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The standard cosmological structure formation scenario is successful on large scales. Several apparent
problems affect it however at galactic scales, such as the small scale problems at low redshift and more
recent issues involving early massive galaxy and black hole formation. As these arise where complex
baryonic physics becomes important, this is often assumed to be behind the problems. But the same scales
are also those where the primordial spectrum is relatively unconstrained, and there are several ways in
which it can be modified. We focus on that arising from effects possibly associated with the crossing of
high energy cutoff scale by fluctuation modes during inflation. Elementary arguments show that adiabatic
evolution cannot modify the near scale invariance, we thus discuss a simple model for the contrary extreme
of sudden transition. Numerical calculations and simple arguments suggest that its predictions, for
parameters considered here, are more generic than may be expected, with significant modifications
requiring a rapid transition. We examine the implications of such a scenario, in this simplest form of sudden
jump as well as gradual variants, on the matter power spectrum and halo mass function in light of the
limitations imposed by particle production. We show the resulting enhancement and oscillation in the
power spectrum on currently nonlinear scales can potentially simultaneously alleviate both the apparent
problem of early structure formation and, somewhat counterintuitively, problems at low redshift concerning
the abundance of dwarf galaxies, including those too big to fail. We discuss consequences that can
observationally constrain the scenario and its parameters, including an inflationary Hubble scale
≲10−8MPl, while touching on the possibility of simultaneous modification of power on the largest scales.
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I. INTRODUCTION

Structure can condense from small density perturbations
in a nearly homogeneous universe through gravitational
instability. In the context of contemporary cosmology the
density perturbations are seeded by quantum fluctuations in
a primordial scalar field driving inflation, which later
decays as the universe reheats and the standard model
particles (and putative dark ones) arise (e.g., [1,2]). The
statistical properties of the primordial perturbations thus
leave their mark on the cosmic microwave background
(CMB) and large scale structure of the galaxy distribution.
On these scales, on which they can be inferred with
precision, the properties of the perturbations are consistent
with a nearly scale invariant primordial spectrum essen-
tially determining their statistics [3].

At a phenomenological level, the simplest models of
inflation do predict a near scale invariant primordial power
spectrum if the inflaton potential is specified in such a way
that the resulting Hubble parameter is nearly constant over
a sufficient number of e-folds. Nevertheless, this prediction
is not unique [4,5]; indeed, little is known of the micro-
scopic physics of inflation, or the wider particle physics
model it may be a part of, and the coupling of the inflaton
driving inflation to other fields may lead to changes in the
potential that can ruin the predictions of standard slow roll
models (e.g., [6–9] and [10–12] for reviews). Stages of
singular or rapid evolution of the potential or its derivatives,
interrupting slow roll, leave imprints on the primordial
spectrum of fluctuations [7,13–22]. Such effects may lead
to a variety of “features” and changes that break the scale
free spectrum, and may have observable consequences
associated with significant enhancement or suppression of
power on large scales [23–29], as well as on smaller
(galactic and sub-galactic) scales [30–36], including the
formation of primordial black holes [37,38]. However the
anomalous variation in the inflaton potential needs to be
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localized in order for single field slow roll inflation to
proceed for a sufficient number of e-folds, and is also
limited on large scales by observations suggesting a nearly
scale invariant primordial power spectrum [3,39].
In some models, such as DBI inflation, the breaking of

scale invariance and associated features in the power spec-
trum are best represented in terms of sharp temporal
variations in the sound speed of perturbations [40–46].
This is still accompanied by corresponding changes in the
equation of state of the inflaton and therefore, as in the cases
above, by anomalous background evolution. On the other
hand, if inflation proceeds modestly longer than the minimal
number of e-folds needed to solve problems such as the
apparent causal connection in the CMB field (“horizon
problem”), primordial perturbations are expected to arise
from well within a high energy cutoff scale where new
physics may transpire. This gives rise towhat is often termed
as the trans-Planckian problem. The minimal length scale
that it entails can be introduced by modifying the commu-
tation relations or introducing nonlinear dispersion relations
for the propagation of fluctuations (early studies include [47–
53], while a relatively recent review can be found in [54]).
If the Hubble scale of inflation H is smaller than the

scale kc, where new physics may appear, the background
evolution is unmodified by possible new physics; mod-
ifications to the scale invariant spectrum may then arise
solely from anomalous evolution of the fluctuation modes,
rather than of the inflation potential. However, if some form
of decoupling is assumed—e.g., motivated by the fact that
the power spectrum is evaluated at horizon exit scales
H ≪ kc—then the corrections can be quite small; of order
ðH=kcÞq, with q≳ 1. In the context of local effective field
theory q ¼ 2 [55]; if the fluctuation modes are assumed to
simply emerge from the quantum foam at conformal time
ηcðkÞ, depending on the comoving mode wave number k—
instead of the usual Bunch-Davies initial conditions taken
at η → −∞—then q ¼ 1 [56,57]; if the modes emerge from
the local adiabatic vacuum then q ¼ 3 [58]. A covariant
small scale cutoff, introduced by removing field configu-
rations that are off shell by more than a Planck scale leads
to q ¼ 1 [59].
Much larger corrections are nevertheless possible in

principle. This is the case, in particular, if the emergence
of the inflating modes from the high energy cutoff scale
is assumed to be preceded by nonadiabatic evolution
arising from a nonlinear dispersion relation at scales >kc
[47,48,60–62]. Modes then do not emerge from the foam in
their lowest energy states. Excited states arise, providing
anomalous initial conditions for further evolution and
leading to enhancement and oscillations in the power
spectrum. The most general parametrization of the effects
of a nonadiabatic high energy scale exit would therefore
appear to include both phenomena [51,63].
Though physics at these scales is largely unknown, it can

in principle be envisioned that the introduction of a cutoff

scale in itself can modify the effective dynamics of the
fluctuations. Indeed, the introduction of a minimal length
scale and a large variety of phenomenological descriptions
of “quantum spacetimes,” can be characterized by non-
linear dispersion relations [64,65]. At the most intuitive
level, a simple hydrodynamic analogy suggests such a
modification to the propagation of fluctuations [66–68].
This, much in the same way that an effective macroscopic
description of wave propagation through a fluid or lattice
may still be employed at wavelengths approaching the
interparticle distances, provided this is phenomenologically
taken into account through a modified dispersion relation.
As, at scales smaller than the interparticle distances waves
cannot propagate at all, it is in the transition between such
a cutoff scale and the scale on which the standard effective
macroscopic description applies that a nonlinear disper-
sion relation may describe the propagation of fluctuations.
At this simplest intuitive level, one may expect the
dynamics of a sound wave, initially moving in a medium
where interparticle spacing is large and comparable with its
wavelength, to keep memory of the anomalous evolution,
even after it crosses and propagates into a medium with
smaller interparticle spacing, where the effective theory is
perfectly valid and “decoupling” is guaranteed. The rough
analogy here would be with an inflaton fluctuation mode
inflating from wave numbers above the high energy
cutoff scale to ones below it, on its way to the horizon.
Applications of more sophisticated “analogue” models to
the inflationary scenario show that modifications of the
dispersion relation can indeed lead to significant changes of
power spectrum of field correlations [69].
An important limitation on modifications of the power

spectrum through the inclusion of excited states relates to
the fact that these are necessarily associated with departures
from a vacuum state. And too much excitation can lead to
departures significant enough to prohibit inflation from
starting and persisting in the first place [70–74]. However,
as has been pointed out, the limitations that arise thus
may not be very constraining [75–77]. In the present
investigation we wish to examine whether, within the
limits imposed by particle production, excitations of
inflaton modes, stemming from the presence of high energy
cutoff scale, can lead to significant and astrophysicaly
interesting modifications of the primordial power spectrum.
At present, the nonobservation of significant depar-

tures from scale invariance on large (linear) scales,
where the primordial spectrum can be rather precisely
inferred, seem to embody the main evidence against such
modifications. Indeed, observations on scales on which the
density perturbation is linear preclude even relatively small
modifications [78–82]. Observations are however much
less constraining at smaller scales, where they are limited
by the Silk damping of the CMB, and by nonlinear
structure formation erasing the possibility of directly
mapping the observed power spectrum to the primordial
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one. Precise CMB and large scale structure inference is
therefore limited to scales ≳10 Mpc. For a horizon scale of
∼10 Gpc this spans three orders of magnitudes. More
model dependent constraints are available from the Lyman-
α forest down to wave numbers roughly corresponding to
comoving spatial scales of order of Mpc. Beyond that, the
spectrum is currently quite weakly constrained [83–85]. On
the other hand, the smallest structures that form in the
context of the standard cold dark matter scenario have earth
mass and roughly solar system size ∼10−4 pc. From such
scales to the smallest scales at which the linear power
spectrum can be directly recovered one counts 11 orders of
magnitude—nine more than those separating the nonlinear
scale to the horizon.
It is not inconceivable that the scale invariance of the

primordial power spectrum does not hold in some parts of
the aforementioned range. On the contrary, despite the
significant successes of the current model of structure
formation on large scales [86], through the past couple of
decades a variety of problems have arisen on galactic scales.
There is a group of quite possibly related longstanding issues
connected to the central densities of dark matter halos, and
the abundance and dynamical properties of local dwarf
galaxies [87,88]; and, in apparent contradiction, more recent
issues related to an apparent preponderance of massive old
galaxies and supermassive black holes at redshifts 3≲ z≲ 9
that may pose a challenge the currentΛCDM-based structure
formation paradigm [89–102].
Such problems appear in the highly nonlinear regime of

structure formation; where small density perturbations,
born of primordial ones in the presumed inflaton, have
sufficiently grown under gravity to form gravitationally
bound objects. Since it is also at such scales that complex
baryonic physics becomes important, it was natural to
suppose that the main determinant lies in complex baryonic
physics of galaxy formation and evolution. For example,
for the small scale problems at z ¼ 0, processes involving
energy input to dark matter halos through dynamical
friction with baryons [103–111] or through random poten-
tial fluctuations driven by starbursts or active galactic
nuclei (AGN) [112–118], were invoked. (In addition to
suggestions modifying the dark matter particle physics
models, as in warm dark matter [119–123], self interacting
dark matter [124–129] and fuzzy dark matter [130–134]).
Similar attempts are ongoing in the case of the more recent
early structure formation issue (some are discussed in
Sec. IV C 2).
However, it is also precisely at the nonlinear scales,

where baryonic physics becomes important, that the pri-
mordial power spectrum is relatively unconstrained. That
modifications thereof can be relevant to small scale
problems associated with galaxy formation has long been
realized [30], but not as extensively investigated as the
baryonic solutions discussed above. While feedback from
starbursts and AGN is now recognized as a central

ingredient of galaxy formation, independently of its pos-
sible role in alleviating the aforementioned issues, and
whereas massive baryonic clumps, proposed to mediate
dynamical friction coupling to dark matter, have since been
observed in forming galaxies (e.g., [135,136]), it is also
important to further examine mechanisms that address
galactic scale problems through modification of the pri-
mordial spectrum. Deriving the consequences of such
modifications is in itself an interesting tool for under-
standing the processes from which they may arise in an
inflationary era.
In this study we investigate the effect on the power

spectrum from field excitations, stemming from non-
adiabatic transition through a high energy cutoff regime
corresponding to currently nonlinear scales, and within the
limits imposed by particle production. We attempt to do this
in generic terms, starting from well-defined initial con-
ditions, with linear dispersion relation (but with sound
speed different from unity) and examining the effect of the
transition. As this solely affects the fluctuation modes, the
equation of state of the inflaton, and thus the background
evolution, remains unmodified (unlike in cases such as DBI
inflation mentioned above), this helps isolate the effect of
excitations on the spectrum. We then look for associated
effects on the matter power spectrum and dark matter halo
mass function.
In the next section, after illustrating in simplest terms

how the power spectrum is essentially an adiabatic invariant
of the dynamics of inflaton fluctuations, we present and
discuss a simple model representing the other extreme
of a sudden transition (in an Appendix, we show results
that suggest it is generic for a large range of parameters;
in a second appendix we discuss the situation when the
assumption is relaxed). In Sec. III we discuss what this
model entails in more formal terms, evaluating the limits on
power spectrum modification in terms of particle produc-
tion. In Sec. IV, we study, within these limits, the possible
modifications on the matter power spectrum and halo mass
function. We discuss possible astrophysical consequences
and constraints, before presenting our conclusions.

