color and the asymptotically flat Higgs potential in

the Einstein frame, given by (21), in green color. From this figure,
it is clear that the worst initial conditions, leading to no inflation
at all, lie near ϕi ≃ 11mp for both type of potentials. The only
difference is that if we start at ϕi ¼ 0, the asymptotically flat
potential leads to sufficient amount of inflation while the
quadratic potential does not (which was the central result of [21]).
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contraction stage [29]. This means that the effective
equation of state is wϕ ≃ 1, scale factor grows with time
as a ∼ ðt − t0Þ1=3, H ¼ 1=3ðt − t0Þ, and the scalar field
finally reaches the value

ϕb ¼
mp

12π
ln

Hb

Hin
;

where Hin and Hb are the Hubble parameters at the
commencement and end of this regime wϕ ≃ 1 after which
universe starts expanding. For a massive scalar field,
assuming that this regime ends at the Planck energy and
remembering that it starts when scalar field is of the order
of mp (for lower ϕi we have an amplifying oscillations on
contraction stage), this formula can be rewritten as (see [30]
for details)

ϕb ¼
mp

12π
ln
mp

m
: ð22Þ

Note, that this formula is also applicable for a wider class
of potentials. Namely, if the potential can be approximated
as m2ϕ2=2 for ϕ ≤ mp, so that wϕ ≈ 1 regime starts when
massive potential approximation is still valid, then scalar
field will not feel the behavior of its potential from ϕ ≈mp

till the Planck energy, because in this regime the potential is
irrelevant. So that we can apply this formula for asymp-
totically flat potential of the Higgs inflation. Since this
potential has the same effective mass in the small field limit
as the observationally motivated m for the massive scalar
field potential, both the potentials lead to practically the
same ϕb at the Planck boundary which is about 11mp.
Now we return to initial conditions which are the worst

for inflation. To find an analytical answer let us consider
the case of a contracting universe. A typical contracting
universe has an equation of state of a stiff matter i.e.,
wϕ ≃ 1 as an attractor solution with the field growing fast
while universe approaches the singularity. Now imagine
that we stop the evolution at some energy level Hb and
reverse the direction of time. At this point, the field has
climbed up to a value ϕb and has a velocity _ϕb of the order
of the total energy, since the potential is negligible with
respect to the kinetic term. After time reversal _ϕ changes its
sign, and the Universe will follow the same trajectory while
expanding. Obviously, the equation of state is invariant
under time reversal, so the universe will expand with no
inflation at all. Hence the initial conditions ϕ ¼ ϕb and
_ϕ ¼ − _ϕb are the worst initial conditions for inflation to
occur. If we consider the Planck boundary, _ϕ2=2 will be the
Planck energy (since kinetic term dominates in this regime)
and ϕ should be equal to ϕb which is found earlier. This
coincides with the numerically obtained value of ϕi
presented in Fig. 3. As it is known, w ¼ 1 at expansion
(in contrast to contraction) requires a set of very special
conditions, so for _ϕi different enough from the one

constructed above, inflation becomes possible. These
qualitative properties are true for both power-law as well
as asymptotically flat potentials. However, for a massive
scalar field on a Planckian boundary,ϕ ¼ ϕb ¼ 11mp is not
high enough to cause sufficient amount of inflation (i.e.,
inflation with at least 60 e-foldings) even if we start with
_ϕi ¼ 0. That is why the fact that the worst initial situation
occurs for nonzero initial ϕ has a little effect for massive
potential—this value is still close to zero from the viewpoint
of adequate inflation. On the contrary, this value ϕ ¼ ϕb is
high enough for successful inflation in the case of plateau
potentials (8) and (21). However, large negative _ϕi kills the
inflation completely, despite of the fact that initial ϕ is
enough to get 60 e-folds when starting from _ϕi ¼ 0. That is
why the sign of initial _ϕ ismore important for asymptotically
flat potentials.
It is also worth mentioning that we can start from ϕ ¼ 0

and with a Planckian kinetic energy in the massive scalar
field case and get some number of e-foldings of inflation.
Numerical simulations show that for m ≃ 6 × 10−6mp,
the field climbs till ϕmax ¼ 10.4mp yielding about 28
e-foldings. This is still not enough, however, it shows
the effect of initial kinetic term in helping the field climb up
the potential causing the universe to inflate even when
starting from ϕ ¼ 0. The same situation happens for an
asymptotically flat potential and in this case, this effect is
important for realistic models, because for a such potential,
we can get adequate inflation with Ne ≥ 60 starting
from ϕ ¼ 0.
Summarizing, in both the cases (massive and plateau

