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The cosmic distance duality relation (CDDR), DLð1þ zÞ−2=DA ¼ η ¼ 1, with DL and DA, being the
luminosity and angular diameter distances, respectively, is a crucial premise in cosmological scenarios.Many
investigations try to test CDDR through observational approaches, even some of these ones also consider a
deformed CDDR, i.e., η ¼ ηðzÞ. In this paper, we use type Ia supernovae luminosity distances and galaxy
cluster measurements (their angular diameter distances and gas mass fractions) in order to perform a
Bayesian model comparison between ηðzÞ functions.We show that the data here used are unable to pinpoint,
with a high degree of Bayesian evidence, which ηðzÞ function best captures the evolution of CDDR.
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I. INTRODUCTION

Measuring distances in cosmology is of crucial
importance when one wants to relate observational data
with theoretical models. The two types of distance most
used in cosmology are the luminosity distance, DL, and the
angular diameter distance, DA. The former is a distance
measurement associated with an object based on the
decrease of its brightness, and the latter one is associated
with the measurement of the angular size of the object
projected on the celestial sphere. These cosmological
distances are functions of the redshift z of the astronomical
object considered and are connected by a relation known as

the cosmic distance duality relation (CDDR), DLðzÞ
DAðzÞð1þzÞ2 ¼

η ¼ 1, or as Etherington’s reciprocity law in the back-
ground of the astronomical observation [1].
The CDDR is obtained in the context of Friedmann-

Lemaître-Roberton-Walker metric but holds for general
metric theories of gravity in any background, in which
photons travel in null geodesics and the number of photons
is conserved during cosmic evolution [2]. In fact, the
generality this relationship is the crucial importance in
the context of observational cosmology. Briefly, if the
gravity is a metric theory and if the Maxwell equations are
valid, the distance duality relation is satisfied (η ¼ 1) [3].
Then, a little deviation from η ¼ 1 may indicate the
possibility of a new physics, such as photon coupling with

particles beyond the standard model of particle physics,1

variation of fundamental constants, and scalar fields with a
nonminimal multiplicative coupling to the electromagnetic
Lagrangian, among others [2,4–6]. The presence of sys-
tematic errors in observations, such as photon absorption
by dust, also can violate the CDDR validity [2,4].
Simultaneously with the increase in the number and the

quality of astronomical data, different methods have been
proposed to test the validity of the CDDR. We can divide
them in two classes: cosmological model-dependent tests
based on the Λ cold dark matter (ΛCDM) framework [4,7–
11] and cosmological model-independent ones. The last
ones have been performed by using combinations of several
astronomical data: angular diameter distance of galaxy
clusters, galaxy cluster gas mass fraction,2 type Ia super-
novae (SNe Ia), strong gravitational lensing, cosmic micro-
wave background, gamma ray bursts, radio compact
sources, cosmic microwave background radiation, baryon
acoustic oscillations, gravitational waves, etc. [12–38].
In order to test the CDDR, the basic approach has been to

consider a deformed expression, given by DLðzÞ
DAðzÞð1þzÞ2 ¼ ηðzÞ,

and to obtain constraints on some ηðzÞ functions.3 In this
context, the authors of the Ref. [13] assumed two ηðzÞ
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1For instance, axion-photon conversion induced by interga-
lactic magnetic fields [4,5].

2In Ref. [12], only massive galaxy clusters observations were
considered in its method to test the CDDR.

3Reference [23], by applying a nonparametric method, namely,
the Gaussian process, proposed a test based on galaxy clusters
observations andHðzÞmeasurements (see also Ref. [25]) without
using ηðzÞ functions.
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functions, such as ηðzÞ¼1þη0z and ηðzÞ¼1þη0z=ð1þzÞ.
Actually, these functions are clearly inspired by similar
expressions for the equation of state parameter of dark
energy models. By using angular diameter distance samples
of galaxy clusters jointly with luminosity distances of SNe
Ia, they obtained that CDDR is valid within 2σ (η0 ≈ 0).
However, other ηðzÞ functions were also proposed,
e.g., ηðzÞ¼η0þη1z, ηðzÞ¼η0þη1z=ð1þzÞ, ηðzÞ ¼ η0þ
η1 lnð1þ zÞ, and ηðzÞ ¼ ð1þ zÞϵ (see, for instance,
Refs. [4,15,20]). As a basic result from literature, the
CDDR validity has been verified, at least, within 2σ c.l..
However, it is very worth it to stress that the current
analyses cannot distinguish which ηðzÞ function better
describes the data.
Recently, the Bayesian inference has been widely used as

