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We consider the possibility of an oscillating scalar field accounting for dark matter and dynamically
controlling the spontaneous breaking of the electroweak symmetry through a Higgs-portal coupling. This
requires a late decay of the inflaton field, such that thermal effects do not restore the electroweak symmetry
after reheating, and so inflation is followed by an inflaton matter-dominated epoch. During inflation, the
dark scalar field acquires a large expectation value due to a negative nonminimal coupling to curvature, thus
stabilizing the Higgs field by holding it at the origin. After inflation, the dark scalar oscillates in a quartic
potential, behaving as dark radiation, and only when its amplitude drops below a critical value does the
Higgs field acquire a nonzero vacuum expectation value. The dark scalar then becomes massive and starts
behaving as cold dark matter until the present day. We further show that consistent scenarios require dark
scalar masses in the few GeV range, which may be probed with future collider experiments.
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I. INTRODUCTION

The discovery of the Higgs boson at the Large Hadron
Collider (LHC) opened up new windows to study the origin
and nature of dark matter. In fact, the study of interactions
between dark matter and the Higgs boson has been
increasing in interest in the literature, encompassing
numerous dark matter models, ranging from thermal
candidates [1–14] to nonthermal ones [15–25].
In addition, the introduction of a dark scalar singlet may

solve the Higgs vacuum stability problem. The Higgs
vacuum is stable if its self-coupling, λh, is positive for
any scale of energy μ where the minimum of its potential is
a global minimum. However, for the measured Higgs mass
mh ≃ 125 GeV, λh becomes negative for energy scales
around μ ∼ 1010–1012 GeV [26,27], which are well below
the GUT or the Planck scales. This could constitute a
problem since it may lead to a possible instability in the
Higgs potential (see, for e.g., Refs. [26,28,29] and refer-
ences therein). The behavior of λh is mostly driven by the

large contribution of the top Yukawa coupling at one-loop,
i.e., strongly depends on the top quark mass. When the
coupling constant becomes negative, the renormalization
group-improved Higgs potential is VðhÞ ¼ λh

h4
4
< 0, and,

therefore, the Higgs minimum could be only a local
minimum, instead of a global minimum. However, if the
time scale for quantum tunneling to this true minimum
exceeds the age of the Universe, the Higgs vacuum is only
metastable (see, for instance, Ref. [30] for a review). In fact,
Ref. [29] showed that the lifetime for quantum tunneling is
much larger than the age of the Universe.
There have been several attempts to cure the (in)stability

problem of the electroweak vacuum. For instance, Ref. [26]
showed that a shift in the top quark mass of about
δmt ¼ −2 GeV would suffice to keep λh > 0 at the
Planck scale (this could also be a good reason to motivate
more precise measurements of the top quark mass). Other
ways include introducing physics beyond the Standard
Model. In particular, coupling a scalar singlet with nonzero
expectation value to the Higgs may stabilize the electro-
weak vacuum, provided that the contribution of the
coupling between the Higgs and the singlet scalar main-
tains the Higgs self-coupling positive. This idea has been
explored in the literature, and some of them promote this
singlet scalar to a dark matter candidate, such as illustrated
in Refs. [8,31,32]. In addition, one must consider the
stability of the Higgs field during inflation, since de Sitter
quantum fluctuations could drive the field to the true global
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minimum of the potential. This may potentially be avoided
if the Higgs field is sufficiently heavy during inflation,
which may be achieved by coupling it to other fields such
as the inflaton itself [33] or a dark matter scalar as we
propose in this work.
Another interesting possibility, which we explore in this

work, is the case where a dark matter scalar coupled to the
Higgs leads a nonthermal electroweak phase transition.
We show that, besides stabilizing the Higgs field during
inflation, a dark scalar may also completely alter the
dynamics of the electroweak phase transition and we
describe the conditions that must be satisfied for this to
occur. As we will discuss, the electroweak symmetry may
remain restored until very late even if the Universe’s
temperature is always below the weak scale. This could,
in particular, preclude electroweak baryogenesis and the
generation of gravitational waves through a thermal first-
order phase transition.
We consider a self-interacting dark scalar field, Φ,

coupled to the Higgs field, H, through a standard biquad-
ratic “Higgs-portal” coupling, and nonminimally coupled
to gravity:

−Lint ¼ g2jΦj2jHj2 þ λϕjΦj4 þ VðHÞ − ξRjΦj2; ð1Þ

where the Higgs potential VðHÞ takes the standard “mexi-
can hat” shape. For simplicity, we will take the nonminimal
gravitational coupling of the Higgs field, which is allowed
by the symmetries of the model, to be arbitrarily small so
that we can neglect its effects. We note that including a
positive Higgs nonminimal coupling to curvature would not
change the qualitative behavior of the cosmological dynam-
ics, namely the electroweak phase transition, and that this
would, in fact, help stabilizing the Higgs during inflation in
addition to the dark scalar as we discuss below (see, for
instance, Refs. [30,34–40]).
As in previous works [19,20], we assume an underlying

