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Tracing the cosmic history by Gauss-Bonnet gravity
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Cosmic history can be traced considering further curvature contributions inside the gravitational action.
Assuming that standard general relativity can be extended by other curvature invariants, we discuss the
possibility that an action containing higher-order curvature terms can fit, in principle, the whole universe
evolution. In particular, a theory like F(R, G), with R the Ricci scalar and G the Gauss-Bonnet topological
term, contains all the curvature invariants that, depending on the energy regime, can address inflation, and
matter dominated and dark energy regimes. In this paper, we investigate this possibility considering how
F(R, G) models can lead gravity from ultraviolet to infrared scales. Specifically, we will take into account a

cosmographic approach for this purpose.
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I. INTRODUCTION

According to our current perspective, the Universe seems
dominated by two ingredients we find frustratingly difficult
to understand at fundamental level. One of these is the dark
matter which drives the formation of self-gravitating
systems. Despite extensive searches for new candidates
beyond the Standard Model of particle physics that could
account for the discrepancy between luminous and non-
luminous matter, no final evidence emerged so far [1].

Furthermore, the recent issue of the accelerated expansion
of the Hubble flow gave rise to the possibility of another
elusive component of cosmic pie, the so-called dark energy.
Also in this case, no fundamental particle, capable of
addressing the cosmological dynamics, has been detected
so far (for a comprehensive review see, for instance,
Refs. [2,3]). On the one hand, we need a mechanism able
to cluster structures and, on the other hand, we need a
mechanism able to speed up the cosmic fluid. Despite the
existence of macroscopic evidences, no fundamental ingre-
dient emerged until now to account for the 95% of cosmic
matter-energy content (for a comprehensive review we refer
to [4]).

This state of art triggered the development of alternative
theories of gravity formulated with the aim to replace,
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correct, or extend general relativity (GR) in view of account-
ing for the discrepancies in apparent mass and cosmic
acceleration. Nevertheless GR explains a broad range of
phenomena and it works very well to describe the Universe as
a whole, provided dark matter and dark energy exist as
separate entities. According to this fact, any alternative
theory has to reproduce GR results trying to account for
additional effects as those detected at infrared scales [5-9].
Furthermore, the lack of a self-consistent quantum gravity
drives the search for effective theories [10] as alternatives at
ultraviolet scales. These approaches led to a semiclassical
picture where geometry is described by a space-time con-
tinuum and matter-energy side is given by some scalar fields
or geometric corrections [11,12]. However, the picture is
consistent if we are quite far from the Planck scales and
matter energy can be averaged to give classical counterparts.

One of the common features of these effective models
includes invariant terms and scalar fields in the gravita-
tional action [13]. In particular, curvature invariants, con-
structed by Ricci, Riemann, and Weyl tensors, emerge as
soon as renormalization and regularization of quantum
fields on curved spaces are considered [11,12]. As it is well
known, these terms have a cosmological impact and can
trigger inflation at early epochs [14] and dark energy at late
epochs [15].
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The basic idea is that gravity agrees with GR at
certain scales and epochs but may have quite different
behaviors at very short (ultraviolet) and very large (infra-
red) scales. In principle, considering corrections related
only with scalar curvature, one can expect effective actions
like [16]

a  a R R> R
FR)=.+ S5+ +a++_—+—+, (1
(B) RTR TR BB M)

where negative powers work at infrared while positive
powers work at ultraviolet scales [17]. Here «; has
the role of a cosmological constant, and «; and f; are
dimensional couplings. However, this is a phenomenologi-
cal approach giving just a coarse-grained picture. In a
more refined theory, other curvature invariants should be
considered.

According to the previous considerations, issues such as
the trace anomaly or the renormalization at one-loop
level require higher-order curvature invariants which are
mostly related to the recovery of effective gravitational
actions in curved space-time [11,12]. Specifically, these
corrections to the Hilbert-Einstein action are second-order
curvature invariants giving rise to fourth-order field equa-
tions in metric derivatives. Considering a generic theory
containing curvature invariants means to take into account
Lagrangians like F(R,R,,.R,,s) and then improving the
number of degrees of freedom related to the gravitational
field. However, as discussed in detail in [18-20], surface
terms coming from combinations of curvature invariants
can reduce the complexity of these theories.

A specific role is played by the Gauss-Bonnet topologi-
cal term G which is a second-order combination of
curvature invariants defined as

G =R?>— 4R 4R + R,5,,R", (2)
where R is the curvature scalar, Ra/, is the Ricci tensor,

and R is the Riemann tensor. In differential geometry,
it is

afipc

/ Gd'x = y(M), (3)
M

where y(M) is the Euler characteristic of a manifold M in
n dimensions. For n =4, y(M) = 0 so it can be consid-
ered a surface term not affecting dynamics. Furthermore, G
emerges in the trace anomaly as soon as one wants to
regularize and renormalize gravity at one-loop level (see
[12,13] for details). However, for any nonlinear function of
G, this property does not hold and then contributions to the
gravitational action are nontrivial [21].

According to these considerations, a generic function
F(R,G) can contain the whole information related to

fourth-order dynamics. In other words, a two-scalar field
theory with combinations of R and G well represents
gravity with second-order curvature invariants.

This class of models is capable of describing several
phenomena at different scales, such as the current accel-
eration of the Universe at late epochs and double inflation
at early epochs [22,23]. Strong field phenomena, like
extreme neutron star configurations, can be also framed
in the context of Gauss-Bonnet gravity [24]. Moreover, this
kind of theories can satisfy the Solar System tests in the
weak field limit [25].

In general, Gauss-Bonnet gravity can be relevant in
cosmology as shown in [21,26-46].

In this perspective, some important issues can be the
following: being such a theory well motivated at UV and IR
scales, is it possible to select Gauss-Bonnet gravity models
capable of tracing the Universe history at any epoch? In
some sense, is it possible to connect inflation and dark
energy epochs, passing through matter epoch, without
choosing ad hoc models [47,48]?

