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We describe inflation in terms of a time-dependent quantum density matrix with time playing the role of
a stochastic variable. Using a quasi-de Sitter model we compute the corresponding quantum Fisher
information function as the second derivative of the relative entanglement entropy for the density matrix at
two different times. Employing standard quantum estimation theory we evaluate the minimal variance of
quantum scalar fluctuations that reproduces the power spectrum and the corresponding tilt in the slow-roll
limit. The Jeffreys prior associated with such Fisher information can be used to define the probabilities on
the set of initial conditions defined by the slow-roll parameter ϵ and the initial Shannon information.
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The current cosmological model is the ΛCDM, whose
seven free parameters are well constrained, at the percent
level, by the data from the Planck mission [1]. This model
provides a remarkable description of a wealth of cosmo-
logical observations. This model, in its early phase,
postulates an epoch of accelerated expansion that leads
to a very large and homogeneous Universe. After this
supercooled expansion phase, reheating takes place; in this
phase of reheating the inflaton converts its energy into
particles via resonant coupling to the standard model of
particle physics. This hot big bang phase further leads to a
matter dominated Universe. This early inflationary epoch is
crucial to explain the flatness and the present homogeneity
of the observed Universe [2–4]. The quantum origin of the
large scale structure is explained on the basis of the
classicalization of small quantum fluctuations that leave
the horizon during the inflationary epoch and reenter
during the hot big bang period [5–8]. This is achieved if
the time evolution of the horizon changes from shrinking
during the inflationary epoch to increasing after reheating.
While we have not yet measured the smoking gun of an
exponential phase of expansion in the early Universe (the
much expected primordial B-mode polarization of the
cosmic microwave background), there are two remarkable
measurements that strongly support inflation as the correct

picture to describe the early Universe: the existence of
superhorizon fluctuations [9] and the fact that the power
spectrum of matter fluctuations is nearly scale invariant and
has a red tilt [1].
There is however not a definite picture of the physics

behind inflation. The usual approach is to postulate a
potential from a hypothetical scalar field and adjust this
potential in order to fit the observational constraints. The
recent Planck [1] analysis already constrains this potential
to be very flat. In this paper we try a different approach to
describe the epoch of inflation and the early Universe.
Our guiding principle will be quantum information and

more precisely quantum estimation theory (see Ref. [10]).1

From the point of viewof a quantummechanical description,
we are interested in the time dependence of a set of
cosmological observables. Since time itself in quantum
mechanics is not an observable, we interpret it as a stochastic
variable and we encode the information about time depend-
ence in terms of a Fisher function. Through its relation with
the relative entanglement entropy (for a review see e.g., [14])
that defines a natural distance between the quantum states of
the early Universe at different times, we introduce a simple
quasi–de Sitter model to estimate the quantum Fisher
function.
Using the standard relations between the Fisher function

and the variance of the associated stochastic quantity, we
reproduce some of the most basic results about inflation, in
particular, bounds on the duration of inflation as well as thePublished by the American Physical Society under the terms of
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1For recent applications of quantum estimation theory in the
same spirit see Refs. [11–13].
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power spectrum of scalar quantum fluctuations. This is
done without assuming any particular form for the inflaton
potential. An interesting and potentially deep output of this
approach is the important role of the saturation of minimal
variance on the basis of the quantum Cramer-Rao inequal-
ity that sets the variance of cosmological fluctuations as
given by the power spectrum at the point of horizon exit.
As a first approximation we can try to describe the

inflationary epoch in terms of a time-dependent Hubble
parameter H that is postulated to decrease i.e., _H ≤ 0.
Quantum mechanically we can describe the state of the
Universe at time t using a quantum density matrix ρðtÞ that
we can define by taking the trace of the quantum state over
the whole region outside the horizon at time t.2 Now we can
define the relative entanglement entropy between two
different times as

Sðt; t0Þ≡ Tr

�
ρðtÞ ln ρðtÞ

ρðt0Þ
�

ð1Þ

for t0 the initial time. As it is well known in information
theory, Sðt; t0Þ is positive definite and leads to the first law
of entanglement, namely

