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The predictions of standard Higgs inflation in the framework of the metric formalism yield a tensor-to-
scalar ratio r ∼ 10−3 which lies well within the expected accuracy of near-future experiments ∼10−4. When
the Palatini formalism is employed, the predicted values of r get highly suppressed r ∼ 10−12 and
consequently a possible nondetection of primordial tensor fluctuations will rule out only the metric variant
of the model. On the other hand, the extremely small values predicted for r by the Palatini approach
constitute contact with observations a hopeless task for the foreseeable future. In this work, we propose a
way to remedy this issue by extending the action with the inclusion of a generalized nonminimal derivative
coupling term between the inflaton and the Einstein tensor of the form m−2ðϕÞGμν∇μϕ∇νϕ. We find
that with such a modification, the Palatini predictions can become comparable with the ones obtained in
the metric formalism, thus providing ample room for the model to be in contact with observations in the
near future.
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I. INTRODUCTION

Higgs inflation [1–3] is one of the simplest and most
natural scenarios that can successfully describe the qua-
siexponential expansion of the Universe in its very early
stages. Since the Higgs boson is the only fundamental
scalar field that has been observed in Nature, one may
wonder if it can also play the role of the inflaton. In order to
comply with the observational constraints [4], the Higgs
must have a nonminimal coupling with gravity.1 However,
in nonminimally coupled theories, an issue arises as to
which variational principle should be used.
In the metric formulation of gravity, the spacetime

manifold is endowed with a metric gμν and a connection
Γρ
μν that is Levi-Civita, i.e., is metric compatible and torsion-

free. This allows the connection to be uniquely determined in
terms of the metric and its derivatives, and thus the latter is
effectively the only independent degree of freedom (d.o.f).
On the other hand, in the Palatini formulation [6,7] (also

encountered in the literature as “metric-affine” or “first-
order” formalism), the metric and the connection are treated
as independent d.o.f. Their dynamics are governed by a set
of field equations that stem from the independent variations
of the action with respect to both fields and, in principle, Γρ

μν

will not be of the Levi-Civita type. In the context of the
standard theory of general relativity (GR), the two formu-
lations turn out to be equivalent since they yield the same
field equations, with the main difference being that the Levi-
Civita connection is recovered on shell in the Palatini
formalism. This ceases to be the case though in more
elaborate theories when, for example, higher-curvature terms
are taken into account and/or matter couples nonminimally
with gravity [8–61]. Consequently, this fact serves as
motivation to study extensions of GR within the framework
of the Palatini formalism.
A straightforward approach in extending GR consists of

postulating the existence of additional d.o.f in the form of
scalar fields that interact nonminimally with the gravity
sector of the action. Such modifications belong in the
general class of the so-called scalar-tensor (ST) theories
(see, e.g., [62] and references therein) that play a prominent
role in the study of early Universe cosmology since they
provide a natural setup for the description of the infla-
tionary phase with the scalar field being identified with
the inflaton.
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1Note that, in general, even if it is absent at tree level,

a nonminimal coupling will be generated from quantum
corrections [5].
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One may further extend the ST class of theories by
considering nonminimal derivative couplings (NMDC) of
the inflaton with the curvature [63] (see also [63–92]). For
example, in the case of terms that contain four derivatives,
the possible combinations are κ1R∇μϕ∇μϕ, κ2Rμν∇μϕ∇νϕ,
κ3Rϕ□ϕ, κ4Rμνϕ∇μ∇νϕ, κ5∇μRϕ∇μϕ, and κ6□Rϕ2,
where the coupling constants κ1;…; κ6 have dimensions
of ½mass�−2. Using total divergences and without loss of
generality, it has been shown that the terms κ1R∇μϕ∇μϕ and
κ2Rμν∇μϕ∇νϕ alone suffice to encapsulate the properties of
these theories. In general, the NMDC terms for arbitrary
values of the coupling constants κ1 and κ2 yield third-order
field equations. However, in the case of κ2 ¼ −2κ1, the field
equations are of second order [93], avoiding in this way the
Ostrogradsky instability that is associated with the emer-
gence of ghosts [94,95]. Under this constraint for the
coupling constants, the allowed fourth-derivative NMDC
corrections of the action morph into a single term corre-
sponding to a coupling between the Einstein tensor and the
derivatives of the scalar field that upon a further promotion
of the coupling to an arbitrary function of ϕ can be
generalized to m−2ðϕÞGμν∇μϕ∇νϕ [86].
In order to study the inflationary predictions of ST

theories in the absence of NMDC terms, the usual approach
is to first recast the action in the Einstein frame (EF) where
the Einstein-Hilbert term is decoupled from the scalar field.
The transformation of the general action to the EF is
achieved by means of a Weyl rescaling of the metric g̃μν ¼
Ω2ðϕÞgμν, also known as a conformal transformation.2 In
general, when NMDC terms are included in the action,
the coupling functionals of the Lagrangian will depend on
both the scalar field and its canonical kinetic term
X ≡ − 1