These questions may find an answer using the cosmo-
graphic approach [49,50] that can be extended also to
higher redshift regimes [51-53] and, in principle, is able to
constrain the value of the Hubble constant and the other
cosmographic parameters. Once these parameters are
determined, they can be used to fix reliable constraints
on theoretical models. This method is especially suited to
the study of higher-order gravity theories [54,55] like the
one we shall study in the next sections.

Obviously, considering higher-order theories with more
than one field, such as F(R, G), involves some mathemati-
cal difficulties in handling field equations and therefore
also in finding analytical expressions for the cosmographic
parameters. The choice of the function F(R, g) is crucial in
this type of approach. Therefore, assuming very general
hypotheses like analyticity and derivability, one is able to
obtain useful relations among cosmographic parameters
and the nth derivatives F (")(R, G) = d"F/d(R"G") for any
choice of the function F(R, G).

The paper is organized as follows. In Sec. II, we
sketch F(R,G) gravity deriving its field equations.
Section III is devoted to Gauss-Bonnet cosmology. In
particular, we derive the Friedman equations that will be
used in the following analysis. In Sec. IV, we discuss how
G-terms are particularly useful in early epochs and,
together with R? corrections, give rise to inflation.
The cosmographic approach is developed in Sec. V
giving all the technical details of the cosmographic
series. Observational data and the methodology adopted
for the analysis are described in Sec. VI. In Sec. VII, the
F(R,G) cosmography is derived together with the obser-
vational constraints on the models. Discussion and con-
clusions are drawn in Sec. VIII. In the Appendix,
calculations adopted for the cosmographic analysis are
reported.
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II. GAUSS-BONNET GRAVITY

Let us start by writing a general action for Gauss-Bonnet
gravity' [22,25,56]

A= %{ / d'x\/=gF (R, ) + Ay, (4)

where k = 8zG, A, is the standard matter action, and
F(R,G) is a function of the Ricci scalar and the Gauss-
Bonnet topological invariant. Variation of the action (4)
with respect to the metric provides the following gravita-
tional field equations:

1 ma GB
Ru =59k = KTy + 17, (5)

7(98)

where T, is defined as

7% = V,V,Fg — g,,0F + 2RV, VY, F
-29,,ROFg—4R,*V,V,F; —4R,*V,V F;
+ 4R”D|:|Fg + 4gMDR“ﬁVaVﬁFg

1
+4R V“VﬂFg—Egﬂy(RFR—l-gFg—F)

popy
1
+(1 _FR) (R[ll/_igﬂuR>7 (6)

involving all extra terms with respect to GR. As shown in
[57], T'9%) can be recast as a perfect fluid of geometric
origin.

The trace equation is

—2F 4 FgR + 3V2Fg + 2F 4G + 2RV2F
— 4R, VPV Fg = 2T, (7)

and derivatives are denoted as

_OF(R.G)

OF(R,G
Fr=—"3r"" =9

g

GR is recovered as soon as F(R,G) — R. If G is not taken
into account, we recover immediately F(R) gravity. In this
sense, Gauss-Bonnet cosmology is a straightforward two-
field extension of F(R) gravity.

Fg : (8)

III. GAUSS-BONNET COSMOLOGY

Starting from the above theory, it is possible to derive the
related cosmology. We consider a spatially flat Friedman-
Robertson-Walker (FRW) metric like

ds* = —di? + a*(1)(dx® + dy* + dz?), )

'"We are using physical units.

where a(t) is the scale factor of the Universe. In this
background, the cosmological equations [for details see
Egs. (A3) and (A4)], without standard matter, can be
written in a simplified way as [23,56]

H=VY[HFy - Fg+4HFg—4H*Fg],  (10)
2 ¥ I
H* =< [FpR ~ F(R,G) = 6HFg + GFgl.  (11)

where we have defined

1
2Fg +8HFg

P (12)

Furthermore, two Lagrange multipliers, defining R and G as
functions of a and its derivative a and d, have to be
considered to complete the dynamical system. See (A5)
reported in the Appendix.

This system of equations will be the starting point to
develop our considerations at the early epoch. As said above,
our aim is to track back the cosmic history investigating the
curvature regimes related to F(R, G) gravity. As we shall see,
combining information coming from the behavior of G and R
functions can, in principle, give a self-consistent picture of
cosmic evolution at any epoch.

IV. EARLY EPOCH COSMOLOGY

A first consideration is related to the fact that, as pointed
out by Starobinsky [14], adding higher-order curvature
invariants in the effective action gives rise to inflationary
episodes that naturally emerge without introducing ad hoc
inflaton fields. In other words, improving geometry by
curvature invariants gives the possibility to obtain accel-
erated expansions.

In the present case, the Ricci and Gauss-Bonnet invar-
iants play the role of scalar fields, whose dynamics is
determined by a Klein-Gordon-like equation coming from
the trace equation (7). In fact, such an equation can be
recast as [22]

according to (8) and the definition

ov 1
VR—a—R_g[RFR—ZF(R,g)],

_ow_,9
Wo=g=2gFe (14)

Here [ is the d’Alembert operator in curved space-time.
Clearly, as demonstrated in [22], the dominance of one of the
two terms in square brackets determines the evolution
related to R or G. Consequently, we expect a double inflation
in which both geometric fields play a role at different scales.
In other words, we can have an R-dominated inflation and a
further G-dominated inflation working at different scales.
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However, before starting our discussion, the possible
presence of ghosts is an issue to be considered in the
framework of Gauss-Bonnet gravity. It is well known that,
in general, higher-order theories of gravity are not ghost-
free so that viable ranges of parameters have to be selected
in order to obtain self-consistent models. This is particu-
larly relevant in cosmology to obtain reliable cosmic
histories to be matched with data. Specifically, higher-
derivative gravity contains ghosts due to the Ostrogradsky
instability [58,59].

