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We study the dynamical properties of tracker quintessence models using a general parametrization of
their corresponding potentials, and show that there is a general condition for the appearance of a tracker
behavior at early times. Likewise, we determine the conditions under which the quintessence tracker
models can also provide an accelerating expansion of the universe with an equation of state closer to −1.
Apart from the analysis of the background dynamics, we also include linear density perturbations of the
quintessence field in a consistent manner and using the same parametrization of the potential, with which
we show the influence they have on some cosmological observables. The generalized tracker models are
compared to observations, and we discuss their appropriateness to ameliorate the fine-tuning of initial
conditions and their consistency with the accelerated expansion of the Universe at late times.
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I. INTRODUCTION

Dark energy (DE) is, according to our current knowl-
edge, the main matter component of the Universe nowa-
days, and we also believe that is the main responsible for
the accelerated cosmic expansion. The simplest possibility,
a positive cosmological constant, seems to be sufficient to
guarantee a good agreement of the so-called ΛCDM model
with cosmological observations [1].
Most studies of DE focus their attention in the so-called

background evolution, as they assume that DE is a
homogeneous and isotropic component whose main prop-
erties are basically encoded in its equation of state (EoS),
and for that one may assume a given evolution history for it
in terms of a particular parametrization. These phenom-
enological studies are convenient to search for deviations of
the late-time cosmic expansion away from the expected one
driven by a cosmological constant. But the question
remains about the physical origin of such DE behavior,
and then the motivation remains to search for DE para-
metrizations that can be connected to models with some
physical interest.
Additionally, there is recent interest in studying DE

density perturbations and to look for their signature in
structure formation variables [2–4], see also [5–7]. DE is
assumed to affect structure formation by changing the
expansion history of the Universe [6,8], specially at late
times. This is clearly convenient for the standard ΛCDM

model, but also for other DE models as one can avoid the
hassle of solving the equations of density perturbations.
However, it is undeniable that the study of DE, beyond the
standard cosmological constant case, must take into
account its density perturbations for reliable observational
constraints.
Our aim here is to revisit quintessence DE models [9]

taking into account the presence of linear density pertur-
bations. In particular, we will consider the case of tracker
quintessence, which has the nice feature to avoid an
excessive fine tuning of its initial conditions. Tracker
quintessence potentials were first studied in [10,11], and
the tracker condition later introduced in [12,13] (see also
[14,15] and references therein for an updated discussion on
tracker potentials in flat and non-flat geometries). For the
potentials explored in the literature, it was concluded that
tracker potentials were unable to provide the accelerated
expansion of the Universe that is required by cosmological
observations, unless their evolution behavior resembles that
of the cosmological constant [14] (which is in contrast to
the early expectations on this type of models discussed in
the seminal papers [10,11]).
However, it can be shown that there is a generalized class

of quintessence potentials that possess the tracker charac-
teristic and whose late-time evolution can be close to that of
a cosmological constant. For this, we will use the same
formalism presented in Refs. [16–19], which considered a
transformation of the quintessence equations of motion into
a dynamical system by choosing properly defined variables
in the polar form. The presence of the so-called active
model parameters is clearly shown in the new equations of
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motion, and this is used to put constraints by means of
comparison with observations.
The organization of the manuscript is as follows. In

Sec. II we introduce the equations of motion for the
evolution of background and perturbation variables, for
both cases in the form of a dynamical system. In Sec. III,
we discuss in general terms the general condition for
tracker solutions using a particular parametrization of the
quintessence models, although we will also discuss its
applicability to other choices. In Sec. IV, we present the
numerical studies of the quintessence models and the
observational constraints upon the free parameters.
Finally, we discuss the main results and conclusions
in Sec. V.

