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In this work we revisit the topological mass generation of 2-forms and establish a connection to the
unique derivative coupling arising in the quartic Lagrangian of the systematic construction of massive
2-form interactions, relating in this way BF theories to Galileon-like theories of 2-forms. In terms of a
massless 1-form A and a massless 2-form B, the topological term manifests itself as the interaction B ∧ F,
where F ¼ dA is the field strength of the 1-form. Such an interaction leads to a mechanism of generation of
mass, usually referred to as “topological generation of mass” in which the single degree of freedom
propagated by the 2-form is absorbed by the 1-form, generating a massive mode for the 1-form. Using the
systematical construction in terms of the Levi-Civita tensor, it was shown that, apart from the quadratic and
quartic Lagrangians, Galileon-like derivative self-interactions for the massive 2-form do not exist. A unique
quartic Lagrangian ϵμνρσϵαβγσ∂μBαρ∂νBβγ arises in this construction in a way that it corresponds to a total
derivative on its own but ceases to be so once an overall general function is introduced. We show that it
exactly corresponds to the same interaction of topological mass generation. Based on the decoupling limit
analysis of the interactions, we make supporting arguments for the uniqueness of such a topological mass
term and absence of the Galileon-like interactions. Finally, we discuss some preliminary applications in
cosmology.
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I. INTRODUCTION

The successful construction of Galileon theories [1] has
changed our perspective on standard effective field theories
(EFTs). Even though the resulting Lagrangian contains
higher-derivative terms, the equations of motion remain
second order and hence avoid the Ostrogradsky instability.
For astrophysical applications these higher-order operators
generically need to be large. From a standard EFT point
of view, this would be disastrous as it would rely on
“irrelevant operators” becoming large and thus going
beyond the regime of validity of the theory. For the

Galileon theories, however, this is different. The operators
are rearranged in a way that higher-order derivative
operators with second-order equations of motion can
become relevant whereas operators with even more deriv-
atives per field giving rise to higher-order equations of
motion are treated as irrelevant. Furthermore, this reor-
ganization of the operators is stable under quantum
corrections [2–5]. This is the nonrenormalization
theorem of the Galileon. For this, it is crucial that the
Galileon symmetry is only realized up to total deriva-
tives [6].
A similar attempt to construct such Galileon-like

Lagrangians for arbitrary p-forms immediately met a no-go
theorem in four dimensions [7]. This includes a massless
1-form. Hence, derivatives acting on the field strength of a
Maxwell field do not permit the construction of Lagrangians
with second-order equations of motion and gauge invari-
ance. However, this obstruction does not apply to the case of
massive spin-1 fields. The removal of gauge invariance
allows the construction of nontrivial Galileon-like derivative
self-interactions of the massive vector field with three
propagating degrees of freedom: the generalized Proca
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theories [8–10] (see also Ref. [11]). They represent rich
phenomenology in cosmological and astrophysical appli-
cations [12–19]. Concerning Galileon-like Lagrangians for
a Kalb-Ramond field, a massless 2-form, it is only
possible to construct such derivative self-interactions start-
ing from seven dimensions. Even if the gauge symmetry is
removed, the difficulty persists. It was shown in Ref. [20],
that only interactions belonging to the quadratic and
quartic Lagrangians can successfully be constructed.
Within the quartic Lagrangians, a unique interaction
ϵμνρσϵαβγσ∂μBαρ∂νBβγ manifests itself as a total derivative,
which becomes nontrivialwith an overall general function of
the 2-form norm. We show that this special interaction
corresponds to the interactionB ∧ F of BF theories [21–23]
which gives rise to “topological mass generation” [24–26].
This “topological mass generation” refers to the fact that the
single degree of freedom propagated by amassless 2-form is
absorbed by a 1-form, generating a massive mode for the
1-form. This mechanism was revisited in Refs. [27,28]
when looking for particular models of coupled p-forms
suitable for cosmological applications such as inflation and
dark energy.
This paper is organized as follows. In Sec. II we revisit

the results from Refs. [27,28] about interacting p-forms
paying special attention to the interaction between the
1- and 2-forms through the topological term B ∧ F. We
show its direct relation to the unique Galileon-like term of
the systematic construction of massive 2-form inter-
actions. This allows us to build a direct duality between
BF theories and Galileon-like theories. In Sec. III we
recall the systematic Galileon-like construction carried
out in Ref. [20] where a new kind of interaction for the
massive 2-form was found. Then, in Sec. IV we discuss
the decoupling limit of the system, that gives supporting
arguments for the uniqueness of such a topological
mass term and absence of the Galileon-like interactions.
Finally, in Sec. V we show some simple cosmological
applications aiming to emphasize the relevance and to
boost the interest for 2-form models applied in cosmo-
logical setups.