an useful tool in order to search several problems in physics
[39], cosmology, and astronomy [40–50]. Specifically, the
Bayesian inference has been a powerful technique to study
many issues in cosmology, e.g., effects of bulk viscosity in
dark matter and dark energy [47,48], by comparing the dark
energy models [44,45] and interacting in the dark sector
[49]. This technique has been implemented to analyze other
cosmological models (see Ref. [51,52] and references
therein). An interesting question here is try to analyze
which ηðzÞ should be viable from the Bayesian inference
standpoint.
In order to face this issue, in this paper, we use SNe Ia

luminosity distances and galaxy cluster measurements
(angular diameter distances and gas mass fractions) to
perform a Bayesian model comparison between ηðzÞ
functions used in literature, such as η¼η0, ηðzÞ¼1þη1z,
ηðzÞ ¼ 1þ η1z=ð1þ zÞ, ηðzÞ ¼ η0 þ η1z, and ηðzÞ ¼ η0 þ
η1z=ð1þ zÞ. The basic idea is to estimate the Bayesian
evidence and compute the Bayes factor of each ηðzÞ
function with respect to η ¼ η0. The η constant is chosen
as the standard model because if η0 ¼ 1 the standard
CDDR is recovered and we obtain this value within 2σ
C.L. with the dataset used in our analyses.
This paper is divided in the following way. In Sec. II, we

describe the data used in this work: SNe Ia and galaxy

clusters observations. In Sec. III, we present the equations
that describe the cosmological data. In Sec. IV, we show the
ηðzÞ parametrizations assumed in this work. Next, in
Sec. V, we achieve the Bayesian analysis by considering
the data and parametrizations previously presented. Finally,
Sec. VI presents the main results of the statistical analysis,
and in Sec. VII, we show the conclusions of the work.

II. DATA

A. Type Ia supernovae

The luminosity distances are obtained from the SNe Ia
sample called Pantheon [53]. The full compilation
consists of 1049 spectroscopically confirmed SNe Ia and
covers a redshift range of 0.01 ≤ z ≤ 2.3, being the
most recent wide refined sample of SNe Ia. However, to
perform the appropriate tests on the CDDR, SNe Ia at the
same (or approximately) redshift of the galaxy clusters
must be used (see below). Then, for each galaxy cluster, we
make a selection of SNe Ia according to the criterion:
jzGC − zSNe Iaj ≤ 0.005. Then, we perform the weighted
average by for each galaxy cluster by

μ̄ ¼
P

iμi=σ
2
μiP

i1=σ
2
μi

; ð1Þ

σ2μ̄i ¼
1P

i1=σ
2
μi

; ð2Þ

where μiðzÞ is the distance module of SNe Ia. Hence, the
luminosity distance follows from DLðzÞ ¼ 10ðμ̄−25Þ=5

½Mpc�, and its error is given by error propagation, σ2DL
¼

ð∂DL=∂μ̄Þ2σ2μ̄ [see Fig. 1(b)].

B. Galaxy clusters

In order to perform the analyses, we also use two
different observations of galaxy clusters, namely, angular
diameter distance and gas mass fraction. The dataset is:

(a) (b) (c)

FIG. 1. The panels show the data used in this work. Part (a) shows fX-ray. Part (b) shows the SNe Ia data measure at the same redshift of
the x-ray mass fraction (black) and the angular diameter distances of the galaxy clusters (blue). Part (c) shows the angular distance of the
galaxy clusters.
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(i) The DAðzÞ data of 25 galaxy clusters obtained via
their Sunyaev-Zeldovich effect plus x-ray observa-
tions and presented by the Ref. [54]. The sample is
distributed over the redshift interval 0.023 ≤ z ≤
0.784 [see Fig. 1(c)]. As it is largely known, it is
possible to take advantage of the different cluster
electronic density dependencies in these phenomena
and with some assumptions about morphology of
galaxy cluster evaluate its angular diameter distance,
given by [54–57]