II. MATHEMATICAL BACKGROUND

The equations of motion for a scalar field ϕ endowed
with the potential VðϕÞ, in a homogeneous and isotropic
space-time with null spatial curvature, are given by

H2 ¼ κ2

3

�X
j

ρj þ ρϕ

�
; _ρj ¼ −3Hðρj þ pjÞ; ð1aÞ

_H ¼ −
κ2

2

�X
j

ðρj þ pjÞ þ ðρϕ þ pϕÞ
�
; ð1bÞ

ϕ̈ ¼ −3H _ϕ − ∂ϕVðϕÞ; ð1cÞ

where κ2 ¼ 8πG, ρj and pj are the energy and pressure
density of ordinary matter, a dot denotes derivative with
respect to cosmic time t, and H ¼ _a=a is the Hubble
parameter. The index j runs over all the matter species in
the Universe apart from the scalar field (e.g., photons,
baryons, etc.). The scalar field energy density and pressure
are given by the canonical expressions ρϕ ¼ ð1=2Þ _ϕ2 þ
VðϕÞ and pϕ ¼ ð1=2Þ _ϕ2 − VðϕÞ, whereas those of the
perfect fluids are related through the barotropic relation
pj ¼ ðγj − 1Þρj. The barotropic equation of state takes the
usual values of γj ¼ 4=3 for a relativistic species and
γj ¼ 0 for a nonrelativistic one.
We define a new set of polar coordinates in the form

[16–23],

κ _ϕffiffiffi
6

p
H

≡Ω1=2
ϕ sinðθ=2Þ; κV1=2ffiffiffi

3
p

H
≡ Ω1=2

ϕ cosðθ=2Þ; ð2aÞ

y1 ≡ −2
ffiffiffi
2

p ∂ϕV1=2

H
; y2 ≡ −4

ffiffiffi
3

p ∂2
ϕV

1=2
ϕ

κH
; ð2bÞ

where Ωϕ ¼ κ2ρϕ=ð3H2Þ is the standard density parameter
associated to the quintessence density. Considering the new
variables (2), the Klein-Gordon equation (1c) takes the
form of the following dynamical system:

θ0 ¼ −3 sin θ þ y1; Ω0
ϕ ¼ 3ðγtot − γϕÞΩϕ; ð3aÞ

y01 ¼
3

2
γtoty1 þΩ1=2

ϕ sinðθ=2Þy2: ð3bÞ

Here, a prime denotes derivative with respect to the
number of e-foldings N ≡ lnða=aiÞ, with a the scale factor
of the Universe and ai its initial value, and the total
equation of state γtot ¼ ðptot þ ρtotÞ=ρtot. Here ptot (ρtot)
denotes the total pressure (density) of all matter species
under consideration in our model. Likewise, the barotropic
equation of state for the quintessence field is given by
γϕ ¼ ðpϕ þ ρϕÞ=ρϕ ¼ 1 − cos θ, from which we see that
the standard EoS is given by wϕ ¼ − cos θ.
Let us now consider the case of linear perturbations φ of

the quintessence field in the form ϕðx; tÞ ¼ ϕðtÞ þ φðx; tÞ.
As for themetric, we choose the synchronous gaugewith the
line element ds2 ¼ −dt2 þ a2ðtÞðδij þ hijÞdxidxj, where
hij is the tensor of metric perturbations. The linearized
Klein-Gordon equation for a given Fourier mode φðk; tÞ
reads [5,24–26]:

φ̈ ¼ −3H _φ −
�
k2

a2
þ ∂2

ϕV

�
φ −

1

2
_ϕ _̄h; ð4Þ

where a dot means derivative with respect the cosmic time,
h̄ ¼ hjj and k is a comoving wave number.
As shown in Refs. [17,19], we can transform Eq. (4) into

a dynamical system by means of the following (genera-
lized) change of variables,

ffiffiffi
2

3

r
κ _φ

H
≡−Ω1=2

ϕ eβ cosðϑ=2Þ; κy1φffiffiffi
6

p ≡−Ω1=2
ϕ eβ sinðϑ=2Þ;

ð5Þ

with β and ϑ the new variables needed for the evolution
of the scalar field perturbations. But if we further define
δ0 ¼ −eβ sinðθ=2 − ϑ=2Þ and δ1 ¼ −eβ cosðθ=2 − ϑ=2Þ,
then Eq. (4) takes on a more manageable form,