potentials) initial ϕ ¼ 0 leads to some e-foldings of
inflation. While for plateau potentials, we do get sufficient
amount of inflation, for a massive scalar field with the value
of the scalar field mass that agrees with observation,
inflation is not adequate. We have also checked numerically
that for initial energy scale H smaller than 10−3mp we do
not get adequate inflation from ϕ ¼ 0 even for the case of
plateau potentials (8) and (21), so that the structure of initial
conditions zone good for inflation becomes similar to such
zone for a massive scalar field. This means that the structure
of the zone of “good” initial conditions for plateau
potentials is rather sensitive to initial energy.
On the other hand, strictly zero inflation initial con-

ditions necessarily require nonzero initial ϕ. However,
despite common general dynamical features, the set of
initial conditions which leads to more than 60 e-folds
starting from the Planck boundary looks quite different in
the power-law potentials as compared to plateau potentials,
as it has been shown in [21].

2. Initial conditions with arbitrary
initial energy scale

The results of the previous subsection have been
obtained for an initial energy of the order of Planck scale.
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They become even more clear if we construct initial
conditions leading to at least 60 e-folds in the (ϕ, _ϕ) plane
without fixing the initial energy scale ρϕ. Our results are
presented in Fig. 4 for the massive 1

2
m2ϕ2 potential in the

left panel and for the asymptotically flat Higgs potential
(21) in the Einstein frame. We can see that the results are
qualitatively the same—the initial conditions located within
the white bands in Fig. 4(a) and Fig. 4(b) do not lead to
successful inflation. The only difference between these two
figures is the width of this band, and this difference is
responsible for the above mentioned fact that initial ϕ ¼ 0
yields enough inflation in the case of plateaulike potentials,
but not in the case of power-law potentials. Hence this
difference appears, not because of some fundamental
mathematical features of inflationary dynamics in these
two cases, but rather due to the particular physical
restrictions—starting within Planck energy (ρϕ ¼ m4

p)
and demanding at least 60 e-folds.
It should be noted that starting from Planckian energy

is a reasonable strategy if we consider the Einstein
frame as a fundamental one. If, on the contrary, we think
the Jordan frame to be the physical one, then taking into
account that energy is not an invariant of the conformal
transformation between the frames, there is no reason to fix
the initial energy in the Einstein frame. From this point of
view the results presented in Fig. 4(b), where we did not fix
the initial energy, are more relevant to the problem of
generality of the Higgs inflation in the Einstein frame.

3. Higgs inflation in the Jordan frame

We work directly in the Jordan frame, considering the
equations of motion [31] obtained from the action (10),
given by

ðm2
p þ ξφ2Þð2 _H þ 3H2Þ

¼ −
1

2
_φ2 þUðφÞ − 4ξHφ _φ − 2ξð _φ2 þ φφ̈Þ; ð23Þ

φ̈þ 3H _φ − ξφRþ dUðφÞ
dφ

¼ 0; ð24Þ

where R ¼ 6ð2H2 þ _HÞ. The expression for Hubble
parameter is

H2 ¼ 1

3m2
p

�
1

2
_φ2 þUðφÞ − 3ξð2Hφ _φþH2φ2Þ

�
ð25Þ

In this case our results, represented in the right panel of
Fig. 5, are qualitatively similar to the Einstein frame results4

in the right panel of Fig. 4.

III. STAROBINSKY INFLATION IN THE
JORDAN FRAME

In this section we consider the problem of generality of
Starobinsky inflation directly in the Jordan frame. The field
equations resulting from action (1) are the following

Eab ≡Gab þ βHð1Þ
ab ¼ 0; ð26Þ

where

(a) (b)

FIG. 4. Above figure represents the basin of initial conditions for (a) VðϕÞ ¼ 1
2
m2ϕ2 potential and (b) the Higgs inflation potential in

the Einstein frame (21). The green regions contain initial conditions leading to sufficient amount of inflation with at least 60 e-foldings.
The initial energy needed can be roughly characterized by black and red points in the plots—the black points indicate the least possible
value of initial _ϕ required for sufficient inflation to occur starting from initial ϕ ¼ 0, while the red points indicate the least initial value of
ϕ for sufficient inflation to occur starting from initial _ϕ ¼ 0.