II. B ∧ F TERM AND THE TOPOLOGICAL
GENERATION OF MASS

In this sectionwe briefly recall themotivations and results
from Refs. [27,28]. In that reference, the authors discussed
general models of interactingp-form Lagrangians subject to
the following restrictions: 1)Uð1Þ gauge invariance, 2) up to
first order derivatives of thep-forms in the Lagrangian, 3) up
to cubic terms in the derivatives of the p-forms, 4) having a
Hamiltonian bounded from below, and 5) hyperbolicity of
the equations of motion [29]. With the restrictions men-
tioned before, it was found that, in four dimensions, themore
general action involving general interactions between the
p-forms is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2
∂μϕ∂μϕ − VeffðϕÞ −

1

4
f1ðϕÞF2

−
1

12
f2ðϕÞH2 −

1

4
g1ðϕÞFF̃ −

1

2
mBF̃

�
; ð1Þ

where the 1- and 2-forms are Aμ and Bμν respectively, and
their field strengths are

Fμν ≡ 2∂ ½μAν�; Hμνα ≡ 3∂ ½μBνα�: ð2Þ

Additionally, we used the shorthand notation

F2 ≡ FμνFμν; H2 ≡HμναHμνα;

FF̃≡ FμνF̃μν; B ∧ F ¼ BF̃≡ BμνF̃μν: ð3Þ

In the previous action, the functions fiðϕÞ are arbitrary
functions of the fields, only restricted to be positive definite
fi > 0, and m is constant in order to preserve the gauge
invariance. The coupling function g1ðϕÞ is not restricted by
any of the conditions mentioned before. The effective
potential Veff is induced by the coupling of the 3-form field
and the scalar field [30–35]. The term B ∧ F [21–23] is
responsible for the mechanism of topological generation of
mass described in detail in Refs. [24–26].

A. Relating BF with Galileon-like interactions

Let us focus now on a model involving only 1- and
2-forms without introducing an extra scalar field degree of
freedom, and let us restrict our analysis to flat space. (Some
discussion about curved space and nonminimal coupling
with gravity can be found in Ref. [20]. For a complemen-
tary discussion on this topic see also Refs. [36–38]). As
found in Ref. [27], the only coupling term involving 1- and
2-forms consistent with the five restrictions mentioned
above, particularly with the condition of being gauge
invariant for Aμ and Bμν is the term BμνF̃μν. With this,
the model we will consider is written with the Lagrangian

SAB ¼ −
Z

d4x

�
1

4
F2 þ 1

12
H2 þ 1

2
mBF̃

�
; ð4Þ

wherem is a constant in order to preserve gauge invariance.
From this, we derive the equation of motion for the 2-form

∂μHμνα −mF̃να ¼ 0; ð5Þ

which can be formally solved for F̃μν and Fμν to obtain

F̃μν ¼
1

m
∂αHαμν; Fμν ¼ −

1

6m
∂ ½μH̃ν�: ð6Þ

Using this formal solution we can rewrite the Lagrangian
(4) only in terms of the 2-form. The structure of the

JUAN P. BELTRÁN ALMEIDA et al. PHYS. REV. D 102, 063521 (2020)

063521-2



interacting term B ∧ F is of particular interest. Using
Eq. (6) we can write the term B ∧ F as follows:

B ∧ F ¼ BμνF̃μν ¼
1

m
Bμν∂αðHαμνÞ

¼ 1

m
Bμν½∂α∂αBμν þ ∂α∂μBνα þ ∂ν∂αBαμ�; ð7Þ

where we exchanged the order of the derivatives in the last
term. Now, integrating by parts the terms with second
derivatives of the 2-form we obtain

B ∧ F ¼ −
1

m
½∂αBμν∂αBμν þ ∂αBμν∂μBνα þ ∂νBμν∂αBαμ�;

ð8Þ

which can be reordered in the form

B ∧ F ¼ −
1

m
½∂αBμν∂αBμν þ ∂αBμν∂μBνα − ∂αBμν∂νBμα�

−
1

m
½∂αBνμ∂μBνα þ ∂νBνμ∂αBμα�: ð9Þ

We can identify the term inside the first brackets as H2=3,
so, it is absorbed in the kinetic Maxwell-like term for the
2-form. On the other hand, the term in the second brackets
can be recognized as the novel interaction term

LT
4 ¼ ∂αBνμ∂μBνα þ ∂νBνμ∂αBμα ð10Þ

found in the systematic construction carried out in Ref. [20]
[see Eq. (22) in the next section]. To summarize, we can
write the topological term B ∧ F as follows:

B ∧ F ¼ −
1

m
LT
4 −

1

3m
HαμνHαμν: ð11Þ

As warned in Ref. [20], the term LT
4 is a total derivative as

can be checked after integrating by parts twice.
Nevertheless, LT

4 is not a total derivative anymore when
it is multiplied by an arbitrary function f4ðB2Þ [see Eq. (22)
below] where B2 ¼ BμνBμν. The identification ofLT

4 as part
of the topological term B ∧ F provides a link between the
construction of Galileon-like derivative self-interactions
developed in Ref. [20] and briefly recalled in Sec. III,
and BF theories (especially the approach followed in
Refs. [27,28]).