These ghost terms may occur at fundamental and
cosmological level for F(R,G) gravity and can be para-
metrized by superluminal modes k* where k is the wave
number of the specific mode. The reason why one gets k* is
due to the fact that R evolves as #~2 and G as £,

To obtain viable models, procedures to eliminate ghosts
have been developed. In [60], a method based on the
introduction of an auxiliary scalar field y = y(G) into
the F(R,G) action is proposed. Such a field quantifies
the propagation of scalar modes. Then, in order to make the
scalar mode not a ghost, a canonical kinetic term of y can be
introduced in the F(R, G) action. See also [61]. According
to this procedure, it is possible to obtain second-order field
equations (and then eliminate higher than second-order
derivatives) and impose suitable initial conditions deter-
mining a regular and unique evolution without ghost fields.
In particular, the new dynamical degree of freedom can be
eliminated adopting a “mimetic gravity” procedure by
introducing a Lagrange multiplier [62—65]. Such a multi-
plier gives a natural mass constraint by which the kinetic
term becomes a constant. This constraint determines the
range of parameters where the model is ghost-free. Clearly,
being the Gauss-Bonnet terms of fourth order, the mass
parameter has to be u*. See [60] for details.

With the above considerations in mind, we can take into
account the simplest natural extension of the Starobinsky
model [14] adding a nontrivial Gauss-Bonnet contribution,
that is [22],

F(R,G) = R + aR? + pG*, (15)

where a and f are coupling constants with dimensions #?
and 4, respectively. This choice means that the Gauss-
Bonnet invariant gives a further scale where curvature can
play a relevant role. In a scenario where the Universe is
homogeneous and isotropic, it is G? ~ R* and this allows us
to rewrite the above function as

F(R) ~ R+ aR* + R, (16)

which is an improved F(R) model with respect to the
quadratic Starobinsky one. Obviously, considering anisot-
ropies and inhomogeneities, G # R* due to the fact that we
cannot neglect the extra diagonal components of the Ricci
and Riemann tensors.

In general, an inflationary behavior is achieved if the
following conditions on the Hubble parameter and its
derivatives are satisfied:

H
H2

‘ H
<1, —
HH

< L (17)

From the energy condition, given by Eq. (11), we have
12aHH + H? + 36aH*H + 288H*H>

+ 1928H5H + 576HCH — 96pH® — 6aH*> = 0, (18)
and from (10), we obtain
576H*H> + T168H>H H +pH* (1728 H* 4+ 96H)

+ 288fH5 H — 384H°H?

+ 18aHH + 24aH* + 6aH + H = 0. (19)

Imposing that H is slowly varying, which means H < H>
and H < HH, Eq. (18) takes the form

H? + 6a(2HH + 6H*H — H?)
+ 96pH*(3H? + 2HH + 6H?H — H*) = 0.  (20)

To study the evolution of the model, we need to find
approximate solutions of Eq. (20) in different regimes. Let
us suppose that

6a > 96H*. (21)
Then Eq. (20) becomes
H? 4 6a(2HH + 6H*H — H*) = 0 (22)

obtaining the well-known Starobinsky scalaron mass [14,66]

= o 23)
and the scale factor
a(t) ~exp [L} . (24)
V6a
Considering now the regime
96pH* > 6a, (25)

we have
H? +96pH*(3H* + 2HH + 6H*H — H*) 0.  (26)

From the above relation, we get an additional mass term due
to the presence of higher-order correction [22]
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1
P — 27
mg 2 3/12,6 ( )
with the scale factor
t
a(t) ~exp {W] . (28)

This result shows that we have two inflationary regimes.
In general, the two epochs are determined by the two terms
in Eq. (13) and potentials (14) that are valid for any
F(R,G) model.

We can conclude that considering the entire budget of
curvature in the effective action, two effective masses,
leading dynamics, are naturally introduced. These corre-
spond to two different regimes ruling large scale and very
large-scale structures. A part the above toy model, any
F(R,R,,,R,,,3) can be recast as F(R,G) thanks to the
constraint (2). This means that F(R,G) models are good
candidates to figure out the cosmic evolution at early
epochs.

However, we discussed only a toy model that could
become paradigmatic for tracing any cosmic history con-
sidering the evolution of curvature contributions. Clearly
the more the model is independent from the fine-tuning of
parameters, the more its naturalness is recovered. In the
present model, the coupling constants @ and f in Eq. (15)
should be O(1) in natural units where Mp o = 1. In this
regard, one of the main drawbacks of the Starobinsky
model is that it requires the unnatural hierarchy a > f to
give rise to a satisfactory inflationary behavior. In our case,
we have a similar fine-tuning issue so that both a and f
have to be adjusted as reported above. The problem can be
partially alleviated considering that the double-inflationary
regime allows us to clearly distinguish between the
R2-driven phase with respect to the R* ~ G?-driven phase.
In other words, when the energy scales are very different,
the required fine-tuning is less severe.

V. THE COSMOGRAPHIC APPROACH

The above considerations can be extended towards late
cosmic epochs adopting cosmography, which is a model
independent approach to constrain cosmological evolution
by observational data. It relies on the hypothesis of large-
scale homogeneity and isotropy, and combines kinematic
parameters via the Taylor expansion of the scale factor.
The starting point is the definition of the cosmographic
parameters [50]:

1da
H(t) =——, 29
()= (29)
1d%a [1da)~2
q(1) = T [EE} , (30)

_1d’a[lda]?

() =-2 -5 31

i) adr |adt| S
ld*a [1da]~*

$O=gar laar) (32)
l1da [1da)->

() =-221-%

(1) adf |adt| (33)

where, as above, H(t) is the Hubble parameter, ¢(¢) is the
deceleration parameter which accounts for the decelerating
or accelerating expansion of the Universe, and j(¢) and s(7)
are the jerk and snap parameters, respectively. The latter
may serve as a geometrical diagnostic of dark energy
models [67,68]. Finally, /(7) is the lerk parameter also
related to higher-order corrections of the cosmic expansion.
It is then useful to relate the Hubble parameter derivative
with respect to the cosmic time to the other cosmographic
parameters, that is,

H=-H*(1+q). (34)
H=H(j+3q+2), (35)
H=H*'s—4j-3q(q+4) -6, (36)

HY = HB[1-55+10(q+2)j+30(q+2)q+24], (37)

Using these definitions, it is straightforward to rewrite
the Hubble parameter in terms of the cosmographic ones
by expanding it in Taylor series and evaluating cosmo-
graphic parameters at the present epoch, that is, at redshift
z~0 [69-71]:

1 &*H

1d’H 5 id3H
21 d7?