4There is some interesting behavior near φ ¼ 0 and phase is
slightly different from that in the Einstein frame. However this
does not change the qualitative behavior of the phase-space that
we are concerned about in this work and we would like to revisit
this behavior in a future work.
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Gab ¼ Rab −
1

2
gabR;

Hð1Þ
ab ¼ −

1

2
gabR2 þ 2RRab þ 2gab∇2R − 2R;ab: ð27Þ

Let us emphasize that since the Einstein space Rab ¼ gabΛ
is an exact solution of (26), all vacuum solutions of GR are
also exact solutions of the quadratic theory (1).
We choose the following line element

ds2 ¼ −dt2 þ aðtÞ2dx⃗2;
such that the scale factor is aðtÞ and the Hubble factor
H ¼ _a=a.
Note that time in the Jordan frame dt and in the Einstein

frame dt̃ are related as

dt ¼ e−ϕ̃=2dt̃ ð28Þ

In the zero spatial curvature case this choice allows us to
write the field equations as

2βḦH þ 6β _HH2 − β _H2 þ 1

6
H2 ¼ 0 ð29Þ

−12βḦH − 18β _HH2 − 2βH
…
− 9β _H2 −

1

3
_H −

1

2
H2 ¼ 0;

ð30Þ

the first of which is the constraint equation, while all the
other field equations are identically satisfied.
Substitution of the expressions

R ¼ 6 _H þ 12H2; _R ¼ 6Ḧ þ 24H _H ð31Þ

into the constraint equation (29) yields the expression
for H to be

H ¼
−6β _Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36β2 _R2 þ 6βR2ð2βRþ 1Þ

q
6ð2βRþ 1Þ ; ð32Þ

which is always positive for β > 0 and R > −1=ð2βÞ.
Before proceeding further, we must make few important

remarks. Staying in the Jordan frame in the context of fðRÞ
theories, it is easy to see that the field equations given
by (26) can be expressed as

f0
�
Rab−

1

2
Rgab

�
þ1

2
gab½Rf0−f�−∇a∇bf0 þgab□f0 ¼TM

ab

f0
�
Rab−

1

2
Rgab

�
¼Teff

ab;→Teff
ab

¼TM
ab−

1

2
gab½Rf0−f�þ∇a∇bf0−gab□f0;

where Teff
ab is the effective behavior of matter fields acting

as source plus contributions from the scalar field and
f ¼ Rþ βR2 as mentioned earlier. From these equations
it follows that f0 behaves as the inverse of gravitational
constant. Looking at expression (3) it is possible to see that
there is a minimum value for the Ricci scalar given by
R ¼ −1=ð2βÞ. When R ¼ −1=ð2βÞ, f0 is zero and physi-
cally, the gravitational constant diverges and so as all the
perturbations. When R < −1=ð2βÞ gravity becomes repul-
sive, and the scalar field would then have a complicated
dynamics, different from what is given by (9), the con-
formal factor between the Jordan-Einstein frames would
then be given by g̃ab ¼ f0gab with f0 < 0.
We now briefly remind the reader that for inflation in the

Jordan frame, unlike in the Einstein frame, we do not have
the usual quasi–de Sitter solution, rather the Ruzmaikin
solution [20] which for the zero spatial curvature case is
an asymptotic t → ∞ isotropic solution with scale factor
growing as

(a) (b)

FIG. 5. (a) shows a typical inflationary trajectory in the Jordan frame of Higgs inflation (10). Note thatH decreases linearly during the
inflationary stage and starts to oscillate after the end of inflation. The initial conditions basin is shown in (b) where the black regions
contain initial conditions leading to sufficient amount of Higgs inflation with at least 60 e-foldings in the Jordan frame.
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aðtÞ ∝ exp

�
−

t2

72β

�
; ð33Þ

which gives a type of inflation

H ¼ H0 −
t

36β
; ð34Þ

with slow roll condition satisfied for β ≫ 1.
This solution is stable into the future. In this context a

problem remains as how to halt inflation when β < 0. Also,
when β < 0 there is the tachyon. Otherwise, when β > 0,
the Hubble parameter linearly decreases H → 0, and later
oscillates as shown in Fig. 6.
Our numerical results for the generality of inflation have

been presented in Fig. 7 where the region of initial
conditions leading to sufficient amount of inflation has

been marked in black. The left panel depicts the basin of
initial conditions in the Jordan frame in terms of variables
ðH;RÞ. For comparison, the right panel represents the
corresponding diagram for the Einstein frame in terms of
variables ðϕ; _ϕÞ. Note that the boundary between initial
conditions good for sufficient inflation (in black) and bad
for sufficient inflation (white) is qualitatively the same as
that in the case of Higgs inflation in the Einstein frame as
shown in the right panel of Fig. 4. The only difference is
that a second “good” region for inflation, present in the
right panel of Fig. 4 is absent in the right panel of Fig. 7 due
to the presence of the steep left branch of the effective
potential (8) shown in Fig. 1 and hence the whole diagram
is not symmetric with respect to changing the sign of
ϕ and _ϕ.