scale invariance of the theory, spontaneously broken by
some mechanism that generates the Planck and electroweak
mass scales in the Lagrangian, but which forbids a bare
mass term for the dark scalar [41]. It is thus easy to see that,
for a sufficiently large value of Φ, the minimum of the
Higgs potential will lie at the origin, and it is natural to
enquire whether the dark scalar can dynamically drive the
spontaneous breaking of the electroweak symmetry [53].
While we assume that the dark scalar is only sensitive to the
spontaneous breaking of scale invariance through its
interactions with the Higgs field, there could be, of course,
other sources and even mass terms explicitly breaking this
symmetry. Our analysis will nevertheless hold if such
contributions to the dark scalar’s mass are subdominant
compared to the contribution of the Higgs field, which is
the regime on which we will focus in this work.
To prevent thermal effects from restoring the electroweak

symmetry after inflation, we focus on scenarios with a late

inflaton decay, such that the reheating temperature, TR, is
below ∼100 GeV. Consequently, inflation is followed by
a long matter-dominated epoch while the inflaton oscil-
lates about the origin in an approximately quadratic
potential. As we will see in more detail below, the negative
sign of the nonminimal coupling to gravity leads to a large
expectation value for the dark scalar during inflation,
which makes the Higgs field heavy and stabilizes it at the
origin during this period. After inflation the dark scalar
starts oscillating about the origin in its quartic potential,
and its amplitude decreases with expansion, such that at
some point it falls below a critical value that allows the
Higgs to develop a nonzero vacuum expectation value.
The spontaneous breaking of the electroweak symmetry is
thus dynamically controlled by the dark scalar, and once it
occurs the latter gains a mass and starts behaving as cold
(pressureless) dark matter.
This work is organized as follows. In the next section we

discuss the dynamics of the dark scalar and the Higgs field
during inflation. In Sec. III we describe the postinflationary
dynamics of both fields, discussing the possibilities of
reheating occurring before or after the electroweak sym-
metry is spontaneously broken. We discuss the consistency
of our analysis and parametric constraints in Sec. IV and
present our results for the allowed values of the dark scalar
mass and couplings in Sec. V. We summarize our dis-
cussion and main conclusions in Sec. VI.

II. INFLATION

During inflation, the relevant interaction Lagrangian for
the dynamics of the Higgs and dark scalar field, assuming
they have no significant interactions with the inflaton field,
is given by:

−Linf ¼
g2

4
ϕ2h2 þ λϕ

4
ϕ4 −

ξ

2
Rϕ2; ð2Þ

where Φ ¼ ϕffiffi
2

p , H ¼ hffiffi
2

p and the Ricci scalar can be written

in terms of the Hubble parameter,

Rinf ≃ 12H2
inf ; ð3Þ

where Hinf can be related to the tensor-to-scalar ratio of
primordial curvature perturbations as:

Hinf ≃ 2.5 × 1013
�

r
0.01

�
1=2

GeV: ð4Þ

Since the interaction term between ϕ and R has a negative
sign, the dark scalar acquires a vacuum expectation
value (vev) during inflation, ϕinf , with the minimum of
the potential lying at:
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ϕinf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ξH2

inf

λϕ

s
; hinf ¼ 0: ð5Þ

The dark scalar then provides a large mass to the Higgs
field during inflation:

mh ¼
1ffiffiffi
2

p gϕinf ≃
gffiffiffiffiffi
λϕ

p ffiffiffiffiffi
6ξ

p
Hinf : ð6Þ

We will see later that g=
ffiffiffiffiffi
λϕ

p
∼ 102 if the dark scalar

accounts for all dark matter, such that mh ≳Hinf for
ξ≳ 10−5. This large Higgs mass has two related effects.
First, it induces an additional quadratic term in the Higgs
potential, thus shifting the field value at which the potential
becomes unbounded (i.e., λh < 0) towards values larger
than Hinf , i.e., above the 1010–1012 GeV scale at which it
becomes unbounded in the Standard Model [27]. Second,
it suppresses the Higgs de Sitter quantum fluctuations,
which for a light Higgs (mh ≲Hinf ) would be ∼Hinf=2π ∼
1012 GeV unless the tensor-to-scalar ratio is very sup-
pressed. For a massive Higgs field, the field variance during
inflation on superhorizon scales is given by [55]:

hh2i ≃
�
Hinf

2π

�
2 Hinf

mh
; ð7Þ

which, using Eq. (6), simplifies to

hh2i ≃
�
Hinf

2π

�
2 λ1=2ϕ

g
ffiffiffiffiffi
6ξ

p ; ð8Þ

corresponding to an average fluctuation amplitudeffiffiffiffiffiffiffiffiffi
hh2i

p ≲ 1011 GeV for r≲ 10−2 and ξ≳ 0.1. Thus, the
coupling between the Higgs and the dark scalar can prevent
the former from falling into the putative large field true
minimum during inflation.
We note that the dark scalar is also heavy during

inflation, such that its de Sitter quantum fluctuations, with
an amplitude

ffiffiffiffiffiffiffiffiffiffiffi
hδϕ2i

p
≃ 0.05ξ−1=4Hinf [19,20], have a

negligible effect on its expectation value ϕinf ≳Hinf , the
latter setting the initial amplitude for field oscillations in the
postinflationary epoch.