II. ADIABATICITY, SCALE INVARIANCE AND
THE SUDDEN EXTREME

A. The evolution of fluctuations

The general quadratic action for inflationary perturba-
tions with sound speed cs can be expressed in terms of the
Mukhanov-Sasaki (MS) variable v as [137–139]:

Sð2Þ ¼ 1

2

Z
d4x

�
v02 − c2s ð∇vÞ2 þ z00

z
v2
�
; ð1Þ

where z ¼ a ϕ0
0

Hcs
, ϕ0 is the background inflaton field,

H ¼ a0=a, and the primes denote derivative with respect
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to conformal time η. The evolution of each Fourier mode
vkðηÞ is governed by the MS equation

v00k þ
�
c2sk2 −

z00

z

�
vk ¼ 0: ð2Þ

The MS variable is related to the curvature perturbations
by v ¼ zR. This is a quantity of fundamental interest, as it
relates primordial quantum fluctuations to the observables,
such as CMB anisotropies; the power spectrum of the large
scale galaxy distribution; and, ultimately (more indirectly),
the formation of smaller scale structures, such as the dark
matter halos hosting galaxies. The dimensionless power
spectrum of such perturbations is given by

Δ2
RðkÞ≡ k3

2π2
jRkj2; ð3Þ

where the right-hand side is evaluated at the horizon
(csk ¼ aH); as in the absence of isocurvature pertur-
bations, the comoving curvature perturbations R are
conserved on superhorizon scales [140]. Scale-invariant
perturbations correspond to Δ2

RðkÞ ¼ const. Departures
from this can arise if cs, or the inflationary Hubble scale
H, depend on time.
In the standard inflationary scenario, a massless field,

and quasi–de Sitter evolution is assumed (and so H is
nearly constant throughout the inflationary stage). The
associated slow roll parameters, defined as

ϵ≡ −
_H
H2

η̃≡ _ϵ

Hϵ
and κ≡ _cs

Hcs
; ð4Þ

are always much smaller than unity. Any departure from
scale invariance is small, and is usually quantified by the
spectral tilt parameter ns:

ns − 1≡ d ln Δ2
R

d ln k
¼ −2ϵ − η̃ − κ: ð5Þ

The slow roll parameters being small implies that ns ≈ 1.
To first order in the slow roll parameters, and assuming

canonical kinetic terms, one can also show that

z00

z
¼ 1

η2

�
2þ 3ϵþ 3

2
η̃

�
: ð6Þ

In this case, to a good approximation, one can rewrite (2) as

v00k þ
�
c2sk2 −

2

η2

�
vk ¼ 0: ð7Þ

If no nonstandard dispersion relation is invoked then
cs ¼ 1, and the standard scenario may be fully recovered.

B. Adiabaticity, adiabatic invariants,
and primordial power spectrum

1. General context

In the context of Eq. (2), setting cs ¼ 1 can be inter-
preted as the result of assuming a massless field with linear
dispersion relation between the physical frequency ωphys

and the physical wave number kphys ¼ k
a, ωphys ¼ kphys.

However, as discussed in the introduction, this is not a
necessity; a modification of the equation of state of the
inflaton (e.g., such as in DBI inflation), or modification of
the dispersion relation due to modes probing a high energy
cutoff scale, beyond which new physics may arise, can
change the situation.
In the latter case, beyond a cutoff scale kc, one can

introduce the relevant modification by replacing the square
of the comoving wave number k2 in (2) with

k2 → k2effðk; ηÞ≡ a2ðηÞω2
phys

�
k

aðηÞ
�
; ð8Þ

the main requirement being that the new dispersion rela-
tion recovers the linear one for scales k ≪ kc [141]. This
dispersion relation is thus necessarily time dependent,
as it must transit between two regimes. It can be used to
parametrize and reflect the effect of a varying sound speed
in Eqs. (2) and (7), the latter applying when the background
dynamics is well approximated by standard slow roll.
Indeed, in this context, Eq. (2) can be rewritten as

v00k þ
�
k2effðk; ηÞ −

z00

z

�
vk ¼ 0: ð9Þ

(A more rigorous derivation, based on a variational
principle, can be found here [142]).
How does the extra time dependence, that thus arises,

affect the power spectrum derived from the above equation?
As noticed in several studies, mere time dependence in
itself is not sufficient to alter the nearly scale invariant
nature of the primordial spectrum of fluctuations. The
adiabaticity condition—that is, j dωdη j=ω2 < 1—must be
violated. A well known example where this condition is
indeed violated invokes the Corley-Jacobson dispersion
relation

k2effðk; ηÞ ¼ k2 − k2jbmj
�

k
kcaðηÞ

�
2m

ð10Þ

(where bm is a constant and m an integer). The studies
[48,141,143], indeed indicated that a modification of
the power spectrum, in the form of a change in the
spectral index and superimposed oscillations, was possible.
However, several criticisms were raised, including the
possibility of complex frequencies arising at early times,
rendering the quantum field theory ill-defined, and
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problems related to setting the initial conditions in non-
adiabatic regime. To circumvent such issues, a new
dispersion relation [142] was proposed, which exhibits
linear behavior in the small and large wave numbers, but
has intermediate concave region where the adiabaticity is
violated locally.
Here we will be considering a simpler scenario, which

assumes standard Bunch-Davies type initial conditions,
with modified sound speed but still linear dispersion
relation. The effective sound speed transits to the standard
relation ω ¼ k as the boundary around kc is crossed. In this
simple controlled context, we wish to estimate the rapidity
and steepness of the transition required in order to produce
palpable change in the power spectrum. It turns out that
such a transition must be quite rapid.

2. The power spectrum as an adiabatic invariant

We now wish to show, in explicit simple terms, that the
primordial power spectrum is in fact an adiabatic invariant
of the evolution of inflationary perturbation, and thus
cannot be significantly modified by any changes in the
dispersion relation that keeps the dynamics of the pertur-
bations sufficiently adiabatic.
We will be interested in the case when the dispersion

relation is modified due to the fluctuation modes probing
scales beyond a high energy cutoff, before they inflate into
lower energy scales on their way to horizon exit. Only
the effective speed of mode propagation is modified and
slow roll inflation of a massless field is assumed to hold
in all stages. So, Eq. (7) holds to a good approximation.
However, because of the nonstandard dispersion relation
assumed, cs in that equation will not be necessarily unity in
all stages. In fact its variation would incorporate changes
parametrized by keff in Eq. (9) above.
In principle cs in (7) can be either larger or smaller than

unity. Perhaps a scenario in which modes do not propagate
at all for kphys ≫ kc, and then do so at increasing cs → 1 as
they emerge from the “quantum foam” at kphys ∼ kc, is
appealing; it qualitatively connects, for example, to waves
propagating in a lattice, which are scattered and dispersed
to smaller speeds as one approaches the interparticle
spacing, before ceasing to propagate. However analogue
models with superluminal speeds cs > 1, beyond the cutoff
scale, have also been proposed [68]. As we discuss in
Sec. III, for our purposes both situations lead to similar
results.
Equation (7) refers to a simple harmonic oscillator with

variable frequency. If cs is constant, the variation solely
comes from the second term in the bracket. To separate this
effect from that connected to possible variation in cs at a
high energy cutoff transition, we exploit the fact that
kc ≫ H. This enables one neglect the second term in the
brackets of Eq. (7), at scales (∼kc) around the high energy
cutoff transition; as, when modes transit from beyond
the cutoff scale kc to below it, the conformal time

ηc ¼ −1
acH

¼ −kc
Hk . The term in the brackets in the aforemen-

tioned equation is then c2sk2ð1 − 2
c2s

H2

k2c
Þ. The second term

inside this latter bracket is small compared to unity when

c2s > 2

�
H
kc

�
2

: ð11Þ

Since we already assume that kc ≫ H, this is always the
case when cs > 1. Wewill also assume that this condition is
satisfied when considering the case of cs < 1 [144].
This leaves us with an equation of a harmonic oscillator

with frequency ω ¼ csk. The adiabatic invariant for a
standard harmonic oscillator with specific energy E and
frequency ω is J ¼ E

ω. Taking the modulus of the amplitude
and the velocity v0kðηÞ ¼ iωkvkðηÞ, the energy of the
oscillator is E ¼ ω2jvkj2. Whatever the evolution at scales
above kc, as long as it is adiabatic J is conserved.
Moreover, at scales < kc one must recover the standard
linear dispersion relation, and so ω ¼ k. At such scales,
relevant to eventual horizon crossing, one then has

J ¼ kjvkj2: ð12Þ

Comparing this with the standard slow roll inflationary
power spectrum

Δ2
RðkÞ ¼

kH2

2π2
jvkj2; ð13Þ

one finds that they are equivalent up to a (nearly) constant
factor H2

2π2
.

With sufficiently adiabatic evolution through the tran-
sition at kc no significant change to the power spectrum can
occur. Any appreciable effect could then result solely from
small variations in H, or from second term in bracket of
Eq. (7), which also turns out to be quite modest, as may be
expected given the quadratic correction at any physical
scale ðkphys=HÞ−2. For this implies again that this term is
smaller than the first until modes are quite close to existing
the horizon. In Appendix A 1, we show numerical calcu-
lations that corroborate this contention in the context of the
simple model described below.