DAðzÞ ∝
ðΔT0Þ2ΛeH0

SX0T2
e

ð1þ zÞ−4
θc

; ð3Þ

where θc is its core radius obtained from Sunyaev-
Zeldovich eect (SZE) and x-ray analysis, SX0 is central
x-ray surface brightness,ΔT0 is the central SZE, Te is
the electronic temperature of cluster, ΛeH0 is the
cooling factor, and z is the redshift of thegalaxy cluster.
It is important to stress that various sources of

uncertainty (statistical and systematic) are present in
this technique, such as isothermality, morphology of
the cluster, x-ray and SZE calibrations, presence of
clumps, kinetic SZE, radio halos, cosmic microwave
background (CMB) anisotropy, and x-ray background.
These contributions of errors added in quadrature give
an error of approximately 20% (statistical) and ap-
proximately 12%–15% (systematic) on the angular
diameter distance estimated (see details in
Refs. [56,57]). We have added in quadrature the
statistical and systematic errors. Relativistic correc-
tions also need to be taken into account for hot galaxy
clusters [58]. Since the spherical assumption to de-
scribe galaxy clusters has been severely questioned for
the Chandra satellite observations, the x-ray surface
brightness of the clusters considered here was de-
scribed by the elliptical β-model [54].
Besides, it is important to comment that the SZE is

redshift independent only if there is no injection of
photons into the CMB. For this case, the CMB
temperature evolution law is given by TCMBðzÞ ¼
T0ð1þ zÞ. On the other hand, if there is a departure of
the CDDR validity, the CMB temperature evolution
law is modified, and the SZE becomes redshift
dependent [59,60]; consequently, the angular diameter
distances estimated for the clusters need to be cor-
rected. However, the SZE observations considered in
Ref. [54] were performed in 30 GHz; in this band, the
effect on the SZE from a variation of TCMBðzÞ is
completely negligible [61] (see Ref. [62] for the case
where the SZE observations are performed in
150 GHz).

(ii) The most recent x-ray mass fraction measurements
of 40 galaxy clusters in redshift range 0.078 ≤ z ≤
1.063 from Ref. [63], Fig. 1(c). These authors
measured the gas mass fraction in spherical shells
at radii near r2500, rather than integrated at all radii

(less than r2500) as in previous works. As conse-
quence, the theoretical uncertainty in the gas
depletion obtained from hydrodynamic simulations
is reduced [63,64] [see Fig. 1(a)].

III. METHODOLOGY

In this section, we present the equations used in our
analyses. It is important to stress that previous works
discussed how the expression DLð1þ zÞ−2=DA ¼ η ¼ 1
has to be modified if one wishes to test it by using x-ray and
Sunyaev-Zeldovich effect observations of galaxy clusters
[12]. These observations are affected if there are deviations
from the CDDR validity and variation in the fine structure
constant. In the following, we discussed briefly this point
(see details in Refs. [6,12,29,65]).

A. DA from galaxy clusters and SNe Ia

In Ref. [6] was studied as modifications of gravity by the
presence of a scalar field with a coupling electromagnetic
Lagrangian affect cosmological signatures, e.g., CDDR
validity and variations of the fine structure constant. In this
context, Ref. [12] discussed how the angular diameter
distance of a galaxy cluster obtained from its SZE and x-ray
observations (Ddata

A ) is affected by a such multiplicative
coupling. The authors showed that the observations do not
give the true distance, but Ddata

A ¼ η4ðzÞDA. Then, if one
wants to test the CDDR by usingDLð1þ zÞ−2D−1

A ¼ η and
galaxy clusters data, the angular diameter distance DAðzÞ
must be replaced byDAðzÞ ¼ η−4Ddata

A (see Refs. [8,12] for
more details). Then, the equation basic to test the CDDR
using DL from SNe Ia and Ddata

A from galaxy clusters is

DLðzÞ
ð1þ zÞ2Ddata

A ðzÞ ¼ η−3ðzÞ ð4Þ

or, equivalently,

ηobsðzÞ ¼
�

DLðzÞ
ð1þ zÞ2Ddata

A ðzÞ
�

−1=3
: ð5Þ

B. Gas mass fractions × SNeIa

The test by using gas mass fraction performed
here is completely based on the equations obtained in
Refs. [29,65].4 Likewise, the authors of those references
showed that the usual expression used in gas mass fraction
measurements (where η ¼ 1; see Ref. [67]) have to be
replaced by