B. Including the duals in the systematic construction

If we allow the possibility of including parity-breaking
terms, we could also consider the inclusion of the duals of
the 2-form and its field strength, that is �B and �H, in the
systematic construction. Here we closely follow the dis-
cussion of the example of “compact QED” presented in
Ref. [25]. Beside the topological term B ∧ F that we

discussed before, the possible nonvanishing contributions
that can be constructed with those objects are

LB ¼
Z

½a1H ∧ �H þ a2B ∧ �Bþ a3B ∧ B�

¼
Z

d4x½a1HμνσHμνσ þ a2BμνBμν þ a3BμνB̃μν�; ð12Þ

where B̃μν ¼ ϵμνσρBσρ=2 and we consider constant coef-
ficients a1, a2, a3. The equations of motion derived from
this action are

6a1∂μHμνσ − 2a2Bνσ − 2a3
ϵνσμρ

2
Bμρ ¼ 0: ð13Þ

We can derive the previous expression with respect to ∂ν

and obtain

a2∂νBνσ þ a3
ϵνσμρ

2
∂νBμρ ¼ 0; ð14Þ

which can be arranged in the form

a2∂νBνσ−a3H̃σ ¼0; with H̃σ≡ϵσνμρ

6
∂ ½νBμρ� ¼

ϵσνμρ

6
Hνμρ:

ð15Þ

We further apply the exterior derivative d∧¼ ϵανσρ∂α to
the equation of motion (13) and use Eq. (15) to obtain

12a1ð∂β∂μH̃μ − ∂μ∂μH̃βÞ þ 4a2H̃β þ 4
a23
a2

H̃β ¼ 0: ð16Þ

The term ∂μH̃μ vanishes due to the Bianchi identity and we
are left with

ð∂μ∂μþm2ÞH̃β ¼ 0; with m2¼−
a2
3a1

�
a23
a22

þ1

�
; ð17Þ

which we recognize as the equation of motion for a massive
vector field H̃β. In this sense, the particle content of the
Lagrangian (12) is the same as the content of a model with a
massive vector field �H. Despite the fact that this vector is
defined as an axial vector, and the topological mass term
B ∧ B seems to be a source of parity breaking, the theory
remains parity conserving. Then, the presence of the term
B ∧ B provides another source of a mass term to the
theory just like the topological B ∧ F term does. This
situation would change if we consider general nonlinear
functions FðU;V;WÞ where U ¼ HμνσHμνσ, V ¼ BμνBμν

and W ¼ BμνB̃μν. In such a case, the equation of motion
and the Bianchi identity lead to
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3½∂β∂γðFUH̃γÞ−∂γ∂γðFUH̃βÞ�þ
�
FVþ

F2
W

FV

�
H̃β

−
�
∂γFVþ

FW

FV
∂γFW

�
B̃γβþ

�
∂γFW−

FW

FV
∂γFV

�
Bγβ¼0;

ð18Þ

where FU ¼ ∂UF, etc. As can be checked, the previous
equation reduces to Eq. (17) when the function F is linear
in its arguments, and then, leads to a parity-conserving
system. For a nonlinear F we have a parity-breaking
situation as evidenced from the presence of the third and
fourth terms in Eq. (18). Nevertheless, as we will not
consider parity-breaking models, in the following we will
neglect nonlinear Lagrangians in the argument W. In the
next section, we will revisit the Galileon-like construction
for massive 2-forms performed in Ref. [20], to which we
had linked the coupled 1- and 2-form discussed in Sec. II A.