2
∇αϕ∇αϕ. Consequently, the Weyl rescaling in this

case becomes inadequate and has to be replaced by the
more general disformal transformation of the metric g̃μν ¼
Ω2ðϕ; XÞ½gμν þ β2ðϕ; XÞ∇μϕ∇νϕ� that was originally pro-
posed by Bekenstein in [96] (see also [97–112]) and was
shown to leave the Horndeski action invariant, just as
conformal transformations leave the ST action invariant.
Note that for β2ðϕ; XÞ ¼ 0 the disformal transformation
reduces to the usual Weyl rescaling of the metric.
In this work, we investigate the predictions of Higgs

inflation in the presence of the aforementioned generalized
NMDC term within the framework of the Palatini formal-
ism. With the use of a disformal transformation, we bring
the action to the Einstein frame where the inflationary
observables can be readily computed. In this process,
nonstandard canonical terms are generated, which can
modify the predictions of the model. While in the standard

version of Palatini-Higgs inflation, the tensor-to-scalar
ratio r is predicted to be very small, that is, Oð10−12Þ
[14,17,31,113], we find that the NMDC allows us to raise
the value of r considerably, even above r ∼ 10−4, a range
that will be probed by future experiments such as
LITEBIRD [114], PIXIE [115], and PICO [116].
The paper is organized as follows. In Sec. II, we provide

an overview of the Higgs inflationary model in the Palatini
formulation and express the inflationary observables in
terms of the number of e-folds and the model parameters.
Then, in Sec. III, we consider an ST theory augmented with
the addition of an NMDC term in the Palatini formalism.
By employing a disformal transformation, we bring the
action to the Einstein frame. After that, in Sec. IV, we
assume the potential to be of the Higgs type and focus on
two cases for the NMDC: (i) m2 ¼ const and (ii) m2 ∝ ϕ2.
We study the phenomenology of these cases and compare
the predictions with the standard Palatini-Higgs inflation.
We conclude in Sec. V and present some analytic expres-
sions for the inflationary observables in the Appendix.

II. OVERVIEW OF PALATINI-HIGGS
INFLATION

One of the conceptually simplest realizations of inflation
is the Higgs boson to assume the role of the inflaton field.
In the unitary gauge, the dynamics of the theory can be
effectively described by the following action (see [9]):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ðM2 þ ξϕ2ÞgμνRμν½Γ; ∂Γ�

−
1

2
gμν∇μϕ∇νϕ −

λ

4
ϕ4

�
: ð2:1Þ

We can safely assume that at inflationary scales near the
Planck scale, the Higgs field, denoted here by ϕ, takes up
values far away from its vacuum expectation value. Clearly,
we can assume the scalar field ϕ to be an additional SM
field and not necessarily the Higgs field. Here M is a mass
scale to be identified with the Planck scaleMPl (we assume
MPl ≡ 1 throughout this work) and ξ is the nonminimal
coupling of ϕ to gravity.
By eliminating the nonminimal coupling term, through a

Weyl rescaling of the form

gμνðxÞ → Ω−2ðϕÞgμνðxÞ; ð2:2Þ

where

ΩðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξϕ2

q
; ð2:3Þ

we obtain the action in the Einstein frame

2A conformal transformation refers to a change in the
coordinates; however, we adopt the convention of the community
where a Weyl rescaling and a conformal transformation are used
interchangeably.
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμνRμν½Γ; ∂Γ�

−
1

2Ω2ðϕÞ g
μν∇μϕ∇νϕ −

λϕ4

4Ω4ðϕÞ
�
: ð2:4Þ

Notice that in the Palatini formulation the Rμν is explicitly
independent of the metric gμν and therefore remains
unaffected by the Weyl rescaling.
It will prove useful to make a field redefinition ϕ ↦ χ in

order to have a canonical kinetic term for the scalar field;
that reads as

dϕ
dχ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξϕ2

q
; ð2:5Þ

which leads to

χ ¼ 1ffiffiffi
ξ

p sinh−1 ð
ffiffiffi
ξ

p
ϕÞ ⇔ ϕ ¼ 1ffiffiffi

ξ
p sinhð

ffiffiffi
ξ

p
χÞ: ð2:6Þ

Then, the Einstein frame action for the inflaton reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμνRμν½Γ; ∂Γ� − 1

2
gμν∇μχ∇νχ − UðχÞ

�
;

ð2:7Þ

with the self-interacting potential now given by

UðχÞ ¼ λ

4ξ2
tanh4 ð

ffiffiffi
ξ

p
χÞ: ð2:8Þ

At large field values, the potential tends to a plateau
allowing us to describe inflation in accordance to obser-
vational constraints.
Assuming a flat Friedmann-Lemaitre-Robertson-Walker

(FLRW) background [our metric convention is ημν ¼
diagð−;þ;þ;þÞ], the equations of motion are

3H2 ¼ _χ2

2
þ UðχÞ; χ̈ þ 3H _χ þU0ðχÞ ¼ 0; ð2:9Þ

where dot and prime denote derivatives with respect to
cosmic time t and the function’s argument (here χ),
respectively. In the slow-roll approximation, they become

3H2 ≈U; 3H _χ þ U0 ≈ 0: ð2:10Þ

The duration of inflation is measured by the number of
e-folds,

N ¼
Z

χ�

χend

UðχÞ
U0ðχÞ dχ ≈

1

16ξ
cosh ð2

ffiffiffi
ξ

p
χ�Þ ≈

ϕ2�
8
: ð2:11Þ

The validity and most of the dynamics of the slow-roll
approximation are encoded in the slow-roll parameters,