4In Ref. [66], the effects from a possible cosmic opacity on the
cosmological constrains obtained from gas mass fraction also
were discussed.
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fobsX-rayðzÞ ¼ N

�
ηðzÞ7=2D�3=2

L

D3=2
L

�
; ð6Þ

if one wishes taking into account possible deviation
of the CDDR validity and a variation of the fine structure
constant. One may define yet

ηobsðzÞ ¼
�
f2=3gasDLðzÞ
N2=3D�

L

�3=7
; ð7Þ

where the symbol � denotes quantities from a fiducial
cosmological model used in the observations (usually a flat
ΛCDM model where η ¼ 1). The N factor corresponds to
the parameters: KðzÞ, which quantifies inaccuracies in
instrument calibration, as well as any bias in the masses
measured due to substructure, bulk motions and/or non-
thermal pressure in the cluster gas, and γ, the depletion
factor, which corresponds to the ratio by which fgas is
depleted with respect to the universal baryonic mean and
the Ωb=ΩM ratio. The KðzÞ parameter for this sample was
estimated to be K ¼ 0.96� 0.12 (statistical þ systematic
errors), and no significant trends with mass, redshift, or the
morphological indicators were verified [68]. The γ factor
was taken to be γ ¼ 0.848� 0.085 in agreement with the
most recent estimates via observational data (SNe Ia, gas
mass fraction, and Hubble parameter) [30] and in agree-
ment with simulations [64]. We also use priors on the Ωb
and ΩM parameters, i.e., Ωb ¼ 0.049� 0.0001 and
ΩM ¼ 0.315� 0.007, as given by current CMB experi-
ments [69]. These priors are from analyses by using
exclusively CMB observations on the flat ΛCDM model.

IV. PARAMETRIZATIONS

The ηðzÞ functions considered here are [4,13,15,20]

ηðzÞ ¼ η0; ð8Þ

ηðzÞ ¼ 1þ η1z; ð9Þ

ηðzÞ ¼ 1þ η1
z

1þ z
; ð10Þ

ηðzÞ ¼ η0 þ η1z; ð11Þ

ηðzÞ ¼ η0 þ η1
z

1þ z
: ð12Þ

These are the main ηðzÞ functions widely used in the
literature. Actually, they effectively parametrize our igno-
rance of the underlying process responsible for a possible
CDDR violation. As commented on earlier, the current
analyses cannot distinguish which ηðzÞ function better
describes the data. Then, the basic idea here is to estimate
the Bayesian evidence and compute the Bayes factor of the
ηðzÞ functions with respect to η ¼ η0, which we verify to be

≈1 within 2σ c.l. with the current SNe Ia and galaxy cluster
data discussed in Sec. II. We will describe briefly what
procedure follows to determine the Bayesian evidence and
compare the ηðzÞ functions in the next section.

V. BAYESIAN ANALYSIS

Now, let us briefly introduce a summary on the Bayesian
inference (BI). From the probability standpoint, BI is based
on a measure of the degree of belief about a proposition.
This method describes the connection between the com-
peting models, the data, and the prior information con-
cerning model parameters. The core of BI is the Bayes
theorem, which updates our preceding knowledge about the
model in light of newly available data, being a consequence
of the axioms of probability of theory. This hypothesis
relates the posterior distribution PðΦjD;MÞ, likelihood
LðDjΦ;MÞ, the prior distribution πðΦjMÞ, and the
Bayesian evidence EðDjMÞ [43],

PðΦjD;MÞ ¼ LðDjΦ;MÞπðΦjMÞ
EðDjMÞ ; ð13Þ

whereΦ is the set of parameters, D represents the data, and
M is the model.
In the context of parameter constraint, the Bayesian

evidence EðDjMÞ is just a normalization constant,
and it does not affect the profile of posterior distribution
since it does not depend upon the model parameters.
However, it becomes an essential ingredient in the
Bayesian model comparison viewpoint. So, the Bayesian
evidence of a model in the continuous parameter space Ω
can be written as