3
2z - Tt
=0 31 d7?

z=0

H(z)=H —
(z) o+ e

zZ+
z=0

1 :
—Ho |1+ (1 @)z 3-8 + o)

1 . .
+ 3 (3g% +3a3 —4q0jo —3jo — 0)2°

1
+ﬁ(—12q% — 2443 — 15q3 +32q0jo + 2543 jo

+7q080 + 12jo = 4j5+8s0 +lo)z* |+ (38)
Starting from the Hubble parameter, it is possible to

express the luminosity distance as a redshift polynomial in
terms of cosmographic quantities as [51,70-74]

dp(z) = cHy' (2 + Dp12* + Doz’ + Dzt + Dpadd).
(39)
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where the D, ; quantities are defined as follows:

1
Dy, = 5(1 - qp). (40)
1 o
Dy > :_6(1 —qo — 345 + Jjo) (41)
1 . .
Drs=5;(2-24 - 15g3 — 15¢3 + 5jo + 10g0jo + s0).
(42)
Dyy= 120( 6 + 64y + 81¢3 + 165¢3 + 1054
+ 103 — 27jo — 110gqjo — 1053 jo — 15g0so
— llso — lp), (43)

whereas, the angular diameter distance can be recast as

ds(z) = cHy' (2 + Da 2% + Danz® + Dzt + Dyu?’),

(44)
defining
1
Dy, = —5(3 +q9), (45)
1 , .
Dyo :6(11 +7q0 + 3495 — Jjo) (46)
1
Dys = —ﬁ(50+46q0 + 3942 + 15¢3 — 13j
—10qjo — So)v (47)
Dyy = 0 (274 + 326q + 411¢3 + 3154}
+ 105¢¢ — 210400 — 10543 jo — 15¢0s0
+ —137jy + 102 = 2159 — 1). (48)

Cosmological observables may be used to obtain con-
straints on the cosmographic parameters by comparing the
theoretical predictions with data [75].

A. The y-redshift cosmography

Although cosmography has been successfully used to
constrain the evolution of the late Universe, it is worth
noticing that, at high redshift, i.e., z > 1, the Taylor
expansion does not converge. Therefore cosmography, as
introduced above, can be consistently applied only to low
redshift datasets. Nevertheless, in the last decade, a lot of
high redshift observations with unprecedented accuracy
have been acquired. To be able to use such datasets, one has
to solve the convergence problem. The latter may be

overcome reparametrizing the Taylor expansion using
the expansion in y redshift [51], that is

z
14z

y= (49)

ory = 1 — a(t). By definition, the new parameter spans the
range [0, 1], which corresponds to a redshift range [0, oo,
allowing us to perform high redshift cosmography.

In the y-redshift parametrization, the Hubble function
can be rewritten as

1.
H(y)=Hy |1+ (qo+ 1)y+§(]0—q02+2q0+2)y2

1, . .
— 5 (4jodo=3jo = 3q0° +3q0> =640+ 59 —6)y*

1 . 2 . 2 . . 4
+ﬂ(—4J0 +25j0q0” — 16joq0 +12jo + 1y — 15q,
+12q0° —12qo* +7q¢so + 24, — 4so +24)y*

(50)

While luminosity distance can be recast as

d(y) = cHy' (y + D} 1y* + D} ,y* + Dy 53* + D} 1)),

(51)
with

Dh*l(?’—%)

172

D}, = £ (11 ~540+ 343 — o)

1 ) )
Dj;= 7250 2640 + 21q3 — 15¢3 — 7jo + 10q4jo + 50)

: 1
Dyy= 50 —— (274 — 154q, + 141g3 — 135¢3 + 1054
+ 10,3 — 47 jo + 9000 — 1053 jo — 15q0s0
+ 950 = lo). (52)

Finally, the angular diameter distance is rewritten as

dy(z) = cHy'(z + D} 2% + D)2 + Dy 52t + D) 420,

(53)
where we have defined
. 1
D}, = —5(1+a). (54)
L, .
Di2 =5 (=jo+a0(3q0 = 2) = 10), (55)
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o
Dys= 54 [jo(10g0 = 7) + q0(3¢o(7 — 54q¢) + 10)
+ 50 — 58], (56)
D)y a = 54 [10j0” + jo(35(4 = 390)q0 — 22) = Iy

120
+ q0(390(35(q9 — 2)qo + 22) — 1553 + 196)
+ 1450 — 316). (57)

In the following sections, we will use the y-redshift
cosmography to obtain constraints on cosmographic
parameters, and on generic analytic F(R,G) models.

VI. OBSERVATIONAL DATA
AND METHODOLOGY

In order to constrain the cosmographic parameters, we
use measurements of luminosity distances coming from
supernovae type la (SNela) and gamma ray bursts (GRBs),
of H(z), and of baryonic acoustic oscillation (BAO). This
will allow us to set up a large sample of data and then
consistently constrain the model.

A. Luminosity distance

We employ a catalogue of 557 SNela in the redshift
range z = [0, 1.4] (UnionlI catalogue [76]), and a list of 109
GRBs given in [77] (the catalogue was compiled using the
Amati relation [78-80]), of which 50 GRBs at z < 1.4 and
59 GRBs distributed in the range of redshift [0.1, 8.1]. The
observable is the distance modulus g, and its theoretical
counterpart is given by

Hm(z) = Slogg dy (z) + Hos (58)

where d, (z) = d, (z)/(cHg") and py = 42.38 — 5logyq h,
with & = H,/100. It worth noticing that the above equation
holds for both cosmographic parametrizations discussed
above. Finally, > can be computed as

—2log L(p) = x7(P)
_ i(ﬂth Zis p) ;’tobi( ))2’ (59)

where k = [SN, GRB], N, = [557;109] for SNela and
GRBs, respectively. Here, 0,(z) is the error on pip(z).
Nevertheless, as is well known, the parameter y, encodes
H, and it must be marginalized over. Therefore, the y?
function can be defined as [81-84]

PR =i-~, (60)

where

Hen (23 s o = 0)
Z( M(Zi)

1

_Mobs(zi)>2, (61)

No'
B= imh(zi, P, #o = 0) — Haps (1)

aﬁ(zi) ’ (62)

(63)

B. Expansion rate

An additional dataset is composed by 30 uncorrelated
measurements of the expansion rate, H(z), [85-92]. Thus,

following the prescription in [93], the corresponding y* can
be defined as

—2log Ly(p) :)(12{(1))

_Z< (zi.P) leobs( ))2’ (64)

where oy(z) is the error on H g, (2).

