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Cosmological adiabatic particle creation results in the generation of irreversible entropy. The evolution
of this entropy is examined in a flat Friedmann-Robertson-Walker universe at late times, using a dissipative
model with a power-law term (proportional to the power of the Hubble parameter H). In a dissipative
universe, the irreversible entropy included in the Hubble volume is found to be proportional to H−1, unlike
for the case of the Bekenstein-Hawking entropy on the horizon of the universe. In addition, the evolution of
the horizon entropy is examined, extending the previous analysis of a nondissipative universe [Phys. Rev. D
100, 123545 (2019)]. In the present model, the generalized second law of thermodynamics is always
satisfied, whereas the maximization of entropy is satisfied under specific conditions. The dissipative
universe should be constrained by the entropy maximization as if the universe behaves as an ordinary,
isolated macroscopic system. The thermodynamic constraints are likely to be consistent with constraints on
a transition from a decelerating universe to an accelerating universe.
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I. INTRODUCTION

An accelerated expansion of the late Universe [1,2] has
been widely accepted as a new paradigm. To explain the
accelerated expansion, astrophysicists have proposed sev-
eral cosmological models [3]: e.g., ΛCDM (lambda cold
dark matter) models,ΛðtÞCDMmodels [i.e., a time-varying
ΛðtÞ cosmology] [4–10], bulk viscous models [11–15], and
the creation of CDM (CCDM) models [16–27], as well as
other scenarios [28–48]. The evolution of the Universe has
been recently examined from a thermodynamic viewpoint,
using such models [42–60].
The formulations of these models can be categorized into

two types from a dissipative viewpoint. The first type is ΛðtÞ
[35,48], which is similar toΛðtÞCDMmodels [4–10]. InΛðtÞ
models, both the Friedmann equation and the acceleration
equation include an extra driving term [35,48]. The driving
term leads to a nonzero term on the right-hand side of the
continuity equation, except for ΛCDMmodels. The nonzero
term is considered to be related to “reversible entropy,” due to,
e.g., the exchange ofmatter (energy) [61,62]. In this sense, the
Universe for ΛðtÞ models is nondissipative.
The second type is BV [35,48], which is similar to both

bulk viscous models [11–15] and CCDM models [16–27].
In BV (bulk-viscous-cosmology-like) models, the accel-
eration equation includes an extra driving term, whereas the
Friedmann equation does not [35,48]. This driving term
leads to a nonzero term on the right-hand side of the

continuity equation even if the driving term is constant
(which is similar to ΛCDM models). The nonzero term is
considered to be related to “irreversible entropy,” due to,
e.g., gravitationally induced particle creation [16,17]. The
Universe for BV models is dissipative.
The background evolution of the Universe for the ΛðtÞ

and BV models is equivalent when the driving terms are the
same. In this case, an associated entropy on the horizon of
the Universe, e.g., the Bekenstein-Hawking entropy [63], is
also equivalent because it depends on the background
evolution, that is, the evolution of the horizon entropy
becomes the same in the two models. However, irreversible
entropy due to dissipation is produced in the BV model,
whereas it is not produced in the ΛðtÞ model. An example
that has been examined is the irreversible entropy due to
adiabatic particle creation; see, e.g., the recent work of Solà
and Yu [25].
Of course, the irreversible entropy due to adiabatic

particle creation should be extremely small compared to
the horizon entropy. However, time derivatives of the
entropy play important roles in the second law of thermo-
dynamics and the maximization of entropy [64]. In addi-
tion, such a dissipative universe has not yet been
systematically examined from a thermodynamic viewpoint,
although a nondissipative universe was examined in a
previous work [48]. Accordingly, it is worth studying
the irreversible entropy, in order to clarify the thermody-
namic constraints on a dissipative universe. (The entropy of
ordinary, isolated macroscopic systems does not decrease
and approaches a certain maximum value in the last stage*komatsu@se.kanazawa-u.ac.jp
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[64]. A certain type of universe should behave as an
ordinary macroscopic system in the last stage, as examined
by, e.g., Mimoso and Pavón [54].)
In this context, we study irreversible entropy due to

adiabatic particle creation in a flat Friedmann-Robertson-
Walker (FRW) universe at late times. In the present paper, a
power-law term is phenomenologically applied to BV
models to systematically examine the entropy production
in a dissipative universe. The power-law term [47] can be
derived from, e.g., Padmanabhan’s holographic equipartition
law [38] with a power-law corrected entropy [65]. Using the
dissipative model, we examine the evolution of the irrevers-
ible entropy and the Bekenstein-Hawking entropy.
The remainder of the present article is organized as

follows. In Sec. II, an entropy relation for adiabatic particle
creation in a flat FRW universe is reviewed. In Sec. III, a
dissipative model that includes a power-law term is for-
mulated. In Sec. IV, irreversible entropy due to adiabatic
particle creation is derived from the entropy relation, using
the present model. In Sec. V, the evolution of the irrevers-
ible entropy and the Bekenstein-Hawking entropy is
examined. The second law of thermodynamics and the
maximization of entropy are also discussed. Finally, in
Sec. VI, the conclusions of the study are presented.

II. ENTROPY RELATION FOR ADIABATIC
PARTICLE CREATION

Prigogine et al. have proposed nonequilibrium thermo-
dynamics of open systems to examine the thermodynamics
of cosmological matter creation [16]. Based on this con-
cept, Lima et al. studied the radiation temperature law for
adiabatic particle creation [17,18]. The general radiation
temperature law in a dissipative universe was investigated
by the present author [24]. Recently, Solà and Yu examined
entropy production for adiabatic particle creation in a
dissipative running-vacuum universe [25]. In this section,
an entropy relation for adiabatic particle creation is
reviewed according to these works.
A spatially flat FRW universe is considered. The Hubble

parameter H is defined by

H ≡ da=dt
aðtÞ ¼ _aðtÞ

aðtÞ ; ð1Þ

where aðtÞ is the scale factor at time t. In addition, we
consider nonequilibrium thermodynamic states of cosmo-
logical fluids in a flat FRW background [24], assuming
adiabatic particle creation [17,18]. The balance equations
for the number of particles, entropy, and energy can be
written as

_nþ 3Hn ¼ nΓ; ð2Þ

_sþ 3Hs ¼ sΓ; ð3Þ

_εþ 3Hðεþ pþ pcÞ ¼ 0; ð4Þ

where n, s, ε, and p are the particle number density, entropy
density, energy density, and pressure, respectively [18]. Γ
and pc are the particle production rate and the dynamic
creation pressure, respectively. The three balance equations
reduce to the conservation law for equilibrium states in a
standard cosmology when both Γ ¼ 0 and pc ¼ 0 [18,24].
The total number N of particles and the entropy S in the

comoving volume can be given by [18]

N ¼ na3 and S ¼ sa3: ð5Þ

Accordingly, Eq. (2) is written as

_N
N

¼ Γ: ð6Þ

In this paper, the entropy per particle σ ≡ S=N is assumed
to be constant [17,18,25],

σ ≡ S
N

¼ cst: or equivalently _σ ¼ 0: ð7Þ

The constant σ has been used for Eq. (3). From Eqs. (5), (6),
and (7), Eq. (3) is rewritten as

_S
S
¼

_N
N
þ _σ

σ
¼ Γþ _σ

σ
¼ Γ; ð8Þ

where N ≠ 0 and S ≠ 0 are assumed [25].
An entropy relation for adiabatic particle creation is

calculated from Eqs. (3) and (8). For example, reformu-
lating Eq. (3), we obtain