FIG. 6. The time evolution of the Hubble parameter is shown for Starobinsky inflation in the Jordan frame. For an initial condition
with β ¼ 1.305 × 109m−2

p and, H ¼ 1.0 × 10−5mp and _H ¼ 1.1 × 10−6m2
p, the left panel (a) depicts Ruzmaikina Ruzmaikin solution

(34), while the right panel (b) shows the oscillatory regime after the end of inflation. The units are exactly the same as in the
previous plot.

FIG. 7. Initial conditions leading to sufficient inflation for Starobinsky inflation has been illustrated by the black color region. The left
panel (a) depicts the initial conditions basin directly in terms of (H, R) coordinates in the Jordan frame. While the right panel
(b) represents the same in the Einstein frame where we have chosen the variables ϕ, ϕ0 with ϕ in units of mp and ϕ0 in units of m2

p given
by (6). The value of β is chosen to be β ¼ 1.305 × 109 in units of inverse square Planck mass, as required by CMB observations.
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From Fig. 7, one can also notice the agreement between
the Einstein and the Jordan frames. Particularly, an initial
negative ϕ in the Einstein frame leads to sufficient inflation
in the right panel. In the left panel, for the Jordan frame, the
same negative initial ϕ corresponds to negative initial R, so
the inflationary attractor extends itself to negative R in the
Jordan frame. However, a particular feature of the left panel
plot seems to be contradictory to the picture in the Einstein
frame. Namely, according to the left panel, one does not get
sufficient amount of inflation starting from R ¼ 0 inde-
pendent of the initial value of H. On the contrary, we know
that inflationary trajectories, with adequate number of
e-foldings, exist for initial ϕ ¼ 0. Since zero ϕ corresponds
to zero R, there seems to be an inconsistency. The goal of
the next section is to resolve this apparent paradox.

IV. STAROBINSKY INFLATION:
COMPARISON BETWEEN THE JORDAN

AND THE EINSTEIN FRAME

We next turn to obtain the map of initial conditions in the
Einstein frame to the corresponding initial conditions in the
Jordan frame.
The expression for the Ricci scalar as well as equation (3)

and its time derivative taken together with the constraint
(29) give rise to

R ¼ eϕ̃ − 1

2β
→ _R ¼

_̃ϕeϕ̃

2β
ð35Þ

H¼−
1

2
_̃ϕþ

ffiffiffi
6

p
e−ϕ̃

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eϕ̃ð6 _̃ϕ2

βeϕ̃þe2ϕ̃−2eϕ̃þ1Þ
β

s
ð36Þ

_H ¼ eϕ̃ − 1

12β
− 2H2 ð37Þ

Ḧ ¼
_̃ϕeϕ̃

12β
− 4H _H: ð38Þ

In the above mapping we have picked up the positive root
H > 0 which satisfies the constraint (29). Note that the
expressions for higher derivatives in (37) and (38) follow
from the definition of H and R in (35) and (36). While
studying the generality of inflation, we either plot the initial
conditions space in the ðR;HÞ plane directly or by

specifying the initial values of ðϕ̃; _̃ϕÞ and then inserting
into the expressions (35) and (36).
There is a indeterminacy in the value H after fixing the

ðϕ̃; _̃ϕÞ pair. Focusing on Eq. (36), it can be noticed that

initial ϕ̃ ¼ 0 with _̃ϕ > 0 gives rise to vanishing initial value
for H ¼ 0. This can be more clearly seen from the equation
connecting Hubble parameter in both frames

H̃ ¼ ã0

ã
¼ e−ϕ̃=2

�
_a
a
þ

_̃ϕ

2

�
¼

_̃ϕ=2þHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βRþ 1

p ; ð39Þ

where the prime denotes, according to (28),

ϕ̃0 ¼ d
dt̃

ϕ̃ ¼ e−ϕ̃=2
d
dt

ϕ̃ ¼
_̃ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2βRþ 1
p :