δ00 ¼ −
�
3 sin θ þ k2

k2J
ð1 − cos θÞ

�
δ1 þ

k2

k2J
sin θδ0

−
h̄0

2
ð1 − cos θÞ; ð6aÞ

δ01 ¼ −
�
3 cos θ þ k2eff

k2J
sin θ

�
δ1 þ

k2eff
k2J

ð1þ cos θÞδ0

−
h̄0

2
sin θ; ð6bÞ

where k2J ≡ a2H2y1 is the (squared) Jeans wave number, a
prime again denotes derivative with respect to the number
of e-folds N, and
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k2eff ≡ k2 −
y2
2y

a2H2Ωϕ: ð7Þ

In writing Eqs. (6) we have used the relation ∂2
ϕV ¼

H2ðy21=4 − yy2=2Þ in Eq. (4).
Some notes are in turn. As shown in [17,19], the variable

δ0 is exactly the quintessence density contrast, as one can
show from Eqs. (2) and (5) that δρϕ=ρϕ¼ð _ϕ _φþ∂ϕVφÞ=
ρϕ ¼ δ0. (For a comparison of this approach to othermethods
in the case of a quadratic potential see [27].)
The definition of the Jeans wavenumber kJ is a generic

one, and only involves the function y1 (see also [18,19] for
previous applications). Actually, such definition is neces-
sary for the transformation of Eq. (4) into the dynamical
system (6). In the case of quintessence DE models, one
expects that y1 ≲Oð1Þ, and then the associated Jeans scale
length is equal or larger than the Hubble horizon; that
is, k−1J ≳ 1=H.
Also, it must be stressed out that in general the evolution

of quintessence density perturbations is driven by the
effective wave number (7). A related definition of keff
was first presented in [19] for an axionlike potential (for
which, in our notation, y2 ¼ α0y, see also [28]), which
served to explain the tachyonic instability of scalar field
perturbations whenever k2eff < 0. Here, Eq. (7) is a gener-
alization for any quintessence potential that indicates that
tachyonic instabilities may arise whenever y2=y > 0.
The inclusion of quintessence, and in general of DE,

density perturbations have been neglected in most studies,
mostly because it is believed that they do not have any
significant influence on cosmological observables (e.g.,
[29]). There are, though, recent works in the literature
which are dedicated to uncover the effects that DE density
perturbations can have on structure formation [14,30–34].
This is in agreement with our results in Sec. IV, where we
show that linear density perturbations can help to improve
constraints on quintessence models. Moreover, as we also
show in Sec. B, they should necessarily be included to get
correct solutions of the cosmological observables.

III. GENERAL TRACKER SOLUTIONS

The equations of motion (3) allow us to study easily
some solutions that have been considered of physical
interest in the specialized literature about cosmological
scalar fields. One only needs to specify the functional form
of y2 and then calculate the critical points of the dynamical
system (3). For purposes of simplicity, in this work we take
the parametrization of y2 proposed in Ref. [16],

y2 ¼ yðα0 þ α1y1=yþ α2y21=y
2Þ; ð8Þ

where the α are just constant parameters. This parametri-
zation includes a large class of quintessence potentials (see
Table 1 and 2 in [16]).

The critical condition θ0 ¼ 0, see Eq. (3a), simply leads
to y1c ¼ 3 sin θc, where a subindex c denotes the critical
value of the corresponding variable. Upon substitution in
Eq. (3b), together with the general expression for y2 in
Eq. (8), we find the remaining critical conditions,

�
γtotþ

α0
9
Ωϕcþ

ffiffiffi
2

p

3
α1Ω

1=2
ϕc γ

1=2
ϕc þ2α2γϕc

�
sinθc¼0; ð9aÞ

ðγtot − γϕcÞΩϕc ¼ 0: ð9bÞ

In writing Eq. (9b) we used the expression γϕc ¼
2 sin2ðθc=2Þ and assumed that 0 ≤ θc ≤ π. The critical
solutions of Eqs. (9) are described in the Appendix A,
where we follow the original classification of Table 1 in
Ref. [20] (see also Table 4 in [21]).
Our main interest is the case of potentials with

α0 ¼ 0 ¼ α1, for which Eq. (9) indicates a critical condition
for the quintessence EoS,