_s
s
¼ Γ − 3H: ð9Þ

Integrating Eq. (9) from the present time t0 to an arbitrary
time t gives

Z
s

s0

ds0

s0
¼

Z
t

t0

ðΓðt0Þ − 3Hðt0ÞÞdt0; ð10Þ

and solving this equation yields

s
s0

¼ exp
�Z

t

t0

ðΓðt0Þ − 3Hðt0ÞÞdt0
�
; ð11Þ

where s0 is the entropy density at the present time.
Transforming an integral parameter from t0 to ã0, and using
H ¼ _a=a ¼ _̃a=ã, Eq. (11) can be written as
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s
s0

¼ exp

�Z
ã

1

ðΓðã0Þ − 3Hðã0ÞÞ dt
0

dã0
dã0

�

¼ exp

�Z
ã

1

ðΓðã0Þ − 3Hðã0ÞÞ ã
0

_̃a0
dã0

ã0

�

¼ exp

�Z
ã

1

�
Γðã0Þ
H

− 3

�
dã0

ã0

�
; ð12Þ

where ã is the normalized scale factor given by

ã ¼ a
a0

; ð13Þ

and a0 is the scale factor at the present time. Equation (12)
is an entropy density relation for adiabatic particle creation.
The evolution of the entropy density depends on the
particle production rate and the background evolution of
the Universe. In the next section, we discuss the back-
ground evolution of the Universe in a dissipative model that
includes a power-law term.
Before proceeding further, we discuss the balance

equation for the energy density, which is shown in
Eq. (4). The local Gibbs relation should be valid in the
nonequilibrium thermodynamic states considered here
[18]. The local Gibbs relation can be written as

nkBTd

�
s
n

�
≡ nkBTdσ ¼ dε −

εþ p
n

dn; ð14Þ

where kB and T are the Boltzmann constant and the temper-
ature, respectively. Substituting _σ ¼ dσ=dt ¼ 0 into Eq. (14)
and applying the resultant equation and Eq. (2) to Eq. (4), we
obtain the dynamic creation pressure given by [24]

pc ¼ −ðεþ pÞ Γ
3H

: ð15Þ

From this relation, the balance equation for energy given by
Eq. (4) is rewritten as

_εþ 3Hðεþ pÞ ¼ ðεþ pÞΓ: ð16Þ

In a matter-dominated universe, i.e., p ¼ 0, the above
equation is

_εþ 3Hε ¼ εΓ: ð17Þ

Using the mass density ρ ¼ ε=c2, we have

_ρþ 3Hρ ¼ ρΓ; ð18Þ

where c is the speed of light. Equation (18) is used in the next
section.

III. DISSIPATIVE COSMOLOGICAL MODEL
IN A FLAT FRW UNIVERSE

In this section, a dissipative model that includes a power-
law term is formulated, to systematically examine irrevers-
ible entropy in a dissipative universe. In Sec. III A, we
review cosmological equations in a flat FRW universe for
ΛðtÞ and BV models. In Sec. III B, we formulate the BV
model with a power-law term. We assume an expanding
universe from observations [66].

A. Cosmological equations for ΛðtÞ and BV models

We review cosmological equations for ΛðtÞ and BV
models, according to Refs. [37,48]. The Friedmann, accel-
eration, and continuity equations are written as

HðtÞ2 ¼ 8πG
3

ρðtÞ þ fΛðtÞ; ð19Þ

äðtÞ
aðtÞ ¼ −

4πG
3

ð1þ 3wÞρðtÞ þ fΛðtÞ þ hBðtÞ; ð20Þ

_ρþ 3Hð1þ wÞρ ¼ −
3_fΛðtÞ
8πG

þ 3HhBðtÞ
4πG

; ð21Þ

where G is the gravitational constant [37]. w represents the
equation of state parameter for a generic component of
matter, w ¼ p=ðρc2Þ. Two extra driving terms, fΛðtÞ and
hBðtÞ, are phenomenologically assumed [48].
In the above formulation, fΛðtÞ is used for ΛðtÞ models

and hBðtÞ is used for BV models [37,48]. Accordingly, we
set hBðtÞ ¼ 0 for the ΛðtÞ model and fΛðtÞ ¼ 0 for the BV
model. In addition, fΛðtÞ and hBðtÞ are assumed to be
related to reversible and irreversible processes, respectively.
That is, the BV model assumes an irreversible entropy
arising from dissipative processes such as particle creation
[16,17]. Based on this assumption, the dynamic creation
pressure pc given by Eq. (15) is considered to be related to
the irreversible entropy. In contrast, the ΛðtÞ model
assumes a reversible entropy, such as that related to the
reversible exchange of matter (energy) [62]. Consequently,
the first term on the right-hand side of Eq. (21) is related to
the reversible entropy, and the second term is related to the
irreversible entropy. We note that it can of course be
assumed that fΛðtÞ and hBðtÞ are based on other mecha-
nisms, rather than the reversible and irreversible processes
assumed in this paper.
In the present study, a matter-dominated universe, i.e.,

w ¼ 0, is considered. Coupling Eq. (19) with Eq. (20)
yields [48]

_H ¼ −
3

2
H2 þ 3

2
fΛðtÞ þ hBðtÞ: ð22Þ

Using this equation, we examine the background evolution
of the Universe in various cosmological models. Hereafter,
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we consider the BV model to examine a dissipative
universe.
It should be noted that the background evolution of the

Universe in the ΛðtÞ and BV models is equivalent if the
driving terms are equal, i.e., 3

2
fΛðtÞ ¼ hBðtÞ. However,

even in this case, density perturbations related to structure
formation are different because the right-hand side of the
continuity equation is different, as shown in Eq. (21). For
example, a constant hBðtÞ leads to a nonzero term on the
right-hand side, whereas a constant fΛðtÞ does not. For
ΛðtÞ models, see, e.g., the works of Solà et al. [7], Gómez-
Valent et al. [8], and Rezaei et al. [9]. For BV models, see,
e.g., the works of Li and Barrow [14], Jesus et al. [21], and
Ramos et al. [22,23]. In this study, density perturbations are
not discussed.

B. BV model with a power-law term

We phenomenologically formulate a dissipative model
that includes a power-law term that is proportional to the
power of H. The power-law term is briefly reviewed here.
Based on Padmanabhan’s holographic equipartition law

with an associated entropy on the horizon, cosmological
equations can be derived from the expansion of cosmic
space due to the difference between the degrees of freedom
on the surface and in the bulk [38]. The emergence of the
cosmological equation has been examined from various
viewpoints [39–41,46,47]. In particular, in Ref. [47], an
acceleration equation that includes Hα terms is derived
using the holographic equipartition law [38] with a power-
law corrected entropy [65]. Here, α is a real number and is
assumed to be related to the entanglement of quantum
fields inside and outside the horizon [47,65]. The power-
law term has been investigated in a nondissipative universe
based on ΛðtÞ models [47,48]. The derived acceleration
equation may imply that the Hα term can be applied to
hBðtÞ for BV models. In addition, a similar Hα term has
been examined in CCDM models; see, e.g., the works of
Freaza et al. [19], Ramos et al. [22], and Cárdenas
et al. [27].
In this context, the power-law term, i.e., the Hα term, is

applied to BV models, in order to systematically examine a
dissipative universe. Accordingly, the two driving terms
fΛðtÞ and hBðtÞ are set to be [47,48]

fΛðtÞ ¼ 0; ð23Þ

hBðtÞ ¼ ΨBH2
0

�
H
H0

�
α

: ð24Þ

Here, H0 represents the Hubble parameter at the present
time. α and ΨB are dimensionless constants whose values
are real numbers. In the present paper, α and ΨB are
considered to be independent free parameters [48]. That is,
we phenomenologically assume the power-law term, with-
out using a covariant action. [In this sense, the BV model

considered here should be effective models based on
macroscopic thermodynamic properties. For microscopic
models, see, e.g., ΛðtÞ models based on quantum field
theory and string theory [10].]
Substituting Eqs. (23) and (24) into Eq. (22) yields