ϵ ≃
1

8ξN2�
; η ≃ −

1

N�
: ð2:12Þ

Both of them are small (≪1) during inflation and one of
them approaches unity near its end. In terms of the slow-roll
parameters, the observable quantities measured in the
cosmic microwave background are given by

As¼
1

24π2
U�
ϵ�

; ns¼1−6ϵ�þ2η�; r¼16ϵ� ð2:13Þ

and are the power spectrum of scalar perturbations, the
scalar spectral index, and the tensor-to-scalar ratio, respec-
tively. Their values are calculated at the horizon crossing,
where ϕ ¼ ϕ�, as indicated by the star subscript in their
expressions. Their observational bounds set by the Planck
Collaboration [4] are

As ≃ 2.1 × 10−9;

ns ¼
� ð0.9607; 0.9691Þ; 1σ region

ð0.9565; 0.9733Þ; 2σ region
;

r≲ 0.056: ð2:14Þ

Assuming an expansion around large N�, we obtain the
following expressions:

As ≈
λN2�
12π2ξ

; ns ≈ 1 −
2

N�
; r ≈

2

ξN2�
: ð2:15Þ

From the measured value of As, we obtain the relation

ξ ≈ 4 × 106N2�λ; ð2:16Þ

implying that there is only one free parameter ξ or λ.
Without the running of the Higgs self-coupling λ, there is
no way to determine the value of the parameters near
the inflationary scale. Assuming a conservative value of
N� ¼ 50–55 e-folds, the parameters lie in the following
range:

ξ ∈ ½105; 109� ⇔ λ ∈ ½10−5; 10−1�: ð2:17Þ

Therefore, in the Palatini formulation, a large value of ξ is
needed, which in turn suppresses the tensor-to-scalar ratio
r ∼ 10−12, in contrast with the metric formalism where
r ∼ 10−3. Future missions [114–116] are expected to probe
the region of 10−4 of r and therefore models claiming
predictions in that region can be hopefully distinguished.
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III. NONMINIMAL DERIVATIVE COUPLING

It has been shown [65,93] that in order to consider
derivative couplings between gravity and matter, it is
enough to examine only the terms Rμν∇μϕ∇νϕ and
R∇μϕ∇μϕ without loss of generality (see also [63,64]).
Respecting that statement, we consider the following
action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
fðϕÞ
2

R̃ −
1

2
∇̃μϕ∇̃μϕ

þ 1

2m2ðϕÞ G̃
μν∇̃μϕ∇̃νϕ − VðϕÞ

�
; ð3:1Þ

where G̃μν½g̃;Γ� is the Einstein tensor given by G̃μν ¼
R̃μν − 1

2
g̃μνR̃. The inflaton field ϕ is nonminimally coupled

with gravity via the Ricci scalar R̃ and the Einstein tensor
G̃μν, by the functions fðϕÞ and m2ðϕÞ, respectively. In
order to consider the Palatini formulation of gravity, the
Ricci scalar is defined as R̃ ¼ g̃μνRμνðΓÞ, that is, the
Riemann tensor is constructed only from the connection Γ;
thus, it is independent of the metric tensor.

A. Use of the disformal transformation

In order to study the inflationary dynamics of the theory,
we need to rephrase the action in the Einstein frame. In the
standard Palatini-Higgs inflation of Sec. II, this is easily
implementable using the conformal transformation (2.2).
In our case, a more general transformation is needed; the
so-called disformal transformation is given by

g̃μν ¼ Ω2ðϕ; XÞ½gμν þ β2ðϕ; XÞ∇μϕ∇νϕ�; ð3:2Þ

where X ¼ − 1
2
∇μϕ∇μϕ is the canonical kinetic term of the

field. After using the disformal transformation (3.2), the
action (3.1) can be written in the manageable form

SD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F1ðϕ; XÞ

R
2
− F2ðϕ; XÞ

ð∇ϕÞ2
2

þ F3ðϕ; XÞRμν∇μϕ∇νϕ

þ F4ðϕ; XÞ
ð∇ϕÞ4

4
− F5ðϕ; XÞVðϕÞ

�
; ð3:3Þ

where the subscript D denotes the resulting action after the
disformal transformation. The functions Fi are given by

F1ðϕ; XÞ ¼ fðϕÞΩ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εu2

p
−

1

2m2ðϕÞ
εu2=β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εu2

p ;

ð3:4Þ

F2ðϕ; XÞ ¼ Ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εu2

p
; ð3:5Þ

F3ðϕ; XÞ ¼ −
fðϕÞ
2

Ω2β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εu2

p þ 1

4m2ðϕÞ
2þ εu2

ð1þ εu2Þ3=2 ;

ð3:6Þ

F4ðϕ; XÞ ¼
2Ω2β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εu2

p ; ð3:7Þ

F5ðϕ; XÞ ¼ Ω4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εu2

p
; ð3:8Þ

where εu2 ¼ uμuμ ¼ β2ð∇ϕÞ2. In order to obtain the action
in the Einstein frame, we essentially have to solve the
system

F1ðϕ; XÞ ¼ 1 and F3ðϕ; XÞ ¼ 0; ð3:9Þ

which results in obtaining the solutions for the trans-
formation functions Ω2 and β2 as functions of the field
and its velocity. The solution of (3.9) is easily obtained and
reads

Ω2 ¼ 2þ εu2

2fðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εu2

p and β2 ¼ 1

m2ðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εu2

p :