From the expressions (39) and (37), we conclude that the
region of initial conditions with negligible value of the
potential in the Einstein frame, for example near ϕ̃ ¼ 0

where H̃ ∼ _̃ϕ=2, are mapped on to the origin of the ðH;RÞ
plane in the Jordan frame.
The Jacobian of the map from ðϕ̃; _̃ϕÞ to ðH;RÞ region, as

given in (35) and (36), is

J ¼ eϕ̃ð ffiffiffiffi
Δ

p
−

ffiffiffi
6

p
eϕ̃ _̃ϕÞ

4β
ffiffiffiffi
Δ

p ; ð40Þ

where

Δ ¼ eϕ̃ð6 _̃ϕ2
βeϕ̃ þ e2ϕ̃ − 2eϕ̃ þ 1Þ

β
:

From (40) it can be seen that the determinant J of the map is
zero for ϕ ¼ 0 and _ϕ > 0, as expected from the above

mentioned indeterminacy. Any initial value of _̃ϕ > 0 gets
mapped on to the Jordan frame initial conditions

H ¼ 0; _H ¼ 0; Ḧ ¼ _̃ϕ=ð12βÞ. While the dynamical equa-
tion (30) says that the time evolution of this initial
conditions with initial H

… ¼ 0 is well defined and it is
nontrivial. The set ðH; 0Þ on the ðH;RÞ plane, corresponds
to initial _ϕ < 0 and all such trajectories are clearly non-
inflationary. This explains the apparent contradiction
between numerical results of Fig. 7.
In Fig. 8 we explicitly investigate the trajectories in

which the Ricci scalar is negative initially. The conformal
transformation between the Einstein and the Jordan frame
only makes sense when R > −1=ð2βÞ, which restricts the
possible negative values of R to a small region near the
origin as shown in the right panel of Fig. 7. The trajectory
in Fig. 8 in the (H, R) space begins with an initial negative
R, passes through R ¼ 0 and then grows to positive values
of R, as expected from the correspondence between the
Jordan and the Einstein frames. Besides that, Fig. 8 shows
that the basin represented in Fig. 7 is an invariant set, as
expected.
From Figs. 4 and 7(b), it is clear that Fig. 4 has two

disjoints sets while in Fig. 7 there is only one set. The
reason for this is the fact that the potential in the Einstein
frame for the particular gravitational theory given by the
action (1) is very steep for large negative values of ϕ which
does not support inflationary trajectory [29]. While the
potential for Higgs inflation is symmetric for ϕ ↔ −ϕ [21]
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so that inflation can occur for both positive and negative
values of ϕ. On the other hand, it is also possible to see that
the upper right part of Fig. 4(b) is qualitatively reproduced
in Fig. 7(b) as it should be, since both potentials (8) and
(21) have the same behavior for positive ϕ.

V. CONCLUSIONS

In the present paper we have considered the generality of
Starobinsky inflation both in the Jordan as well as Einstein
frame. The latter case has been considered in [21] for a
rather standard set up where the initial energy of the
effective scalar field is fixed and usually chosen to be
the Planck boundary. It has been argued in [3] that this
choice, being physically motivated for a fundamental scalar
field, may not be very natural for an effective field. That is
why we have lifted this requirement and analyzed the two
dimensional set of initial conditions in the phase space
ðϕ; _ϕÞ. Due to similarity of potentials for Starobinsky and
Higgs inflation we obtain results for generality of Higgs
inflation as well. By giving up fixing the initial energy,

have allowed ourselves to explain the nature of differences
in the space of initial conditions leading to sufficient
amount of inflation for massive and plateau potentials,
as remarked in [21]. The most striking example of this
difference is the fact that initial field values close to ϕ ¼ 0
can lead to sufficient inflation for a plateau potential, which
is not the case for a massive scalar field potential. We show
that this difference originates from the physical requirement
of the initial energy, not from any mathematical properties
of the equations of motion. When we allow initial energy
not to be fixed, the resulting diagrams of initial conditions
yielding sufficient inflation have similar form for both
plateau and massive potentials.
We have also constructed diagrams of initial conditions

leading to sufficient Starobinsky inflation in the Jordan
frame, using the variables ðH;RÞ. The mapping ðϕ; _ϕÞ →
ðH;RÞ appears to be singular for ϕ ¼ 0, which leads to
inaccessibility of inflation starting from initial R ¼ 0
despite the fact that R ¼ 0 corresponds to ϕ ¼ 0 in the
Einstein frame where sufficient inflation is possible starting
from ϕ ¼ 0. This results in completely different shapes
of the phase space of appropriate initial conditions for
Starobinsky inflation in the ðH;RÞ plane (Jordan frame) as
compared to that in the ðϕ; _ϕÞ plane (Einstein frame). Note
that this does not happen for Higgs inflation since the phase
spaces of initial conditions have similar shapes for both the
Einstein and Jordan frames.
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