C. A toy model of the sudden extreme

As we have seen, any adiabatic frequency change, due to
nonstandard evolution of modes beyond a high energy
cutoff scale, will not alter the nearly scale free form of the
resulting power spectrum. We thus consider the opposite
extreme; that of a sudden change in the sound speed at kc,
while employing the same approximation of neglecting the
second term in the bracket of Eq. (7). The procedure again
separates changes in the power spectrum due to variations
in cs at around kc ≫ H from any time dependence
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connected to the second term in the above equation at much
smaller physical wave numbers.
The change in sound speed across the transition is

equivalent to a sudden change in frequency. To illustrate
such a situation in simplest terms, we consider the effect of
such a change on a simple harmonic oscillator, with initial
amplitude A, frequency ωin and phase ϕ. Its evolution is
given by

XinðtÞ ¼ A cos ðωintþ ϕÞ ð14Þ

X0
inðtÞ ¼ −Aωin sin ðωintþ ϕÞ; ð15Þ

with

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
inðtÞ þ

V2
inðtÞ
ω2
in

s
ð16Þ

ϕ ¼ arccos

�
XinðtÞ
A

�
− ωint: ð17Þ

Suppose that at some moment t ¼ ts the spring constant is
suddenly altered, and the corresponding frequency of the
oscillator changes to ωout. Then, for t ≥ ts,

XoutðtÞ ¼ B cosðωoutðt − tsÞÞ
þ C sinðωoutðt − tsÞÞ ð18Þ

X0
outðtÞ ¼ −Bωout sinðωoutðt − tsÞÞ

þ Cωout cosðωoutðt − tsÞÞ: ð19Þ

Matching the initial and final states at ts one obtains

B ¼ XinðtsÞ ð20Þ

C ¼
_XinðtsÞ
ωout

: ð21Þ

So the evolution after the jump can be expressed in terms of
the initial state at the jump as

XoutðtÞ ¼ XinðtsÞ cosðωoutðt − tsÞÞ

þ
_XinðtsÞ
ωout

sinðωoutðt − tsÞÞ; ð22Þ

with the amplitude and phase changing after the jump.
We now apply this toy model to attempt to mimic

the evolution of fluctuations due to a sudden change in
frequency (or again, effectively sound speed) of propaga-
tion of inflaton fluctuations. In our approximation the
evolution is effectively governed by two independent
harmonic oscillators, due to the complexity of the mode
functions in (7). Thus, for the real part,

XinrðηÞ ¼ Ar cosðωinηþ ϕrÞ ð23Þ

_XinrðηÞ ¼ −Arωin sinðωinηþ ϕrÞ; ð24Þ

and for the imaginary part we have

XiniðηÞ ¼ Ai cosðωinηþ ϕiÞ ð25Þ

X0
ini
ðηÞ ¼ −Aiωin sinðωinηþ ϕiÞ: ð26Þ

The sudden step will here correspond to conformal
time ηc, when an inflating mode crosses a physical the
wave number kc, where “new physics”may arise. Applying
the step condition as previously, for the real part we find

Xoutr ¼ XinrðηcÞ cos½ωoutðη − ηcÞ�

þ X0
inr

ωout
sin½ωoutðη − ηcÞ�: ð27Þ

Similarly, for the imaginary part

Xouti ¼ XiniðηcÞ cos½ωoutðη − ηcÞ�

þ X0
inr

ωout
sin½ωoutðη − ηcÞ�: ð28Þ

The complete solution then is

vkðηÞ ¼ XoutrðηÞ þ iXoutiðηÞ: ð29Þ

This can be evaluated for each k, with ωkout ¼ k, given
ωkin ¼ csk. As mentioned above (and checked in
Appendix A 1) usage of Eq. (29), in order to evaluate
the effect on the primordial power spectrum of a sudden
step in cs and ω at kc, returns a good approximation.
The results of Appendix A 2 also suggest that the sudden
jump scenario itself turns out to be much more generic to
any appreciable change in the power spectrum than may
seem a priory. We now discuss how the power spectrum is
evaluated and the modifications to the standard near scale
invariant form that arise.

1. The power spectrum of primordial fluctuations

A mode corresponding to comoving wave number k
crosses the high energy cutoff scale at ηc ¼ − kc

Hk. At η ≪ ηc
we assume Bunch-Davies type initial conditions but with
ωk ¼ csk, with cs ≠ 1. Thus, before the transition in sound
speed (and frequency),

vkðηÞ →
1ffiffiffiffiffiffiffiffi
ωkin

p eiωkin
η: ð30Þ

For the initial amplitudes one then has
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Ar ¼ Ai ¼
1ffiffiffiffiffiffiffiffi
ωkin

p ; ϕr ¼ 0; ϕi ¼
π

2
: ð31Þ

Modes with physical wave numbers larger than kc at the
start of inflation undergo a frequency change such that
ωin=ωout ¼ cs (where cs refers to the value, different from
unity, before the crossing). Modes with smaller wave
numbers do not cross the high energy cutoff scale and
their frequency remains unmodified (we discuss how the
transition scale is connected to current comoving scales
in Sec. IV).
All modes eventually cross the horizon. Using Eqs. (29)

and (3), one can evaluate the power spectrum in the context
of our simplified model when H is given. This is done at
horizon crossing when η ¼ ηH. Alternatively, one can also
use Eq. (7) to calculate the power spectrum numerically at
superhorizon scales, as done in the Appendix for purpose of
comparison and evaluating the relevance of the model.
In de Sitter inflationH is exactly constant, and all modes

are assumed to exit the horizon at time ηH ¼ −1=k. Since
again a standard dispersion relation must reign beyond the
high energy cutoff scale kc, one expects ωout ¼ k. All
modes then leave the horizon at the same phase and
oscillations implied by Eqs. (27) and (28) do not appear
in the power spectrum; only enhancement is found at scales
undergoing the jumps. Numerically, Eq. (7) can be used to
obtain similar results (cf. Appendix A 1).
The Hubble parameter in more realistic models of

inflation must vary slowly with time. The variations imply
that modes do not leave the horizon at the same phase, and
oscillations as well as enhancement appear in the primor-
dial power spectrum. As a simple generic example, we will
adopt power-law inflation [145,146] where (in proper
time), aðtÞ ≈ tp, with p > 1. This corresponds to an
inflation potential of the form

VðϕÞ ¼ V0 exp

"
−

1

MPl

ffiffiffiffi
2

p

s
ðϕ − ϕiÞ

#
; ð32Þ

where MPl is the reduced Planck mass. with slow-roll
parameters given by

ϵv ¼
M2

Pl

2

�
Vϕ

V

�
2

¼ 1

p
; eηv ¼ M2

Pl

Vϕϕ

V
¼ 2

p
; ð33Þ

where Vϕ ¼ dV
dϕ. The scale factor and the Hubble parameter

become

aðηÞ ¼
�

η

ηin

� p
1−p
; HðηÞ ¼ −

p
p − 1

�
η

ηin

� p
p−1 1

η
; ð34Þ

with ηin ¼ tin
1−p. With these forms for the evolution of the

scale factor and Hubble parameter one can again use
Eq. (29) in conjunction with (3) to evaluate the power

spectrum, or numerically integrate Eq. (2), which now takes
the following form

v00kðηÞ þ
�
c2sk2 −

2p2 − p
ð1 − pÞ2

1

η2

�
vkðηÞ ¼ 0: ð35Þ

We will generally use H ¼ 10−4MPl, p ¼ 55. and
ηi ¼ −104M−1

Pl , in order to get the correct normalization
and tilt of the power spectrum on linear scales using power
law inflation. The results, when rescaled accordingly, are
valid for other values of H, since the relative enhancement
of the power spectrum depends only on the in and out
frequency ratio of oscillations. The connection between
the cutoff scale kc and the corresponding comoving
scale depends on H=kc rather than the absolute values
(Sec. IVA 2). As shown in Appendix A 1, the step enhance-
ment in the power spectrum is accompanied by oscillations
in this more generic (as opposed to de Sitter) case.

III. BROKEN INVARIANCE AND PARTICLE
PRODUCTION

A. General solution in terms of Bogoliubov coefficients

We now consider what the simplified sudden step model
actually implies in terms of quantum fluctuations in an
inflaton. For this purpose we translate it to the language
Bogoliubov expansion and coefficients. In this context,
the high energy cutoff transition will be seen to lead
to excitations of the field and particle production. The
excitations will take place as a result of transitions between
well defined time independent in and out states. They
invariably lead to enhancement in the power spectrum,
generically accompanied by oscillations.

B. Generic enhancement in power spectrum

Using (7), and again invoking the approximation of
neglecting the −2

η2
term due to kc ≫ H, we get the mode

function differential equation of a massless free scalar field
in Minkowski spacetime, with ωk ¼ k. Assuming the field
to be initially in the vacuum state j0i, the amplitude of the
vacuum fluctuations (the square root of the power spec-
trum) are given in terms of the vacuum mode function
corresponding to the Bunch-Davies initial conditions (30).
Then, nonadiabatic evolution (whether sudden or not), can
transform this initial vacuum state j0i to one with excita-
tions, with respect to the old annihilation operator â−k .
To find the effect of such excitations on the power

spectrum after the transition is complete, one can proceed
as follows. First by writing the mode expansion of the field
operator in terms of the annihilation operator b̂−k of j0i and
its complex conjugate

χ̂ ¼ 1ffiffiffi
2

p
Z

ðeik·xμ�kb̂−k þ e−ik·xμkb̂
þ
k Þ

d3k

ð2πÞ3=2 ; ð36Þ
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and then computing the two point correlation function in
the state j0i using this operator. One can then define the
amplitude of the quantum fluctuations in terms of the new
mode function μkðηÞ as

ΔμðηÞ ¼
1

2π
k3=2jμkðηÞj: ð37Þ

This new normalized mode function is a linear combina-
tion of the old one and its complex conjugate. Using
Bogoliubov coefficients, it can be written as

μkðηÞ ¼ αkvkðηÞ þ βkv�kðηÞ: ð38Þ

Thus we have

ΔμðηÞ ¼
1

2π

k3=2ffiffiffiffiffiffi
ωk

p ½jαkj2 þ jβkj2 þ 2Reðαkβ�ke2iωkηÞ�1=2:

ð39Þ

The second coefficient β refers to excitations away from
the vacuum state; as we will see below it directly counts
particle production. The ratio of the primordial power
spectrum after and before the sudden change can be
expressed as

Δ2
μðηÞ

Δ2
vðηÞ

¼ 1þ 2jβkj2 þ 2Reðαkβ�ke2iωkηÞ: ð40Þ

Averaging over a period larger the periodic time of the
system (or in generic inflation models, over horizon exists
of the different modes with different H), eliminates the
oscillating term. The main result is that excitations away
from the vacuum state lead to typically larger RMS
fluctuations and power spectrum.
An important point to note here is that the generic

enhancement in the power spectrum will occur whether
the ‘jump’ in frequency is upward—that is whether
ωin < ωout—or the downward, with ωin > ωout. Or, assum-
ing a dispersion relation w ¼ csk to govern the propagation
of fluctuations before and after the jump, the power
spectrum will be enhanced whether cs is larger before
the jump, or whether it is larger afterwards. This is seen
explicitly below.

C. Relations between the coefficients
and the frequencies

The above does not necessarily assume instantaneous
transition jumps between the well defined in to out
states, just that a time dependent transition occurred. In
our simplified model we have two regions connected by
a sudden jump, which enables one to calculate the
Boguliubov coefficients explicitly in terms of the in and
out frequencies.