III. POSTINFLATIONARY PERIOD

In this model we assume that, after inflation, the inflaton
field, χ, does not decay immediately. Instead, the inflaton
evolves as nonrelativistic matter, while oscillating about the
minimum of its potential, and an early matter era follows
inflation until reheating finally occurs. Therefore, there are
some significant changes in the dynamics of the Universe
with respect to the usual radiation-dominated epoch. The
scale factor evolves in time as a ∼ t2=3 and the Ricci scalar
has a nonvanishing value, R ¼ 3H2, unlike its value during

the radiation era (R ¼ 0). The evolution of the inflaton
energy density is thus given by:

ρχ ¼ 3H2
endM

2
P

�
a

aend

�
−3
; ð9Þ

where MP ≃ 2.4 × 1018 GeV is the reduced Planck mass
and the subscript “end” corresponds to the end of inflation.
Note that Hend depends on the particular inflationary
model. Let us consider, for instance, the case where
inflation is driven by a field with a power-law potential,
VðχÞ ¼ λχn. The number of e-folds of inflation, after the
observable CMB scales become superhorizon, is given by:

Ne ¼ −
1

M2
P

Z
χend

χ�

VðχÞ
V 0ðχÞ dχ ≃

1

2n
χ2�
M2

P
; ð10Þ

where χ� is the value of the inflaton field when observable
CMB scales become superhorizon during inflation, with
χ� ≫ χend. Inflation ends when ϵ ¼ M2

PðV 0=VÞ2=2 ∼ 1,
yielding χend ≃ nffiffi

2
p MP, from which we deduce that:

Hend ≃
� ffiffiffi

n
p
2

1ffiffiffiffiffiffi
Ne

p
�

n=2

Hinf : ð11Þ

According to Planck data, power-law potentials with n ≥ 2
are strongly disfavored [56], while models with e.g.,
n ¼ 2=3 are compatible with the data. We will consider
the above relation with Ne ¼ 60 henceforth in our dis-
cussion, using Hend ∼ 0.4Hinf (corresponding to n ¼ 2=3)
as a reference value, noting that for most models
Hend=Hinf ∼Oð0.1Þ. Note that this model dependence is
nevertheless degenerate with the unknown value of the
tensor-to-scalar ratio, which we take as a free parameter.
At some stage, the inflaton decay reheats the Universe,

establishing the beginning of the radiation-dominated
epoch. This scenario resembles the so-called Polonyi
problem found in many supergravity models, where the
Polonyi field or other moduli decay at late times (see, for
e.g., Refs. [57–59]). We assume that the inflaton transfers
all its energy density into Standard Model degrees of
freedom at a reheating temperature TR:

ρχðaRÞ ¼
π2

30
g�RT4

R; ð12Þ

where g�R is the number of relativistic degrees of freedom
at reheating. The reheating temperature must be above
∼10 MeV, as the Universe must be radiation-dominated
during Big Bang nucleosynthesis (BBN). As mentioned
earlier, we will consider the case where reheating does not
restore the electroweak symmetry, such that electroweak
symmetry breaking is controlled by the dynamics of the
dark matter scalar field, i.e, TR ≲mW ≃ 80 GeV. Using
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Eqs. (9) and (12), the number of e-folds from inflation until
reheating, NR, reads:

NR ¼ −
1

3
ln

�
π2

90
g�R

T4
R

M2
P

1

H2
end

�

≃ 46 −
1

3
lnðg�RÞ −

4

3
ln
�

TR

10 GeV

�

þ 1

3
ln

�
r

0.01

�
þ 2

3
ln

�
Hend=Hinf

0.4

�
: ð13Þ

The interesting feature of this model is that the dark scalar
will control a nonthermal electroweak symmetry breaking
(EWSB). From Eq. (2), it is easy to see that the minimum of
the Higgs potential occurs at

jhj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 −

g2ϕ2

2λh

s
: ð14Þ

EWSB then takes place when the amplitude of the field
becomes smaller than the critical value:

ϕc ¼
ffiffiffiffiffiffiffi
2λh

p v
g
; ð15Þ

noting that, in a few e-folds, the Higgs field should attain its
final vacuum expectation value jhj ¼ v. This assumes that
the temperature of the Universe when the field reaches the
critical value is already below the electroweak scale, since
otherwise the Higgs field would remain in the symmetric
phase until much later and one would have the conventional
thermal electroweak phase transition. In scenarios where
the inflaton has a constant decay width, the maximum
temperature attained during the reheating process is typ-
ically much larger than the final reheating temperature
when radiation becomes dominant, which could be in
tension with the above assumption. However, one can
envisage scenarios where the temperature of the Universe
never exceeds (significantly) the reheating temperature,
such as in e.g., Refs. [60,61] where inflaton decay is
kinematically blocked for most of its oscillation period. In
these models the inflaton is directly coupled only to two
fermion fields, for instance right-handed neutrinos or milli-
charged particles, with massesm� ¼ jmf � hχj as imposed
by a discrete interchange symmetry, where h denotes the
Yukawa coupling. For mf > mχ=2, inflaton decays occur
only within a narrow field range, i.e., a small fraction of
each oscillation period, making the decay quite inefficient.
These fermions may either decay or annihilate into
Standard Model states. As can be seen in Fig. 2 of [60],
the radiation energy density, and, hence, also the temper-
ature, remains approximately constant until it takes over the
inflaton, and this temperature can be arbitrarily small if the
Yukawa coupling is sufficiently suppressed (c.f. Eq. (2.13)
of Ref. [60]). In this parametric regime, the inflaton,