EðDjMÞ ¼
Z
Ω
LðDjΦ;MÞπðΦjMÞdΦ: ð14Þ

Therefore, the evidence is the average probability value
across the allowed model parameter space before consid-
ering the data.
The most significant feature in the Bayesian model

comparison is associated with the comparison of two
models that describe the same data. The models fit the
data well and are also predictive, shifting the average of the
likelihood in Eq. (14) in the direction of higher values.
Instead, if a model that fits poorly or is not very predictive,
the average of the likelihood decreases [42]. The applica-
tion of Bayesian analysis has been widely applied in
cosmology [40,41,44–49]. When comparing two models,
Mi versus Mj, given a set of data, we use the Bayes’ factor
defined in terms of the ratio of the evidence of models Mi
and Mj,

Bij ¼
Ei

Ej
; ð15Þ
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where Ej is the standard model and Ei are the competing
models in which we want to compare. Here, we will
compare the ηðzÞ functions defined in the Sec. IV, by
assuming that parametrization (8) as the standard model
(model 1). The other parametrizations, Eqs. (9), (10), (11),
and (12) are named models 2, 3, 4, and 5, respectively, in
which we will want to compare. The Bayes factor gives the
posterior odds of the two models if each model is assigned
an equal prior probability.
To quantify whether the model has favorable evidence or

not, we adopted the Jeffrey scale shown in Table I to
interpret the values of the Bayes factor in terms of the
strength of the evidence in comparing two competing
models. This scale was suggested by Ref. [43] as a revised
and conservative version of the original Jeffrey scale [70].
Note that this scale is empirically calibrated; i.e., it depends
on the problem being investigated. Therefore, for an
experiment for which j ln Bijj < 1, the evidence in favor
of the model Mi relative to model Mj is interpreted as
inconclusive. On the other hand, in the case of ln Bij < −1,
we have support in favor of the modelMj. In this work, we
consider the model 1 as the reference model Mj. For a
complete discussion about this scale, see Ref. [43].
Furthermore, we assume that both type Ia supernovae

and galaxy clusters and gas mass fraction datasets follow a
Gaussian likelihood, such as

LðDjΦ;MÞ ∝ exp

�
−
χ2ðDjΦ;MÞ

2

�
; ð16Þ

where χ2 reads

χ2ðDjΦ;MÞ ¼
X
i

�
ηobsðziÞ − ηmodðziÞ

ηierr

�
2

; ð17Þ

where ηobs is a vector of the observed ηobs function defined
by Eqs. (7) and (5); ηmod are the theoretical values obtained
from the parametrizations, Eqs. (8), (9), (10), (11), and (12)
that we will test; and ηerr is the error given by propagation
of uncertainty.
In order to perform out the Bayesian analysis, we use

PyMultiNest [71], a PYTHON module for MultiNest [72–74], a

generic tool that uses Importance Nested Sampling [74,75]
to calculate the evidence, but which still allows for
posterior inference as a consequence. We plot and analyze
the results using GetDist [76]. Additionally, to increase the
efficiency in the estimate of the evidence, we chose to
perform all analysis by working with a set of 2000 live
points, so that the number of samples for posterior
distributions was of the order Oð104Þ.
It should be pointed out that BI depends on the priors

distributions πðΦjMÞ adopted for the free parameters. This
characteristic accounts for the predictive power of each
model (parametrization), transforming this dependence in a
property instead of a defect of the Bayesian inference
framework. Albeit in the Bayesian analysis, the use of
uniform (flat) priors can be acceptable in some cases; this
type of prior can lead to issues of the point of view of model
comparison. Uniform priors with distinct domain intervals
change the evidence and can affect the Bayes factor
between two competing models if it has not shared
parameters. To use well-grounded priors, we considered
values that reflect our actual state of knowledge about the
parameters of the models investigated. Moreover, we
assume the following flat priors on the set of parameters:
η0 ∼ Uniformð0; 2Þ and η1 ∼ Uniformð−1; 1Þ.