_SðtÞ ¼ 0: ð2Þ
If we Taylor expand around t0 we get

Sðt0 þ δt; t0Þ ¼ Sð0Þ þ 1

2
δ2t Fðt0Þ ð3Þ

with Fðt0Þ the quantum Fisher information at the initial
time t0. Note from the definition (1) that Sð0Þ ¼ 0. We shall
characterize the initial condition of our cosmology in terms
of the value of the initial Fisher information. In statistical
terms, the time t is working like a stochastic variable i.e.,
time is just defining the variable space and the Fisher
function defines the metric on this space.
The relative entropy can be represented as

Sðt; t0Þ ¼ TrðρðtÞHÞ − Trðρðt0ÞHÞ − SðρðtÞÞ þ Sðρðt0ÞÞ
ð4Þ

for SðρÞ the standard von Neumann entropy and H the
modular or entanglement Hamiltonian. If the density matrix
is Hermitian and positive semidefinite it can be always
expressed as ρ ¼ e−H

trðe−HÞ for H some Hermitian operator.

This is the operator defining the modular Hamiltonian. In
essence the modular Hamiltonian represents the density
matrix as a formal canonical matrix. In general, to find the
modular Hamiltonian for a generic density matrix is a very

difficult task. In our case we will profit from representing
the quasi–de Sitter density matrix as thermal for the
Gibbons-Hawking temperature [15]. Once we assume t
close to t0 and we choose for ρðt0Þ a canonical density
matrix at temperature T, the relative entropy can be
represented as

Sðt; t0Þ ¼
1

T
ðF ðρðtÞÞ − F ðρðt0ÞÞÞ ð5Þ

with F ðρÞ the free energy i.e., ðE − sTÞ for E the energy
and s the entropy. Wewill use this representation in order to
estimate the relative entropy. Moreover the quantum Fisher
function can be written as

FðtÞ ¼ TrðρðtÞL2
t Þ ð6Þ

for Lt the Lyapunov operator driving the time evolution
of ρ.3 Models of inflation are in fact ways to model Lt
and consequently also H. In what follows we will use
to estimate the Fisher function a simple model where
we only assume that H depends on time and that _H is
negative.
Before going into the detailed computation, let us

highlight the key point of our approach in more qualitative
terms. In general relativity, canonical quantizations lead to
the Wheeler–de Witt equation which does not involve time.
To recover standard time evolution it requires one to
introduce a clock field, let us say ϕ.4 In cosmology this
clock field is just the inflaton. Once we have defined, using
this clock, time evolution, we can formally compute the
associated Lyapunov operator that depends on the corre-
sponding clock. This allows us to compute the associated
quantum Fisher function Fϕ using (6). Our main claim is
that the corresponding power spectrum Δ2

ϕ is just deter-
mined by the inverse of the quantum Fisher function

Δ2
δϕ ∼

1

Fϕ
: ð7Þ

In other words, once we introduce a clock to paramtrize the
time dependence, the corresponding quantum variance
defines the power spectrum of fluctuations of the field
used to define the clock5

In what follows we will estimate the cosmological
quantum Fisher function using its relation with the relative
entropy (3). We shall define Sðt; t0Þ using (5) as ðEðtÞ=T −
sðtÞÞ − ðEðt0Þ=T − sðt0ÞÞ for sðtÞ; EðtÞ; T respectively
entropy, energy, and effective temperature. Moreover we

2Assuming the quantum state of the Universe at a given time is
jΨi we define this density matrix formally as TrjΨihΨj with the
trace over the region outside the horizon at that time. In
what follows we will not need a concrete characterization of
the state jΨi.

3This operator simply represents the symmetric logarithmic
derivative and it is defined by the Lyapunov equation dρ

dt ¼ LtρþρLt
2

.
4See for instance the discussion in Ref. [16].
5As an aside remark let us just say that the physical nature of

the clock field by contrast to just a Stuelkeberg field making
formally the theory invariant under reparametrizations lies in the
finiteness of the corresponding quantum Fisher function.
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will take the same T as defined by the canonical density
matrix at time t6

ρðtÞ ¼ eEðtÞ=T

TrðeEðtÞ=TÞ : ð8Þ

For a given time characterized by HðtÞ we define, in
Planck units,

Sðt; t0Þ ¼
ða − bÞ
H2

−
a

HH0

þ b
H2

0

ð9Þ

for a, b two parameters with units of M2
P and with H0 the

Hubble rate at the initial time. The logic of this model of the
relative entropy is based on assuming the following quasi–
de Sitter relations: T ∼H, EðtÞ ∼ HðtÞ2