If one labels the initial vacuum as j0ini, and the final
vacuum j0outi. Before the jump, and assumes the scalar
field is in the initial vacuum state, the mode function is

vðinÞk ðηÞ ¼ 1ffiffiffiffiffiffiffiffi
ωkin

p eiωkin
η; ð41Þ

for η < ηc. Before the jump, the frequency ωin ¼ csk with
cs ≠ 1. In order to connect with standard inflationary
scenario, the frequency after the jump is ωkout ¼ k. The
final frequency ωkout is therefore necessarily different from
the initial one ωkin . This causes excitations in the field,
which modify the power spectrum.
After the jump, the mode function vðinÞk ðηÞ evolves into

the superposition of vðoutÞk ðηÞ and its complex conjugate:

vðinÞk ðηÞ ¼ 1ffiffiffiffiffiffiffiffiffi
ωkout

p ½α�keiωkout ðη−ηcÞ − βke−iωkout ðη−ηcÞ�: ð42Þ

The Bogoliubov coefficients αk, βk are determined by the
requirement that the solution and its first derivative must be
continuous at the jump, that is at η ¼ ηc. The result is

αk ¼
e−iωkin

ηc

2

� ffiffiffiffiffiffiffiffiffi
ωkin

ωkout

r
þ

ffiffiffiffiffiffiffiffiffi
ωkout

ωkin

r �
ð43Þ

βk ¼
eiωkin

ηc

2

� ffiffiffiffiffiffiffiffiffi
ωkin

ωkout

r
−

ffiffiffiffiffiffiffiffiffi
ωkout

ωkin

r �
ð44Þ

This explicitly shows that the time dependence introduced
by assuming a sufficiently rapid transition from in to out
states can lead to significant excitation in the inflaton field
for large enough frequency ratio. As is clear, the absolute
values of βk and αk derived above do not depend on
whether ωin > ωout or the reverse. This again shows that
generic enhancement in the power spectrum is expected,
independent of the direction of the jump.

D. Limits from particle production

As we have seen, excitations of the inflaton generically
lead to enhanced power spectrum. In Sec. IV below, we will
suggest that these may have important consequences at
galactic scales, at both high and low redshifts, pertaining to
such apparent problems as the dearth of dwarf galaxies,
“too big to fail” and early galaxy formation, while main-
taining a standard spectrum at scales where it is highly
constrained. But how much excitations of the field can one
have without ruining the inflationary scenario itself?
Indeed, the exponential expansion during inflation hinges
on a dark energy equation of state, too much excitation and
particle production can turn it instead into a radiation field,
with deceleration replacing the exponential expansion.
The radiation energy density associated with the rela-

tivistic particles, which can be assumed to be produced
through excitations of the field, may be expressed as [76]
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hρi ¼
Z

kphys¼kc

kphys¼H
d3kphysωphysðkphysÞnkphys ; ð45Þ

where kphys and ωphys are the physical wave numbers
and frequencies. The occupation number of excited states
can be expressed in terms of the second Bogoliubov
coefficient as nðkÞ ¼ jβkj2. In the relevant integration range
the relation between the wave numbers and frequencies is
linear, and the integral is dominated by larger values of
kphys. In this case, hρi ≈ β2k4c, where β corresponds to βk at
larger values of k dominating the integral.
In the context of the sudden step scenario βk is some

nonzero constant for modes affected by the jump (and zero
otherwise), and the above estimate is rigorously justified. In
order for inflation to start and proceed then, β2k4c must be
smaller than the energy density scale of inflation H2M2

Pl.
This leads to the condition

jβj < MPlH
k2c

: ð46Þ

If kc ¼ MPl this is small for H ≪ kc. However much
smaller cutoff scales may in principle be allowed (and
claimed all the way down to the TeV scale e.g., [147–149];
also [150] for review). For the largest field inflation allowed
by recent data, with H ≲ 3 × 10−5MPl and relatively con-
ventional high scale kc ≳ 10−3MPl, one finds jβj≲ 30 as an
upper limit. In general, one only needs kc=MPl ≈H=kc to
get a Bugoliubov coefficient of order one. The backreaction
condition above may thus in principle allow for large
modifications that could be tested and constrained obser-
vationally, even in the nonlinear regime of structure
formation.
As long as (46) is satisfied inflation can start and

proceed, but in order to obtain a near invariant spectrum
on large scales, the time derivative of the backreaction
energy must also be small as the large scale modes exit the
horizon. The limits of integration in Eq. (45) is an upper
limit on backreaction energy, which assumes that the whole
interval between kc and H is filled with excited states
corresponding to modes that have already crossed kc. In
this case the time derivative dhρi

dt ∼ β2H3 _H is much smaller
in absolute value than the change in energy density of the
inflaton ∼M2

PlH _H for values of β2 of interest. However,
at earlier times, as modes are crossing kc and filling up
the interval down to H, the integration interval is variable,
the time derivative of the backreaction energy d hρi

dt ∼
β2k3physðkcÞ_kphysðkcÞ ≈ β2Hk4physðkcÞ can be much larger
(here kphysðkcÞ refers to the physical wave number of the
first scale that crosses kc; it decreases as the mode inflates
toward the horizon, when kphysðkcÞ ¼ H). This leads to the

constraint β2 ≲ ϵ
H2M2

Pl
k4c

ð kc
kphys

Þ4, where ϵ ¼ − _H=H2. A more

detailed treatment gives a similar constraint, β2 ≲
2ð6πÞ2ϵ H2M2

Pl
k4c

ð kc
kphys

Þ4 [151].

The effect of the changing energy density as the excited
states are filling up the interval between kc and H can be
quite complicated, as it would require evaluation of the
modified evolution, taking into account the rescaling of
the energy density (which itself can act as vacuum energy
[76]). Here we just point out that, simply assuming the
usual relation ϵ ¼ H2

8π2P0
to hold when the effect is small

enough, leads to the condition

jβj≲
�
2 × 10−9

P0

�
1=2

× 6.7 × 104
�

H
kphysðkcÞ

�
2

; ð47Þ

with P0 ≈ 2 × 10−9 the standard characteristic value of the
standard primordial power spectrum of scalar fluctuations,
This rough estimate suggests that jβj can be of order one,
without affecting the power spectrum on larger scales
exiting the horizon, if these scales exit when the spatial
physical scale that first crosses the high energy threshold
has inflated enough to be about 0.004 times the size of the
horizon. We further discuss the possible interpretation of
this constraint in Sec. IVA 2.
As the ratio of the power spectrum modified by exci-

tations to the vacuum power spectrum scales as 1þ 2β2,
considerable modifications may be allowed in principle, if
jβj is of order one or larger. In the following we consider
possible consequences of, and constraints on, such modi-
fication on currently nonlinear scales, where existing
observational constraints are relatively weak and apparent
problems with galaxy formation at low and high red-
shift arise.

IV. MATTER POWER SPECTRUM AND HALO
MASS FUNCTION

In this section we examine some possible astrophysical
implication of the sudden change of frequency at a high
energy cutoff. For this purpose we compute the linear
matter power spectrum and the dark matter halo mass
function. The modified halo mass function will be of
interest, particularly in terms of its possible observable
consequences on the galaxy stellar mass function. For the
actual calculations we assume a λCDM universe with
Ωm ¼ 0.3, ΩΛ ¼ 0.7, h ¼ 0.7, and RMS dispersion in
the density field at 8 h−1Mpc at z ¼ 0, σ8 ¼ 0.8.

A. The matter power spectrum

1. Evaluation procedure

The power spectrum of perturbation in the CDM is
evaluated from
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Pðk; aÞ ¼ 4

9

k4PiðkÞ
Ω2

mH4
0

T2ðkÞD2ðaÞ; ð48Þ

where PiðkÞ≡ Δ2
RðkÞ is the primordial power spectrum,

DðaÞ the linear growth factor, andH0 is the present value of
the Hubble parameter.
As we will be primarily interested in generic conse-

quences, rather than detailed comparison with data, for this
purpose we generally use the BBKS fitting form [152]

T

�
x≡ k

keq

�
¼ lnð1þ 0.171xÞ

0.171x
½FðxÞ�−1=4; ð49Þ

with keq ¼ 0.073 Ωmh2Mpc−1 and

FðxÞ ¼ 1þ 0.284xþ ð1.18xÞ2 þ ð0.399xÞ3 þ ð0.490xÞ4:
ð50Þ

For the growth factor, we use [153]

DðzÞ ¼ DþðzÞ
Dþðz ¼ 0Þ ; ð51Þ

where

DþðzÞ ¼ 5Ωm

2

HðzÞ
H0

Z
∞

z

ð1þ z0Þdz0
½Hðz0Þ=H0�3

; ð52Þ

with

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ð1 −ΩmÞ

q
: ð53Þ

We have verified our results against full solution of the
perturbation equations using the public code CLASS (class-
code.net), and show results using this code in examining
the predictions of the enhanced primordial spectrum
scenario in the more general case when the assumption
of sudden jump is relaxed (Appendix B and Fig. 8).

2. Choice of jump scale

CMB and large scale structure observations place quite
tight constraints on the amplitude of the primordial power
spectrum on scales ∼10 Mpc or larger, We now show how
smaller scales can be affected by a modified power
spectrum, while larger scales remain unaffected, if inflation
proceeds for approximately the number of e-folds needed to
solve the horizon problem.
Observable inflation takes place after the comoving

spatial scale k−1ðH0Þ ∼H−1
0 exits the horizon; it is char-

acterized by the minimum number of e-folds needed to
solve the horizon problem: N½kðH0Þ� ¼ ln ½aend=akðH0Þ�,
where the subscripts denote the end of inflation and the
epoch of horizon exit of the scale k−1ðH0Þ. The condition
can be written as

akðH0Þ
a0

¼ H0

H
; ð54Þ

where, a0 is the current scale factor. H is the Hubble
parameter at the horizon exit of the scale kðH0Þ−1 during
inflation.
Given a comoving scale k, one may ask when it was

equal to a given physical scale kc during inflation. This
gives the following condition

k
a0H0

¼ ackc
akðH0ÞH

: ð55Þ

As an example, we set kðkcÞ ¼ 1 Mpc−1, H ¼ 10−4MPl,
and kc ¼ MPl. We then find that ac ∼ akðH0Þ; that is, at the
time the current horizon scale H−1

0 exits the horizon during
inflation, the comoving spatial scale ∼1 Mpc is of the order
of the Planck length.
This general picture is reproduced even if the cutoff scale

kc is not the Planck scale. All one needs is H=kc ≈ 10−4. If
inflation proceeds for a number of e-folds larger than the
number Nmin ¼ N½kðH0Þ� required to solve the horizon
problem, then the “jump scale” can still correspond to
kðkcÞÞ ¼ 1 Mpc−1 if H=kc < 10−4. In general, the number
of e-folds allowed, with kðkcÞ corresponding to the smallest
comoving spatial scale affected by the high energy cutoff
transition, is

N ¼ Nmin þ ln

��
kc
H

��
kðH0Þ
kðkcÞ

��
: ð56Þ

The scale kðH0Þ ≈ 10−4 Mpc−1 is fixed by the present
size of the horizon, while kðkcÞ ¼ 1 Mpc−1 happens to
roughly correspond to the largest scale on which significant
modification of the power spectrum would not affect its
inference from galaxy cluster counts and lensing surveys
(but, depending on the exact scale, not necessarily Lyman-α
bounds, as discussed in Sec. IV C 3). Larger values of kðkcÞ
are in principle possible, and in this case the power
spectrum can be modified on smaller scales, affecting
smaller nonlinear structures. However, if one takes into
account our crude estimate of the time variation of the
backreaction, this may be constrained. For, as mentioned in
relation to Eq. (47), to maintain jβj of order 1, one may
needH=kphysðkcÞ≳ 0.004. If kðkcÞ ≈ 1 Mpc−1, the comov-
ing scale exiting the horizon when this is satisfied is
≈0.004 Mpc−1. Larger scales, with smaller wave numbers,
can be affected if one insists on jβj ≳ 1. In the context of
the simplest scenario with constant βk beyond the cutoff
regime, the power spectrum may be modified on such
scales. This may be allowed on comoving scales
k < 0.004 Mpc−1, and may even be relevant to supposed
anomalies of the CMB on large scales, but not on smaller
spatial scales, where modifications are tightly constrained.
That changes in the power spectrum on the largest scales
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may be connected with backreaction associated with initial
evolution has already been noted (e.g., [154]), and may be
of interest in the present context, but its proper examination
is beyond our present scope.
Here we will be mainly interested in the enhancement of

the power spectrum on large nonlinear scales, correspond-
ing to k ≈Mpc−1, because of the particularly interesting
consequences for galaxy formation we discuss in
Section IV C. Fig. 1 shows the resulting dimensionless
matter power spectrum for a jump corresponding to ratio of
sound speeds (or in and out frequencies) of 100 on such
scales. The ratio is associated with a Boguliubov coefficient
jβj of about 5. The large value is chosen as to clearly
delineate phenomena associated with significant excitation
on nonlinear structure formation. This fixes our basic
fiducial model. We will examine, in addition, the effect
of smaller enhancements and comoving spatial cutoff
scales (Sec. IV C 3), as well as the effect of relaxing the
sudden jump assumption (Appendix B; Sec. IV C 3).