γϕc ¼ −γtot=ð2α2Þ; ð10Þ

which is known as the tracker condition. Given that we
expect 0 < γϕc < 2, we find that the critical condition
exists for 0 < −γtot=α2 < 4, and then α2 < −γtot=4. If the
tracker condition is to be attained at very early times during
radiation domination, for which γtot ¼ 4=3, then the abso-
lute upper bound in the active parameter is α2 < −1=3.
However, one must prefer tracker solutions for which

γϕc < γtot, as for these instances the EoS can have better
chances to approach −1 at late times. Thus, we will
hereafter restrict our study of tracker potentials to those
with α2 < −1=2, constraint we shall refer to as the
tracker limit.
For reference, power-law quintessence VðϕÞ ¼ M4−pϕp

corresponds to p ¼ 2=ð1þ 2α2Þ (with α0 ¼ α1 ¼ 0), and
then the tracker condition (10) translates into γϕc ¼
pγtot=ðp − 2Þ. The existence conditionof the tracker solution
for power-law potentials is p > 6 (for −1=2 < α2 < −1=3)
and p < 0 (for α2 < −1=2), whereas α2 ¼ −1=2 corre-
sponds to an exponential potential, see Table 2 in [16].
Notice though that there is not in general a critical

condition for the density parameter except for the trivial
case Ωϕc ¼ 0. Hence, the quintessence field evolves with a
fixed EoS that is related to that of the dominant background
component, similarly to the so-called scaling solutions (see
Appendix A), but with the difference that the quintessence
density does not mimic that of the dominant component.
The tracker solution is then just an approximated critical
point of the quintessence equations of motion (see also the
discussion in [21,35,36] about the tracker theorem in terms
of dynamical systems).
However, as we have pointed out before, the tracker

condition can be satisfied approximately by a more general
class of potentials, even those with α0 ≠ 0 and α1 ≠ 0 in
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Eq. (8), as long as the quintessence density parameter Ωϕ is
negligible with respect to the dominant one, which is
regularly the case at early times in the evolution of the
Universe. One can see that for practically all the quintes-
sence potentials in Table 2 of Ref. [16] it is possible to
consider a tracker solution, as long as α2 < 0. The most
known example in the literature is the inverse power-law
case mentioned before, VðϕÞ ∼ ϕp, corresponding to the
so-called Class Ia, but there are others like those in Classes
IIa, IIIa, and IVa that have a more involved functional form.
Moreover, all the calculations above can be extended for

more general expressions of the form y2 ¼ yfðy1=yÞ,
where fðy1=yÞ is an arbitrary function of its argument.1

The equations for the critical points for such general case
are written as

�
9γtot þ Ωϕcf

�
3

ffiffiffi
2

p
γ1=2ϕc

Ω1=2
ϕc

��
sin θc ¼ 0; ð11aÞ

ðγtot − γϕcÞΩϕc ¼ 0; ð11bÞ

where we have used y1c=yc ¼ 3 sin θc=½Ω1=2
ϕc cosðθc=2Þ� ¼

3
ffiffiffi
2

p
γ1=2ϕc =Ω

1=2
ϕc , see also Eqs. (9).

As before, the tracker solution is not a critical point of
Eqs. (11), but it exists whenever the quintessence density
parameter can be neglected from Eq. (11a) and the only
unknown variable left in it is the quintessence EoS. That is,
if the following condition is satisfied,

lim
Ωϕc→0

�
Ωϕcf

�
3

ffiffiffi
2

p
γ1=2ϕc

Ω1=2
ϕc

��
¼ gðγϕcÞ; ð12Þ

then the tracker equation derived from Eq. (11) simply
reads: 9γtot þ gðγϕcÞ ¼ 0. Here, gðγϕcÞ is in principle an
arbitrary function of its argument obtained from the limit in
Eq. (12). From the foregoing equation we find the tracker
value of the quintessence EoS, if such solution exists and
satisfies the constraint 0 < γϕc < 2.
One example is the potential V ¼ M4e1=κϕ [13], for

which y2 ¼ −yð63=4y3=21 =y3=2 þ y21=y
2Þ. We can see that

this potential is not covered by the polynomial relation (8),
but it complies with the condition (12). From the latter we
obtain that gðγϕcÞ ¼ −18γϕc, and the corresponding tracker
solution at early times simply reads γϕc ¼ γtot=2.