III. SYSTEMATICAL CONSTRUCTION

The fact that one cannot construct derivative Galileon
interactions beyond the trivial cases can be shown in two
complementary and independent ways. The first one is using
the systematical construction in terms of the Levi-Civita
tensor and the second one is the decoupling limit analysis.
This was already studied in detail in Ref. [20]. We
summarize the argument based on the systematical con-
struction in this section and give more detail on the
decoupling limit analysis in the next section. In Ref. [20]
the antisymmetry properties of the Levi-Civita tensor were
used to investigate the possible construction of Galileon-
type interactions for the massive 2-form with three propa-
gating degrees of freedom. It was found, that besides the L2

andL4 Lagrangians, it is not possible to construct derivative
self-interactions for the massive 2-form in four dimensions.
The quadratic Lagrangian is simply a combination of
potential-like and gauge-invariant quantities

L2 ¼ f2ðBμν; Hμνρ; H̄μÞ: ð19Þ

The higher-order Lagrangians are constructed systemati-
cally in terms of powers of the fundamental object ∂αBμν

together with two Levi-Civita tensors fðB2Þϵϵð∂BÞmBn.
Since ∂B carries three indices but the Levi-Civita tensor four
indices, the Lagrangian L3 cannot be constructed

L3 ¼ 0: ð20Þ

This problem of an even versus an odd number of indices is
avoided in the quartic LagrangianL4. Ignoring contributions
that belong to L2 (like the kinetic term), the only nontrivial
term that we can construct at this order is

LT
4 ¼ ϵμνρσϵαβγσ∂μBαρ∂νBβγ;

¼ ∂μBμν∂αBν
α þ ∂νBμα∂αBμν: ð21Þ

Without multiplying this contraction with an overall func-
tion f4ðB2Þ, it corresponds to a total derivative and can be
directly related to B ∧ F, as shown in Sec. II A. Hence, at
this order this is the only nontrivial genuinely new term, that
cannot be absorbed into L2

L0B
4 ¼ f4ðB2Þð∂μBμν∂αBν

α þ ∂νBμα∂αBμνÞ: ð22Þ

This term is quite special. It looks like a modified kinetic
term without gauge invariance but as we saw above it can be
directly related to the topological mass term. We could also
construct contractions higher in n. For instance,

Lð1BÞ
4 ¼ ϵμνρσϵαβγδ∂μBαρ∂νBβγBσδ; ð23Þ

Lð2BÞ
4 ¼ ϵμνρσϵαβγδ∂μBαρ∂νBβγBσλBλ

δ; ð24Þ

multiplied by a general function of the 2-form norm,
respectively. Going to higher-order contributions in (∂B)
is not possible beyond this order since the two Levi-Civita
tensors contain eight indices and ð∂BÞ3 would require nine
indices and ð∂BÞ4 12 indices and so on. Therefore we have

Li ¼ 0 for i≧ 5: ð25Þ

Hence, the systematical construction stops at L4 and we
cannot construct Galileon interactions for the massive
2-form beyond L2 and L4. Additional support for this
difficulty of constructing Galileon-type derivative inter-
actions also comes from the decoupling limit analysis,
which we will discuss in the next section.

IV. DECOUPLING LIMIT ANALYSIS

The decoupling limit analysis already reveals important
conditions about the allowed interactions once the gauge
symmetry is restored using the Stueckelberg trick. For this
purpose, we perform the following change of variables:

Bμν → Bμν þ
1

m
∂ ½μAν�; ð26Þ

where the massless spin-1 field Aμ represents the
Stueckelberg field. The original massive 2-form propagates
three propagating degrees of freedom. After reintroducing
the Stueckelberg field, the massive 2-form decomposes into
a massless 1-form and a massless 2-form, still propagating
1þ 2 degrees of freedom. In the decoupling limit, where
we sent the mass of the 2-form to zero, we obtain two
decoupled massless 1- and 2-forms. In order to illustrate
that, we take the standard Lagrangian of a massive 2-form
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L ¼ −
1

12
HμνρHμνρ −

m2

4
BμνBμν; ð27Þ

where H is the field strength of the massive 2-form, and
perform the transformation in Eq. (26) to it. The kinetic
term is immune to it but the mass term changes into

L ¼ −
1

12
HμνρHμνρ −

m2

4

�
Bμν þ

1

m
∂ ½μAν�

�
2

: ð28Þ

In the limit m → 0, we obtain a massless 1-form and a
massless 2-form, decoupled from each other and each of
them is invariant under gauge symmetries

L ¼ −
1

12
HμνρHμνρ −

1

4
FμνFμν; ð29Þ

where F is the field strength of the massless 1-form. If there
are genuinely new Galileon interactions for the original
massive 2-form, we would see their presence in the
decoupling limit. We would need to construct Galileon
interactions for the massless 2-form and massless 1-form
sectors in the decoupling limit. Since the 1-form and the
2-form have gauge symmetries, they can manifest them-
selves only through the gauge-invariant field strengths F
and H. For the massless 1-form we would be after
interactions of the form