_H ¼ −
3

2
H2 þ ΨBH2

0

�
H
H0

�
α

¼ −
3

2
H2

�
1 −

2

3
ΨB

�
H
H0

�
α−2

�

¼ −
3

2
H2

�
1 −Ψα

�
H
H0

�
α−2

�
; ð25Þ

where ΨB is replaced by Ψα, a density parameter for the
effective dark energy [48], which is written as

Ψα ¼
2

3
ΨB: ð26Þ

In addition, the following is assumed for Ψα:

0 ≤ Ψα ≤ 1: ð27Þ

The formulation of Eq. (25) is equivalent to that examined
in a previous work [48]. Accordingly, using the result in
Ref. [48], the solution is written as

�
H
H0

�
2−α

¼ ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα; ð28Þ

where ã is a normalized scale factor given by Eq. (13). Note
that equations for α ≠ 2 are shown in this paper because
when α → 2, they reduce to those for α ¼ 2. For example,

Eq. (28) reduces to H
H0

¼ ã−
3ð1−ΨαÞ

2 when α → 2 [48].
The background evolution of the Universe in the present

dissipative model is calculated from Eq. (28). In particular,
when α ¼ 0, replacing Ψα by ΩΛ, the density parameter for
Λ, gives a background evolution that is equivalent to that of
a nondissipative universe in ΛCDM models. (The density
parameter for matter is given by 1 −ΩΛ, neglecting the
influence of radiation [48], in a flat FRW universe at
late times.)
The temporal deceleration parameter q is also useful for

examining the background evolution of the Universe. The
deceleration parameter is defined by

q≡ −
�

ä
aH2

�
; ð29Þ

where a positive and negative q represent deceleration and
acceleration, respectively [48]. Substituting ä=a ¼ _H þH2

into Eq. (29) and applying Eqs. (25) and (28) to the
resultant equation yields
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q ¼ −
_H
H2

− 1 ¼ 3

2

�
1 −Ψα

�
H
H0

�
α−2

�
− 1

¼ 1

2
−
3

2
Ψα½ð1 −ΨαÞã−

3ð2−αÞ
2 þΨα�−1: ð30Þ

In addition, from this equation, the boundary for q ¼ 0 can
be written as [48]

Ψα ¼
ã−

3ð2−αÞ
2

2þ ã−
3ð2−αÞ

2

; ð31Þ

or equivalently,

ã ¼
�

2Ψα

1 −Ψα

�
− 2
3ð2−αÞ

: ð32Þ

Using the boundary in the ðΨα; αÞ plane, we can discuss a
transition between deceleration and acceleration. We dis-
cuss this in Sec. V.
To observe the background evolution of the dissipative

universe, the evolutions of the Hubble parameter and the
deceleration parameter are shown in Fig. 1. To examine
typical results, α is set to −2, 0, 1, 2, and 3. In addition, Ψα

is set to 0.685, which is equivalent to ΩΛ for the ΛCDM
model from the Planck 2018 results [2]. That is, the
background evolution of the dissipative universe examined
here is set to be the same as that of a nondissipative
universe examined in Ref. [48]. (A similar evolution of a
nondissipative universe has been previously discussed
[48].) In this study, the normalized scale factor ã increases
with time because an expanding universe is considered.
As shown in Fig. 1(a), for all α, H=H0 is 1 at the present

time and decreases with ã. For α < 2, H=H0 gradually
approaches a positive value, whereas for α ¼ 3, it gradually
approaches 0 [48]. Similarly, for all α, q is negative at the
present time [Fig. 1(b)]. The negative value is −0.5275,
which is calculated from Eq. (30). A negative q represents
an accelerating universe. In addition, q for α < 2 decreases
with ã and gradually approaches −1, although it is positive
in the early stage. This result indicates an initially decel-
erating and then accelerating universe (hereafter “deceler-
ating and accelerating universe”). From Eq. (32), the
transition points for α ¼ −2, 0, and 1 are approximately
ã ¼ 0.783 (z ¼ 0.278), ã ¼ 0.613 (z ¼ 0.632), and ã ¼
0.375 (z ¼ 1.664), respectively. Here z represents the
redshift, which is given by z ¼ ã−1 − 1. Note that the
transition point for α ¼ 0, i.e., z ¼ 0.632, corresponds to
that for theΛCDMmodel. In contrast, the evolution of q for
α ¼ 3 indicates an initially accelerating and then deceler-
ating universe (hereafter “accelerating and decelerating
universe”) [Fig. 1(b)]. Therefore, we can expect that α <
2 corresponds to the decelerating and accelerating universe,
whereas α > 2 corresponds to the accelerating and decel-
erating universe. This expectation is examined in Sec. V.

The above result is consistent with that for a non-
dissipative universe examined in Ref. [48], because the
background evolution is set to be the same as that for the
nondissipative universe. However, irreversible entropy due
to adiabatic particle creation is produced in the dissipative
universe, unlike in the nondissipative universe. To examine
the irreversible entropy, we calculate the relationship
between the driving term hBðtÞ and the particle production
rate Γ. Substituting fΛðtÞ ¼ 0 and w ¼ 0 into Eq. (21), the
continuity equation is given by

_ρþ 3Hρ ¼ 3HhBðtÞ
4πG

: ð33Þ

From Eqs. (18) and (33), Γ is written as

Γ ¼ 3H
4πG

hBðtÞ
ρ

; ð34Þ

where p ¼ 0 and _σ ¼ 0 have been assumed. This equation
indicates that Γ depends on H, ρ, and hBðtÞ. In the next
section, we examine the irreversible entropy in the dis-
sipative model, using this equation.

a∼

q

-1.0

-0.5

0.0

0.5

1.0

2=

3=0=
1=

2= −
(b)

5

0 1 2 3 4 5

0=
1=

3=

2= −

H
/H

0

0

1

2

3

4

(a)

2=

q = 0

FIG. 1. Evolution of the Universe for the dissipative model for
Ψα ¼ 0.685. (a) Normalized Hubble parameter H=H0. (b) Decel-
eration parameter q. In (a), the closed diamonds with error bars
are observed data points taken from Ref. [66]. To normalize the
data points, H0 is set to 67.4 km=s=Mpc from Ref. [2]. In (b), the
horizontal break line represents q ¼ 0. A similar evolution has
been examined for a nondissipative universe [48]. The back-
ground evolution of the dissipative universe is essentially
equivalent to that of the nondissipative universe. See the text.
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It should be noted that α greatly affects a transition point
of q ¼ 0. As shown in Fig. 1(b), the evolutions of q for
α ¼ −2, 0, and 1 satisfy a decelerating and accelerating
universe. However, the transition points for α ¼ −2 and 1
significantly deviate from that point for α ¼ 0, correspond-
ing to the ΛCDM model from the Planck 2018 results [2].
This deviation implies that α ¼ −2 and 1 are not consistent
with an observed transition point. Accordingly, the range of
α is expected to be further constrained by observations,
using the transition point. In fact, the observations imply
that small jαj, such as jαj < 1, is favored. (The transition
point for α ¼ 0 is z ¼ 0.632, as examined above.) For
example, the transition point for α ¼ 0.38, i.e., z ¼ 0.831,
should be an upper limit which satisfies z ¼ 0.632� 0.200,
if observation errors are assumed to be Δz ¼ �0.200. In
this way, constraints on α can be estimated from the
observed data. The estimated range of α depends on the
accuracy of the observation. The exact observational
constraints on α are not discussed in the present study.