VI. RESULTS

The results achieved considering the SNe Ia and DA
from galaxy clusters data are shown in the Fig. 2. As shown
in Fig. 2(a), the vertical traced line means η0 ¼ 1, i.e.,
CDDR validity. By considering the data, we obtain η0 ¼
1.030� 0.017 for model 1. This value obtained is
compatible in 2σ C.L. with η0 ¼ 1 (light green region).
In Fig. 2(b), we show the results for models 2 and 3. Now,
the vertical traced line means η1 ¼ 0 (CDDR validity). The
values obtained for η1 were η1 ¼ 0.091� 0.059 for model
2 and η1 ¼ 0.134� 0.082 for model 3. See that only model
2 is compatible with η1 ¼ 0 in 2σ of confidence (light green
region), and the model 3 is compatible in 3σ with η1 ¼ 0
(light blue region). Finally, in Fig. 2(c), we present the
triangle plot composed of the regions of confidence for η0
and η1 and the posteriors distributions for models 4 and 5.
The traced lines mean the values in which the CDDR is
valid (η0 ¼ 1 and η1 ¼ 0). The values obtained for the
parameters of the model 4 were η0 ¼ 1.030� 0.032 and
η1 ¼ 0.00� 0.11. These values are compatible in 2σ C.L.
with the validity of CDDR. For model 5, we obtained η0 ¼
1.030� 0.037 and η1 ¼ 0.00� 0.18; they are also com-
patible in 2σ C.L. with the validity of CDDR. We can see
there is an anticorrelation between the parameters. Note
that the data considered constrain the parameters of model
4 better than model 5.
In Fig. 3, we show the results obtained considering the x-

ray gas mass fraction of galaxy clusters and SNe Ia. The
model 1 is consistent in 1σ confidence with CDDR validity,
η0 ¼ 0.977þ0.025

−0.030 . In the case of models 2 and 3, Figs. 3(b),

TABLE I. The table shows the prior distribution of each
parameter used in this work.

lnBij Interpretation

Greater than 5 Strong evidence for model i
[2.5, 5] Moderate evidence for model i
[1, 2.5] Weak evidence for model i
½−1; 1� Inconclusive
½−2.5;−1� Weak evidence for standard model
½−5;−2.5� Moderate evidence for standard model
Less than −5 Strong evidence for standard model
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we obtained that ones are consistent in 1σ confidence with
η1 ¼ 0. In Figs. 3(c), we show the corner plot for models 4
and 5. Thehorizontal gray linemeans η1 ¼ 0, and thevertical
line is η0 ¼ 1. The values obtained for the parameters of
model 4 were η0¼0.980þ0.025

−0.031 and η1¼−0.006�0.019 and
model 5 were η0 ¼ 0.982þ0.025

−0.031 and η1 ¼ −0.020� 0.034.
These values are compatible with CDDR validity in
1σ C.L.
For the sake of Bayesian model comparison, we estimate

the values of the logarithm of the Bayesian evidence (ln E)
and the Bayes factor (ln B), Tables II and III. These results
were obtained considering the priors defined in last section,
and we considered model 1 as the reference one. In the case

of DA from galaxy clusters and SNe Ia data, Table II, we
first observe that model 2 has a positive value of the Bayes
factor (ln B ¼ 0.858� 0.052). According to the Jeffreys
scale, Table I, we can conclude that this model has evidence
inconclusive concerning to model 1. By considering model
3, we obtain ln B ¼ 1.296� 0.052, so this model was
weakly supported by the data. Regarding models 4 and 5,
we obtain negative values for the Bayes factor, by which we
mean that they have weak evidence unsupported by the
data. Thus, we conclude that model 3 is weakly supported
by DA from galaxy clusters and SNe Ia data.
By considering the second dataset, i.e., gas mass

fraction and SNe Ia, we also implement Bayesian model

(a) (b)

(c)

FIG. 2. The posteriors distributions for SNe Ia and galaxy cluster data. The first row shows the reference model [part (a)] and models 2
and 3 [part (b)]. The last row shows the corner plot for models 4 and 5 [part (c)].

DA SILVA, HOLANDA, and SILVA PHYS. REV. D 102, 063513 (2020)

063513-6



comparison, Table III. Model 1 is the reference one.
Models 2 and 3 have evidence inconclusive regarding
the data. Concerning the other models, we note that they
have moderate evidence disfavored by the data. From the

Bayesian comparison model analysis point of view and the
data considered, we conclude that all models have incon-
clusive and moderate evidence disfavored by x-ray gas
mass fraction.

(a) (b)

(c)

FIG. 3. The posteriors distributions for gas mass fraction. The first row shows the reference model [part (a)] and models 2 and 3 [part
(b)]. The last row shows the corner plot for models 4 and 5 [part (c)].