L ¼ ϵμ1μ2���ϵν1ν2���Fμ1μ2Fν1ν2ð∂μkFνlνlþ1
� � �Þð∂νjFμmμmþ1

� � �Þ:
ð30Þ

Since F has two indices, we can only start constructing
such terms for dimensions D ≥ 5. However, they do not
correspond to any genuinely new interaction, since they
contribute in the form of a total derivative. Hence, the
interactions in Eq. (30) can be rewritten as

L ¼ 1

2
∂νjfϵμ1μ2���ϵν1ν2���Fμ1μ2Fν1ν2Fνmνmþ1

ð∂μkFνlνlþ1
� � �Þ

× ð∂νiFμnμnþ1
� � �Þg: ð31Þ

Therefore, this constitutes a no-go theorem for a massless
1-form to have Galileon-type derivative self-interactions in
any dimensions [39]. Hence, there is no way to construct
Galileon interactions for the massless 1-form in our
decoupling limit. A similar no-go theorem also exists for
the massless 2-form, in four dimensions. Similarly, this
time we are after the following type of interactions for the
massless 2-form:

L ¼ ϵμ1μ2μ3���ϵν1ν2ν3���Hμ1μ2μ3Hν1ν2ν3ð∂μkHνl−1νlνlþ1
� � �Þ

× ð∂νjHμm−1μmμmþ1
� � �Þ: ð32Þ

Since H has three indices, such a construction of
interactions is only possible for D ≥ 7 [7]. For instance,

in seven dimensions we can construct LðD¼7Þ ¼
ϵμνρστϕχϵαβγδϵξηHμνρHαβγ∂σHδϵξ∂ηHτϕχ . This time they do
correspond to genuinely new interactions and are not total
derivatives, in difference to the case for the massless
1-form. However, for our case in D ¼ 4 dimensions this
means that we cannot construct Galileon-type interactions
for the massless 2-form either. Hence, in four dimensions
we can have neither Galileon interactions fðF2Þϵϵð∂FÞmFn

for the massless 1-form nor fðH2Þϵϵð∂HÞmHn for the
massless 2-form.
Another way that we could construct interactions are via

mixings between the massless 2-form and the massless
spin-1 field. Thus, one could construct terms of the form
HmFn. Since H carries three indices but F carries two
indices, the first contribution starts at m ¼ 2 and n ¼ 2.
This type of construction will nevertheless not generate
Galileon interactions but only contribute to the quadratic
Lagrangian L2 ¼ f2ðBμν; Hμνρ; H̄μÞ in the original formu-
lation in terms of the massive 2-form. The attempt to
construct derivative mixings like ϵϵHmð∂FÞn or
ϵϵFmð∂HÞn faces the same difficulty in four dimensions
as the Galileon construction for the pure sectors, since one
can construct them only starting from D ≥ 6 dimensions.
Thus, it is not possible to construct Galileon-type derivative
self-interactions in the decoupling limit while keeping
the gauge invariance for the 2- and 1-forms in four
dimensions.

V. FIRST COSMOLOGICAL APPLICATION

In this section we highlight some features of the
2-form model and discuss the background evolution in
some particular simple models interesting for cosmology.
Previous interesting studies of p-forms with and without
nonminimal couplings to gravity in the context of
inflation and dark energy scenarios can be found in
Refs. [28,35,37,38,40–51].

A. Gauge invariant

The simplest example that we can consider is a theory
based on a nonlinear kinetic term. Since the kinetic
term only depends on the gauge-invariant field strength
Hαβμ, the gauge symmetry will be intact. Such nonlinear
kinetic terms are very interesting since they are the simplest
extension that one can consider and they also provide
a K-mouflage screening mechanism together with
a promising quantum behavior. We consider in this sub-
section a Lagrangian of a 2-form minimally coupled to

gravity: L2¼ ffiffiffiffiffiffi−gp ½M
2
pl

2
Rþf2ðXÞ�, where X ¼ − 1

12
H2. We

use the Friedmann-Lemaître-Robertson-Walker (FLRW)
ansatz

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2dx2; ð33Þ
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for the metric and for the 2-form the background field
configuration Bij ¼ 1

3
Cϵijkxk, where the remaining com-

ponents all vanish. The associated energy density and
pressure are given by

ρB ¼ −f2 and pB ¼ f2 − 2Xf2;X: ð34Þ

The Einstein field equations are then simply given by

3H2 ¼ ρB and 2 _H þ 3H2 ¼ −pB: ð35Þ

The slow-roll parameter ϵ ¼ 3
2
ðwþ 1Þ ¼ − _H

H2 indicates a
regimewith a quasi–de Sitter solution when logf2;logX ≪ 1.
The covariant expression for the stress-energy tensor
Tαβ ¼ f2gαβ þ 1

2
HαρσHβ

ρσf2;X helps us to quickly obtain
the propagation speed of scalar perturbations after introduc-
ing them into the metric and the 2-form. It is simply
given by

c2s ¼ 1þ 2X
f2;XX
f2;X

: ð36Þ

Similarly to the scalar counterpart of k-essence theories,
the quasi–de Sitter regime would suffer from gradient
instabilities.