ð3:10Þ

After substituting (3.10) to (3.3)–(3.8), we obtain the
Einstein-frame action

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
− F̂2ðϕ; XÞ

ð∇ϕÞ2
2

þ F̂4ðϕ; XÞ
ð∇ϕÞ4

4
− F̂5ðϕ; XÞ

�
VðϕÞ; ð3:11Þ

with

F̂2ðϕ; XÞ ¼
2þ εu2

2fðϕÞ ; ð3:12Þ

F̂4ðϕ; XÞ ¼
2þ εu2

fðϕÞm2ðϕÞð1þ εu2Þ3=2 ; ð3:13Þ

F̂5ðϕ; XÞ ¼
ð2þ εu2Þ2

4f2ðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εu2

p : ð3:14Þ

Notice that although we have managed to recast the action
into the Einstein frame, the prefactors of the kinetic terms
and the potential are functionals that involve both the field
ϕ and its canonical kinetic term X. To this end, we need to
take a further step and separate the ϕ and X dependence
of these terms before moving on to the computation of the
inflationary observables. Using the canonical kinetic term
X and substituting u2 ¼ 2β2X in (3.10), we find that
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u2ð1 − u2Þ1=2 ¼ 2X
m2ðϕÞ ; ð3:15Þ

where we have used that ε ¼ −1. As far as the inflationary
dynamics are concerned, the kinetic term X can be ignored,
since the field is slowly rolling in that era. Therefore,
an expansion around small values of X is justified. Then,
expanding Eq. (3.15) in terms of X, we find that

u2 ≃
2X

m2ðϕÞ
�
1þ X

m2ðϕÞ
�
: ð3:16Þ

Substituting (3.16) in (3.12)–(3.14) and keeping terms up
to OðX2Þ, we obtain

F̂2ðϕ; XÞ ≃
1

fðϕÞ
�
1 −

X
m2ðϕÞ −

X2

m4ðϕÞ
�
; ð3:17Þ

F̂4ðϕ; XÞ ≃
2

fðϕÞm2ðϕÞ
�
1þ 2X

m2ðϕÞ þ
13X2

2m4ðϕÞ
�
; ð3:18Þ

F̂5ðϕ; XÞ ≃
1

f2ðϕÞ
�
1 −

X
m2ðϕÞ −

X2

2m4ðϕÞ
�
: ð3:19Þ

Finally, upon plugging (3.17)–(3.19) back into (3.11) and
keeping terms up to OðX2Þ, the resulting Einstein-frame
action reads

SE ≃
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
− KðϕÞ ð∇ϕÞ2

2

þ LðϕÞ ð∇ϕÞ
4

4
−UðϕÞ

�
; ð3:20Þ

where

KðϕÞ≡ 1

fðϕÞ þ
UðϕÞ
m2ðϕÞ ;

LðϕÞ≡ 1

m2ðϕÞ
�

1

fðϕÞ þ
UðϕÞ
2m2ðϕÞ

�
;

UðϕÞ≡ VðϕÞ
f2ðϕÞ : ð3:21Þ

In the end, starting from a complicated action with involved
couplings between matter and gravity, we obtained the action
in terms of a single scalar degree of freedom that is minimally
coupled to the Einstein-Hilbert term at the expense of a
higher-order kinetic term ∝ ð∇ϕÞ4. Note that Eq. (3.20) is
almost the same as the corresponding action in themetric case
[107], up to different definitions of the noncanonical kinetic
functions KðϕÞ and LðϕÞ. In what follows, we study the
inflationary predictions of Eq. (3.20), where we identify the
scalar field ϕ as the inflaton of the theory.

B. Background dynamics and slow-roll

Notice that since the gravitational sector of Eq. (3.20) is
simply the Einstein-Hilbert term, the equation of motion
for the connection is trivially solved by the Levi-Civita.
Next, assuming that the inflaton is spatially homogeneous
ϕðx; tÞ ¼ ϕðtÞ, the Einstein equations turn out to be

Gμν ¼ ðK þ L _ϕ2Þ∇μϕ∇νϕþ
�
K

_ϕ2

2
þ L

_ϕ4

4
−U

�
gμν;

ð3:22Þ

and so for the flat FLRW metric, the (tt) component reads

3H2 ¼ K
_ϕ2

2
þ 3L

_ϕ4

4
þ U; ð3:23Þ

while the scalar field equation of motion is

ϕ̈ðK þ 3L _ϕ2Þ þ 3H _ϕðK þ L _ϕ2Þ

þ K0 _ϕ
2

2
þ 3L0 _ϕ

4

4
þ U0 ¼ 0: ð3:24Þ

During inflation, the ϕ̈ term as well as the higher-order
kinetic term are negligible.3 We may thus neglect them and
work with the usual slow-roll approximation. We can make
the kinetic term canonical through the field redefinition

dχ
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðϕÞ þ VðϕÞ=m2ðϕÞ

p
fðϕÞ : ð3:25Þ

The canonically normalized inflaton χ can in principle be
obtained as a function of ϕ upon integration of Eq. (3.25).
Consequently, in order to reexpress the Einstein-frame
action in terms of χ, one should be able to invert χðϕÞ
and substitute ϕðχÞ into the model functions (3.21); albeit
this is not always feasible. Nevertheless, it is not necessary
to work with a canonical field in order to obtain the
inflationary parameters and we can circumvent this
obstacle by working directly with ϕ. To achieve this, we
employ the chain rule in combination with Eq. (3.25) in
order to compute the slow-roll parameters and the number
of e-folds as follows:

3However, the latter may modify the dynamics during (p)
reheating. We leave the study of these effects for future work.
Additionally, it was shown [47] that in similar models the inflaton
field goes exponentially fast to the slow-roll attractor in the very
early stages of inflation and therefore the higher-order kinetic
terms, that start to contribute near the end of inflation, can indeed
be ignored.
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ϵ¼ 1

2K

�
U0

U

�
2

; η¼ 1

U
ffiffiffiffi
K

p
�

U0ffiffiffiffi
K

p
�0
; N¼

Z
K
U
U0dϕ;

ð3:26Þ

where the prime denotes differentiation with respect to ϕ.
The number of e-folds at the pivot scale k� ¼ 0.05 Mpc−1

assuming instantaneous reheating [35] is given by

N� ¼ 61.1þ 1

4
log

�
U2�
ρend

�
; ð3:27Þ

where U� is the Einstein frame potential at the pivot scale
k� and ρend is the energy density at the end of inflation.
Calculating the energy density using the method presented
in [43,55] and assuming the limit m2ðϕÞ → 0, we obtain
that

N� ¼ 60.98þ 1

4
logU� −

1

4
log

�
Uend

U�

�
: ð3:28Þ

Now, using the fact that U� ¼ 3π2

2
Asr and taking into

account that the term − 1
4
lnðUend

U�
Þ contributes insignificantly,

we obtain

N� ≃ 56þ 1

4
ln

�
r

0.056

�
: ð3:29Þ

IV. THE EFFECT OF NMDC ON
HIGGS INFLATION

Our main interest and motivation is the case of Higgs
inflation, that is described by a nonminimal coupling
function fðϕÞ ¼ 1þ ξϕ2 and a quartic potential
VðϕÞ ¼ λϕ4=4, though we do not necessarily assume ϕ
to be the Higgs. For these model functions, the Einstein
frame potential (3.21) reads

UðϕÞ ¼ λϕ4

4ð1þ ξϕ2Þ2 : ð4:1Þ

In the following, we investigate the effect of the NMDC
model function m2ðϕÞ on the inflationary predictions of the
standard Palatini-Higgs inflation. To this end, we provide an
in-depth analyses for the cases of constant and quadratic
couplings and briefly mention the case of a quartic coupling.

A. Constant NMDC

In the simplest scenario, the coupling functional of the
NMDC term will not depend on the scalar field, and thus
we may write m2ðϕÞ ¼ κ. For this choice, the canonically
normalized inflaton χ can be obtained as a function of ϕ
through the relation (3.25)

dχ
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξϕ2 þ 1

4
λ
κ2
ϕ4

q
1þ ξϕ2

: ð4:2Þ

The inversion of χðϕÞ cannot be obtained analytically in
this case, and so we will work directly with the nonca-
nonical field as we have already discussed in the previous
section. The expressions for the slow-roll parameters
obtained from (3.26) read

ϵ ¼ 8

ϕ2ð1þ ξϕ2 þ 1
4
λ
κ2
ϕ4Þ ð4:3Þ

and

η ¼ 16κ2½4κ2ð3þ ξϕ2 − 2ξ2ϕ4Þ þ λϕ4ð1 − 3ξϕ2Þ�
ϕ2½λϕ4 þ 4κ2ð1þ ξϕ2Þ�2 : ð4:4Þ

The integral for the number of e-folds in this case gives

N� ¼
ϕ2

8
þ λ

32κ2ξ3
½2ξ2ϕ4 − ξϕ2 þ ln ð1þ ξϕ2Þ�; ð4:5Þ

where the first term is the usual Palatini-Higgs number
of e-folds and the second one is attributed to 1=m2ðϕÞ.
Furthermore, we have defined N� counting from ϕ ¼ 0.
Note that the difference between this definition and the usual
one where the field value at the end of inflation is obtained
from max ðϵ; jηjÞ ¼ 1 is suppressed by 1=N� in the expres-
sion of ϕðN�Þ. Next, by assuming that ξϕ2≫M2

P, we can
further simplify the equation of N� and write the expression
for the observables, now expanded around large values of
N�, as

As ≃
N�

�
λ − 8κξ2 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κλξ3N�

p 	
48π2ξ2

; ð4:6Þ

ns ≃ 1 −
3

2N�
−

8κξ2 − λ

16N�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κλξ3N�

p ; ð4:7Þ

r ≃
8λ

N�
�
λ − 4κξ2 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κλξ3N�

p 	 : ð4:8Þ

The tensor-to-scalar ratio r can also be expressed as

r ≃
2λ

ξ2N�
�
κ þ 24π2As

N�

	 ; ð4:9Þ

and similarly the second-order correction to the spectral
index, denoted hereafter as nsð2Þ, becomes
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nsð2Þ ¼ −
1