C. Baryonic acoustic oscillations

Finally, another additional dataset we are going to use is
given by the data from the 6dFGS [94], the SDSS DR7
[95], and the BOSS DR11 [96-98], which are also reported
in Table I of [93]. As usual, we define the BAOs observable
as 2= r,/Dy(z), where r; is the sound horizon at the
drag epoch and Dy the spherically averaged distance
measure [99]

Dy(2) = {(1 T (2) 2

1/3 65
H(zj - )

For the sake of simplicity, since we are adopting a model
independent approach, we will set r;, = 144.57 Mpc [100].
Finally, the y can be straightforwardly computed as

= Ia0(P) 26: ( Bs z;)"]”( ))2,

i=

—2log Lyao(p)

(66)
where o=(z) is the error on E(z).

D. The Monte Carlo Markov chain

The theoretical counterparts are predicted using
Egs. (50), (51), and (53), and fit to the aforementioned
datasets in order to compute the log-likelihood, —21log £ =
2*(p) where p = [Hy, g9, jo» So» o] are the parameters of
the model.
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TABLE I. Parameter space explored by the MCMC algorithm.
The first column lists the parameters, the second column lists the
prior used in our MCMC pipeline, and, finally, the third column
lists the best fit values.

Parameter Priors Best Fit

H, (50, 100] 69.847 08
o [-1.1] —0.16:00
Jo [-20,20] -13.25108
So [—200, 200] —138.471135¢
Iy [-200, 200] 36.4111864

We explore the parameter space with a Monte Carlo
Markov chain (MCMC) employing a Metropolis-Hastings
[101,102] sampling algorithm. The step size is adapted to
guarantee an acceptance rate between 20% and 50%
[103,104], and the convergence is ensured by the
Gelman-Rubin criteria [105]. Finally, the different chains
are merged to constrain the model parameters. Our priors
are listed in Table I.

o
o

0.5}

Probability

0.2

9o

I I
o b
PN
T T

Once our MCMC reaches the convergence, we join
together all likelihoods related to different datasets, £(p) =
I1,£; where i indicates the given dataset, to obtain the 2D
joint contours represented in Fig. 1, and the best fit
parameters summarized in Table I. On the one side, our
purpose is not just related to find the best fit cosmographic
parameters; thus, we only show the joint contours at 68%
and 95% of confidence levels, and then report the corre-
sponding best fit parameters, without analyzing the con-
straining power of each dataset. On the other side, having
the posterior distribution of the cosmographic parameters, it
will allow us to predict, adopting a Monte Carlo sampling
of those distributions, the corresponding values of the
theoretical parameters of the F(R, G) gravity models, once
we relate them to the cosmographic ones. Hence, in the
next sections we will introduce the F(R,G) cosmography.

VIL F(R.G) COSMOGRAPHY

Assuming again a flat FRW metric, we will compute
the equations to describe the cosmological evolution in
terms of cosmographic parameters. Here, to make the text

48.81
-~ 26.5¢

67.8 698 71.9 -0.3 -0.2 -0.1
Ho 9o

FIG. 1.

-145 -12.7 -10.9

-159.8-130.2-100.5 -3.3 41.0 85.3
Jo So lo

Two dimensional joint contours of the cosmographic parameters obtained using SNela + BAO + H(z) + GRB.
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readable, we summarize the whole procedure and report
only the final equations needed to translate the constraints
from the cosmographic to the theoretical parameters of
F(R,G) models. For details in calculations, we refer the
reader to the Appendix.

Starting from Egs. (Al) and (A2), we assume that
F(R,G) is expandable in the Taylor series, that is,

1
F(R,G) ~ F(Ry,Gy) + Fg(Ry, Go)G + iFgg(Ro, Go)G*

+R (FR(RO, Go) + Frg(Ro. Go)G

1
+5 Frgg(Ro, go)gz>

Frr(Ry. 1
+R2 <M+§FRRQ(R07 gO)g

1
+ZFRRQ(J(ROv go)g2>- (67)
Supposing that the models may be well approximated
by the second-order Taylor expansion in (R —R,) and
(G —Gy), one can evaluate the main equations describing
the cosmological evolution, that is, (A3) and (A4) at the
present day, using the definition of the Ricci and Gauss-
Bonnet scalars in term of the cosmographic parameters. To
this end, we need to consider the time derivative of (A4)
and time derivatives of R and G. The result is the system of
equations in (A6)—-(A16). Then, we have to solve the
system of equations with respect to the present day values
of F(R,G) and its derivatives up to the second order of the
expansion. A reasonable approximation is to neglect all
terms beyond R? in the Taylor expansion, which means we
set the following conditions:

Fgg(Ro. Go) = Frg(Ro.Go) = Frgg(Ro.Go) =0, (68)
and

Frrg(Ro. Go) = Frrgg(Ro. Go) = 0. (69)

Finally, since we want to recover GR at lower order, we
set the prior:

Fr(Ry,Gp) = 1. (70)

In such a way, one obtains

F(R(]v gO) _ Pl (qO’ j()’ 50, lO) + P2(q03j0’ S05 lO’ QM)

H% R(QO?.].O’SO’IO) '
(71)

FRR(R()v go) _ 733(610’10’ 505 lo) + 7)4(510»]'0» 505 lo»QM)
(6HG)™! R(q0- jo» 50: Lo)

’

(72)

Frgg(Ro, Go) _ Ps(q0s Jo 50- o) + Pe(qo» Jos So» lo» Qur)
(48H{)™! R(q0- jo- 50- lo)

(73)

where we have defined the auxiliary functions:
P1(qos jos S0s 10)s P2(qos jos Sos Lo Q)5 P3(qo, Jos S0+ 1),
P4(q0:Jo-50510-2m)> P5(q0.JoS0.10)s Pe(qosJo>50:10-Rm)
and R(qq, jo» S0, ly), which are reported in the Appendix;
see Eqs. (A28)-(A34).