B. Nonminimal coupling

In Ref. [20] nonminimal couplings for the massive
2-form were investigated and it was shown that a unique
coupling via the double dual Riemann tensor arises

Lnon−min ¼ ffiffiffiffiffiffi
−g

p
LμναβBμνBαβ; ð37Þ

where Lμναβ represents the double dual Riemann tensor
Lμναβ ¼ 1

4
ϵμνρσϵαβκδRρσκδ. Additional support for this

unique nonminimal coupling of the 2-form comes from
the decoupling limit. After introducing the Stueckelberg
field in Eq. (26) we have a massless 2-form and a massless
spin-1 field, and the potential nonminimal couplings have
to be valid couplings for these separate sectors. Since the
massless spin-1 field has a unique nonminimal coupling to
gravity via LαβγδFαβFγδ, this translates back to having
Eq. (37) as the unique possible nonminimal coupling for
the original massive 2-form. Let us consider the following
action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

12
HμνρHμνρ − V½BμνBμν�

þ γLμναβBμνBαβ

�
; ð38Þ

where V½BμνBμν� is a general potential function for the
2-form field. It is important to emphasize that the previous
Lagrangian includes the topological B ∧ F term (or,
equivalently the term L4), through the mechanism of
topological generation of mass [24–26] (see also
Refs. [27,28] for the discussion in a curved background)
reviewed in Sec. II. On top of a FLRW background the
massive 2-form shall admit the following background field
configuration:

Bμν ¼

0
BBB@

0 0 0 0

0 0 a2b −a2b
0 −a2b 0 a2b

0 a2b −a2b 0

1
CCCA; ð39Þ

where the splitting of variables a2b ¼ aðtÞ2bðtÞ is solely
chosen for convenience.
The action in Eq. (38) can then be brought up to

total derivatives into the following symmetry-reduced
form:

S ¼
Z

d4x
3a
N

�
a2b02

2
þ 2Γaa0bb0 þ ð2Γb2 −M2

plÞa02
�

− a3NV½6b2�; ð40Þ

where primes denote derivatives with respect to the time
coordinate t and we redefine the coupling constant γ
through Γ≡ 1þ 4γ.
Using the invariance of the reduced action under

reparametrization of t, one can absorb the lapse function
and rewrite the action and the equations of motion by
defining the proper time τ as dτ ¼ Ndt. Introducing the
notation _a ¼ da=dτ and _b ¼ db=dτ the resulting back-
ground equations of motion are given by

Eb¼ b̈þ3H _bþ2bf2V 0½6b2�þΓð _HþH2Þg¼0;

EN ¼H2ð12Γb2−6M2
plÞþ2V½6b2�þ3_b2þ12ΓHb _b¼0;

Ea¼ _Hð8Γb2−4M2
plÞþH2ð12Γb2−6M2

plÞ
þ2V½6b2�þ4Γbb̈þð4Γ−3Þ _b2þ16ΓHb _b¼0: ð41Þ

These can be brought into an autonomous form

_H ¼ f1 and _b ¼ f2; ð42Þ

where we have defined
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f1 ¼
4ΓHbf2 þ ð4Γ − 3Þf22 − 4Γb2ð4V 0 þ ð2Γ − 3ÞH2Þ þ 2V − 6H2M2

pl

4ðð2Γ − 2ÞΓb2 þM2
plÞ

;

f2 ¼ −2ΓHb�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H2ðð2Γ − 2ÞΓb2 þM2

plÞ −
2

3
V

r
: ð43Þ

The critical points correspond to _H ¼ 0 and _b ¼ 0. For the
stability analysis of the fixed points, we can consider small
perturbations δH and δb. Defining the perturbation vector
v ¼ fδH; δbg we can write the perturbation equations as
v0 ¼ Mv, where the matrix M is given by

M ¼
 ∂f1∂H

∂f1∂b
∂f2∂H

∂f2∂b

!
; ð44Þ

evaluated at the critical point. In order for the critical point
to be an attractor, all of the eigenvalues λi of the matrix M
have to be negative, since the perturbations in the envi-
ronment of the critical point evolve as eλi t.
One can find nontrivial critical points of the autonomous

system (42) by considering for example an interacting
potential of the form V½x� ¼ −gbx2.