albeit stable at late times, will only give a subdominant
contribution to the present dark matter abundance. Higgs-
inflaton couplings are not needed for reheating in this
case and may, in fact, be extremely suppressed in a
technically natural way depending on how the fermions
are coupled to Standard Model states, so in this frame-
work there are certainly scenarios where Higgs produc-
tion from the inflaton field can be neglected, as we will
assume henceforth.
In the remainder of our discussion, we will therefore

assume a reheating process similar to the one described in
Refs. [60,61], such that it suffices to require TR ≲ 80 GeV
to ensure that the electroweak phase transition is driven by
the dark scalar field.
In the following subsections, we will study the dynam-

ics of the dark scalar when reheating occurs after or
before EWSB. Note, however, that NR is determined
solely by r and TR, being independent of when EWSB
takes place. Hence, our model has five free parameters:
r, ξ, g, λϕ, and TR. Note that there is also a mild
dependence on the inflationary model through the
ratio Hend=Hinf ∼Oð0.1Þ.

A. Reheating after EWSB

The first scenario we study is the one where reheating
occurs after EWSB, as illustrated in Fig. 1.
Before EWSB, the quartic term dominates the energy

density of the dark scalar and it starts oscillating about the
origin with initial amplitude ϕinf . The amplitude decays as
ϕ ∝ a−1, such that the field behaves as dark radiation,
ρϕ ∝ a−4. Note that R ∝ H2 ∝ a−3, so that the effects of the
nonminimal coupling to gravity decay faster than those of
the quartic self-interactions and may thus be neglected. We
will assume, for simplicity, that once the electroweak
symmetry is spontaneously broken and the field becomes
massive the associated quadratic term in the scalar potential
becomes dominant, such that the field behaves as cold dark
matter (CDM) from EWSB onwards. Therefore, the dark
scalar exhibits two behaviors:

FIG. 1. Time scale of the events: in this scenario, reheating
occurs after EWSB. The dark scalar behaves like dark radiation
until EWSB and like CDM afterwards. NR corresponds to the
number of e-folds from inflation until reheating and NEW is the
number of e-folds from inflation until EWSB.
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(
ϕradðaÞ ¼ ϕinfð a

aend
Þ−1; aend < a < ac

ϕDMðaÞ ¼ ϕcð aacÞ−3=2; a > ac
; ð16Þ

where ac is the value of the scale factor at which EWSB
takes place. At EWSB, we have:

ϕc ¼ ϕinf

�
ac
aend

�
−1
; ð17Þ

and, therefore, the number of e-folds from inflation until
EWSB, NEW, is given by

NEW ¼ ln ðϕinf=ϕcÞ ≃ 27þ ln

� ffiffiffi
ξ

p gffiffiffiffiffi
λϕ

p �
r

0.01

�
1=2

�
:

ð18Þ

Once reheating occurs, the Universe enters the usual
radiation-dominated epoch. Thus, the number of dark
matter particles in a comoving volume, nϕ=s, becomes
constant. The dark scalar amplitude at reheating is, then:

ϕR ≡ ϕðaRÞ ¼ ϕc

�
aR
ac

�
−3=2

¼ ϕce−
3
2
ðNR−NEWÞ; ð19Þ

where

NR − NEW ¼ 19 −
1

3
lnðg�RÞ −

4

3
ln

�
TR

10 GeV

�

− ln

� ffiffiffi
ξ

p gffiffiffiffiffi
λϕ

p �
r

0.01

�1
6

�

þ 2

3
ln

�
Hend=Hinf

0.4

�
: ð20Þ

Introducing the last equation into Eq. (19), the amplitude of
the field at reheating becomes:

ϕR ≃ 10−10
ffiffiffiffiffiffiffi
g�R

p �
r

0.01

�
1=4

�
TR

10 GeV

�
2

× ξ3=4g1=2λ−3=4ϕ

�
Hend=Hinf

0.4

�
−1

GeV: ð21Þ

The number of particles in a comoving volume at TR is,
then:

�
nϕ
s

�
R
¼ 45

4π2
mϕϕ

2
R

g�RT3
R
; ð22Þ

where mϕ stands for the dark scalar mass once the
electroweak symmetry is spontaneously broken and is
given by:

mϕ ¼ 1ffiffiffi
2

p gv: ð23Þ

The present dark matter abundance then reads:

Ωϕ;0 ¼
mϕ

3H2
0M

2
P

�
nϕ
s

�
R
s0

¼ m2
ϕ

6H2
0M

2
P
ϕ2
R
g�0
g�R

�
T0

TR

�
3

; ð24Þ

where g�0, T0, and H0 are the present values of the number
of relativistic degrees of freedom, CMB temperature, and
Hubble parameter, respectively.
Replacing Eq. (21) into the last expression and fixing

Ωϕ;0 ¼ 0.26, we then obtain a relation between g and λϕ:

g ≃ 9 × 102
�

TR

10 GeV

�
−1=3

�
r

0.01

�
−1=6

× ξ−1=2
�
Hend=Hinf

0.4

�
2=3

λ1=2ϕ : ð25Þ

B. Reheating before EWSB

The second putative scenario we should consider is the
case where reheating occurs before EWSB, as illustrated
in Fig. 2.
Since the number of e-folds from inflation until reheating

does not depend on when EWSB takes place, NR is given
by Eq. (13) as in the previously discussed scenario.
Similarly, NEW only depends on ϕinf and ϕc and, therefore,
it is given by Eq. (18). The difference between this and the
previous scenario is that NEW should now exceed NR. The
dark scalar behaves like dark radiation from reheating until
EWSB, after which nϕ=s becomes constant. From reheat-
ing onwards, the Universe enters the usual radiation-
dominated epoch and R ¼ 0.