2N�

�
1þ 48π2As

N�ð8κ − λ
ξ2
Þ
�−1

: ð4:10Þ

Assuming N� ¼ 50, we obtain the following equation for r:

r ≃
λ

ξ2
4 × 10−2

κ þ 5 × 10−9
: ð4:11Þ

Case (a).—If κ < 10−10, at the marginal limit we can
further simplify it as

r ≃ 4 × 109
λ

ξ2
; ð4:12Þ

and in order to satisfy the 2σ bound, we end up with

λ

ξ2
≲ 1.6 × 10−11: ð4:13Þ

In this case, the parameter κ can take arbitrarily small
values and the above constraint still holds, meaning that
larger values of ξ (with constant λ) are suppressing the
tensor-to-scalar ratio. Therefore, the minimum value of ξ,
for λ ¼ 0.1, is ξmin ≃ 105, resulting in the largest value of

r ∼ 10−3. Let us turn our attention to the value of nð2Þs ; it
turns out that if κ ≫ λ=ξ2, we end up with a correction of

nð2Þs ∼ −10−6. A similar behavior is obtained in the other
limit where κ ≪ λ=ξ2. This is illustrated in Fig. 1 where we
notice that the value of ns is largely constant in that region.

Case (b).—In the region where κ > 10−7, we obtain

r ≃ 4 × 10−4
λ

ξ2κ
⇒

λ

ξ2
≲ 1.6 × 10−8; ð4:14Þ

where once again we used the bound on r in order to obtain
the constraint on λ=ξ2. In this case, we assumed marginal
values of κ ∼ 10−7. Then, if κ ≫ λ

ξ2
or even if they are of the

same order of magnitude,4 we obtain

nsð2Þ ≃ −
1

2N�

�
1þ 48π2As

8κN�

�−1




N�¼50

∼ −10−2: ð4:15Þ

It turns out that values of ns ≃ 1–3=ð2N�Þ ∼ 0.97 have
important higher-order corrections which contribute sig-
nificantly and can bring the spectral index in the 1σ allowed
region. This is further illustrated in Fig. 1 following a
complete analysis of the exact expressions for the observ-
able quantities.

B. Field-dependent NMDC

Next, let us consider the case where the prefactor of
the NMDC term in the action (3.1) depends on the inflaton.
For a quadratic coupling of the form m2ðϕÞ ¼ ϕ2=m2

0, the
relation (3.25) between ϕ and the canonically normalized χ
becomes

FIG. 1. For λ ¼ 0.1 and N� ¼ 50, we plot Asðξ; κÞ ≃ 2.1 × 10−9 using the expressions presented in Appendix A 1. The overlaying
color grading of the curves is associated with the corresponding values of r (left) and ns (right) as they are depicted in the inlaid bars of
the figures. We observe that as ξ becomes smaller, we need a smaller value for κ in order to comply with the measured value of As. At the
same time, the value of r grows up to ∼10−2, while ns grows above ∼0.97. For ξ≲ 104, the validity of the

ffiffiffi
ξ

p
ϕ ≫ 1 approximation fails.

4The case of κ ≪ λ=ξ2 is unrealistic due to the assumption thatffiffiffi
ξ

p
ϕ ≫ 1 in the approximate expressions. In other words, the

only possibility here is that κ ≳ λ=ξ2.
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dχ
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðξþm2

0λ=4Þϕ2
p

1þ ξϕ2
: ð4:16Þ

Similarly, to the case of the previous section, the solution of
the above equation cannot provide us with an analytic
expression for the inverted field ϕðχÞ and so the slow-roll
parameters are calculated once again directly in terms of ϕ
via (3.26) as

ϵ ¼ 8

ϕ2ð1þ ξϕ2 þ 1
4
m2

0λϕ
2Þ ; ð4:17Þ

η ¼ 4½3þ ðm2
0λ=2þ ξÞϕ2 − 2ξðm2

0λ=4þ ξÞϕ4�
ϕ2ð1þ ξϕ2 þ 1

4
m2

0λϕ
2Þ2 : ð4:18Þ

The integral for the number of e-folds (3.26) can be
performed exactly and it gives

N� ¼
ϕ2

8
þ m2

0λ

32ξ2
½ξϕ2 − ln ð1þ ξϕ2Þ�; ð4:19Þ

where once again the first term is the usual Palatini-Higgs
number of e-folds and the second one is attributed to
1=m2ðϕÞ. Next, we can invert Eq. (4.19) in terms of ϕ in the
limit ξϕ2 ≫ M2

P to obtain

ϕ2 ≃
32N�
4þ m2

0
λ

ξ

: ð4:20Þ

Finally, the inflationary observables can be expressed in
terms of N� as

As ≃
λN2�

3π2ðm2
0λþ 4ξÞ ; ns ≃ 1 −

2

N�
−
m2

0λþ ξ

8ξ2N2�
;

r ≃
m2

0λþ 4ξ

2ξ2N2�
: ð4:21Þ

From the measured value of As, we obtain the relation

ξ ≈ 4 × 106N2�λ −
m2

0λ

4
: ð4:22Þ

Note that in them0 → 0 limit, the above expressions reduce
to those of the standard Palatini-Higgs inflation. One can
see that if m2

0λ is comparable to or larger than 4ξ, then we
can have a smaller value for the latter which translates to
larger values for r.
The parameters fm0; λ; ξg have to satisfy the bound

on the scalar power spectrum As for some number of
e-folds N�. Keeping one of them constant, it is straightfor-
ward to show that the rest adjust according to the following
diagram:

m2
0 ¼ const ⇒ ξ↑ ⇔ λ↑;