1 In this case, the
system admits the five distinct critical points

fbc;Hcg ¼ f0; 0g;
(
�

ffiffi
2
3

q
Mplffiffiffi
Γ

p ;� 4
ffiffiffiffiffi
gb

p
Mpl

Γ

)
;

(
∓

ffiffi
2
3

q
Mplffiffiffi
Γ

p ;� 4
ffiffiffiffiffi
gb

p
Mpl

Γ

)
; ð45Þ

which are well defined as long as Γ > 0. Choosing for
concreteness a unit coupling gb ¼ 1 together with Γ ¼ 2

(γ ¼ 1
4
) and using units in whichMpl ¼ 1 one can analyze a

concrete phase portrait of the dynamical system in the
fb;Hg phase plane, depicted in Fig. 1(a) for the þ sign
choice in Eq. (43) and Fig. 1(b) in the case of a − sign with
the five critical points represented as colored dots.
Focusing on the þ case, that is Fig. 1(a), one immedi-

ately observes that the positive critical point fbc;Hcg ¼
f 1ffiffi

3
p ; 2g plays the role of a global attractor. This means that

the theory admits a stable de Sitter solution which is

(a) (b)

FIG. 1. These plots show the dynamical phase portrait of the autonomous system of equations (42) with an interacting potential term
V½x� ¼ −gbx2 for the case gb ¼ 1, Γ ¼ 2 (γ ¼ 1

4
) and Mpl ¼ 1 in the phase plane fb;Hg. The colored dots represent the five critical

points (45). (a) The phase portrait of the þ sign choice in Eq. (43). The positive critical point fbc; Hcg ¼ f 1ffiffi
3

p ; 2g is a global attractor,

such that the theory admits a stable critical de Sitter point. This means that the model as such is a successful dark energy theory
candidate. Moreover, trajectories evolving from the repeller fbc; Hcg ¼ f− 1ffiffi

3
p ;−2g, thus starting with H < 0 which could model a

contracting phase of the universe will all cross H ¼ 0 and end up in an expanding phase at the stable de Sitter attractor. This shows that
the theory in principle as well represents a possible model of early universe scenarios without any initial singularity. (b) The phase
portrait of the − sign choice in Eq. (43) essentially shares the same characteristics in a mirrored manner.

1Such that V½6b2� ¼ −36gbb4 and V 0½6b2� ¼ −12gbb2.
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essential for a possible application of the model to late-time
cosmology. The negative critical point, on the other hand, is
a repeller, while the mixed ones together with the trivial
fixed point are saddle points. In that sense, the phase
portrait also indicates promising applications of the theory

to singularity-free alternative early universe scenarios, in
which trajectories starting at the global repeller fbc;Hcg ¼
f− 1ffiffi

3
p ;−2g initially possess a negative value of the Hubble

parameter and thus describe a contracting phase of the
universe. Without any exception, the trajectories will then
at some point cross the value H ¼ 0 and inevitably end up
in an expanding phase at the stable de Sitter critical point.
The above statements can be readily verified by solving

the equations (42) numerically. A parametric plot of three
different solution branches which all start close to the
global repeller (A) is shown in Fig. 2. Every branch after
very distinct trajectories winds up as expected at the global
attractor (D). A comparison with Fig. 1(a) confirms the
phase portrait results.
The− sign case, that is Fig. 1(b) shows qualitatively very

similar results. The only difference is that the mixed critical
points fbc;Hcg ¼ f� 1ffiffi

3
p ;∓2g now play the role of the

global attractor and repeller respectively.
Choosing more involved potentials V½6b2� leads to even

richer structures of solution space. For example, one can
add a mass term V½x� ¼ 1

4
m2x − gbx2, such that

V½6b2� ¼ 3
2
m2b2 − 36gbb4. This leads to four additional

critical points which modify the phase portrait of the theory
in a nontrivial manner. As an illustrative example we will
again choose specific coefficients m ¼ 2, gb ¼ 1, Γ ¼ 2

(γ ¼ 1
4
) and Mpl ¼ 1. The corresponding phase portrait for

(a) (b)

FIG. 3. These plots show the dynamical phase portrait of the autonomous system of equations (42) for the þ sign choice in Eq. (43)
and an interacting potential with an additional mass term V½x� ¼ 1

4
m2x − gbx2, with choices m ¼ 2, gb ¼ 1, Γ ¼ 2 (γ ¼ 1

4
) andMpl ¼ 1

in the phase plane fb;Hg. The colored dots represent the nine critical points. This shows that additional terms in the choice of the
potential have direct implications on the numbers of critical points and the shape of the solution space. (a) The overall picture far away
from the central trivial critical point essentially remains the same and still admits stable as well as unstable critical de Sitter points. (b) An
enlarged section of the phase portrait around the trivial critical point shows the direct effect of the additional mass term.