IV. NUMERICAL SOLUTIONS AND COMPARISON
WITH OBSERVATIONS

One critical step in the numerical solution of Eqs. (1) and
(3) is to find the correct initial conditions of the dynamical
variables. There is not a general recipe for quintessence
fields, and one must choose expressions case by case.
However, the tracker condition (10) simplifies the numeri-
cal effort, and for the initial conditions of the dynamical
variables we obtain

cos θi ¼ 1þ 2

3α2
y1i ¼ 3 sin θi; ð13aÞ

Ωϕi ¼ A × a4ð1þ1=2α2Þ
i

�
Ωm0

Ωr0

�
1þ1=2α2

Ωϕ0; ð13bÞ

where Ωr0, Ωm0 and Ωϕ0 are, respectively, the present
density parameters of relativistic matter, non-relativistic
matter and quintessence, and ai is the initial value of the
scale factor (typically ai ≃ 10−14). The expressions for θi
and y1i correspond to the tracker condition (10), whereas
the one for Ωϕi is derived from integrating Eq. (3a) up to
present time assuming the tracker evolution during radia-
tion and matter domination eras, with A an arbitrary
constant.
We have verified that Eqs. (13) provide good enough

initial values for numerical solutions in the general case.2

This is especially important as we rely on an amended
version of the Boltzmann code CLASS (v2.5) [37] to adjust
the value of the coefficient A, so that we obtain the correct
value of the quintessence density parameter Ωϕ0 at the
present time. For the initial conditions of the linear
perturbations we simply use δ0i ¼ 0 and δ1i ¼ 0, as the
evolution of the perturbation variables is mostly driven by
the nonhomogeneous terms in Eqs. (6).
For purposes of illustration, in Fig. 1 we show some

numerical examples for the case α2 ¼ −3=4, whereas other
parameters, like the present density contributions of the
different matter species, were fixed to the values reported
by the Planck collaboration (see their Table 1)[1].
As explained in Ref. [16], α2 ¼ −3=4 (with α0 ¼

0 ¼ α1) corresponds to the power-law potential
VðϕÞ ¼ M8ϕ−4. In the top panel of Fig. 1 we show the
influence of the other two active parameters α0 and α1 in the
final evolution of the quintessence EoS. Notice that
the original tracker solution reaches its tracker values at
early times (represented by the dashed black lines), but it

1As explained in the Appendix A in [16], the standard roll
parameter can be written as λ ¼ y1=y, and then
y2=y ¼ fðλÞ ¼ λ2½1 − ΓðλÞ� − λ=2, where ΓðλÞ is called the
tracker parameter. With this identification, one can also make
a matching between the potentials of Table 1 in [16] and Table 10
in [21].

2As mentioned before, see Eq. (12) and below it, the values
ðα0 ¼ 0 ¼ α1; α2 ¼ −1=2Þ correspond to an exponential poten-
tial for the chosen parametrization (8). For this case the tracker
critical solution (10) gives γϕc ¼ γtot, which is in fact the typical
scaling solution of exponential potentials [20,25,26]. Hence, the
tracker limit α2 < −1=2 also helps us to avoid any overlapping
between tracker and scaling solutions.
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cannot accelerate the expansion of the Universe at late
times (as one requires wϕ < −2=3). The latter flaw can be
corrected by considering potentials with power in the range
−4 < p < 0 [14], but also by considering negative values
of the other active parameters. The more negative the latter
are, the more the quintessence EoS gets closer to the
cosmological constant case wϕ → −1.
Another view of the evolution of the EoS is shown in the

bottom panel of Fig. 1, in terms of the phase space
ðwϕ; w0

ϕÞ, where the derivative of the EoS is calculated
from w0

ϕ ¼ − sin θð3 sin θ − y1Þ. It can be seen that all

solutions depart from the tracker solution at radiation
domination ð−1=9; 0Þ, and then evolve toward that at
matter domination ð−1=3; 0Þ. However, for the cases in
which α0, α1 ≤ 0, the curves are deflected away from the
second tracker point and the EoS evolves toward the
cosmological constant point at ð−1; 0Þ. Likewise, the cases
with α0, α1 > 0 are deflected in the opposite direction, the
derivative is positive and then the EoS evolves toward less
negative values.
The behavior of the EoS can be understood in terms of