ξ ¼ const ⇒ m2
0↑ ⇔ λ↑;

λ ¼ const ⇒ m2
0↑ ⇔ ξ↓: ð4:23Þ

Let us consider the tensor-to-scalar ratio r, which reads as

r ≃ r0

�
λ

ξ

N2�
12π2As

�
; r0 ≡ 2

ξN2�
; ð4:24Þ

where r0 is the tensor-to-scalar ratio of the usual Palatini-
Higgs model, presented in Eq. (2.15). Assuming a modest
value of number of e-folds N� ¼ 50, we obtain the
following relation:

r ∼ r0 ×

�
1010

λ

ξ

�
: ð4:25Þ

Then, larger values of r can be attained in the context of this
theory, depending on the values of λ and ξ. The parameter
m0 is eliminated in favor of As and is therefore assumed
to satisfy its observational value (together with ξ and λ).
Evidently, a self-coupling value of λ ∼ 0.1 allows for a
relatively small, compared to the usual Palatini-Higgs case
(ξ ∼ 109), value of ξ ∼ 105. The resulting tensor-to-scalar
ratio r ∼ 10−4 lies well within the region of future experi-
ments. This is further illustrated in Fig. 2, where ξ assumes
smaller values and for constant λ, r tends to grow.
In the case of ns, the second order correction reads as

nsð2Þ ¼−
r
4
þ 3

8ξN2�
≃−

1

ξN2�

�
1010

λ

ξ
−
3

8

�




N�¼50

; ð4:26Þ

which is at best nsð2Þ ∼ 10−4, for λ ¼ 0.1 and ξ ¼ 105,
meaning that the spectral index is largely unaffected in this
case and assumes values around ns ∼ 1–2=N� ≃ 0.96
(inside the 1σ region of observational bounds).
Closing this section, we note that a coupling function of

the form m2ðϕÞ ∝ ϕ4 yields the same results as the usual
Palatini-Higgs model. The main difference being that the
scalar spectral index is significantly modified by higher-
order contributions proportional to m2 and assumes values
outside the 2σ allowed region, ns ≲ 0.95. In principle,
one can study coupling functions of higher order in ϕ, for
example, m2ðϕÞ ∝ ϕn, which we expect to also have large
discrepancies with the observational bounds. This is,
however, beyond the scope of this work.

C. Numerical results

As discussed previously, our expressions for the infla-
tionary observables are valid assuming that

ffiffiffi
ξ

p
ϕ ≫ 1. This

assumption is not valid anymore for “small” values of the
nonminimal coupling, that is, ξ≲ 104 in the case where
λ ¼ 0.1. For such values, a numerical analysis is needed.
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In order to obtain the observables numerically, we solve
simultaneously Eqs. (3.23) and (3.24) without omitting the
higher order in the velocity terms [LðϕÞ terms]. As we
alluded to earlier, the LðϕÞ terms are negligible during
inflation, but near its end their contribution can be increased

significantly, resulting in a speed of sound that deviates from
unity. In our numerical treatment, the varying speed of sound
(even at the end of inflation) forces us to use more accurate
expressions in order to calculate the observables. For more
details about the formulas for As, ns, and r that we have
used, we point the reader to [117] and [118–121].
In Table I, we display sample outputs for the field-

dependent and constant NMDC models. In both cases, we
have chosen the parameter ξ in order to reach an agreement
with characteristic values of the tensor-to-scalar ratio r
and the self-interaction coupling is fixed to λ ¼ 0.1. These
characteristic values include (i) the Planck upper bound of
r ¼ 0.056 [4], (ii) the prediction of metric Higgs inflation
r ≃ 0.003 [1], and (iii) the expected accuracy r ∼ 10−4 of
near-future experiments [114–116]. Constrained by (3.29),
we do not consider values for the number of e-folds
larger than 55. As shown in Table I, the constant
NMDC model lies marginally out of the 1σ region for
ns (2.14) for 50 e-folds, unlike the field-dependent NMDC
model which is within the 1σ region in a wider range of
e-folds. Finally, note that the parameters m0 and κ are
chosen in such a way that the amplitude of the power
spectrum is fixed to 2.1 × 10−9 at each N.

V. CONCLUSIONS

The inflationary phase of the Universe is typically driven
by extra degrees of freedom and in its simplest realization
it is achieved by means of a single scalar field called the
inflaton. The paradigmatic class of theories that naturally
accommodate this scenario are the so-called ST theories for
which the two known variational principles, that is, metric
and Palatini in general yield different field equations.

FIG. 2. For λ ¼ 0.1 (left), λ ¼ 10−5 (right), and N� ¼ 55, we plot Asðξ; m0Þ ≃ 2.1 × 10−9 using the expressions presented in
Appendix A 2. The overlaying color grading of the curves is associated with the corresponding values of r as they are depicted in the
inlaid bars of the figures. We observe that form0 ≃ 2.2 × 105, the factorm2

0λ in the formula (4.21) for As dominates over ξ. Therefore, we
can have smaller values for ξ, which means that r can be bigger. For ξ≲ 3 × 104 (left) and ξ≲ 200 (right), the validity of the

ffiffiffi
ξ

p
ϕ ≫ 1

approximation fails.