FIG. 2. Time scale of the events: in this putative scenario,
reheating occurs before EWSB. The dark scalar behaves like dark
radiation until EWSB and like CDM afterwards. NR corresponds
to the number of e-folds from inflation until reheating and NEW is
the number of e-folds from inflation until EWSB.
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The amplitude of the field at reheating is different from
the previous scenario:

ϕR ¼ ϕinf

�
aR
aend

�
−1

¼ ϕinfe−NR; ð26Þ

and now we have a defined temperature and can write the
amplitude of the field as a function of the temperature:

ϕradðTÞ ¼ ϕR
T
TR

�
g�T
g�R

�
1=3

: ð27Þ

This can be used to compute the temperature at which
EWSB occurs, Tc:

Tc ¼
ϕc

ϕR
TR

�
g�c
g�R

�
−1=3

: ð28Þ

At Tc the dark scalar stops holding the Higgs at the origin.
Notice, however, that Tc must be smaller than the usual
TEW ∼ 80 GeV, so that the dark scalar can control the
EWSB and the latter is not restored by thermal effects. By
proceeding as in the previous subsection, since nϕ=s is
constant as soon the field starts behaving as CDM, the
present dark matter abundance is given by:

Ωϕ;0 ¼
m2

ϕ

6H2
0M

2
P
ϕ2
c
g�0
g�c

�
T0

Tc

�
3

: ð29Þ

Setting Ωϕ;0 ¼ 0.26 we then obtain for the temperature at
which the field amplitude falls below the critical value:

Tc ¼
�

2λhv4

12H2
0M

2
P

�
1=3

�
g�0
g�c

�
1=3 T0

Ω1=3
ϕ;0

∼ 7 × 105
�
g�0
g�c

�
1=3

GeV: ð30Þ

Hence, we conclude that, for reheating to occur before
EWSB, Tc must be well above TEW ∼ 80 GeV. This is not
consistent with our reasoning given that, at that temper-
ature, the Higgs thermal mass is still sufficiently large to
hold the latter at the origin, such that EWSB does not occur
at Tc as assumed and, consequently, the dark scalar remains
massless and behaves as dark radiation, as opposed to our
starting assumption. In the remainder of this paper, we will
thus focus only on the case where reheating occurs after
EWSB, given that in this scenario the dark scalar, in
addition to being a viable dark matter candidate, can also
control a nonthermal EWSB.

IV. CONSISTENCY ANALYSIS

In analyzing the dynamics of the dark scalar and of the
Higgs field both during and after inflation we have made
several technical assumptions. In this section, we discuss

the parametric constraints imposed by these assumptions
and also by the properties of the Higgs boson measured at
the Large Hadron Collider (LHC).
First, our scenario assumes that inflation is driven by a

scalar field, χ, that is neither the dark scalar nor the Higgs
field. Therefore, we have to ensure, in particular, that the
dark scalar does not affect the dynamics of inflation. The
dark scalar’s contribution to the effective potential during
inflation is given by:

VðϕinfÞ ≃
λϕ
4
ϕ4
inf −

ξ

2
Rϕ2

inf ≃ −
122

4
ξ2

H4
inf

λϕ
: ð31Þ

Requiring that this does not significantly reduce the infla-
tionary energy density VðχÞ ≃ 3H2

infM
2
P then implies the

condition:

ϕinf <
MPffiffiffi
ξ

p ; ð32Þ

which constrains the allowed values of the nonminimal
coupling ξ and the self-coupling λϕ, depending on the
tensor-to-scalar ratio, i.e., the scale of inflation:

λϕ > 12ξ2
H2

inf

M2
P
≃ 1.3 × 10−9ξ2

�
r

0.01

�
: ð33Þ

Second, we have assumed that the dark scalar field starts
behaving as CDM as soon as the electroweak symmetry is
spontaneously broken, i.e., when the field amplitude falls
below the critical value ϕc. This means that the quadratic
term has to dominate over the quartic term at EWSB, that is,
g2v2ϕ2

c=ðλϕϕ4
cÞ > 1, which translates into the following

condition:

g4 > 2λhλϕ: ð34Þ

Finally, radiative corrections to the quartic coupling from
the Higgs-portal coupling should be small, unless we
accept some degree of fine-tuning:

δλϕ ∼
g4

16π2
< λϕ: ð35Þ

From the experimental point of view, the Higgs may decay
into dark scalar pairs with a decay width

Γh→ϕϕ ≃
1

8π

g4v2

4mh
; ð36Þ

leading to a Higgs branching ratio into invisible particles,
assuming Γh→inv ¼ Γh→ϕϕ:

Brinv ¼
Γh→ϕϕ

Γh þ Γh→ϕϕ
: ð37Þ
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Current limits from the LHC establish an upper bound
for the branching ratio Brinv < 0.23 [62], and using
Γh ¼ 4.07 × 10−3 GeV [63], this yields an upper bound
on the Higgs-portal coupling:

g < 0.13; ð38Þ

which translates into an upper bound mϕ ≲ 22.6 GeV.
From the dynamical perspective, we have also implicitly

assumed that the dark scalar field remains in the form of an
oscillating condensate, such that processes that may lead
to its evaporation and subsequent thermalization (which
would yield a Weakly Interacting Massive Particle
(WIMP)-like dark matter candidate) must be inefficient,
as we discuss in detail below.