Assumptions in Egs. (68)—(70) are made in order to
(i) analyze the F(R,G) model without any terms contrib-
uting as a cosmological constant; thus, we force the zero
order of the Taylor expansion to be zero and (ii) have only
the Ricci scalar as first term of the Taylor expansion to
recover the GR. In such a way we are focusing on the
contributions given by higher-order terms in R and G to the
cosmological evolution and, also, we are avoiding to
consider extra equations in our systems which would lead
to the introduction of extra cosmographic parameters that
would decrease the constraining power of the dataset.

Equations (71)—(73) allow us to use constraints on the
cosmographic parameters, given in Table I, to bound the
derivatives of the Taylor expansion of the F(R,G) model.
Thus, we carried out 1000 Monte Carlo simulations
randomly choosing the values of the cosmographic param-
eters from their posterior distribution, and deriving the 2D
contours and their best values. Final results are summarized
in Table II, and in Fig. 2.

Results deserve some comments. As it is possible to see
from the bounded values, higher-order Gauss-Bonnet terms
do not affect the late-time cosmological evolution. It is fully
driven by the R’>-term of the Taylor expansion. In other
words, the F(R,G) theory reduces to F(R) models when
late time evolution is considered.

This output is rather expected because the Gauss-Bonnet
invariant, scaling as quadratic gravity, works very well in
high curvature regimes as those of primordial epochs. As
shown above, a term like G* scales as R* and then it is
effective at very high energies naturally producing infla-
tionary behaviors. Clearly, it must be negligible at late time.

Furthermore, bounds on the second derivative with
respect to the Ricci scalar are consistent with constraints
obtained in F(R) gravity as shown, for example, in
[54,106]. This may be considered as a self-consistent test
for the procedure. In a different perspective, it seems that

TABLE II. Best fit parameters of the F(R,G) model corre-
sponding to the one dimensional posterior distribution in Fig. 2.
Parameter Best Fit
Foo(10%) 31737538
Fre(107) -0.957 0%

Frg(107') 1.97704]
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1.0 T TT T

Probability
© © ©
N (&) (o4}
T T T
1 1 1

o
o

-0.9

Fre (107)
|
T
1
T

T T

2.31 1r

Fre (107")

L L L L

29.2 32.1 35.0 -1.3
Foo (107)

Fee (107)

—1.1 -0.9 1.82 2.25 2.68
Fre (1077)

FIG. 2. Two dimensional joint contours of the F(R, G) model’s parameters corresponding to a Monte Carlo sampling of the posterior

distribution in Fig. 1.

cosmological evolution is efficiently described by two
fields at early epoch while one field is sufficient to describe
late epochs. In other words, the Klein-Gordon dynamics,
given by (13), turns on or turns off the scalar fields (related
to R and §) according to the scale.

VIII. DISCUSSION AND CONCLUSIONS

One of the main goals of modern cosmology is to construct
self-consistent models capable of tracking cosmic history
from early to late epochs. According to this program,
inflation, dark energy, and dark matter issues have to be
considered in order to describe evolution at any era.

As, up to now, the dark side is so elusive because no final
matter candidates have been detected at the fundamental
level, improving the geometric sector seems a reliable
approach. Adding further curvature and torsion invariants is
a paradigm supported by effective gravitational theories
formulated in curved space-time: these terms emerge in the
action as soon as one faces the problem to regularize
and renormalize the theory. Specifically, terms containing

R?, R,,R", and R,,,sR"*, eventually constrained by the
Gauss-Bonnet invariant G, have to be considered in any
approach aimed at obtaining a theory of gravity renormal-
ized at one-loop level [12].

In this perspective, any cosmological model that wants to
take advantage from these extended theories with respect to
GR has to consider such invariants.

Models like F(R,G), in principle, take into account
second-order curvature invariants that give rise to fourth-
order field equations by varying with respect to the metric.
Considering G as a constraint for the other terms means that
such an action is capable of representing all the effective
degrees of freedom related to second-order curvature
invariants and, furthermore, one is dealing with an effective
theory with two-scalar fields.

In this paper, we discussed F(R, G) models at early and
late time epochs, which means at ultraviolet and infrared
regimes.

The main result at early epochs is that a double inflation,
depending on G and R, can be naturally achieved. This
feature is very important to produce large and very large
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structures and to give a gateway mechanism to regularize
the inflation (see for example [107]).

A cosmographic approach has been adopted at late epochs
for redshift z — 0. Without choosing specific F(R,G)
models, we investigated if GR extensions, due to R and G,
affectdynamics at recent time. Among the priors, we imposed
that GR has to be recovered and cosmographic parameters, in
the observed ranges, are restored. In the approximation, we
excluded adding further cosmographic parameters due to the
order of approximation. The result is that F(R) corrections
have to be included while G and its functions are negligible at
late time. The interpretation of this fact is quite straightfor-
ward: the dark energy regime can be restored just considering
an effective field [i.e., the field related to F(R)] and two-scalar
fields are not necessary at late epochs.

This result is coherent with the following fact. It is well
known that terms like G can give rise to phantom solutions
in the limit # — oco. In this case, the de Sitter phase is
asymptotically unstable as reported in literature (see
[26-46] and references therein). In the present study,
however, this problem is overcome because terms like
G? dominate at t — 0, leading the first inflationary phase
while they decay at late epochs: here R-terms are domi-
nating and then the de Sitter solution results are stable and
phantom-free. From an observational viewpoint, this state-
ment is supported by the above contour plots based on the
reported datasets: cosmographic results exclude the con-
tributions of G-terms into late time dynamics and, as a
consequence, phantom instability is also excluded from the
ranges of parameters. In other words, the best fit values in
Table I for the cosmographic parameters and in Table II for
F(R,G) parameters exclude phantom behaviors.