B. Halo mass function

1. Evaluation procedure

On nonlinear scales, modifications of the primordial
power spectrum are primarily encoded in the mass function
of self gravitating dark matter objects, the halos hosting
galaxies. We evaluate this function using the Press-Schecter
formalism, which estimates the number of dark matter
halos per unit mass and comoving volume, given the linear
matter power spectrum via a spherical collapse model
[155,156]. This is given by

dn
dm

¼ ρ0
M2

fðσÞ
���� d ln σ

d ln M

���� ð57Þ

where ρ0 is the mean matter density at z ¼ 0 and fðσÞ is
given by

fðσÞ ¼
ffiffiffi
2

π

r
ν exp

�
−ν2

2

�
; ð58Þ

where ν ¼ δc=σ, with δc ¼ 1.686 the critical overdensity
for spherical collapse and σ the RMS variance of mass
fluctuations within a sphere of radius R and containing
massM ¼ ϑfρ0R3, where ϑf a constant that depends on the
filter functionW. For Gaussian filter it is ϑf ¼ ð2πÞ3=2. The
filter function is characterized by its size R or mass M. In
the case of Gaussian filter we use here, the relation between
them is

M ¼ 4.37 × 1012 Ωm h−1
�

R
h−1Mpc

�
3

M⊙: ð59Þ

As our primary aim is to illustrate generic consequences of
enhanced small scale power spectrum, we generally kept to
the aforementioned simplest form of the Press-Schecter
formalism. However we have also verified the insensitivity
of our results to that choice by comparing with an
ellipsoidal collapse fitting function, which provides better
fits to mass functions of halos identified in cosmological
simulations [157–160],

FIG. 1. Dimensionless matter power spectra at z ¼ 0. The perturbed cases correspond to sudden jumps of a factor of 100 in mode
frequency (and therefore sound speed) due to shift in dispersion relation at the high energy cutoff scale (chosen to correspond to a
comoving wave number k ¼ 1h=Mpc as discussed in the text). Spectra are shown for a de Sitter background (left) and corresponding
power law inflation model as a generic example (cf. Sec. II C 1). The oscillations in the latter case are absent in the de Sitter one due to all
modes leaving the horizon at the same phase. The frequency ratio corresponds to a Boguliubov coefficient jβj ¼ 4.95 [Eq. (44)]. Note
that, for power law inflation, there is net enhancement despite the strong oscillations, which appear symmetric around the unperturbed
spectrum on the logscale. This will result in similar mass dispersions in the de Sitter and power law models, where the smoothing also
leads to gradual enhancement despite the sudden jump at the cutoff scale (Fig. 2).
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fðσÞ ¼ A

ffiffiffiffiffiffiffi
2as
π

r �
1þ

�
ν2

as

�
ps
�
ν exp

�
−
asν2

2

�
; ð60Þ

where we set ps ¼ 0.3, A ¼ 0.3222 and as ¼ 0.707.
Results using that form are shown in Appendix B, where
we examine implication of an enhanced small scale
spectrum when the assumption of sudden jump is relaxed,
and also in Fig. 8.
The mass variance is calculated through the integral,

σ2ðRÞ ¼ 1

2π2

Z
∞

0

k2PðkÞW2ðkRÞdk; ð61Þ

where PðkÞ is the linear power spectrum and WðkRÞ is the
Fourier transform of the Gaussian filter function

WðkRÞ ¼ exp
�
−
ðkRÞ2
2

�
: ð62Þ

Figure 2 shows the thus calculated dispersion for de Sitter
and power low inflation models. As can be seen the strong
oscillations in the power spectrum of the latter case are
smoothed and integrated over, and the results are quite
similar in the two cases. Also, despite the sharp jump in the
corresponding power spectra, the change in the RMS mass
fluctuations in the nonlinear regime beyond the cutoff scale
is gradual.

2. Mass function at redshift zero

Figure 3 shows the resulting Press-Schecter halo multi-
plicity function, which estimates the fraction of mass in
halos of mass M, corresponding to the unperturbed and
perturbed (with jump) matter power spectra shown in
Fig. 1. As may be expected given the mass dispersions

shown in Fig. 2, the results are virtually identical in case of
de Sitter and power law inflation, despite the strong
oscillations in the spectrum in the latter case. Perhaps also
expected is the enhancement at larger masses embodied in
the bump encompassing a scale around a few 1012M⊙,
when the power spectrum is boosted. More counterintui-
tively, there is a dearth of small halos when the power
spectrum is perturbed. This is due to those smaller halos
more rapidly merging into larger ones, as we discuss further
below (next subsection).
The bump at higher masses is not in itself directly

observable; as it can be accounted for by changing the
galaxy-halo occupation numbers. Indeed it roughly corre-
sponds to the highest mass to light ratio inferred when

FIG. 2. RMS mass fluctuations corresponding to power spectra shown in Fig. 1. Note that the strong oscillations in the power
spectrum, in the case of power law inflation, have little effect here, as they are smoothed over and integrated out as the dispersions are
extracted from the power spectra. Despite the sharp jump in linear power spectra, the change in the RMS mass fluctuations beyond the
cutoff scale is also gradual.

FIG. 3. Multiplicity function, describing the fraction of mass in
dark halos of mass M, for the power spectra shown in Fig. 1 and
dispersions of Fig. 2. As may already be expected from the latter
figure, the results are similar in de Sitter and power law inflation
(labeled DS and PL, respectively), due to the smoothing and
integration over the oscillations as the mass function is derived.

SELEIM, EL-ZANT, and ABDEL-MONEIM PHYS. REV. D 102, 063505 (2020)

063505-12



fitting galaxies to halos in context of the standard model.
Nevertheless, the compatibility of such enhancement with
data can be tested through a combination of abundance
matching and dynamical modeling. In fact, for galaxies
with stellar mass above 5 × 1010M⊙, abundance matching
with standard power spectrum seems to overpredict the
observed stellar masses for a given dynamical mass [161].
As the galaxy number density (determined by the stellar
mass function), is a decreasing function of mass, the
discrepancy may in principle be accommodated in our
current context as follow: by increasing the abundance of
halos with larger dynamical masses (with the bump at
higher masses), the galaxy population associated with such
halos will then be one with correspondingly larger number
density, and hence smaller masses. This is essentially the
same effect that may help alleviate the apparent problems
with early massive galaxy formation as we discuss in
Sec. IV C 2. Thus the solution to such potential problems
does not only appear consistent with the distribution of
dynamical masses at low redshift but may even resolve
certain problems there; at both high and low mass scales.

3. Enhancement at high z and large M,
and suppression at the opposite ends

For the same parameters used above, Fig. 4 shows the
multiplicity function at selected redshifts. Four trends are
clear. First, the enhancement in the primordial power
spectrum leads to enhancement in the number of halos
at intermediate masses, culminating approximately at the
mass scale corresponding to the length scale to where
the jump in the power spectrum is placed. The second is
that the effect is larger, and is apparent for a larger range
in masses, at higher redshifts. Indeed, Fig. 5 shows a

maximum enhancement of almost four orders of magnitude
at z ¼ 8, compared to only a factor of a few at z ¼ 0. This is
because high mass halos are rarer at higher redshifts and
thus the relative increase due to the enhancement resulting
from the discontinuity in the power spectrum is larger. It
also results in the rate of change in the mass function with
redshift, at fixed mass, being smaller in the case of
enhanced spectrum than in the unperturbed case.
Finally, there is the somewhat counterintuitive effect,

mentioned at the conclusion of the previous subsection, of
significant suppression of the multiplicity function con-
tribution of halos at smaller masses, below a few 1011M⊙.
This interesting result may be understood by recalling that
enhancement in the power spectrum at comoving scales
associated with masses of ≳1012M⊙, implies that all
smaller scales are also enhanced. And enhancement at
smaller (length and mass) scales in turn implies that smaller
halos form at higher redshift and that by the redshifts
considered here they have already been typically subsumed
in larger ones; that is, the typical mass scale, for a given
fluctuation level at a given redshift, shifts up. This leads to a
relative decrease in the number of halos with masses
≲109 M⊙. As opposed to the case of the enhancement
of the multiplicity of relatively high mass halos, the
deenhancement is here relatively larger at smaller z, as
the lower mass halos are now those that are rarer at such
redshifts.

C. Interpretation and possible consequences

As, in the current model of structure formation, galaxies
form in seeds provided by the potential wells of dark matter
halos, the significant modifications to the halo mass
function are expected to leave imprints on the associated
galaxy stellar mass function. Pertinent questions here thus

FIG. 4. Same as in Fig. 3 but at the indicated redshifts (using
power law inflation model). Solid lines show the results with
standard (nearly) scale invariant primordial spectrum, which are
compared to those obtained when the power spectrum is boosted
at smaller scales, as a result of an imposed step (corresponding to
a ratio of hundred fold) in mode frequency and propagation speed
(cf. Fig. 1).

FIG. 5. Ratios of mass functions with modified power spectrum
to those resulting from unmodified power spectrum, at the same
redshift. The results correspond to the ratios of dashed to solid
lines in Fig. 4 and Fig. 3.
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include whether those modifications have consequences for
problems arising at small scales within the current standard
scenario of structure formation, as outlined in the intro-
duction; or, in contrast, whether such modifications can
constrained also on nonlinear scales.