the critical point that corresponds to quintessence domi-
nation, which is described in the Appendix A. As explained
there, two critical points of the EoS always exist, which
correspond to the following points in the phase space: (1,0)
and ð−1; 0Þ. The first one is known in the literature as the
kinetic domination critical point, whereas the second is the
cosmological constant case.
But there are other possibilities if the active parameters

take on appropriate values. It can be shown that for the type
of examples in Fig. 1, for which α2 < −1=2, we also find
that

1þ wϕc ¼ −
α0

9ð1þ 2α2Þ
; α0 > 0;α1 ¼ 0; ð14aÞ

¼ 2α21
9ð1þ 2α2Þ2

; α0 ¼ 0; α1 > 0: ð14bÞ

Even though the second solution (14b) involves α21, it
must be noticed that the corresponding solution of Eq. (A2)
necessarily requires α1 > 0. Given that at the critical points
y1c ¼ 3 sin θc, we also obtain that w0

ϕc ¼ 0.
For the particular cases shown in Fig. 1 with α2 ¼ −3=4,

we find the following critical points in the phase space:
ð1=9; 0Þ if α0 ¼ 5 and α1 ¼ 0 (green curves), and ð−1=9; 0Þ
if α0 ¼ 0 and α1 ¼ 1 (red curves). The curves in the bottom
panel of Fig. 1 seem to be in agreement with these
calculations, although we would have to evolve further
the numerical solutions, until full quintessence domination
is reached, to eventually see the curves approaching the
foregoing critical points.
There are other, more general, solutions of Eq. (A2) for

which α0 and α1 are both positive, but they will correspond,
if existent, to values of the EoS larger than the tracker
solution during matter domination, for which the quintes-
sence component will also be unable to accelerate the
expansion of the Universe.
We show in Fig. 2 the two-point temperature autocorre-

lation power spectrum CTT
l of the cosmic microwave

background (CMB) and the mass power spectrum (MPS)
of linear density perturbations PðkÞ, for the same numerical
examples shown in Fig. 1. Notice that all the tracker cases
can be easily distinguished from the ΛCDM case, and in
general there are changes in the amplitude and location of
the characteristic features of the observables.

FIG. 1. (Top) The evolution of the EoS wϕ for tracker
quintessence models with α2 ¼ −3=4, see Eq. (8). Each curve
represents a model with the indicated values of the triplet
ðα0; α1; α2Þ. The first example in all figures corresponds to the
inverse power-law potential VðϕÞ ¼ M8ϕ−4 (α0 ¼ 0 ¼ α1). The
other cases that additionally consider (α0 ≠ 0 ≠ α1) can be
identified by their corresponding color. The case of ΛCDM is
also shown for reference. The dashed horizontal lines represent
the tracker values of the quintessence EoS: wϕ ¼ −1=9 (radiation
domination) and wϕ ¼ −1=3 (matter domination). (Bottom)
Phase space of the EoS ðwϕ; w0

ϕÞ, for the same cases (with the
same colors) as in the top panel. The blue dot represents the
cosmological constant case, whereas the black dots represent the
aforementioned tracker values at ð−1=9; 0Þ and ð−1=3; 0Þ. See
the text for more details.
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The cases in which the EoS deviates the most from the
accelerating regime also show the major differences in the
CMB anisotropies and the MPS with respect to the ΛCDM
results, and then the former can be a strong tool to constrain
the tracker models. Actually, one again sees that the active
parameters α0 and α1 help to close the gaps with respect to
ΛCDM if they take on negative values. We must stress out
that the numerical results in Fig. 2 include the contribution
of quintessence density perturbations, as described in
Sec. III above, as otherwise one obtains misleading outputs
for the CMB anisotropies and MPS, as we explain in
Appendix B.
We use the aforementioned amended version of the