HðtÞ3 and sðtÞ ∼ 1
HðtÞ2, all

of them in natural Planck units. The temperature T is
simply defined as the Gibbons-Hawking temperature [15]
for a de Sitter with Hubble parameter H. Infinitesimally
around a reference point we define the difference in free
energy keeping the same T and changing the entropy and
the energy accordingly with the de Sitter relations. This
approximation leads to (9) as a phenomenological model of
the relative entropy.
Note that (9) satisfies Sðt0; t0Þ ¼ 0 and that this model of

relative entropy is well defined at the inflationary epoch
since Sðt; t0Þ is always positive for any time t > t0.
Secondly, in order to satisfy the first law of entanglement,
namely _S ¼ 0, in (9), a ¼ 2b. Now we can easily compute
the Fisher function:

Fðt0Þ ¼ 2bϵ2 ð10Þ

where we have introduced the slow-roll parameter

ϵ ¼ −
_H
H2

: ð11Þ

We have only used the assumption that H changes with
time and we define ϵ in a way that is not assuming any
underlying inflaton potential model. Thus we observe that
the slow roll simply generates a nonvanishing Fisher
function. Using now the Cramer-Rao inequality, this finite
Fisher function can be used to define the uncertainty on
time, which is bounded by the minimal uncertainty

Δδt ∼
1ffiffiffiffiffiffi
2b

p
ϵ
: ð12Þ

As it is well known, this relation is the statistical version of
the quantum energy time uncertainty principle. Saturating

the Cramer-Rao inequality is equivalent to minimizing the
corresponding uncertainty.
What we can call the minimal statistical duration of

inflation is determined by the initial value ϵ by (12). This is
measured in Planck units. To change to Hubble units, and
taking 2b order one, we get

Δδt ¼
Nffiffiffiffiffiffi
N0

p ð13Þ

Hubble times. Here N is the number of e-foldings and

N0 ≡ M2
P

H2
0

. So if we tune the initial Hubble to be Planckian,

the saturation of Cramer-Rao sets the duration of inflation.
In other words the physical duration of inflation, given in
Hubble units as the number of e-foldings, let us sayΔphys, is
given by

Δphys ∼
ffiffiffiffiffiffi
N0

p
Δδt: ð14Þ

In summary, from the information point of view, the
minimal step in the cosmological evolution7 is set by the
initial Fisher information and is given by Δδt. The number
of cosmological steps that we can identify as the complex-
ity of the whole inflation process is determined by

ffiffiffiffiffiffi
N0

p
and

therefore is established by the initial Shannon information.
Note that the information description of the inflationary

phase makes sense only if ϵ < 1. This means that to extend
inflation beyond ϵ ¼ 1 makes no sense in information
theory unless one assumes sub-Planckian resolution of
time. In other words, whenever the Universe reaches ϵ ¼ 1,
information theory is already implying that the inflationary
period cannot continue, very much as in the standard case.
In this sense we fully reproduce the standard criteria for the
end of inflation, namely ϵ > 1, but we read the necessity of
this condition from information theory as the impossibility
of time resolutions smaller than Planck time. In other words
we simply provide a very simple argument why the system
cannot stay in the inflationary phase once ϵ becomes bigger
than one.
The information content of the initial state of the

Universe is, therefore, a Shannon information N0 and a
Fisher information. If we assume an inflationary epoch
with decreasing Hubble parameter, the Fisher information
sets the corresponding rate of change. The limiting case
ϵ ¼ 0 leads to vanishing Fisher information. Using the
qualitative relation between Fisher and Shannon for the
Gaussian case [17], and assuming it can be generalized,
will imply that ϵ ¼ 0 is only consistent with N0 ¼ ∞.
Let us now briefly discuss the crucial issue of generation

of seeds for galaxy formation as quantum fluctuations.
Until now we have discussed the Fisher function associated

6Physically this means that locally we assume that the system
tends to equilibrium with time. More precisely we assume that the
thermal equilibrium matrix is the one at t for t in the past of t0.