1. Small scale problems at low redshift
and the dearth of dwarf galaxies

One straightforward consequence of the suppression of
halo multiplicity at small scales pertains to the longstanding
issue of the dearth of dwarf galaxies in the standard scenario:
a galaxy like theMilkyWay is expected, in the context of the
ΛCDM with a standard primordial power spectrum, to have
hundreds of satellites that are not observed, and some of the
predicted hosting halos are too “large” to have “failed” to
form galaxies. These are aspects of the so-called small scale
problems of the standard scenario has given rise to various
explanations, e.g., in terms of baryonic physics, warm dark
matter, fuzzy dark matter, as well as direct suppression of the
small scale power spectrum.
Our somewhat counterintuitive result, on the other hand, is

that an enhancement of power on small scales can also lead to
a suppression in the number of small halos (as these ‘over-
merge’ into larger entities). This suppression at z ¼ 0 at the
scales where issues such as the dearth of small galaxies
(Mh ≲ 109M⊙) and too big to fail (109 ≲Mh ≲ 1011M⊙)
problems appear, can therefore be of relevance to apparent
small scale crises arising in the context the standardmodel of
structure formation. The order of magnitude suppression at
smaller masses is directly relevant to resolving the apparent
discrepancy between the number of observed small satellite
galaxies and large number of small halos found in cold dark
matter simulations. The suppression on the larger mass
scales, on the other hand, may help alleviate the too big to
fail issue; when this is posed as an abundance matching
problem, whereby the abundance of simulated halos is too
large at the masses inferred from the dynamics of observed
galaxies in the range109 ≲Mh=M ⊙ ≲1011 (e.g., ref. [162]).

2. The excess of early massive galaxies

The enhancement at higher mass scales may, on the other
hand, have consequences for the more recently raised issues
associated with early galaxy formation. These are extensions
of longstanding phenomena related to what is referred to as
’downsizing’ (e.g., [163]), required to account for prepon-
derance of early massive galaxies; a phenomenon that does
not appear entirely natural in a hierarchical structure for-
mation scenario, where the smaller halos embodying the
potential wells hosting the galaxies form first.
The problem of early galaxy formation has been termed

‘impossibly early’ in the context of the standard ΛCDM
scenario of structure formation [93]. In that work, the
authors attempt to infer the halo mass function at high-z,
primarily from stellar mass functions derived using

photometric spectral energy distribution templates and
ultraviolet luminosity functions. The halo mass is then
inferred by assuming a stellar to halo mass of M�=Mh ¼
1=70. If this local value of M�=Mh is used, then Fig. 1
of the aforementioned work suggests that the number
density of massive galaxies can greatly exceed that of
the halos they should inhabit for z ≳ 4 in the standard
ΛCDM structure formation scenario. The discrepancy
becomes more severe as one moves up in redshift and
mass, reaching four orders of magnitude or more.
The above would seem to rule out the standard scenario

of structure formation in the context of ΛCDM cosmology.
However, a couple of caveats have been pointed out.
First, regarding the assumption that M�=Mh does not vary
with redshift. For, as can also be seen from Fig. 1 of [93],
instead of moving the points inferred from the observed
stellar number densities down orders of magnitude to fit the
corresponding halo number densities, one can move the
points horizontally to the left by an order of magnitude.
This fitting procedure in effect invokes a z (and M�)
dependent M�=Mh, to replace the fiducial local value of
M�=Mh ¼ 1=70 assumed by the authors. The procedure,
requiringM�=Mh ∼ 1=7, is still in principle consistent with
a universal baryon fraction of 1=6.3, associated with the
standard cosmological scenario, but only just [98,164].
Another caveat that has been pointed out concerns the

extraction of M� and associated number densities from the
ultraviolet luminosity function at high z, which some of
the data points of [93] relies on [168]. However, a multi-
wavelength analysis of a sample of massive galaxies at
z > 3 also leads to a cumulative mass function that can be
consistent (within estimated errors) withM�=Mh approach-
ing the universal baryon fraction at z ∼ 5.5 and M� >
1011M⊙ [169]. That work also shows (Fig. 14) that the
number densities of massive galaxies are very difficult
to reproduce in hydrodynamic numerical simulations—
with significant underestimate for z > 3—which may be
expected, as their reproduction would seem to require that
all available baryons reside inside galaxies, and their near
total conversion to stars over a short time (∼Gyr). This
would have as consequence the presence of a significantly
“quenched,” quiescent population of massive galaxies
already at high redshift. The presence of such a population,
which is indeed observed, poses significant challenges.
Synthesizing the stellar populations of one such object,
observed at z ¼ 3.717, for example, seems to again require
prior evolution involving a M�=Mh reaching the universal
baryon fraction [170] (see also [171]). There now appears
to be a substantial population of such galaxies, observed at
increasing redshift [172–178], and not easily reproduced by
either hydrodynamic simulations [175,176] or semianalyt-
ical models [173,177].
Although questions as to the ultimate severity of these

problems will only be settled with the next generation
surveys (e.g., with the James Webb Space Telescope
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(JWST) ), the situation warrants pointing out that they can
in principle be alleviated by invoking small scale enhance-
ment of the primordial power spectrum examined here.
Figure 5 shows that significant enhancements can be

achieved at mass scales 1012M⊙ ≲M ≲ 1013M⊙, with a
peak at a scale corresponding to highest dark matter to
stellar mass ratio in standard modeling, at which the
enhancements reach even the “impossibly” large levels
claimed in [93]. Perhaps no less important is the slower
evolution of the mass function for z≳ 4, observed in Fig. 6,
which is more consistent with the redshift evolution of the
inferred stellar mass densities in [93] than the much faster
evolution in the standard case (the slow evolution of the
stellar mass function for 4≲ z≲ 7 was also observed for
example by Song et al. [179]). This would seem to waive
the apparent requirement of a M�=Mh that is high depen-
dent on redshift in order to fit the data.
With better statistics, and firmer grip on observational

systematics, it should be possible to distinguish between
scenarios involving enhancement in the primordial power
spectrum, such as the one presented here and reconciliation
with data through improvement of the baryonic model; by
invoking further “downsizing” physics input, in terms of
feedback, quenching and other “subgrid” physics (assum-
ing the data remain consistent with the strict upper bounds
placed in the context of ΛCDM [98]). As the baryonic
models become better constrained, there may be particular
consequences that could also constrain (or confirm) the sort
of scenario discussed here. We now discuss some of these.

3. Other observables, constraints
and variation on basic model

In the context of the enhanced spectrum scenario
presented here, the clustering of halos, on mass scales
and redshifts where numbers are predicted to be signifi-
cantly enhanced, may be measurably different from the

standard case. This is because the biasing with respect to
the matter distribution would be expected to be different
(since they would correspondent to less rare density peaks).
Combined clustering and abundance matching analysis in
the context of a ‘halo model’ (e.g., [180]), particularly at
higher redshifts [181], could thus in principle test, and
place constraints on, scenarios involving primordial power
spectrum enhancements. The galaxy-matter correlation
function, entering into calculations of galaxy-galaxy weak
lensing signals, should also be different in the present
scenario from the standard case. The difference should
again be especially significant at higher redshifts, where the
abundance of high mass halos is strongly increased, making
for a relatively clumpy matter distribution. Tests are also
possible at low redshift. particularly as regards to the peak
in abundance of Milky Way sized halos, which seems
consistent with observations (Sec. IV B 2). Some observa-
tions on the other hand suggest that the standard model
itself may overpredict the halo mass function at scales
1013M⊙ ≲M ≲ 1014M⊙ [182]; further enhancements of
the mass function at such scales may be thus constrained.
Another observable that can potentially place immediate

constraints on the scenario discussed here is the Lyman-α
forest. Here, detailed comparison with data involves com-
plex simulations that depend on assumptions regarding
the state of the intergalactic medium, which become less
robust at nonlinear scales [134,183]. In the nonlinear
regime the modifications in the power spectrum are
primarily imprinted in the RMS dispersion and the halo
mass function, where the complex pattern of enhancement
and suppression at different scales and redshifts would
contribute to the mass fluctuations probed by one dimen-
sional Lyman-α spectra. The large enhancement at higher
masses and redshifts may also affect the thermal history
of the intergalactic medium. It may therefore be worth
investigating if and how such changes affect the standard

FIG. 6. Ratios of the mass functions at different redshifts, for the standard case (left) and that with modified power spectrum (right).
Note the slower evolution (reflected in the smaller ratios) at higher z for most of the mass range in the modified case.
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constraints regarding the power spectrum. Pending such
investigation, as the modifications to the linear power
spectrum and mass dispersion considered above are large
and fall within the region relevant to Lyman-α observations,
it apt to probe what is to be expected if more modest
modifications are made.
In Fig. 7 (left panel) we show the relative change in the

mass function for (about an order of magnitude) smaller
perturbation in the power spectrum, as well as on scales
deeper in the nonlinear regime. As can be seen, in the
former case, significant enhancement in the mass function
can still occur at the right scale at higher redshift (where
halos are exceedingly rare in the standard scenario), so as to
alleviate the apparent early galaxy formation problem. The
reduction in number of small halos, relevant to the dearth of
small galaxies and too big to fail problems at low z, is
smaller however.
When the modification in the power spectrum is placed

on a smaller spatial scales, deeper in the nonlinear regime
(Fig. 7, right panel), the decrease in number of small halos
at z ¼ 0 is again significant and relevant to the dearth of
dwarf galaxies, but does not cover all the mass range
relevant to the too big to fail problem. As may be expected,
the enhancement at high redshifts happens at a smaller
mass scale (they are also smaller because halos in the
standard scenario are already more abundant at such
scales). Enhancement at such scales is not directly appli-
cable to the problem of high M�=Mh at M� ≳ 1010.5 M⊙
and z≳ 4, as discussed in a previous subsection. It may
nevertheless be relevant at higher redshift, as the progeni-
tors of massive quiescent galaxies were assembled (espe-
cially if the star formation rate density does not steeply
decline beyond z ¼ 8, as suggested by some authors;
c.f. Ref. [171], particularly the discussion in Sec. 7.3
and references therein). As one further increases the

comoving wave number associated with the high energy
cutoff kc, this general trend persists. The suppression on
small scales at z ¼ 0 are found to correspond to masses of
small halos that are overabundant in CDM up to comoving
cutoff k ∼ 9 Mpc−1, which essentially avoids Lyman-α
bounds. At larger modification wave numbers, however,
one finds enhancement rather than suppression at mass
scales ≲109 M⊙, relevant to the dearth of dwarf galaxies
issue. Although enhancing the power spectrum at such
smaller spatial scales would not appear to alleviate any of
the issues regarding galaxy formation discussed here, it
could still have consequences for early black hole for-
mation and the epoch of ionization (see also [92]).
On the other hand, relaxing the assumption of a sudden

jump transition leads to suppression and enhancement of
halo abundances on larger mass scales. This allows for
retaining the advantages of a sudden cutoff at comoving
wave number 1 h=Mpc, while keeping the mass function at
1013 M⊙ at z ¼ 0 unchanged, and modifying the power
spectrummuch more modestly at 1h=Mpc (cf. Appendix B,
Fig. 12). Figure 8 shows the relative change in the mass
function for such a gradual transition in the power spectrum
around a characteristic wave number of 3 h=Mpc comov-
ing. As can be seen, significant suppression at z ¼ 0 is
again recovered at mass scales of order 1011M⊙, relevant to
both the dearth of dwarf galaxies and the too big to fail
problems. Enhancement at higher z also occurs at scales
significantly larger than the corresponding sudden jump
case (shown on right panel of Fig. 7), which renders the
enhancement more directly relevant to early massive galaxy
formation issues. The mass function is unmodified at scales
1013 M⊙ at z ¼ 0.
Thus, potential resolution of all or some of the galactic

and subgalactic scale issues through modification of the
power spectrum, rather than (or in addition to) baryonic

FIG. 7. Same as in Fig. 5 but with step frequency ratios of 10 instead of 100, leading about to about an order of magnitude less
modification in the power spectrum, with Bogulibov coefficient jβj ¼ 1.42 instead of 4.95 (left); and for power spectrum comoving
modification scale k ¼ 3 h=Mpc, instead of k ¼ 1 h=Mpc (right).
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physics input, may in principle be tested and constrained
through distinctive predictions. This is true in general and is
not confined to our particular simple model of a sudden
jump; such tests will thus become more relevant if the small
scale issues connected to the standard structure formation
scenario are confirmed to persist with incoming observa-
tions. In the context of the present scenario, such obser-
vations can potentially probe imprints (or lack thereof) of
high energy cutoff physics on the relevant astrophysical
scales, and place constraints on the duration of inflation, as
the ratio of the Hubble scale of inflation to the high energy
cutoff scale and the number of inflationary e-folds fix the
scale at which the matter power spectrum and halo mass
function is modified (cf. Sec. IVA 2). For the minimal
number of e-folds required to solve the horizon problem for
example, H=kc ≈ 10−4 is required to address the galactic
scale issues discussed. Significant power spectrum modi-
fication also require kc ≲H=kc (Sec. III D). These tests can
be stringent; as, given this scale, and the level of excitation
determined by the Boguliubov βk, the predictions of the
simplest scenario of sudden jump through a high energy
transition scale, are unique in terms of the expected effect
on the power spectrum.