IV. IRREVERSIBLE ENTROPY Sm FOR THE
PRESENT DISSIPATIVE MODEL

In this section, we examine an irreversible entropy Sm
due to adiabatic particle (matter) creation for the present
dissipative model. In Sec. IVA, the entropy density is
calculated from an entropy density relation. In Sec. IV B,
the entropy Sm in the Hubble volume is derived from the
entropy density. Note that the Hubble volume is the volume
of the sphere with the Hubble horizon, as described later.

A. Entropy density

The entropy density is calculated from an entropy
density relation examined in Sec. II. From Eq. (12), the
entropy density relation is written as

s
s0

¼ exp

�Z
ã

1

�
Γðã0Þ
H

− 3

�
dã0

ã0

�
: ð35Þ

We now calculate Eq. (35) using the present dissipative
model. For this, we first calculate Γ=H. From Eq. (34),
Γ=H is written as

Γ
H

¼ 3

4πG
hBðtÞ
ρ

: ð36Þ

Substituting hBðtÞ given by Eq. (24) and ρ given by
Eq. (19) into Eq. (36) yields

Γ
H

¼ 3

4πG

ΨBH2
0ðHH0

Þα
3H2

8πG

¼ 2ΨB

�
H
H0

�
α−2

¼ 3Ψα

�
H
H0

�
α−2

; ð37Þ

or equivalently,

Γ ¼ 3ΨαH0

�
H
H0

�
α−1

; ð38Þ

where Ψα ¼ 2
3
ΨB given by Eq. (26) and fΛðtÞ ¼ 0 have

also been used. An equivalent power-law term for Γ has
been examined in CCDM models [19,22,27]. Substituting
Eq. (28) into Eq. (37) yields

Γ
H

¼ 3Ψα

�
H
H0

�
α−2

¼ 3Ψα

ð1 −ΨαÞã−
3ð2−αÞ

2 þ Ψα

: ð39Þ

When α ¼ 2, this equation reduces to a constant value,

Γ
H

¼ 3Ψα: ð40Þ

Using the above equation, Eq. (35) can be calculated

with
R
ã
1

Γðã0Þ
H

dã0
ã0 . Substituting Eq. (39) into the integral yields

Z
ã

1

Γðã0Þ
H

dã0

ã0
¼

Z
ã

1

3Ψαdã0

ã0½ð1 −ΨαÞã0−
3ð2−αÞ

2 þ Ψα�

¼ 3Ψα

�
ln ½Ψαðã0

3ð2−αÞ
2 − 1Þ þ 1�

3ð2−αÞ
2

Ψα

�ã
1

¼ ln ½Ψαã
3ð2−αÞ

2 þ ð1 −ΨαÞ�
2

2−α: ð41Þ

Substituting Eq. (41) into Eq. (35) and calculating the
resultant equation, we have the normalized entropy density,

s
s0

¼ exp

�
ln
½Ψαã

3ð2−αÞ
2 þ ð1 − ΨαÞ�

2
2−α

ã3

�

¼ ã−3½Ψαã
3ð2−αÞ

2 þ ð1 − ΨαÞ�
2

2−α: ð42Þ

Reformulating this equation yields

s
s0

¼ ã−3½ã3ð2−αÞ
2 ðΨα þ ð1 − ΨαÞã

−3ð2−αÞ
2 Þ� 2

2−α

¼ ½ð1 − ΨαÞã
−3ð2−αÞ

2 þ Ψα�
2

2−α: ð43Þ

Equation (43) can be summarized using Eq. (28). The
normalized entropy density relation is written as

NOBUYOSHI KOMATSU PHYS. REV. D 102, 063512 (2020)

063512-6



s
s0

¼
�
H
H0

�
2

: ð44Þ

From this entropy density relation, the entropy in the
Hubble volume is calculated in the next subsection.

B. Entropy Sm in the Hubble volume

We examine the entropy Sm in the Hubble volume and
compare it with the Bekenstein-Hawking entropy SBH on
the Hubble horizon. The Hubble horizon is equivalent to
the apparent horizon in the flat FRW universe consid-
ered here.
The entropy Sm in the Hubble volume is derived from the

entropy density relation given by Eq. (44). The entropy Sm
is proportional to r3H, i.e., Sm ∝ sr3H, where the Hubble
horizon (radius) rH is given by

rH ¼ c
H
: ð45Þ

Thus, the normalized entropy Sm=Sm;0 is written as

Sm
Sm;0

¼ sr3H
s0r3H0

¼
�
s
s0

��
r3H
r3H0

�
; ð46Þ

where Sm;0 is Sm at the present time. Substituting Eqs. (44)
and (45) into Eq. (46) yields

Sm
Sm;0

¼
�
H
H0

�
2
� ðc=HÞ3
ðc=H0Þ3

�
¼

�
H
H0

�
−1
: ð47Þ

The irreversible entropy Sm in the Hubble volume is
proportional to H−1 in the present dissipative model.
This equation can be reformulated using Eq. (28).
Substituting Eq. (28) into Eq. (47) yields

Sm
Sm;0

¼ ½ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα�
1

α−2: ð48Þ

The evolution of Sm is examined using Eqs. (47) and (48).
We discuss this in the next section. Note that Eq. (48)

reduces to Sm
Sm;0

¼ ã
3ð1−ΨαÞ

2 when α ¼ 2.

In this section, the entropy density relation and the
entropy relation, i.e., s ∝ H2 and Sm ∝ H−1, are derived
from the present dissipative model. The equivalent relations
are obtained assuming a matter-dominated era and s ∝ a−3.
We discuss this in Appendix A.

V. ENTROPY EVOLUTION FOR THE
PRESENT DISSIPATIVE MODEL

In this section, we study the evolution of the irreversible
entropy Sm due to adiabatic particle creation in the present
dissipative model. In Sec. VA, the second law of thermo-
dynamics ( _Sm ≥ 0) and the maximization of entropy

(S̈m < 0) are discussed. In Sec. V B, the Bekenstein-
Hawking entropy SBH on the Hubble horizon is reviewed,
according to a previous work [48]. In Sec. V C, the
evolutions of Sm and SBH are examined. In Sec. V D,
constraints on a transition from deceleration to acceleration
are discussed and compared with the thermodynamic
constraints. Note that we use a normalized formulation
in order to examine Sm and SBH separately. The generalized
second law and the maximization of total entropy are
briefly discussed later.