TABLE I. Sample outputs of the models under consideration
for the inflationary observables N�, r, and ns, for various values
of the parameter ξ. The parameters m0 and κ are chosen in such
a way that the amplitude of the power spectrum is fixed to
2.1 × 10−9 and the quartic coupling λ is 0.1. The chosen values of
the tensor-to-scalar-ratio r correspond to the largest allowed [4]
value r ¼ 0.056, the prediction of metric Higgs inflation
r ≃ 0.003 [1], and the expected accuracy r ∼ 10−4 of near-future
experiments [114–116].

Constant NMDC model

ξ κ N r ns

2.10 × 103 2.350 × 10−15 50 0.0560 0.9689
2.10 × 103 1.790 × 10−15 55 0.0526 0.9717
1.50 × 104 1.820 × 10−14 50 0.0034 0.9697
1.50 × 104 1.362 × 10−14 55 0.0034 0.9725
9.00 × 104 1.135 × 10−13 50 0.0001 0.9695
9.00 × 104 8.530 × 10−14 55 0.0001 0.9723

Field-dependent NMDC model

ξ m0 N r ns

2.86 × 103 2.753 × 105 50 0.0560 0.9637
2.86 × 103 3.066 × 105 55 0.0537 0.9670
1.50 × 104 2.070 × 105 50 0.0035 0.9606
1.50 × 104 2.280 × 105 55 0.0035 0.9643
9.00 × 104 1.985 × 105 50 0.0001 0.9592
9.00 × 104 2.185 × 105 55 0.0001 0.9630
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One of the most attractive and economic approaches to ST
theories is to place the Higgs field, thus far the only
observed scalar field in nature, in the role of the inflaton.
At the same time, it has been shown that the inflationary
predictions of Higgs inflation heavily depend on the choice
of the variational principle employed. In the metric
approach, the predicted value for the tensor-to-scalar ratio
is of Oð10−3Þ, while in the case of the Palatini approach, r
turns out to be ofOð10−12Þ. In the near future, the increased
accuracy of the experiments dedicated in the refinement
of the measured values for the observable quantities of
inflation will impose even stricter bounds with which the
predictions of the various inflationary models will have to
comply. More precisely, in the case of r, the expected
accuracy in the measurement of its value will be of
Oð10−4Þ. It is then clear that while the metric-variant
predictions of Higgs inflation will most certainly soon be
subject to falsification, the corresponding predictions of the
Palatini variant of the theory cannot be put to the test in the
foreseeable future.
In this work, we have extended the action of the Higgs

inflationary model (2.1) with the inclusion of a nonminimal
derivative coupling term between the Einstein tensor and
the first derivatives of the inflaton multiplied by an arbitrary
smooth function of the field [see Eq. (3.1)]. In order to
recast the action of this theory into the Einstein framewhere
the inflationary observables can easily be computed, we
had to resort to a disformal transformation of the metric
since the usual Weyl rescaling is insufficient. We have
investigated in detail two cases for the coupling functional
of the NMDC term. In the first case, we considered a
constant function, while in the second case, we assumed the
coupling functional to be field dependent. In both cases, we
have showed that the predicted values for the tensor-to-
scalar ratio of the Palatini-Higgs inflation in the presence of
NMDC terms in the action can be rendered comparable
with the corresponding values predicted by the metric
variant of the standard theory and thus placed well within

the range of values expected to be probed by the near-future
experiments.
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APPENDIX: THE EXACT SLOW-ROLL
EXPRESSIONS FOR THE OBSERVABLES

Under the assumption that
ffiffiffi
ξ

p
ϕ ≫ 1, the analytic

expressions for the inflationary observables in terms of
the number of e-folds and the parameters of the model are
given below for the two choices of the NMDC functional
studied in this work.

1. Constant NMDC

When m2ðϕÞ ¼ κ, the inflationary parameters turn out
to be

r ¼ 256κλ2ξ3

B½2κξ2ðλþ 16N�λξ − BÞ þ λB� ; ðA1Þ

ns − 1 ¼ 16κλξ3f64κ2ξ4ð8N�λξ − BÞ − 11λ2B − 2κλξ2½λð3þ 176N�ξÞ þ Bð48N�ξ − 25Þ�g
B½2κξ2ðλþ 16N�λξ − BÞ þ λB�2 ; ðA2Þ

As ¼
B3½2κξ2ðλþ 16N�λξ − BÞ þ λB�

1536π2κλξ5ðλþ BÞ2 ; ðA3Þ

where in order to write the expressions in a compact form we have introduced the following quantity:

B≡ λ − 4κξ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 16κ2ξ4 þ 8κλξ2ð8N�ξ − 1Þ

q
: ðA4Þ
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2. Field-dependent NMDC coupling

In the case of m2ðϕÞ ¼ ϕ2

m2
0

, the inflationary parameters are

r ¼ 4m2
0λþ 16ξ

N�ξð1þ 8N�ξÞ
; ðA5Þ

ns ¼
4ξð1þ 8N�ξÞ½N� − 3þ 8N�ξðN� − 2Þ� −m2

0λð3þ 32N�ξÞ
4N�ξð1þ 8N�ξÞ2

; ðA6Þ

As ¼
128N3�λξ3ð1þ 8N�ξÞ

3π2ðm2
0λþ 4ξÞðm2

0λþ 4ξð1þ 8N�ξÞÞ2
: ðA7Þ
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