TABLE II. Confidence limits for the parameters using SNe Ia and galaxy clusters. The columns show the constraints on each model,
whereas the rows show the parameter considering in this analysis.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5

η0 1.030� 0.017 Fixed in 1 Fixed in 1 1.030� 0.032 1.030� 0.037
η1 � � � 0.091� 0.059 0.134� 0.082 0.00� 0.11 0.00� 0.18
lnE −17.992� 0.041 −17.134� 0.032 −16.696� 0.029 −19.910� 0.048 −19.465� 0.047
lnB � � � 0.858� 0.052 1.296� 0.052 −1.918� 0.063 −1.473� 0.062
Interpretation � � � Inconclusive Weak evidence (favored) Weak evidence (against) Weak evidence (against)
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In Ref. [6], it was shown that for theories motivated by
scalar-tensor theories of gravity, which introduce an addi-
tional coupling between the Lagrangian of the usual non-
gravitational matter field with a new scalar field, variation
in the value of the fine structure constant, modification of
the CDDR, and modifications of the CMB temperature
evolution law are intimately and unequivocally linked.
In this way, other possibilities to probe some departure
from the CDDR validity is by using the CMB spectral
distortion, which can be constrained using measurements
from Cosmic Background Explorer (COBE)/Far-Infrared
Absolute Spectrophotometer (FIRAS) or the rescaling of
the CMB temperature law (see Refs. [59,60,77] for more
details).

VII. CONCLUSIONS

In the last ten years, several works tested the cosmic
distance duality relation, DLðzÞ

DAðzÞð1þzÞ2 ¼ 1, by considering a

deformed CDDR, such as DLðzÞ
DAðzÞð1þzÞ2 ¼ ηðzÞ. Several ηðzÞ

functions were considered; however, the current analyses
could not distinguish which ηðzÞ function better describes
the data.
In this work, we relaxed the CDDR by assuming the ηðzÞ

functions as given in Sec. IV. In order to decide which ηðzÞ
function better describes the data, we implemented a
Bayesian inference analysis in terms of the strength of
the evidence according to the Jeffreys scale, Table I. We
considered the priors defined in Sec. V and astronomical
data such as SNe Ia, diameter distance angular of the galaxy
clusters, and the x-ray gas mass fraction. The results
obtained are reported in Tables II and III, where we showed
the mean, the error, the Bayesian evidence, and the Bayes
factor for all models studied here. In Figs. 2 and 3, we
showed the 1σ and 2σ regions of confidence and the
posteriors distributions for all models.

The statistical constraints on all the functions implied
that the CDDR remains valid in 1σ in the analyses by using
SNe Ia and galaxy cluster gas mass fractions and in 2σ C.L.
when DA from galaxy clusters and SNe Ia data were
considered. However, we concluded from the Bayesian
comparison that ηðzÞ ¼ 1þ η0z=ð1þ zÞ was weakly
favored in the CDDR test considering the DA from galaxy
clusters and SNe Ia data with respect to our standard model
ηðzÞ ¼ η0. On the other hand, in the CDDR test considering
the galaxy cluster gas mass fractions and SNe Ia, all the
ηðzÞ functions had inconclusive evidence or moderate
evidence (against) with respect to our standard model. In
both methodologies, ηðzÞ ¼ η0 ¼ 1 is in agreement within
2σ C.L. with the data.
Finally, we concluded that the present data used in our

analyses failed to provide which function of ηðzÞ better
describes the evolution of the CDDR with redshift.
Probably, this is a consequence of the galaxy cluster dataset
used in this paper, and they still have large statistical
and systematic errors (≈20%). We believe that when
applied to upcoming galaxy cluster data, the analyses
proposed here may be useful to probe a possible violation
of the CDDR.
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TABLE III. Confidence limits for the parameters using the gas mass fraction. The columns show the constraints on each model,
whereas the rows show the parameter considering in this analysis. Here, we marginalized N.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5

η0 0.977þ0.025
−0.030 Fixed in 1 Fixed in 1 0.980þ0.025

−0.031 0.982þ0.025
−0.031

η1 � � � −0.008� 0.020 −0.025� 0.033 −0.006� 0.019 −0.020� 0.034
lnE −38.540� 0.049 −39.233� 0.050 −38.521� 0.047 −42.256� 0.063 −41.560� 0.061
lnB � � � −0.693� 0.070 0.019� 0.068 −3.716� 0.080 −3.020� 0.078
Interpretation � � � Inconclusive Inconclusive Moderate evidence (against) Moderate evidence (against)
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