Clearly, what we discussed here is a coarse-grained
approach that deserves further investigation and more
refined studies. This will be the topic of a next paper.
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APPENDIX: DETAILED CALCULATIONS
FOR F(R,G) COSMOGRAPHY

In the FRW background in Eq. (9) with a perfect fluid
equation of state for ordinary matter, the field equations for
F(R,G) gravity are given by

da — a? K, (m w o Llfa\; .
( P )FR:_E(P( )4 pl >+§|:<;>FR_FR

a\3. a\ [daa —a*\ .
4(4) Fg—8(¢ P
#a(g) Fo-s() (M50

of2)'R] a1
Fg (—) T gp('") +— [RFR —F(R,G)—6 (5) Fr
+GFg—24 <g) 3Fg] , (A2)

where p(") and p(™ are the energy density and pressure of
ordinary matter, respectively, and the overdot denotes a
derivative with respect to the time coordinate, .

Assuming that p") = 3H3Q,,a=3(¢) and p™ = 0, and
expanding the time derivatives, the above equations (A1)
and (A2) become

1 . . . .
FRrH? = c (—6H(4H?*(GF g + RFrg) + GFrg + RF k)
Hy’kQ,,
+GFg+RFy—F) + °a3 , (A3)

2FRH =—GFpg+H(G(Frg—8HF gg)+ R(Frg—8HFpg))

+4H?(GF g5+ RF gg)
+G*Fggg+ RF g+ R* Fpg)
; : 3H%KQ
—RFpp—R*Fgpe —ﬁ. (A4)
a

For the sake of simplicity, we have used the following
abbreviations: F = F(R,G), F, = F (R, G) where x can be
the Ricci or the Gauss-Bonnet scalar, as well as any
combination of them indicating derivatives with respect
to these variables and, finally, we have also defined
a=a(t), H=H(t), R = R(t), and G(¢) = G. To complete
the dynamical system, we have to consider constraints
coming from the definitions of R and G, that is,

.. . ...2
R:6F+(9ﬂ, and g:24<%>.
a a a

These last equations are Lagrange multipliers that constrain
dynamics. See [56] for details. In order to get a close
system of equations useful for cosmographic analysis, let
us differentiate Eq. (A4) with respect to . We obtain

(AS)
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2F%H = AH((FgggF g — FggFrg)G” — R(Fhg — 2FxFrgg + FogFrr)G + GF ggF &
+ Frg(RFg = R*Fgg) + R*FgF reg) + 4H2[(FgggF rg — FggggF )G’
+ R(2FgF rgg — 3FxFrago + FogoFrr)G" + (2F pggFrrR* + FrgF rrgR® — 3F g F prgoR>
+ RF%; + 3HF ggF g + G(FggF g — 3F gggF r) — 3RF pFg)G — G® FggF g
+3HRFpFpg— RO FpFrg—3RG FrFrgg + RGFggFrg + RR FrgFrr — 3R R FrF ppg
+ R F g Frrg — R FrF rprg) + [(FroFrog — FrFrooo)G + RG (FrogFre + 2F rgF reg
— 3FgFrrog) + (—8FggFRH* + FRFpgH + G(Fg — 3FgFrgg) + RF pgF g — 3RF R F geg
+ 2R F g Freg + R2F pgF rpr — 3R°FF preg)G + R R Fyg — 8H*RF g Fpg — G FpF g
+ HRFpFgp — ROFgFgg + RG FrgFpg — 3R G FpFrpg — 3R R FyFpeg + R F e Frer

— RPFgFperr] + H{[G(SHFQQ — Frg) + R(8HF g — Frp)|(GF rg + RF )
+ Fp {(FRQQQZ + (2RFprg — 8HFg3)G + (G — 8R H)Fpg + RF gy
) . ) . ) . . 9HZkQ,,
~ 16H (F 636G + 2RF pggG + GF gg + RF g + R*Frpg) + R*Frpg) + 00—3} }
" 3HZKQ,,

e (gFRQ + RF gg). (A6)

In addition to the previous equations, we may define the Ricci and Gauss-Bonnet scalars and their derivatives with
respect to the cosmic time ¢ as a function of the Hubble parameter H and its derivatives. Thus, we have

R =6(2H% + H), (A7)
R=6(H+4HH), (A8)
R=6(H® +4HH + 4H"), (A9)
R®) = 6(HY +4HH® + 12H H), (A10)
and
G =24H*(H* + H), (A11)
G = 48HH(H + H?) + 24H*(H + 2HH), (A12)
G =48H*(H + H?) + 48H(H + H*)H + 96HH(H + 2HH) + 24H*(H®) + 2HH + 2H?), (A13)

G = 48HOG)H(H + H?) + 144HH (H + 2HH) + 144H (H + H*)H + 144H*(H + 2HH)
+ 144HH(H® +2HH + 2H%) + 24H*(H® + 2HH® + 6H H), (A14)

Let us now suppose that the F(R,G) Lagrangian may be well approximated by its second-order Taylor expansion in
(R—=Ry) and (G —G,). We set

1 1
F(R,G) = F(Ry,Gy) + Fg(Ro, G0)G + 5 Fgg(Ro. Go)G* + R <FR(RO’ Go) + Frg(Ro, Go)G + EFRQQ(RO’ go)g2>

2
Frr(R 1 1
+R? <M + EFRRG(RO’ Go)G + ZFRRQQ(RO’ go)g2) :
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We can make further assumptions to reduce the complexity of the problem. We want our model to be an extension of GR
then we retain corrections related to the Gauss-Bonnet invariant up to R®. The reason for this choice is to simplify the
problem in view of obtaining analytic solutions, and to avoid the introduction of new cosmographic parameters beyond the
parameter /, which would be needed if higher-order corrections to GR are taken into account. All those assumptions can be
translated in the following bounds:

Fgg(Ro.Go) = Frg(Ro. Go) = Frgg(Ro. Go) = Frrg(Ro.90) = Frrgg(Ro.Go) = 0, (A15)

Fr(Ry,Gy) = 1. (A16)

Inserting Egs. (A7)-(A16) in Eqgs. (A3)—(A6), one gets

HykQ,, : .
OT — (2F g + 12H(FpgG + FrgR) + 12H2(FgG + FggR + 1)