FIG. 2. This plot shows numerically integrated branches of
solutions to the autonomous equations (42) for the þ sign choice
and choosing gb ¼ 1, Γ ¼ 2 (γ ¼ 1

4
) and Mpl ¼ 1. The initial

values of all three branches were chosen in the vicinity of the
repeller fbc; Hcg ¼ f− 1ffiffi

3
p ;−2g (A). All branches then evolve in

distinct trajectories in the phase plane towards the stable de Sitter
attractor at fbc; Hcg ¼ f 1ffiffi

3
p ; 2g (D). This represents a numerical

check of the phase portrait consideration.
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a þ sign choice in the equation for the field b is depicted
in Fig. 3.
Far from the trivial critical point fbc;Hcg ¼ f0; 0g, the

picture remains qualitatively the same, with an attractor and
a repeller as stable and unstable de Sitter solutions as shown
in Fig. 3(a). Near the null critical point, however, the
picture changes significantly as seen in the enlarged phase
portrait section in Fig. 3(b). In particular, there are two
spherical regions for which no real solution can be found.
Again a − sign choice in Eq. (43) would lead to a

mirrored picture of the above.
Of course these considerations should be viewed as

preliminary checks for possible cosmological applications
of the theory. We leave a more rigorous analysis including
the matter sector for future work.

1. The conformal coupling case γ = − 1=4

We end this section by mentioning the special case of the
coupling Γ ¼ 0ðγ ¼ −1=4Þ. From the system (41) we see
that this particular value leads to several simplifications.
The simplified system reads

Eb ¼ b̈þ 3H _bþ 4bV 0½6b2� ¼ 0;

EN ¼ −6M2
plH

2 þ 2V½6b2� þ 3_b2 ¼ 0;

Ea ¼ −4M2
pl
_H − 6M2

plH
2 þ 2V½6b2� − 3_b2 ¼ 0: ð46Þ

It is worth noticing that for this value of Γ, the equation for
the 2-form is identical to the equation for a minimally
coupled scalar field with a potential V and identical to the
vector inflation model with nonminimal coupling of the
form RAμAμ=6 studied in Ref. [52]. A closely related case
of a 2-form nonminimally coupled to gravity was also
studied in Ref. [40].
In order to see that such a model can be relevant for the

discussion of inflationary dynamics, we can compute the
slow-roll parameter ϵ for this system. Combining the
second and third equations we obtain

ϵ ¼ −
_H
H2

¼ 9_b2

2V þ 3_b2
≈

3_b2

2M2
pH2 þ _b2

; ð47Þ

which tells us that for suitable potentials with V ≫ _b2 it is
possible to sustain slow-roll inflation. However, as exten-
sively discussed in the literature [53,54] this particular
choice of coupling suffers from ghost instabilities in the
longitudinal mode. A way out of instability problems
relies on the inclusion of general kinetic couplings of
the form fðB2ÞHμνρHμνρ and a general potential VðB2Þ as
explored here.

VI. CONCLUSION

The construction of effective field theories is straightfor-
ward after determining the involved symmetries and the field
content. In standard field theories, the usage of representa-
tions of the Lorentz group enables us to categorize the
number of physical propagating degrees of freedom. A
crucial difference arises between representations ofmassless
and massive particles. A mass term generically breaks
existing gauge symmetries of the massless limit and intro-
duces additional propagating modes. A massless 1-form
possesses, for instance, two physical degrees of freedom,
whereas itsmassive generalization introduces one additional
degree of freedom due to brokenUð1Þ symmetry. There are
different ways that these modes could be represented in
alternative formulations.
2-forms naturally arise in the low-energy effective field

theories of string theory. In this work, we investigated the
topological mass generation of 2-forms and connected such
a topological term to the recently proposed unique deriva-
tive coupling arising in the quartic Lagrangian of the
systematic construction of massive 2-form interactions.
The massive 2-form finds a dual description in terms of a
massless 1-form and a massless 2-form via a topological
mass term B ∧ F. In this dual description the single degree
of freedom propagated by the 2-form is absorbed by the
1-form, generating a massive mode for the 1-form. There is
a nontrivial correspondence between such a topological
mass generation term and the massive 2-form interaction
ϵμνρσϵαβγσ∂μBαρ∂νBβγ arising from the systematical con-
struction in terms of the Levi-Civita tensor. This interaction
is unique in the sense, that it represents a total derivative
on its own but becomes a nontrivial interaction once an
overall general function is introduced. Based on the
decoupling limit analysis, we showed the uniqueness of
such a topological mass term and absence of the Galileon-
like interactions, in support of the arguments represented in
Ref. [20]. We also presented some preliminary applications
in cosmology.
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