A. Sm, _Sm, AND S̈m IN THE HUBBLE VOLUME

As above, we write the irreversible entropy Sm in the
Hubble volume for the present dissipative model as

Sm
Sm;0

¼ ½ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα�
1

α−2; ð49Þ

or equivalently,

Sm
Sm;0

¼
�
H
H0

�
−1
; ð50Þ

where H=H0 is obtained from Eq. (28).

1. Second law of thermodynamics ð _Sm ≥ 0Þ
To discuss the second law of thermodynamics, we

calculate the first derivative of Sm for the present model.
Differentiating Eq. (50) with respect to t and reformulating
the resultant equation gives

_Sm
Sm;0H0

¼ − _H
H2

: ð51Þ

Substituting Eq. (25) into Eq. (51) yields

_Sm
Sm;0H0

¼ 3

2

�
1 − Ψα

�
H
H0

�
α−2

�
: ð52Þ

Substituting Eq. (28) into Eq. (52) yields

_Sm
Sm;0H0

¼ 3

2

�
1 −

Ψα

ð1 − ΨαÞã−
3ð2−αÞ

2 þ Ψα

�

¼ 3

2

ð1 −ΨαÞã−
3ð2−αÞ

2

ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα

: ð53Þ

We can confirm that the second law of thermodynamics is
satisfied, i.e., _Sm ≥ 0, because 0 ≤ Ψα ≤ 1, as shown in
Eq. (27). Here, H > 0 and Sm > 0 have been assumed. Of
course, Eq. (8) indicates the second law because Γ ≥ 0 is
considered. Note that Eq. (53) reduces to a constant value
of 3

2
ð1 −ΨαÞ when α ¼ 2.
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2. Maximization of entropy ðS̈m < 0Þ
To discuss the maximization of entropy, we calculate the

second derivative for the present model. Differentiating
Eq. (52) with respect to t yields

S̈m
Sm;0H0

¼ d
dt

�
3

2

�
1 −Ψα

�
H
H0

�
α−2

��

¼ −3Ψαðα − 2Þ
2

�
H
H0

�
α−3

�
_H
H0

�
: ð54Þ

Reformulating Eq. (54) and substituting Eq. (25) into the
resultant equation yields

S̈m
Sm;0H2

0

¼−3Ψαðα−2Þ
2

�
H
H0

�
α−1

�
_H
H2

�

¼9Ψαðα−2Þ
4

�
H
H0

�
α−1

�
1−Ψα

�
H
H0

�
α−2

�
: ð55Þ

Substituting Eq. (28) into Eq. (55) and calculating several
operations, we obtain

S̈m
Sm;0H2

0

¼ 9

4

ðα − 2ÞΨαð1 −ΨαÞã−
3ð2−αÞ

2

½ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα�
3−2α
2−α

: ð56Þ

The above equation indicates that S̈m < 0 is satisfied
when α < 2. When α ¼ 2, this equation reduces to 0.
Accordingly, to satisfy the maximization of entropy, we
require

α < 2; ð57Þ

where 0 < Ψα < 1 is assumed. In addition, Eq. (56) implies
that S̈m for all α approaches 0 in the last stage (1 ≪ ã). We
discuss this in Sec. V C. In the next subsection, the
Bekenstein-Hawking entropy is examined in the present
dissipative model.

B. SBH, _SBH, and S̈BH on the Hubble horizon

We assume that the horizon of the Universe has an
associated entropy, i.e., the Bekenstein-Hawking entropy,
extending the concept of black hole thermodynamics [28–
32]. The Bekenstein-Hawking entropy SBH is written as

SBH ¼ kBc3

ℏG
AH

4
; ð58Þ

where ℏ is the reduced Planck constant defined as
ℏ≡ h=ð2πÞ, using the Planck constant h [46–48]. AH is
the surface area of the sphere with the Hubble horizon rH.
In a flat FRW universe, the Hubble horizon is equivalent to
the apparent horizon. Substituting AH ¼ 4πr2H into Eq. (58)
and applying Eq. (45) yields

SBH ¼
�
πkBc5

ℏG

�
1

H2
¼ K

H2
; ð59Þ

where K is a positive constant given by [31,32]

K ¼ πkBc5

ℏG
: ð60Þ

Using SBH;0 ¼ K=H2
0, the normalized Bekenstein-Hawking

entropy is written as

SBH
SBH;0

¼
�
H
H0

�
−2
; ð61Þ

where SBH;0 is the Bekenstein-Hawking entropy at the
present time. Equation (61) indicates that the normalized
Bekenstein-Hawking entropy depends on the background
evolution of the Universe and is generally proportional to
ðH=H0Þ−2. Note that cosmological models have not yet
been assumed in the above discussion.

1. SBH, _SBH, and S̈BH for the present dissipative model

We now discuss SBH, _SBH, and S̈BH for the present
dissipative model. As mentioned in Sec. III B, the back-
ground evolution of the dissipative universe considered
here is equivalent to that of a nondissipative universe
examined in a previous work [48]. Therefore, SBH in
Ref. [48] can be applied to the present model because
SBH depends on the background evolution. The result is
summarized in Appendix B. From Eq. (B2), the normalized
SBH is written as

SBH
SBH;0

¼ ðð1 −ΨαÞã−
3ð2−αÞ

2 þΨαÞ
2

α−2: ð62Þ

From Eq. (B5), the normalized _SBH is written as

_SBH
SBH;0H0

¼ 3ð1 −ΨαÞã−
3ð2−αÞ

2

½ð1 −ΨαÞã−
3ð2−αÞ

2 þ Ψα�
3−α
2−α

: ð63Þ

This equation indicates that the present model always
satisfies _SBH ≥ 0, because 0 ≤ Ψα ≤ 1 is assumed [48].
In addition, from Eq. (B9), the normalized S̈BH is

S̈BH
SBH;0H2

0

¼ 9

2

ð1 −ΨαÞã−β½ð1 − ΨαÞã−β þ ðα − 2ÞΨα�
½ð1 −ΨαÞã−β þ Ψα�2

;

ð64Þ
where a parameter β is used for simplicity, given by

β ¼ 3ð2 − αÞ
2

: ð65Þ

Equation (64) is slightly complicated. In fact, this equation
indicates that S̈BH < 0 should be satisfied at least in the last
stage, i.e., ã → ∞, when α < 2 [48].
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In this way, we can obtain the three parameters SBH, _SBH,
and S̈BH, for the present dissipative universe. For details,
see Appendix B.

C. Evolutions of Sm and SBH
In this subsection, we examine the evolution of the

irreversible entropy Sm and the Bekenstein-Hawking
entropy SBH for the present dissipative model.
Figures 2–4 show the evolutions of the entropies (Sm and

SBH), the first derivatives ( _Sm and _SBH), and the second
derivatives (S̈m and S̈BH), respectively. The horizontal axis
represents the normalized scale factor, ã ¼ a=a0, where ã
increases with time because an expanding universe is
assumed. In these figures, α is set to −2, 0, 1, 2, and 3,
to show typical results. Also, Ψα is set to 0.685, as
examined in Fig. 1. The background evolution of the
dissipative universe is equivalent to that of the nondissi-
pative universe examined in a previous work [48], and the
evolutions of SBH, _SBH, and S̈BH are essentially equivalent
to those in Ref. [48]. However, an irreversible entropy Sm is
produced in the dissipative universe, unlike in the non-
dissipative universe [Figs. 2(a), 3(a), and 4(a)].