7In computational language the time of the elementary
“cosmological gate.”
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with time as a stochastic variable and discover that F goes
like ϵ2. This means that the corresponding variance goes
like

Δ2
δt ∼

1

ϵ2
: ð15Þ

Physically one can figure out the meaning of this expres-
sion as defining the variance of time on a surface of
constant energy density.
This effective variance in time induces in general

relativity the curvature fluctuations. In essence, the quan-
tum fluctuations in inflation have as origin that inflation
ends at different times in different regions of space. To
describe this phenomena we simply use the variance of time
(interpreted as a stochastic variable) induced by the initial
Fisher function.
If we are interested in the expression of these fluctuations

for a hypothetical inflaton field ϕ we can use the relation
δϕ ¼ _ϕδt. The quantity that is now dependent on the
particular model of inflation is _ϕ. In the slow-roll approxi-
mation and in Planck units we can use

_ϕ2 ∼H2ϵ: ð16Þ
This leads to the variance of δϕ corresponding to the power
spectrum

Δ2
δϕ ∼ _ϕ2Δ2

δt ∼
H2

ϵ
ð17Þ

which is the expected result for the power spectrum of
scalar perturbations [5]. In other words, the Fisher function
for ϕ, i.e., when we take the inflaton scalar field as a
stochastic variable, controls the power spectrum of curva-
ture perturbations through the Cramer-Rao bound

Δ2
δϕ ∼

1

Fϕ
ð18Þ

with Fϕ ¼ ϵ
H2.

At this point it would be worth commenting on the
relation between this statistical derivation and the standard
derivation of the power spectrum for the curvature pertur-
bations. In this second case the time fluctuations at the end
of inflation, on a field hypersurface, let us say δt, induce
curvature perturbations of order Hδt and therefore a power
spectrum that goes like H2ðδtÞ2 with δt ∼ 1ffiffi

ϵ
p . We are

instead representing the curvature power spectrum as
_ϕ2ðΔtÞ2 with Δt defined by the Fisher function as the
total duration of the process of inflation i.e., 1

ϵ. Thus the
power spectrum of curvature perturbations is simply
defined as ðΔϕÞ2 ¼ _ϕ2ðΔtÞ2 or equivalently ðΔϕÞ2 ∼
hδϕδϕiΔðtÞ with the standard value of hδϕδϕi ∼H2.
It is interesting to observe that the saturation of the

Cramer-Rao bound leads to the power spectrum at the scale

of horizon exit in agreement with our former discussion on
the duration of inflation. More precisely, it saturates
Cramer-Rao for Δϕ ¼ Hffiffi

ϵ
p that corresponds to Δt ¼ 1

ϵ. In

essence, the modes freeze when they saturate the minimal
value for the variance. In order to estimate the tilt

d lnðΔ2Þ
d lnðkÞ ð19Þ

for k the value at the horizon exit we use that the horizon
exit takes place after a time order 1

ϵ in Hubble units. Using
now that Δ2 ∼ 1

ϵ we get in this approximation

d lnðΔ2Þ
d lnðkÞ ¼ ns − 1 ∼ −ϵ ð20Þ

in qualitative agreement with the expected result [1,5].
Next we summarize the logic flow of our approach.

Using quantum estimation theory we have defined a clock
operator playing the role of a maximally efficient quantum
estimator of time. Let us for simplicity denote δTðtÞ the
quantum fluctuations for this operator. The cosmological
Fisher function, that we model using a quasi–de Sitter
evolution during inflation, defines the variance of this clock
operator i.e., hδTδTi. This variance is what we identify
with the power spectrum of curvature fluctuations at
horizon exit.
It is important to point out that the former connection

between the quantum variance of the quantum estimator
and the corresponding power spectrum for curvature
perturbations is independent of the statistical uncertainties
that naturally appear in the standard Cramer-Rao formula
for the variance of the estimator. The key reason is that the
quantum Fisher function sets the quantum value of Δ2 for
the quantum estimator univocally.
Finally, we can use the former Fisher function F ¼ ϵ

H2 to
define a Jeffreys prior probability on cosmological initial
conditions

J ¼
ffiffiffiffi
F

p
¼ ffiffiffi

ϵ
p ffiffiffiffiffiffi

N0

p
: ð21Þ

From this point of view the prior probability of no inflation
i.e., of ϵ ¼ 0 is just zero and the highest probability appears
when the number of e-foldings 1

ϵ is of the order of the initial
Shannon information. We leave for a future work a more
careful analysis of this qualitative statistical argument and
its relation to Bayesian statistics.
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