V. CONCLUSION

Slow roll inflation predicts a nearly scale invariant
spectrum of primordial fluctuations, which is borne out
by precise observations of the cosmic microwave back-
ground and large scale structure in the universe.
Nevertheless, that prediction is not unique, a variety of
effects invoking discontinuous or phased evolution

between slow rolls, for example, can lead to anomalous
“features” in the spectrum. Excited states arising from
modes crossing a high energy cutoff scale can also lead to
significant modifications to the scale free spectrum.
Although these are essentially ruled out at the scales where
the aforementioned observations are effective, the primor-
dial spectrum is relatively unconstrained on smaller, cur-
rently nonlinear scales, where the matter distribution has
collapsed into bound self-gravitating objects, washing out
the primordial signature by largely encoding it in the halo
mass function.
On the contrary, at such scales—which span many more

octaves of observable structure than the three that are
probed in the linear regime—a variety of issues arise in the
context of the standard model of structure formation; such
as the “small scale problems” at low redshift and the
apparent problems involving early galaxy and supermas-
sive black hole formation at higher z, which can be seen as
extension of longstanding phenomena requiring “downsiz-
ing” in galaxy formation. As these issues arise precisely at
the scales where complex baryonic physics comes to play a
central role in the standard scenario of structure formation,
it was natural that extensive investigation of solutions in
these terms have been pursued. However, as these are also
the scales where the primordial spectrum of fluctuations is
relatively weakly constrained, this aspect, with its effects
and consequences, may also warrant further investigation.
Here we considered the effects of excited states arising

from the transiting of fluctuation modes through a high
energy cutoff scale. As the power spectrum of primordial
fluctuations is effectively an adiabatic invariant of inflaton
dynamics (Sec. II B 2), adiabatic evolution necessarily
leaves the nearly scale free spectrum intact. We next
considered a simple model of the opposite extreme; of a
sudden jump across the transition. The initial conditions for
the fluctuations before the jump are well defined, taking the
Bunch-Davies form, but with propagation speed cs ≠ 1. An
intuitive, simple analogue model approximated by such a
transition corresponds to the case of a gas or lattice where
sound waves do not propagate at all below the interparticle
distance, then propagate at an anomalous speed in an
effective macroscopic approximation, before finally pro-
pagating with the standard sound speed and dispersion
relation as the wavelength become progressively larger than
the interparticle distance.
In this context, the primordial spectrum is invariably

enhanced rather than suppressed (whether the initial cs > 1
or is < 1), for all scales undergoing the transition through
the high energy cutoff (Sec. III). This is accompanied by
strong, tightly spaced oscillations in the power spectrum
of generic (as opposed to pure de Sitter) models of
inflation, where modes exit the horizon at different phases.
Numerical calculations suggest that sufficiently nonadia-
batic evolution, leading to significant modification of the
power spectrum implies an effectively sudden transition

FIG. 8. Same as in Figs. 5 and 7 but with gradually modified
power spectrum, rather than sudden jump. The spectrum is
modified using Eqs. (B1) and (B2) with S ¼ 200, b ¼ 2 and
kc ¼ 3 hMpc−1 comoving. The results correspond to ratios of
dashed and solid lines in Fig. 13 (taking the dashed line at b ¼ 2
for the left hand panel). The associated modifications to the
power spectra are those shown in Fig. 12.
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for all cs > 1 and for 0.01≲ cs < 1 (Appendix A 2). The
simple model of sudden jump, and its predictions, are in
this range thus generic. We also considered the possibility
of a more gradual transition when the aforementioned
conditions are not satisfied (Appendix B).
Given the excitation level induced in the inflaton field,

and the current comoving scale corresponding to the jump
across the high energy cutoff scale during inflation, the
predictions of the simple sudden jump models are essen-
tially unique (in terms of its effect on the matter power
spectrum, mass variance and the dark matter halo mass
function). The level of excitation can be quantified through
a Bogoliubov coefficient βk ≠ 0 for scales that undergo the
jump, and is easily evaluated in terms of the in and out
frequency ratio (or equivalently cs ratio; Sec. III C). If
assumed to be within a few orders of magnitude of the
Planck scale, the jump scale corresponds to currently
nonlinear scales if inflation proceeds for approximately
the number of e-folds necessary to solve the horizon
problem. In general, the comoving jump scale corresponds
to currently nonlinear scales for minimal inflation if
H=kc ∼ 10−4, with smaller ratios allowing for larger e-
folds (Sec. IVA 2). In this context, the nonlinear scales can
be modified, while leaving the standard spectrum intact on
linear ones.
Backreaction bounds on jβj must be imposed, as “over-

excitation” of the inflaton would result in radiation domi-
nation rather than inflation; these may however still allow
for major enhancements of the power spectrum ∼1þ 2β2

(and oscillations in the generic inflation case). As we
discuss in Sec. III D, this would be generally the case if
kc ≲ ðH=kcÞMPl. Such enhancements can have observable
consequences, confirming or constraining the effect of
excitations on structure formation on nonlinear scales. In
order to impose modifications on such scales in particular,
and still keep the excitations from overwhelming the
inflaton vacuum state, one thus requires H=kc ≲ 10−4

and kc ≲ ðH=kcÞMPl. This implies kc ≲ 10−4MPl and
H ≲ 10−8MPl. A rough estimate of the derivative of the
backreaction suggests possible modification of the power
spectrum on the largest scales, and may place tight
constraints on the comoving scale at which enhancement
of the small scale power spectrum can occur (to about a
comoving Mpc; Sec. III D). That modification on the
largest scales can accompany the changes on small, non-
linear ones, is an interesting possibility that may be worth
studying in detail.
To probe for possible characteristic signatures of the

modifications on nonlinear scales, we evaluate (in Sec. IV)
the dark halo multiplicity function, quantifying the fraction
of mass in halos of mass M. In our fiducial example, the
peak, resulting from power spectrum enhancement, is
chosen to correspond to a few times 1012M⊙. This is
the mass scale where the highest mass to light ratio
is inferred when associating galaxies with halos in the

context of halo models derived within the standard sce-
nario. It is also the scale where issues related to the apparent
preponderance of early massive galaxies, particularly
quiescent ones, appear (Sec. IV C 2). For relatively small
enhancements at small redshifts z, the enhancement at
larger z ∼ 8 is dramatic, as such massive halos are very rare
at these redshifts in the standard scenario. The change in the
number densities of massive galaxy-hosting halos with
redshift is also much smaller than in the standard case.
Combined, these effects may alleviate the apparent impos-
sibly early galaxy formation problem, even in the most
extreme form claimed.
Perhaps more surprisingly, an enhancement of the

spectrum at these intermediate nonlinear scales leads to
suppression of small halos at low z, thus potentially
alleviating longstanding issues related to the dearth of
small galaxies, including those too big to fail, in the
standard structure formation scenario. This is due to the
enhanced spectrum leading to overmerging of small mass
objects at high z, so as to lead to a suppression of such
objects at low z.
The halo mass function, in itself, cannot place strong

constraints on enhancements of the primordial power
spectrum on currently nonlinear scales, as one can vary
the galaxy halo occupation number to match the data
(in the standard scenario, the early galaxy formation issues
at high M and z arises because this seems to sometimes
require very large stellar mass fraction, which the enhanced
halo mass function here may resolve; Sec. IV C 2).
However, combined abundance matching and dynamical
analysis at low-z can. Halo abundance enhancement at the
scales considered here appears consistent with such analy-
ses; it may in fact alleviate the apparent overprediction of
stellar masses for given dynamical mass for galaxies with
stellar mass ≳5 × 1010M⊙ ([161]; Sec. IV B 2).
Major modifications in the spectrum of primordial

fluctuation are eventually encoded in more minor mod-
ifications to the nonlinear matter power spectrum, as
these enter primarily through the modified halo mass
function rather than the statistics of the spatial distribution.
Nevertheless, the scenario of an enhanced primordial power
spectrum at scales corresponding to currently nonlinear
ones, can also be tested through its signature on halo
biasing. The fact that more massive halos would be less rare
may be expected to particularly impact such observables as
galaxy-mass correlations and leasing signals (especially at
higher redshift where the effects of enhancement at higher
mass scales are more prominent). To address both afore-
mentioned issues—of massive high-z massive galaxies and
small local ones—simultaneously in the most severe forms
claimed, through sudden transitions, also entails significant
modifications at scales probed by Lyman-α observations
(the required modifications are more modest, or at scales
that may be less constrained, if only partial resolution of
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both issues is sought or if the assumption of sudden
transition is relaxed; Sec. IV C 3).
Thus, observations, coupled with modeling and simu-

lations with modified spectrum, may place constraints on
scenarios invoking enhanced power on currently nonlinear
scales, distinguishing them from baryonic solutions to the
same problems. In the context of the analytical sudden step
model primarily considered here, this includes constraints
on H=kc, kc, jβj, and the number of inflationary e-folds, as
discussed above. Given the field excitation levels (i.e.,jβj)
and the comoving scale of the high energy transition, the
consequences for the matter spectrum and halo mass
function are essentially unique. Variants that could also
be tested include those involving phased or discontinuous
stages of inflation with relatively localized peaks in the
primordial spectrum. This will become perhaps more
pressing if next generation surveys (e.g., employing the
JWST) confirm problems related to early galaxy formation.
On smaller (subgalactic) scales still, primordial power
spectrum enhancement may be relevant to early super-
massive black hole formation, and the formation of the first
dark matter objects, and may be tested through such effects
as CMB spectral distortions.
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APPENDIX A: COMPARISON OF SIMPLIFIED
MODEL WITH NUMERICAL SOLUTION, AND
THE EFFECT OF RELAXING THE SUDDEN

JUMP CONDITION

In this Appendix we test the approximation of the
simplified model of Sec. II C, introduced to evaluate the
effect of nonadiabatic transition at a high energy cutoff
scale kc on the primordial power spectrum. There are two
approximations that were invoked; the sudden step and the
neglect the term proportional to − 1

η2
in the Mukhanov-

Sasaki equations (2) and (7). We start by examining the
latter, then we discuss the former.