As shown in Fig. 2(a), for all α, the normalized Sm
increases with ã. Similarly, the normalized SBH increases
with ã [Fig. 2(b)]. Therefore, both the normalized _Sm and
the normalized _SBH are non-negative [Fig. 3]. That is, the
second law of thermodynamics is satisfied for both Sm
and SBH. Accordingly, the generalized second law,
i.e., _Sm þ _SBH ≥ 0, is also satisfied. However, the evolu-
tion of _Sm is different from that of _SBH. For example, the
normalized _Sm for α < 2 decreases with ã [Fig. 3(a)],
while the normalized _SBH for α < 2 increases with ã in the
early stage and thereafter gradually decreases with ã
[Fig. 3(b)]. In addition, when α ¼ 3, the normalized _Sm
increases slowly in the last stage, whereas _SBH increases
rapidly.
Consequently, the normalized S̈m for α < 2 is always

negative (and S̈m for α ¼ 2 is zero), as shown in Fig. 4(a).
Therefore, maximization of entropy for Sm, S̈m < 0, is
always satisfied when α < 2. In addition, the normalized
S̈m for α ¼ 3 gradually approaches zero although it is
positive in the early stage. In fact, the normalized S̈m for all
α finally approaches 0 in the last stage.

0=

2=

1=

3=

2= −

S m
/S

m
,0

0.1 1 10
0

1

2

3

4
(a)

a∼

0=

2=
1=

3=

2= −

S B
H
/S

B
H

,0

0.1 1 10
0

1

2

3

4
(b)

a∼

FIG. 2. Evolutions of Sm and SBH for Ψα ¼ 0.685. (a) Normalized Sm. (b) Normalized SBH. The background evolution of the
dissipative universe is set to be equivalent to that of a nondissipative universe, examined in Ref. [48]. Therefore, SBH in (b), _SBH in
Fig. 3(b), and S̈BH in Fig. 4(b) are essentially equivalent to those in Ref. [48]. However, in (a), irreversible entropy Sm is produced in the
dissipative universe, unlike in the nondissipative universe.
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FIG. 3. Evolutions of _Sm and _SBH for Ψα ¼ 0.685. (a) Normalized _Sm. (b) Normalized _SBH. For _SBH, see the caption of Fig. 2.
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In contrast, the normalized S̈BH for α < 2 is positive in
the early stage and negative in the last stage [Fig. 4(b)].
When α ¼ 3, the normalized S̈BH is positive and increases
with ã. Accordingly, maximization of entropy for SBH, i.e.,
S̈BH < 0, is not satisfied when α ≥ 2, but should be
satisfied at least in the last stage when α < 2. The result
for S̈BH is consistent with that for a nondissipative
universe [48].
As observed above, when α < 2, S̈m < 0 is always

satisfied, whereas S̈BH < 0 should not be satisfied in the
early stage. Accordingly, we systematically examine the
evolution of an α-region that satisfies the maximization of
entropy. To this end, we plot contours of S̈m and S̈BH in the
ðã; αÞ plane. As shown in Fig. 5, the horizontal axis
represents the normalized scale factor ã, which increases
with time. The vertical axis represents a parameter α, which
is used as a power-law term proportional to Hα. The arrow
indicates a region that satisfies the maximization of
entropy, S̈m < 0 in Fig. 5(a) and S̈BH < 0 in Fig. 5(b).
Figure 5 includes plots shown in Fig. 4.

As shown in Fig. 5(a), the normalized S̈m is always
negative (in the early and last stages) when α < 2. In
contrast, even when α < 2, the normalized S̈BH is positive
in the early stage (ã ≪ 1) and should be negative in the last
stage [Fig. 5(b)]. The two results indicate that constraints
on S̈BH < 0 are slightly tighter than those on S̈m < 0.
In the above discussion, we have set Ψα ¼ 0.685. In

the present model, Ψα is a type of density parameter
for effective dark energy. To examine the effect of Ψα,
we plot contours of S̈m and S̈BH in the ðΨα; αÞ plane. In
Fig. 6, ã is set to 5, corresponding to the last stage shown
in Fig. 5.
As shown in Fig. 6(a), the normalized S̈m is negative

when α < 2. In contrast, when α < 2, S̈BH < 0 is almost
satisfied, except for a small-Ψα and large-α region
[Fig. 6(b)]. Therefore, the maximization of entropy for
SBH, S̈BH < 0, has not yet been satisfied in the small-Ψα

and large-α region. It should take a long time to satisfy
S̈BH < 0 in this region, even when α < 2, as discussed
in Ref. [48].

-4
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2
(a)

S m
/(

S m
,0

H
02 )

0=
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••

(b)
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H
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H

,0
H

02 )
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FIG. 4. Evolutions of S̈m and S̈BH for Ψα ¼ 0.685. (a) Normalized S̈m. (b) Normalized S̈BH. The normalized S̈m for α ¼ 2 is 0 from
Eq. (56), whereas the normalized S̈BH for α ¼ 2 is approximately 0.447 from Eq. (64). For S̈BH, see the caption of Fig. 2.

(a) (b)

FIG. 5. Contours of S̈m and S̈BH in the ðã; αÞ plane for Ψα ¼ 0.685. (a) Normalized S̈m. (b) Normalized S̈BH. The arrow indicates a
region that satisfies S̈m < 0 in (a) and S̈BH < 0 in (b). Unsatisfied regions are displayed in gray, to make the boundary of S̈m ¼ 0 in (a)
and S̈BH ¼ 0 in (b) clear. The color scale bar is based on the normalized value. The contour lines are plotted at increments of 0.5.
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In this way, the conditions for satisfying S̈BH < 0 are
tighter than those for S̈m < 0 in the dissipative universe. So
far, we have discussed S̈m and S̈BH separately. Finally, we
consider conditions to satisfy the maximization of total
entropy, i.e., S̈m þ S̈BH < 0. For this, the second derivative
itself should be discussed. As shown in Figs. 5 and 6, the
order of the normalized jS̈BHj is approximately the same as
that of the normalized jS̈mj. Of course, it is well-known that
the horizon entropy is extremely large compared to the other
entropies [52]. Accordingly, jS̈BHj is larger than jS̈mj. In
addition, as noted above the conditions for satisfying S̈BH<0

are tighter than those for S̈m < 0. From these two results, we
can expect that the conditions for satisfying S̈m þ S̈BH < 0
depend almost entirely on the conditions for satisfying
S̈BH < 0. Consequently, the maximization of total entropy
should be satisfied at least in the last stage when α < 2.
More detailed calculations are required if the conditions

for satisfying S̈m < 0 are tighter than those for S̈BH < 0,
unlike for the present dissipative universe. However, the
latter is tighter than the former in the present model and
therefore, as discussed in the above paragraph, we can
reach the approximate conclusion without using a detailed
calculation. For detailed calculations, see, e.g., the work of
Solà and Yu [25].

D. Transition from deceleration to acceleration

As examined in Sec. V C, the thermodynamic constraints
on the present dissipative model should be α < 2, at least in
the last stage. Similarly, observations are expected to
constrain the present model. For example, observations
imply an initially decelerating and then accelerating uni-
verse [1,2]. Accordingly, in this subsection, we study
constraints on the transition and compare them with the
thermodynamic constraints.