Boltzmann code CLASS and the Monte Carlo code
MONTE PYTHON (v3.2) [38]. We consider two data sets that
are sensitive to the background dynamics: (i) the Pantheon
supernova data [39], (ii) BAO (baryonic acoustic oscilla-
tions)measurements [40–44], togetherwith aPlanck2018 [1]
prior on the baryonic matter component: ωb ¼ 0.02230�
0.00014.
The total set of parameters being sampled are: the active

parameters α, the baryonic and dark matter components, ωb
and ωcdm, respectively, and the supernovae nuisance

parameter M, whereas Ωϕ0 is set by the Friedmann closure
relation. The set of derived parameters is: the density
parameters of total matterΩM and quintessenceΩϕ, and the
quintessence EoS wϕ.
As an abridged version of the numerical results, we show

in the top panel of Fig. 3 the confidence regions for Ωm, the
quintessence EoS wϕ and Ωϕ, for tracker potentials, with
and without the participation of the active parameters α0
and α1. It can be seen that the quintessence EoS is closer to

FIG. 2. The anisotropies of the CMB (top panel) and the MPS
(bottom panel) for the same models shown in Fig. 1. The case of
ΛCDM is also shown for reference in each case. The dots in the
top panel are the binned TT power spectrum from the Planck
collaboration. See the text for more details.

FIG. 3. Observational constraints on ΩDE, Ωm, wϕ (top) and the
active parameters α0, α1 y α2 (bottom) for the same type of
tracker potentials shown in Figs. 1 and 2. Here ΩDE denotes the
contributions of the DE component, whether the quintessence one
or the cosmological constant in theΛCDMmodel. See the text for
more details.
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−1 if the other active parameters are included, and then
the resultant physical quantities are in turn closer to those of
the ΛCDM model. For the case ðα0; α1Þ ¼ 0 we obtain
wϕ < −0.948 (2σ), whereas for ðα0;α1Þ ≠ 0 the result is
wϕ < −0.961 (2σ).
Likewise, we see in the bottom panel of Fig. 3 that

the active parameters α0 and α1 appear unconstrained
for the range they were sampled ½−10∶0�, whereas α2
can even take values closer to the tracker limit α2 ≃ −1=2.
More precisely, for ðα0;α1Þ ¼ 0 the constraint is
α2 < −6.63 (2σ), whereas for ðα0; α1Þ ≠ 0 the result is
α2 < −4.13 (2σ).

V. DISCUSSION AND CONCLUSIONS

We have revised the case of tracker quintessence models
of DE using the same formalism and parametrization
presented before in Refs. [16], but now also including
the influence of linear perturbations of the quintessence
field following the prescription in [17–19,28]. As discussed
above, the new formalism allowed the identification of new
tracker models which are able to have a behavior more
similar to that of the cosmological constant of ΛCDM.
Moreover, apart from the standard background dynamics,
we were even able to include linear density perturbations of
the quintessence field within the same parametrization
scheme of the potentials.
We identified the necessary condition to be satisfied if a

quintessence potential is to have a tracker behavior;
interestingly enough, the condition involves just one of
the so-called active parameters in the parametrization of the
potential. We showed that such condition applies even in
the presence of the other active parameters, which guar-
antees the tracker behavior and in turn ameliorates the fine
tuning of the initial conditions at early times; in fact, we
found an analytical form of the tracker initial conditions
that was successfully used in our numerical studies of the
models.
The other active parameters play a role in the late time

dynamics of the quintessence field, and we showed that the
latter behaves more similar to the cosmological constant if
they take on negative values. This means that tracker
quintessence models with an acceptable late-time dynamics
can have a more involved functional form, for instance
beyond the ubiquitous inverse-power-law one, than of those
considered in the literature, which were usually chosen
mostly by its early tracker behavior only.
Another advantage of our formalism is that linear density

perturbations can be easily included in the numerical
calculations, and then one can study the influence on them
of the active parameters in the quintessence potential. Even
though the common wisdom is to neglect DE density
perturbations, we showed that they should be included for
full consistency in the calculation of observables. In the
particular case of tracker potentials, it was clear that density

perturbations are important also to have more stringent
constraints on the parameters of the models.
One common criticism of quintessence models is that