1. Model versus numerical solution of
Mukhanov-Sasaki equation with step

We evolve the dynamics of fluctuation modes numeri-
cally, using the MS equation (2) for de Sitter and power law
inflationary backgrounds, while replacing the term k2 with

k2 → k2effðk; ηÞ≡ a2ðηÞω2
phys

�
k

aðηÞ
�
: ðA1Þ

where

ω2
phys

�
k

aðηÞ
�
¼

�
k

aðηÞ þ
δk
aðηÞH

�
k

kcaðηÞ
− 1

��
2

; ðA2Þ

and H is the Heaviside step function. The parameter δ
quantifies the size of the step, such that the sound speed
past the step given by cs ¼ 1þ δ; it can be positive or
negative, corresponding to an upward and downward jump
in sound speed respectively. As discussed in Sec. III, in the
context of the sudden step scenario they are equivalent in
terms of the effect on the power spectrum.
The primordial spectra are evaluated, for both the

analytical model and numerical calculations, as described
in Sec. II C 1. The results are shown and compared in
Figs. 9 and 10, for the case of de Sitter and power law
inflation respectively. As noted in Sec. II C 1, in the de
Sitter case all modes exit the horizon at exactly the same
phase. And any initial shift in phase, due to change in
effective frequency related to the second term in bracket of
the MS equation, leads to corresponding constant differ-
ence in the final power spectrum. This leads to a difference
between the numerical and analytical results, where the
aforementioned term is neglected. Nevertheless, the relative
error in the ratio of the perturbed to unperturbed power
spectrum is still of order 25% when the step frequency ratio
is 10. It is an order of magnitude lower still when the
change of frequency is hundred folds.
In the case of power law inflation the Hubble scale H is

not exactly constant. The modes exit the horizon at
different phases, and this leads to the oscillations, which
accompany the enhancement in Fig. 10. The corresponding
error is then primarily in phases, with the maxima and
minima of the oscillations practically equal in the simpli-
fied model and the numerical calculations. The change in
phase is generally unimportant for calculating quantities
with observable consequences; such as the mass fluctua-
tions at a given spatial or mass scale, and halo mass
multiplicity function. For these depend on integrals of the
matter power spectrum (as discussed in Sec. IV). The
simple analytical model—with its simple interpretation in
terms of well defined in and out states; Sec. III—thus turns
out to be a good approximation.

2. Nonadiabaticity versus sudden jump condition

Oscillations can, in general, be considered adiabatic if
ωðηÞ changes only slightly over a characteristic time Δη of
order of one oscillation period. If the frequency ω changes
from a value ω1 to another value ω2, on a characteristic
timescale Δη, the change may thus be adiabatic if

jω1 − ω2j < ω2Δη: ðA3Þ

In the context of our sudden step model, ω1 and ω2 will
correspond to ωin and ωout, respectively. We take the typical
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ω on the right hand side to correspond to the minimal
frequency; supposing that the dynamics may be affected
nonadiabatically if the change in frequency is larger than
this. To examine to what extent that model may describe a
more general situation, where change may be more gradual,
we use the logistic function to parametrize the transition:

keff ≡ ωðηÞ ¼ kþ δk
1þ exp ½−γð ηηc − 1Þ� : ðA4Þ

Here the parameter γ describes the stiffness of the tran-
sition, this being steep and steplike for γ ≫ 1, and δ (which
may be positive or negative) the scale of the step in the
transition. Thus, in the high energy regime limit, the sound
speed cs ¼ 1þ δ, while cs ¼ 1 when the transition to the
standard low-energy physics regime is complete. In these
terms, the characteristic time over which ω changes
between its initial and final value is ηc

γ . The adiabaticity
violation condition can then be written as

γ >
Minðc2sÞ
jcs − 1j

�
kc
H

�
; ðA5Þ

where we have used ηc ¼ −kc
Hk , and cs ≠ 1 corresponds to the

high energy limit sound speed. Since, as we have seen in
Sec. II B 2, the power spectrum is essentially an adiabatic
invariant of the dynamics of inflationary perturbations, it is
necessary to satisfy this condition in order to modify the
standard power spectrum.
Two cases are of particular interest in the context of the

present study: cs ≫ 1, so that MinðcsÞ ¼ 1 and cc ≪ 1,
when MinðcsÞ ¼ cs. For sound speeds considered here, the
adiaticity condition (A5) is violated at smallest possible
when the sound speed is minimal, that is cs ¼ 0.01. Still,
even in this case, γ is of order one or larger if kc=H ≥ 104,
as required to keep the significant changes in power
spectrum in the nonlinear regime of structure formation
(Sec. IVA 2). For our parameters, the transition is thus
necessarily stiff.

FIG. 10. Same as in Fig. 9, but for power law inflation model (discussed in Sec. II C 1).

FIG. 9. Comparison of primordial power spectrum obtained from simplified analytical model with full numerical calculation, for
sudden jumps corresponding to ratios of the in and out sound speed, or equivalently frequencies, of 10 (left) and 100 (right). This is done
for a de Sitter background with H=kc ¼ 10−4 and k is shown in units of kc.
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We now show that the transition is stiff even form much
smaller kc=H ¼ 300, which is a minimal value, in the sense
that with smaller values the effect of the second term in
brackets of Eq. (7) becomes important at η ∼ ηc for cs ¼
0.01 (see discussion relating to inequality (11). For it turns
out that the adiabaticity condition needs to be quite strongly
violated for sufficient change in the dynamics significantly
affects the power spectrum (that significant changes occurs
well beyond the adiabaticity breaking condition is common
in dynamical systems [184]). This can be seen from Fig. 11,
where we show that large changes only occur when γ is
orders of magnitudes above the value estimated from (A5).
This is the case for both the cs ¼ 100 and cs ¼ 0.01, with
the former being stiffer still as expected from (A5) [185].
The transition is stiffer still for smaller values of cs > 1 and
larger cs < 1. Thus, for sound speed ratios considered here,
our simple model of a sudden jump, and accompanying
signature of a sudden break in the power spectrum, appears
much more generic than may seem a priori.

APPENDIX B: MODIFIED MASS FUNCTION
FROM NONSUDDEN SPECTRUM

ENHANCEMENTS

As we have seen in the previous Appendix, the sudden
jump transition in the power spectrum at smaller scales is a
good approximation for the parameters primarily consid-
ered in this paper, namely for initial cs ≥ 0.01; for such
values, the sufficient violation of the adiabaticity condition,
required for significant modification of the power spec-
trum, practically implies a sudden transition. Nevertheless,
as is already apparent in Fig. 11, for cs ¼ 0, 01 (right hand
panel), the sudden jump approximation becomes less
accurate as a predictor of significant change at smaller
cs. If one envisages a transition starting at significantly

smaller sound speed still, it may then take place more
gradually while still imparting a palpable effect on the
power spectrum.
We consider potentially observable consequences of this

effect by examining a series of progressively steeper
transitions. We do this by modifying the primordial power
spectrum in a parametric manner, such that

Δ2
RðkÞ ¼ Δ2

RStðkÞ
�
ðS − 1ÞG

�
k
kc

�
þ 1

�
; ðB1Þ

whereΔ2
RStðkÞ is the standard, nearly scale invariant, power

spectrum of scalar perturbations. The transition function G
tends to unity as k ≫ kc and vanishes as k=kc → 0, and
S ≥ 1 is the enhancement factor (it determines the ratio of
the asymptotic values of the power spectrum at small and
large scales). We have tried several forms for G, and the
resulting trends were verified to be generic. Here we show
results for the following form (also used in [186] for the
purpose of suppression of the spectrum rather than
enhancement):

GðxÞ ¼ 1

2
½tanhðb log xÞ þ 1� ¼ 1

2

�
x2b − 1

x2b þ 1
þ 1

�
; ðB2Þ

where b > 0 determines the steepness of the transition
around x ¼ k=kc. In the following we will take kc to
correspond to a comoving scale of 3hMpc−1. As Eqs. (39))
and (44) show S to be about 50 for a sudden step scenario
with initial cs ¼ 0.01, the requirement that the initial cs <
0.01 implies S > 50 (otherwise, in line with the afore-
mentioned considerations, a gradual transition may not
have a significant effect on the power spectrum). In what
follows we take S ¼ 200.

FIG. 11. The primordial power spectrum evaluated at different levels of violations of the adiabaticity condition (A3), when transition
across the high energy cutoff scale is interpolated using a logistic function [Eq. (A4)], and numerically integrated. The numbers in the
legend keys refer to the order of magnitude above the critical value of γ required to violate the adiabaticity condition [Eq. (A5)]. Left
panel: interpolation between high energy sound speed cs ¼ 100 and standard regime (cs ¼ 1). Right panel: interpolation between high
energy sound speed cs ¼ 0.01 and standard regime. The results are shown for de Sitter inflation, and wave numbers on the horizontal
axis are expressed in terms of the high energy cutoff scale kc, with kc=H ¼ 300.
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Figure 12 shows the primordial power spectrum, as well
as the dimensionless matter power spectrum calculated
using publicly available CLASS code (class-code.net), for
several values of b. The corresponding multiplicity func-
tions, calculated using (57) and (60), are shown in Fig. 13,
where the left hand panel displays results at z ¼ 0. For large
b, those results are similar to the sudden jump case. For
b ¼ 1 the effect is smeared out, with increase at halo
masses ≳1014M⊙, which would increase tension with
cluster counts, which is already present in thee standard
model. The suppression at small mass scales is enhanced by
the gradual transition.
Of particular interest is the intermediate, b ¼ 2, case.

The enhancement takes place at larger masses than the

corresponding case with sudden jump (at 3hMpc−1).
The suppression at z ¼ 0 takes place at larger masses as
well. This allows for largely retaining the advantages of the
sharp cutoff at 1hMpc−1—in terms of simultaneously
alleviating both the dearth of dearth of dwarf galaxy and
too big to fail problems at z ¼ 0, as well as accounting for
early galaxy formation at higher redshifts—while avoiding
any enhancement at scales of order≳1013M⊙ at z ¼ 0, and
relatively mildly perturbing the matter power spectrum at
1hMpc−1 (Fig. 12; see also Sec. IV C 3). The enhancement
of the mass function at z ¼ 0 may also be relevant for
explaining the overestimation of abundancematching within
the standard model of stellar masses of massive galaxies
([161]; Sec. IV B 2).

FIG. 12. Primordial (left) and matter (right) power spectra, modified at small scales using Eqs. (B1) and (B2), showing progressively
steeper transitions with increasing b. The characteristic high energy transition scale is taken as kc ¼ 3hMpc−1 comoving, and S ¼ 200.

FIG. 13. Left panel: the halo multiplicity functions at z ¼ 0 for the spectra shown in Fig. 12. Right panel: the multiplicity functions at
shown redshifts for the case b ¼ 2.
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