A. Condensate evaporation

The dark scalar provides mass to the Higgs field during
the period before EWSB. Since ϕ is oscillating, this could
induce oscillations of the Higgs mass. This may pose a
problem, since if the Higgs mass mh <

ffiffiffiffiffiffiffi
3λϕ

p
ϕrad, (per-

turbative or nonperturbative) Higgs production by the
oscillating condensate is kinematically allowed and can
lead to the condensate’s evaporation.
A solution to this problem is to provide initial conditions

to the field such that its absolute value, and, hence, the
Higgs mass, does not oscillate. This is possible if the dark
scalar oscillates in the complex plane, as e.g., in the
Affleck-Dine (AD) mechanism for baryogenesis [64,65].
We may then consider additional nonrenormalizable terms
in the dark scalar’s potential, particularly the so-called
A-terms that explicitly break the underlying global U(1)
symmetry. These are well-motivated within, e.g., super-
symmetric theories, but more generally we expect such
terms to be present since gravity in particular should not
respect global symmetries. For instance, we may consider
adding the following nonrenormalizable terms to the scalar
potential:

VNRðϕÞ ¼
a

5MP
ϕ5 þ H:c:þ b

6M2
P
jϕj6; ð39Þ

where a and b are dimensionless couplings, the former
taking complex values. We have chosen, as an illustrative
case, the lowest dimension nonrenormalizable operators,
with the b-term being required for the potential to be
bounded from below, but higher-dimensional operators are
also possible. Contributions of this form may arise from
different sources, and as for the AD field the phase of the
dimension-5 A-term may be different during and after
inflation, thus yielding a different phase for the field at the
minimum of the potential in these two periods. This, in
turn, implies that the phase of the field will vary after
inflation, thus generating “angular momentum” in field
space, nϕ ¼ 2jϕj2 _θ for ϕ ¼ jϕjeiθ. It is also possible that a

vanishes during inflation such that initially θ takes random
values in different inflationary patches. The initial phase
misalignment in our inflationary patch will then generate
the required angular motion after inflation ends, which is
known as spontaneous CP-violation.
To illustrate the motion of the field after inflation, we

have numerically evolved the field equation in the post-
inflationary matter era for an example where a is real and
positive, and both a and b are chosen such that the effects of
the nonrenormalizable terms are significant just after
inflation, without changing considerably the magnitude
of the field’s expectation value acquired during inflation.
According to the discussion above, we take the initial phase
of the field in the postinflationary era to be away from the
minima of the potential, which occur for θn ¼ nπ=5 with
odd n in this case. The results are shown in Fig. 3.
As one can see in this figure, the field spirals in the

complex plane after acquiring angular momentum due to
the A-term. This means that jϕj, and, hence, the Higgs
mass, oscillates with a small amplitude around its mean
value, and the Higgs never becomes light enough to be
produced by the oscillations of the dark field. Both non-
renormalizable terms decay faster than the quartic term in
the potential, such that on average jϕj ∼ a−1 and the dark
scalar behaves as dark radiation as we have assumed in our
general discussion.
Since reheating can only consistently occur after EWSB

as we have shown above, the only other possible channel
for the evaporation of the dark scalar field is the perturba-
tive production of ϕ-particles by the oscillating background
condensate. The dark scalar behaves like radiation until
EWSB and the condensate decay width is given by [19,20]:

Γϕ→δϕδϕ ≃ 4 × 10−2λ3=2ϕ ϕrad; ð40Þ

where, at EWSB, ϕrad ¼ ϕc. Condensate evaporation is
then avoided if this never exceeds the Hubble expansion
rate until EWSB, noting that after EWSB this production
channel is blocked since the dark scalar becomes massive
(see e.g., [19,20]):

Γϕ→δϕδϕ

H

����
c
< 1: ð41Þ

Since the Universe is still in a matter-dominated era at
EWSB, the Hubble parameter can be computed using the
expression for the inflaton’s energy density given in
Eq. (9):

H2
c ¼

ρχðacÞ
3M2

P
¼ H2

end

�
ϕc

ϕinf

�
3

: ð42Þ

Therefore, from Eq. (41) we find that
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g < 10−11
�

r
0.01

�
−1=2

ξ−3=2λ−3=2ϕ

�
Hend=Hinf

0.4

�
2

; ð43Þ

and using the relation between g and λϕ [Eq. (25)], the
upper bound on g reads

g < 0.4

�
TR

10 GeV

�
−1=4

�
r

0.01

�
−1=4

ξ−3=4
�
Hend=Hinf

0.4

�
:

ð44Þ

In addition, ϕ particles may annihilate into fermions, via
virtual Higgs exchange, which might thermalize the con-
densate after reheating. The interaction rate of this process
is given by:

Γϕϕ→ff̄ ¼ nϕhσvifermions; ð45Þ

where nϕ ¼ mϕϕ
2 is the number density of ϕ particles and

hσvifermions, the cross section for dark matter annihilation
into fermions that was computed in Ref. [20], reads:

hσvrelifermions ≃
Nc

2π

1

v2
m4

ϕ

ð4m2
ϕ −m2

hÞ2 þm2
hΓ2

h

×
�
mf

v

�
2
�
1 −

m2
f

m2
ϕ

�3=2

; ð46Þ

where Nc is the number of colors (Nc ¼ 1 for leptons and
Nc ¼ 3 for quarks) and Γh ¼ 4.07 × 10−3 GeV is the total
Higgs decay rate. Combining Eqs. (21) and (25), the
amplitude of the field at reheating is:

ϕR ≃ 2.7 × 10−6
ffiffiffiffiffiffiffi
g�R

p �
TR

10 GeV

�
3=2

g−1 GeV; ð47Þ

while the Hubble parameter is:

HR ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
π2

90
g�R

r
T2
R

MP
: ð48Þ

Comparing the interaction rate Γϕϕ→ff̄ with the Hubble
parameter, we get:

Γϕϕ→ff̄

HR
≃ 3 × 10−9

ffiffiffiffiffiffiffi
g�R

p �
TR

10 GeV

��
mf

GeV

�
2
�

mϕ

GeV

�
3

Nc;

ð49Þ

which means that the process is negligible at reheating for
the range of mass and temperature allowed in this model
(mϕ ≲ 10 Gev, 10 MeV < TR < 80 GeV), and, therefore,
it does not lead to the thermalization of the condensate after
reheating. There are other potentially significant scattering
processes involving light fermions in the thermal bath, but
we will not consider them in further detail since they do not
change the number of ϕ particles per comoving volume,
nϕ=s, and hence the dark matter abundance.

V. RESULTS

In this section we summarize our results, taking into
account all the different constraints analyzed earlier. We
present the results for the regions in the ðλϕ; gÞ plane where
all model constraints are satisfied, namely Eqs. (32)–(35)
and (43). We choose to represent the results for values of
the tensor-to-scalar ratio r ¼ 10−2 and nonminimal cou-
pling ξ ¼ 0.1, 1, as illustrated in Fig. 4.
In Fig. 4, we can see that there is a window where our

model can explain all of the present dark matter abundance,
for dark scalar masses larger than the ones we have

FIG. 3. [Top] Evolution of jϕj=Hend as a function of time (solid
blue curve), compared to the jϕj ∼ t−2=3 ∼ a−1 behavior (dashed
black curve). [Bottom] Field evolution in the complex plane. We

have considered ξ ¼ 1, λϕ ¼ 10−9, a ≃ 0.1
ffiffiffiffiffiffiffiffiffiffi
λ3ϕ=ξ

q
MP=Hend,

b ≃ 0.1ðλ2ϕ=ξÞðMP=HendÞ2, and θ ¼ 1.5 rad.
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obtained in previous Higgs-portal scenarios with an oscil-
lating scalar field, an underlying scale invariance and
standard Cosmology (i.e, no early matter era) [18–20].
In Ref. [18] we have studied the case where the oscillating
scalar field dark matter has negligible self-interactions.
We have found that the range of masses of the dark
scalar consistent with cosmological constraints is
mϕ ≳ 10−5 − 10−6 eV. In particular, for not too suppressed
tensor-to-scalar ratio, r, this model predicts Higgs portal
couplings of the order of g ∼ 10−16. In turn, Refs. [19,20]
consider an oscillating scalar field dark matter with non-
negligible self-interactions. In the case it acquires a vev
after Electroweak symmetry breaking, it may decay into
photon pairs, with a mean lifetime larger than the age of the
Universe, predicting the observed galactic and extragalactic
3.5 keV X-ray line. In this scenario, the dark matter
candidate has a mass of about 7 keV, corresponding to
g ∼ 10−8. In the current paper, for instance, we can see that
g ∼ 10−2 is allowed, which corresponds to mϕ ∼ 1 GeV.
We may conclude that an early matter-era precludes sub-
GeV dark scalar masses, mainly since these would lead to
super-Planckian dark scalar values during inflation that
could affect the latter’s dynamics.
In fact, it is possible to get an analytic expression for the

window of possible values for g and λϕ. Hence, since the
dark scalar cannot affect inflation [Eq. (32)] and, using
the relation between the Higgs-portal coupling and the
dark scalar’s quartic coupling [Eq. (25)], the constraint on g
becomes

g > 5 × 10−2
�

TR

10 GeV

�
−1
3

�
r

0.01

�1
3

ξ
1
2

�
Hend=Hinf

0.4

�2
3

;

ð50Þ

which translates into

mϕ > 8

�
TR

10 GeV

�
−1
3

�
r

0.01

�1
3

ξ
1
2

�
Hend=Hinf

0.4

�2
3

GeV:

ð51Þ

In turn, requiring that the field behaves like CDM at EWSB
[Eq. (34)], and using the relation between couplings
[Eq. (25)], we find a lower bound on g:

g>

ffiffiffiffiffiffiffi
2λh

p
9×102

�
TR

10GeV

�1
3

�
r

0.01

�1
6

ξ
1
2

�
Hend=Hinf

0.4

�
−2
3

; ð52Þ

and, consequently, a lower bound on the mass

mϕ ≳ 0.1

�
TR

10 GeV

�1
3

�
r

0.01

�1
6

ξ
1
2

�
Hend=Hinf

0.4

�
−2
3

GeV:

ð53Þ

FIG. 4. Regions in the ðλϕ; gÞ plane where the constraints in
Eqs. (32)–(35) and Eq. (43) are satisfied, for r ¼ 10−2 and
ξ ¼ 0.1, 1. The red band encompasses the values of g and
corresponding λϕ that can account for the present dark matter
abundance, if ϕ makes up all the dark matter, for 10 MeV <
TR < 80 GeV (the upper line in the red band corresponds to
TR ¼ 10 MeV and the lower line corresponds to TR ¼ 80 GeV).
The excluded regions correspond to fine-tuned models (dark
gray), super-Planckian dark scalar vevs during inflation, i.e,
ϕinf > MP=

ffiffiffi
ξ

p
, (blue), and scenarios where the dark scalar

behaves as dark radiation and not as dark matter at or after
EWSB (yellow). The dashed purple line yields the current
experimental limit on the branching ratio of the Higgs invisible
decays, Brinv ≲ 0.23 and the green region in the upper right
corner corresponds to scenarios for which the condensate
evaporates.
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The no fine-tuning constraint allows only Higgs portal
couplings below the following threshold:

g<

ffiffiffiffiffiffiffiffiffiffi
16π2

p

9×102

�
TR

10GeV

�1
3

�
r

0.01

�1
6

ξ
1
2

�
Hend=Hinf

0.4

�
−2
3

; ð54Þ

thus imposing an upper bound on the mass:

mϕ ≲ 2

�
TR

10 GeV

�1
3

�
r

0.01

�1
6

ξ
1
2

�
Hend=Hinf

0.4

�
−2
3

GeV: ð55Þ

Taking into account all these restrictions, along with the
bound coming from avoiding condensate evaporation,
Eq. (44) and the LHC bound on the Higgs invisible partial
decay width, Eq. (38), we may alternatively plot the
allowed parametric regions in the (mϕ; TR) plane for
different values of the nonminimal coupling to gravity
and tensor-to-scalar ratio, as illustrated in Fig. 5.
From Fig. 5 we may conclude that our model predicts

masses for the dark scalar in the few GeV range, depend-
ing on the values of the tensor-to-scalar ratio and non-
minimal coupling chosen. These may be within the reach
of the LHC or its successors in the near future, since for
instance Brinv ≃ 2 × 10−3 for mϕ ≃ 6 GeV, which is not
too far from the current experimental limit [Eq. (37)].
Notice, however, that large values of the nonminimal
coupling to gravity, permitting heavier dark scalars, are
only allowed for lower values of r, i.e., in scenarios with a
low inflationary scale.

VI. CONCLUSIONS

In this work, we have analyzed the possibility of an
oscillating scalar field, accounting for all the dark matter in
the Universe, driving a nonthermal spontaneous breaking
of the electroweak symmetry. The dark scalar is coupled to
the Higgs field through a standard “Higgs-portal” biquad-
ratic term, has no bare mass terms due to an underlying
scale invariance of the theory, and has a negative non-
minimal coupling to curvature. The latter, in particular,
allows the dark scalar to develop a large expectation value
during inflation. This holds the Higgs field at the origin
both during and after inflation, until the dark scalar’s
oscillation amplitude drops below a critical value at which
EWSB takes place. This prevents, in particular, the Higgs
field from falling into the putative global minimum at large
field values during inflation, ensuring at least the metasta-
bility of the electroweak vacuum.
The proposed scenario assumes a late decay of the

inflaton field, such that reheating does not restore the
electroweak symmetry, while the reheating temperature is
still large enough to ensure a successful primordial nucleo-
synthesis [66]. Therefore, the Universe is still dominated by
the inflaton field for a parametrically long period after
inflation, while it oscillates about the minimum of its
potential and behaves as a pressureless fluid. In fact, we
have shown that consistent scenarios require reheating to
occur only after EWSB, such that the latter occurs in the
inflaton matter-dominated epoch essentially in vacuum.
Compared to other scenarios of scalar field dark matter

where the Higgs is the only source of mass for the dark
scalar field [18–20], we have shown that this allows for
larger Higgs-portal couplings and hence dark scalar

FIG. 5. Allowed values for the dark scalar mass as a function of
the reheating temperature, for 10 MeV < TR < 80 GeV and
considering different values for the nonminimal coupling to
curvature ξ and tensor-to-scalar ratio r.
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masses, since there are no thermalized particles in the
Universe that could lead to an efficient evaporation of the
scalar condensate until EWSB takes place. The dark
scalar’s oscillations, while it behaves as dark radiation,
could themselves lead to particle production, but this can
either be kinematically blocked in the case of Higgs
production or made less efficient by the faster expansion
of the Universe in a matter-dominated regime, as compared
to the standard radiation epoch.
Overall, we have concluded that consistent scenarios

where the dark scalar (1) does not affect the inflationary
dynamics, (2) has technically natural values for its self-
coupling (i.e., requiring no fine tuning), and (3) starts
behaving as cold dark matter after it breaks the electroweak
symmetry, require dark scalar masses in the few GeV range,
unless inflation occurs much below the grand unification
scale. This looks promising from the experimental per-
spective, since it allows for Higgs invisible branching ratios

≲10−3, which may be within the reach of colliders in a
hopefully not too distant future.
We thus reply “Yes, it can” to the fundamental question

posed in this work and hope that testing this idea may shed
a new light on the nature of dark matter and on its role in the
cosmic history.
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