one can always obtain from them an accelerating solution
by means of a proper fine-tuning of the free parameters in
the potential [3,45], which may also be applied to our
parametrization. However, one key difference is that our
formalism allows the identification of the tracker condition,
with its corresponding attractor behavior, without spoiling
the accelerating dynamics at late times. Another key
difference is that we are including density perturbations
in a consistent manner, which also helps to break the
degeneracy between generic DE models and quintessence.
It is also worth mentioning here that the contribution of the
quintessence field at the early times must be negligible for
the quintessence field to track the background. Hence, for
this kind of tracker models early dark energy [46], or any
similar variant of an early contribution of the quintessence
field, may not be realizable.
Although the parametrization chosen is suitable for some

classes of potentials, it can be amended and extended to
include other more nonconventional quintessence models.
Such study, and the corresponding observational conse-
quences derived from it, will be presented elsewhere.
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APPENDIX A: CRITICAL POINTS OF
QUINTESSENCE EQUATIONS OF MOTION

Here we briefly describe the critical solutions obtained
from Eq. (9) for potentials that can be written in the form
(8), as said before we follow here the classification already
known in the literature.

a. Fluid-dominated solution

This corresponds to the condition Ωϕc ¼ 0 in Eq. (9b),
and then the contribution of the quintessence field to the
cosmic density is null. Additionally, Eq. (9a) indicates that
necessarily θ ¼ 0; π, and then γc ¼ 0, 2.

b. Scaling solution

The other possibility from Eq. (9b) is γtot ¼ γc, so that
the quintessence field in this solution has the same EoS as
the dominant background component. Moreover, now
Eq. (9b) gives the general condition,
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α0Ωϕc þ 3
ffiffiffi
2

p
α1Ω

1=2
ϕc γ

1=2
tot þ 9ð1þ 2α2Þγtot ¼ 0: ðA1Þ

A scaling solution of Ωϕc from Eq. (A1) will only exist
for certain combinations of the active parameters α so that
the term inside the square brackets is positive definite and
0 < Ωϕc < 1. For instance, it can be verified that in the case
α1 ¼ 0 ¼ α2 we recover the standard expression of the
scaling solution reported in the literature:Ωϕc ¼ −9γtot=α0,
which only exists for potentials with α0 < 0 [20,21,28,47–
49]. However, Eq. (A1) opens the possibility for a
generalized scaling solution, similarly to the generalized
tracker quintessence discussed in the main text, for poten-
tials with nonzero active parameters.

c. Quintessence-dominated solution

This solution is characterized by the conditions Ωϕc ¼ 1
and γtot ¼ γϕc, under which Eq. (9) now reads

½α0 þ 3
ffiffiffi
2

p
α1γ

1=2
ϕc þ 9ð1þ 2α2Þγϕc� sin θc ¼ 0: ðA2Þ

The simplest possibilities are θc ¼ 0; π, for which the
quintessence EoS is γϕc ¼ 0, 2, respectively. This means
that the quintessence density is dominated either by its
potential (VðϕÞ) or kinetic (1

2
_ϕ2) part, respectively too.

Other critical solutions of the EoS can arise from the part of

Eq. (A2) inside the square brackets. They will depend on
the particular values of the active parameters α, as long as
0 < γϕc < 2, in which case one obtains a quintessence
dominated stage with a well-defined value of the EoS that
depends on the active parameters α.

APPENDIX B: TRACKER QUINTESSENCE
WITHOUT LINEAR DENSITY PERTURBATIONS

To highlight the importance of linear density perturba-
tions in DE studies, we show in Fig. 4 the same cosmo-
logical quantities as in Fig. 2, for the same tracker
quintessence models, but without the linear density per-
turbations from the quintessence field.
A quick comparison between Figs. 2 and 4 show that one

can obtain misleading constraints on the quintessence
models if density perturbations are neglected. In particular,
we notice that the CMB power spectrum is miscalculated
for some choices of the tracker models, specially at low
multipoles. As for the MPS, without quintessence pertur-
bations it may seem that the results are similar to those of
ΛCDM, but this again would be misleading: from Fig. 2 we
clearly learn that quintessence tracker models can have a
heavy influence on the evolution of the MPS, and the latter
indeed becomes a useful tool to discriminate between
different types of tracker quintessence models.
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