(12D)"! {

— R(2F ggG + FggR) + 48F ygH’R) | = 0, (A17)

2
gk, kg’”) =0, (A1)

H - (2D)™! (H(R(FRR — 8FpgH') 4 FgG) — FrgG — 4F pgH?R + 4F ggHR — FpRR — S

H - (2D?)™! { [Frg®G G +Fpg(D(H' (G — 8H'R) — G®)) + FppG R

+ FrpGR) + Frp(H'R = R®)D + Fg?R R] + 4F ggH*(R(F g§
+ FpgR) + 3H'RD — ROD) + 4F ggH* (RD — R(FpgG + FggR))

+ H(D((R(Fgg — 16FggH') + FpgG — 8F pgH"R) + 9H?kQ,,)

. . . . 3H,’kQ,, . .
(P + P (~R(Fe = $FoH) = Fag) + 0 gl Pl | =0, (A19)

where we have defined
D = FggG + FrgR + 1. (A20)

The next step is to evaluate Eqs. (34)—(37) at redshift zero, and to use them in the previous equations (also evaluated at
redshift zero) in order to find a relation between the derivatives of the F(R, G) model and the cosmographic parameters.
Thus, Egs. (A17)-(A20), evaluated at z = 0, are

Foo + 6Ho*(24F pgHo* (2jo + qo(qo +2) = 2) + 3FrpHo*(2jo — go(q0 +2) = 3) = kQ,, + 1)

=0, A21
oK (A21)
Hy? 4(_s 2
3K [48F rgH* (—jo(4q0 +5) — (qo + 6)q5 + g0 + 50 + 6)
+ 6F grHo* (—jo + 3q0(qo + 3) + 59 +6) + 3kQ,, — 2¢ — 2] = 0, (A22)
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H,’

22
— 6F ppH* (24F rgHo* (1973 — jo (123 + 5643 — 13q0 + 3s0) — 3loqo + 21y — 38G8 — 2943 + 10¢3s0 + 11243 + 5gs¢

120 — 1255 — 48) — jo (3K, + 5qo -+ 3) + 12kqo @y — 3kQ + lo — 322 — 550 — 250 — 24) — 24F pgH,* (82
+j0(—3ka + 14(](2) + 78q, +40) + 2(q%(22 - 3ka) + 1o+ 17q(3) — 2q0(3s0 + 20) — 4(2s0 + 9)))
—36F rp*Ho* (j§ +jo(245 — 840 — 50 — 15) = logo + Lo +3(9¢3 + 1445 + qo(so — 1) —4)) — 2jo + 9%kQ,, — 699 — 4] =0,

[—1152F rg*H® (55 + jo(2q5 — 11q5 = 5q0 = S0 = 6) + qo(—lo + 245 — 445 + 4050 + 2640 + 550 + 18))

(A23)
where we have defined
IC = 24FRQHO4QO + 6FRRH02<q() - 1) - 1 (A24)
The final step is to solve the previous equations with respect to the derivatives of F(R,G) to get
F(Ry, G) _ P1(q0s Jo S0, o) + P2(qo, Jos So- Lo, Q1) (A25)
H(2) R(q0- Jo- So- lo) '
FRR(R07 gO) _ P3<q0’j0’ 50, lO) + P4(Q0»j0, 50, lO’ QM) (A26)
(6H3)™! R(q0- jo- So- lo) 7
Frgg(Ro.90) _ Ps(4o. Jo- S0- lo) + Ps(o- jo- 0. Lo- ) (A27)
(48HG)™! R(q0- Jo- S0+ L) 7

where we have defined

P1(qo. jo- s0-1o) = =3(8j3 — 24j3q3 — 943 a3 — 643q0 — 8350 — 1473 — 8jolo(q0 + 1) + 12j0q — 4joqs + 16j0qs
+ 14jog3so + 134j0g3 — 28j0q0s0 + 96j0d0 — 22050 + 6jo + 2Loq3 — 6log3 — 6logo + 21 + 2445 + 643
— 12g3s0 — 72q3 — 34q3s0 — 12q3 + 4q3s0 + 1443 + 124053 + 98¢y so + 150g, + 1253 + 605, + 48),
(A28)
Pa(qos jos S0» los Qur) = 3Q,,k(16]3 + 56j3q0 + 87350 — 1273 + 8jolo(qo + 1) + 11jogd + 28j0qp + 14jog3so + 63,0q3
+48j0q050 — 57joq0 + 12joso — 24j0 + 2Loqd + 1210q3 + 4loqo — 31 + 643 — 3344 + 8¢ so
—162q; — 44q3so — 276q3 — 12qos3 — 114qyso — 138q, — 1253 — 4550 — 18,) (A29)
P3(qo- jo- S0 lo) = 2§ — 12j0q3 — 56j0a3 — 72joq0 — 2joso — 30jo — 2loqo — 21 — 2447 — 3043 + 12g3so + 6043
+ 22qyso + 114qy + 1254 + 48, (A30)
P4(qosjos 50sLos L) = k(123 4 21 joq3 + 81joqo + 12jo + 31y + 3643 + 645 — 18qosg — 114gy — 1559 —54),  (A31)
PS(QO,jo, 50> lo) = 24 — 6]0 - 2](2) + 2[0 - 78q0 — 12J0q() + 2loq0 - 846]% - 4J0q(2) - 30q(3) + 2j0S0 + 2q030, (A32)
Pe(qos jo S0» los L) = k(150 + 30 — 3l + 4563 + 72q0 — 350 + 18) (A33)
R(qo- jo- So. lo) = [4)3 + j§(15g% + 560 — 45 + 30) — jo(4lo(qo + 1) + 1644 + 32¢3 + q§(Ts¢ + 69) + 6¢¢ (759 + 22)
+24(so + 3)) + g3 (=lo + 550 + 159) + g3(—91y + 4650 + 306) + g0 (6(s3 + 165 + 40) — 81y) — 2143
+ 6(s3 + 8s¢ + 12)]. (A34)

These are all the ingredients used to construct our Gauss-Bonnet cosmography. See also [54] for the case of F(R) gravity.
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