To examine a transition from deceleration to acceler-
ation, we use the boundary required for q ¼ 0 given by
Eq. (31). Figure 7 shows the boundary for q ¼ 0 in the
ðΨα;αÞ plane for various values of ã and a “satisfied
region” for ã ¼ 5. The white arrow indicates the region that
satisfies the transition from deceleration to acceleration
when ã ¼ 5. In this figure, ã is set to 0.4, 0.6, 0.8, 1.0, 1.2,
and 5.0, to examine typical boundaries in the past and
future. The black arrow on each boundary indicates an
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FIG. 6. Contours of S̈m and S̈BH in the ðΨα; αÞ plane for ã ¼ 5. (a) Normalized S̈m. (b) Normalized S̈BH. The horizontal axis represents
Ψα, which is a type of density parameter for the effective dark energy. The arrow indicates a region that satisfies S̈m < 0 in (a) and
S̈BH < 0 in (b). Unsatisfied regions are displayed in gray, to make the boundary of S̈m ¼ 0 in (a) and S̈BH ¼ 0 in (b) clear. The color scale
bar is based on the normalized value. In (a), the contour lines are plotted at increments of 0.05, and in (b) at increments of 0.5.
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FIG. 7. Boundary of q ¼ 0 in the ðΨα; αÞ plane for various
values of ã and a satisfied region for ã ¼ 5. The white arrow
indicates a region that satisfies a transition from deceleration to
acceleration when ã ¼ 5. The satisfied region for ã ¼ 5 is
displayed in green, and the unsatisfied region is displayed in
gray. The boundaries for ã ¼ 0.4, 0.6, 0.8, 1.0, 1.2, and 5.0 are
also shown. The black arrow on each boundary indicates an
accelerating-universe region that satisfies q < 0. The closed
circle represents ðΨα; αÞ ¼ ð0.685; 3Þ, corresponding to the plot
for α ¼ 3 shown in Fig. 1(b). The intersection point is
ðΨα; αÞ ¼ ð1

3
; 2Þ. A similar boundary of q ¼ 0 has been exam-

ined for a nondissipative universe [48].
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accelerating-universe region that satisfies q < 0. A similar
boundary has been examined in a nondissipative universe
[48]. Note that the accelerating-universe region for ã ¼ 5 is
different from the satisfied region for ã ¼ 5.
As shown in Fig. 7, the accelerating-universe region

varies with ã, although the intersection point ðΨα; αÞ ¼
ð1
3
; 2Þ is fixed [48]. For example, the boundary for ã ¼ 0.4

indicates that large values of Ψα and α tend to yield an
accelerating universe. When α < 2, the accelerating-
universe region gradually extends with increasing ã.
Accordingly, α < 2 should correspond to a decelerating
and accelerating universe, at least in the last stage.
In contrast, when α > 2, the decelerating-universe region

gradually extends with increasing ã. Therefore, an accel-
erating and decelerating universe is expected [48], as
shown in Fig. 1(b). To examine this, we focus on the
point ðΨα; αÞ ¼ ð0.685; 3Þ, corresponding to the plot for
α ¼ 3 shown in Fig. 1(b). The boundaries for ã ¼ 0.4–1.2
indicate that the point (0.685,3) is inside the accelerating-
universe region [Fig. 7]. However, the boundary for
ã ¼ 5.0 indicates that the point is outside the region,
i.e., it is inside the decelerating-universe region.
Therefore, α > 2 corresponds to an accelerating and
decelerating universe [48]. Consequently, α > 2 is not
included in the satisfied region for ã ¼ 5.
These results indicate that a transition from deceleration

to acceleration is not satisfied when α > 2. In contrast,
when α < 2, the transition should be satisfied at least in the
last stage. This constraint, i.e., α < 2, is likely consistent
with the thermodynamic constraint examined in Sec. V C.
Of course, the constraint on the transition becomes tighter
when the transition point is set to be, e.g., ã ¼ 0.6. In this
sense, the constraint on the transition is tighter than for
α < 2, as for constraints on S̈BH < 0. Detailed studies are
left for future research.
It should be noted that constraints on a transition from

deceleration to acceleration can be considered by focusing
on ã → 0 and ã → ∞. For simplicity, 0 < Ψα < 1 is
assumed here. When ã → 0, Eq. (30) reduces to q ≈ 1=2
for α < 2 and q ≈ −1 for α > 2. Therefore, in the early
stage, α < 2 corresponds to deceleration, and α > 2 cor-
responds to acceleration. In contrast, when ã → ∞,
Eq. (30) reduces to q ≈ −1 for α < 2 and q ≈ 1=2 for
α > 2. Accordingly, in the last stage, α < 2 corresponds to
acceleration and α > 2 corresponds to deceleration.
Consequently, when α < 2, the transition from deceleration
to acceleration should be satisfied in the last stage. The
transition requires dq=dã < 0, and therefore, we examine
the sign of dq=dã. Differentiating q given by Eq. (30) with
respect to ã yields

dq
dã

¼ 9Ψαð1 −ΨαÞã−
3ð2−αÞ

2
−1

4½ð1 − ΨαÞã−
3ð2−αÞ

2 þ Ψα�2
ðα − 2Þ: ð66Þ

This equation indicates that the sign of dq=dã depends on
α − 2 because 0 < Ψα < 1 is assumed. From Eq. (66), we
can confirm that α < 2 satisfies dq=dã < 0.

VI. CONCLUSIONS

We studied irreversible entropy due to adiabatic particle
creation in a flat FRW universe at late times. To system-
atically examine such a dissipative universe, we phenom-
enologically formulated a dissipative cosmological model
that includes a power-law term proportional to Hα. The
irreversible entropy Sm for the dissipative model was
derived from an entropy relation for adiabatic particle
creation. In the dissipative universe, Sm in the Hubble
volume was found to be proportional to H−1. (The
Bekenstein-Hawking entropy SBH on the Hubble horizon
is proportional to H−2 in a flat FRW universe.)
Using the dissipative model, we examined the evolution

of Sm and the Bekenstein-Hawking entropy SBH, extending
a previous analysis of a nondissipative universe [48]. The
present dissipative model always satisfies the second law of
thermodynamics for both Sm and SBH, i.e., _Sm ≥ 0 and
_SBH ≥ 0. That is, the generalized second law of thermo-
dynamics, i.e., _Sm þ _SBH ≥ 0, is also satisfied in the
dissipative universe.
In addition, we examined the maximization of entropy,

using the ðã; αÞ and ðΨα; αÞ planes. When α < 2, the
maximization of entropy for Sm, i.e., S̈m < 0, is always
satisfied. In contrast, even when α < 2, S̈BH < 0 is not
satisfied in the early stage and should be satisfied in the last
stage. Therefore, constraints on S̈BH < 0 are tighter than
those on S̈m < 0. Consequently, the maximization of total
entropy depends almost entirely on the constraints on
S̈BH < 0. The present study implies that the entropy
maximization constrains the dissipative universe as if the
Universe behaves as an ordinary, isolated macroscopic
system. Note that Solà and Yu have reported a similar result
in a dissipative running-vacuum universe, in which α is set
to be a constant value [25].
Furthermore, we examined constraints on an initially

decelerating and then accelerating universe, which is
implied by observations. When α < 2, a transition from
deceleration to acceleration should be satisfied at least in
the last stage. This constraint is likely consistent with the
thermodynamic constraint. Cosmological observations
should further constrain the dissipative universe, and these
are left for future research.
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APPENDIX A: MATTER-DOMINATED ERA

In Sec. IV, we derived the entropy density relation
and the entropy relation, s ∝ H2 [Eq. (44)] and Sm ∝
H−1 [Eq. (47)], for the present dissipative model. In this
Appendix, the two relations are derived assuming a matter-
dominated era (MDE) and s ∝ a−3. In addition, the
evolution of Sm in the MDE model is examined. Note
that inflation of the early Universe and the influence of
radiation are not considered in this study.
From Eq. (28), the solution for the present dissipative

model is written as

�
H
H0

�
2−α

¼ ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα: ðA1Þ

The first term on the right-hand side of this equation is
dominant both when α < 2 and ã ≪ 1. Accordingly, in the
MDE (i.e., ã ≪ 1), this equation can be simplified and
written as

H2 ∝ a−3 ðα < 2Þ ½MDE�: ðA2Þ

From Eq. (5), the entropy S in the comoving volume is
given by

S ¼ sa3: ðA3Þ

The entropy density s is assumed to be

s ∝ a−3: ðA4Þ

Using Eqs. (A2) and (A4), the entropy density relation is
given by

s ∝ H2: ðA5Þ

Multiplying Eq. (A5) by the Hubble volume V yields

Sm ∝ H−1; ðA6Þ

where Sm ¼ sV and V ∝ r3H ∝ H−3 are used. Equa-
tions (A5) and (A6) are equivalent to Eqs. (44) and (47),
respectively.
In this way, we can obtain s ∝ H2 and Sm ∝ H−1,

assuming the MDE and s ∝ a−3. Of course, these assump-
tions should be invalid at the present time even if they are
valid for the past. That is, the evolution of the Universe in
the MDE gradually departs from that in the present
dissipative model, with increasing ã. To examine this,
we consider the following MDE model. Applying α < 2
and ã ≪ 1 to Eq. (A1) yields

�
H
H0

�
2

¼ ð1 −ΨαÞ 2
2−αã−3 ðα < 2Þ ½MDE�: ðA7Þ

Substituting this equation into Sm=Sm;0 ¼ ðH=H0Þ−1 yields
Sm
Sm;0

¼ ð1 − ΨαÞ 1
α−2ã

3
2 ðα < 2Þ ½MDE�: ðA8Þ

When ã ¼ 1, the two equations for the MDE model do not
reduce to 1, unlike for the present dissipative model.
We now examine the evolution of the Universe in the

MDE and present dissipative models. To this end, we set
Ψα ¼ 0.685 and α ¼ 0. Therefore, the evolution of the
Universe in the present dissipative model is equivalent to
that in the ΛCDM model. Figure 8 shows the evolution of
H=H0 and Sm=Sm;0 in the two models. When ã ≪ 1,H=H0

for the two models agree with each other. Similarly,
Sm=Sm;0 for the two models agrees. However, with increas-
ing ã, H=H0 and Sm=Sm;0 for the MDE model depart from
those for the present model. In particular, the normalized
Sm for the MDE model rapidly increases with ã, i.e.,
Sm ∝ ã

3
2, as shown in Fig. 8 and Eq. (A8). Consequently,

the MDE model does not satisfy the maximization of
entropy. In contrast, the normalized Sm for the present
model gradually approaches a constant value although this
value increases with ã. The present dissipative model for
α ¼ 0 satisfies the maximization of entropy, as described
in Sec. V.
The above result implies that the two assumptions used

here, i.e., that the MDE and s ∝ a−3, are valid at least when
ã ≪ 1. The MDEmodel should be useful for estimating the
fundamental properties of cosmological models in a matter-
dominated era.

APPENDIX B: BEKENSTEIN-HAWKING
ENTROPY SBH ON THE HUBBLE HORIZON FOR

THE PRESENT DISSIPATIVE MODEL

In this Appendix, we examine the Bekenstein–Hawking
entropy SBH for the present dissipative model that includes
Hα terms. SBH depends on the background evolution of the
Universe, and the background evolution in the present

H
/H

0

0 1 2 3 4 5
a∼

5

0

1

2

3

4

S m
/S

m
,0

H/H0

Sm/Sm,0

Sm/Sm,0 [MDE] 

H/H0 [MDE] 

Present model

FIG. 8. Evolution of H=H0 and Sm=Sm;0 in the MDE and
present dissipative models for Ψα ¼ 0.685 and α ¼ 0. The plots
for the present model are from Figs. 1(a) and 2(a).
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model is equivalent to that in a ΛðtÞ model with the Hα

term, which was examined in a previous work [48].
Therefore, we can use SBH examined in Ref. [48]. An
expanding universe is assumed, as for the previous work.
For simplicity, equations for α ≠ 2 are shown here; when
α → 2, they reduce to those for α ¼ 2 [48].
Using the result of Ref. [48], SBH for the present

dissipative model is written as

SBH ¼ K
H2

0

ðð1 −ΨαÞã−
3ð2−αÞ

2 þ ΨαÞ
2

α−2: ðB1Þ

In the present paper, we use a normalized formulation. The
normalized SBH is summarized as

SBH
SBH;0

¼ ðð1 −ΨαÞã−
3ð2−αÞ

2 þΨαÞ
2

α−2; ðB2Þ

where SBH;0 is SBH at the present time, which is given by
K=H2

0 from Eq. (59).
Similarly, from Ref. [48], we obtain the first derivative of

SBH, i.e., _SBH, which is written as

_SBH ¼ 3K
H0

�
1 −

Ψα

ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα

�

× ½ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα�
1

α−2: ðB3Þ

This equation can be written as

_SBH ¼ 3K
H0

ð1 − ΨαÞã−
3ð2−αÞ

2

½ð1 − ΨαÞã−
3ð2−αÞ

2 þ Ψα�
3−α
2−α

: ðB4Þ

Using SBH;0 ¼ K=H2
0, the normalized _SBH is written as

_SBH
SBH;0H0

¼ 3ð1 −ΨαÞã−
3ð2−αÞ

2

½ð1 −ΨαÞã−
3ð2−αÞ

2 þ Ψα�
3−α
2−α

: ðB5Þ

In addition, we obtain the second derivative of SBH from
Ref. [48]. S̈BH for the present dissipative model is written as

S̈BH ¼ 9K
2

�
1 −

Ψα

ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα

�

×

�
1 −

Ψαð3 − αÞ
ð1 −ΨαÞã−

3ð2−αÞ
2 þΨα

�
: ðB6Þ

This equation can be written as

S̈BH ¼ 9K
2

ð1 −ΨαÞã−
3ð2−αÞ

2

ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα

×
ð1 − ΨαÞã−

3ð2−αÞ
2 þ ðα − 2ÞΨα

ð1 − ΨαÞã−
3ð2−αÞ

2 þ Ψα

¼ 9K
2

ð1 −ΨαÞã−β½ð1 −ΨαÞã−β þ ðα − 2ÞΨα�
½ð1 − ΨαÞã−β þ Ψα�2

; ðB7Þ

where β is given by

β ¼ 3ð2 − αÞ
2

: ðB8Þ

The normalized S̈BH is written as

S̈BH
SBH;0H2

0

¼ 9

2

ð1 −ΨαÞã−β½ð1 − ΨαÞã−β þ ðα − 2ÞΨα�
½ð1 −ΨαÞã−β þ Ψα�2

:

ðB9Þ

For details of the derivations, see Ref. [48].
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