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Recent literature has shown that photon-photon forward scattering mediated by Euler-Heisenberg
interactions may generate some amount of the circular polarization (V modes) in the cosmic microwave
background (CMB) photons. However, there is an apparent contradiction among the different references
about the predicted level of the amplitude of this circular polarization. In this work, we will resolve this
discrepancy by showing that with a quantum Boltzmann equation formalism, we obtain the same amount of
circular polarization as using a geometrical approach that is based on the index of refraction of the
cosmological medium. We will show that the expected amplitude of V modes is expected to be ~8 orders of
magnitude smaller than the amplitude of E-polarization modes that we actually observe in the CMB, thus
confirming that it is going to be challenging to observe such a signature. Throughout the paper, we also
develop a general method to study the generation of V modes from photon—photon and photon—spin-1-
massive-particle forward scatterings without relying on a specific interaction, which thus represent possible
new signatures of physics beyond the Standard Model.
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I. INTRODUCTION

According to the standard lore, the cosmic microwave
background (CMB) can only possess some amount of
linear polarization (the so-called Q and U modes) [1-8].
This is the result of the Compton scattering between CMB
photons and electrons, and the gravitational redshift
induced by cosmological perturbations of the metric.
Instead, the CMB circular polarization (the so-called V
modes) is usually not considered, because the electron-
photon Compton scattering cannot generate it at the
classical level. On the other hand, several recent papers
have proposed different theoretical mechanisms able to
produce some amount of the V modes [9-36]. All these
studies are motivated by the fact that, from the
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observational point of view, CMB V modes are currently
not excluded, as methods to improve the sensitivity of
CMB experiments to circular polarization are underway
[37]. For instance, the SPIDER Collaboration has provided
upper bounds on the power spectrum of circular polariza-
tion #(¢ 4+ 1)CYY/(2x) that are reported in a range from
141 uK? to 255 uK? at angular scales 33 < # < 307 [38].
More recently, the CLASS experiment improved these
constraints in a range from 0.4 uK? to 13.5 uK? at angular
scales 1 < Z < 120 [39]. These constraints are, in general,
several orders of magnitude higher than the expected
number of CMB V modes predicted by most of the
theoretical models that can be found in the literature
(see Ref. [37] for future detection prospects).

The current authors have carried out a systematic
study of the generation of the V-mode polarization by
the forward scattering of CMB photons from spin-2 [35]
and spin-1/2 [36] particles. In this paper, we continue our
study of V-mode generation by examining the forward
scattering of CMB photons with spin-1 particles. To keep
our study as general as possible, we will initially not make
any assumption about the nature of spin-1 particles or
the kind of interactions. However, we will consider these
particles as photons and the interactions to be Euler-
Heisenberg interactions wherever we want to compare
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with previous literature. Moreover, we will work in the
so-called gquantum Boltzmann equation (QBE) formalism.
(See Refs. [1,16,18,22,23,28,40-42] for examples of appli-
cations of this formalism in the CMB context.)

The effects of the photon-photon forward scattering
on the CMB polarization have been previously studied
in Refs. [20,28,31,34]. The fundamental result is the
production of CMB V modes for Faraday conversion of
CMB linear polarization. However, there is an apparent
contradiction between the different papers. For instance,
Ref. [28], working within the QBE formalism, predicts
an amount of V-mode signal that is much larger than what
is predicted by Refs. [31,34], which work with a geomet-
rical formalism focusing on the birefringence in the index
of refraction of the cosmological medium. In this paper,
we will show that the two formalisms are fully con-
sistent and give the same prediction for the number of V
modes produced, correcting the formulas and estimates
of Ref. [28].

The paper is organized as follows: In Sec. II, we will
provide an introduction on how to use the quantum
Boltzmann equation formalism to study the effects of
the photon-photon forward scattering on CMB polariza-
tion. In Sec. I1I, we will study the CMB polarization mixing
induced by the photon-photon forward scattering mediated
by a generic interaction. In Sec. IV, we will derive the
expected power-spectrum statistics of CMB V modes
provided by the photon-photon forward scattering through
Euler-Heisenberg interactions. Moreover, we will provide
the expected number of V modes for a generic interaction,
as a function of free parameters. In Sec. V, we will
investigate the CMB polarization mixing induced by a
hypothetical photon—spin-1-massive-particle forward scat-
tering. Finally, Sec. VI contains our main conclusions.

II. PHOTON-PHOTON FORWARD SCATTERING
FROM QBE FORMALISM

A. Description of the formalism

We start our analysis by introducing the formalism
adopted for the rest of this paper. We parametrize the
intensity and the polarization of CMB radiation through a
density matrix p;;, defined in terms of four Stokes param-
eters, in the following form [1]:

_l<I+Q U—iV) 0
Pi=o\v+iv 1-0 )

where the parameter / defines the intensity of unpolarized
CMB radiation, Q and U define the CMB linear polari-
zation, and V refers to CMB circular polarization. The
equations of motion for the Stokes parameters can be found
through the so-called quantum Boltzmann equation, which
is given in the literature as [1]

(Zﬂ)35(3>(0)(2k0) dp%ik) = i([H,(0), Dy;(k)])
_;/_: di([H,(1), [H,(0), Di;(k)]]), (2)

where k° is the energy of CMB photons, H,(t) is the
(effective) interaction Hamiltonian (describing in our
case, e.g., the photon-photon interactions), and D;;(k) =

al(k)a;(k) is the photon number operator [a](k) and
a;(k) being the creation and annihilation operators; see
more details later]. Within this formalism, the expectation

value of a generic operator A is defined as [1]

3
(AK)) = trfpA(K)] = / é,§3<p|pA<k>|p>, 3)

where p denotes the following density operator:

&*p
p= /Wpij(p)pij(p)' (4)

In Eq. (2), the first term on the right-hand side is the so-
called forward-scattering term, and the second term is the
so-called damping term. In this work, we will focus on the
forward-scattering term, which is able to generate cou-
plings between different polarization states." In fact, Eq. (2)
is derived by adopting a perturbative approach so that
increasing powers of the interaction Hamiltonian H ()
reduce the strength of the corresponding term. For this
reason, in any fundamental interaction in the perturbative
regime in which the forward scattering term is nonzero,
a priori it is expected to give the relevant physical effects
on the CMB polarizations. Of course, this is not the case for
the standard QED interaction between photons and elec-
trons, where such a forward-scattering term vanishes (see,
e.g., Ref. [1]), and all the relevant effects arise from the
damping term only.

In particular, we are interested in the effects of the
forward scattering of CMB photons with other (massless)
spin-1 particles. Given S as the S-matrix element des-
cribing this process, the (effective) interaction Hamiltonian
can be defined through [44]

SO (p1) +7(p2) = 7(p3) +7(pa)) = i / i, (5)

—00
where H; can generally be written as

'"This is the same physical mechanism that induces the
resonance enhancement of neutrino oscillations in matter. See,
e.g., Ref. [43].
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H; = / dp'dp*dp’dp*(27)’57) (p’ + p* —p' - p?)

x 3M(p', r;p2, 5;p%, s ph s )al (pY)a,(p!)

x a’,(p*)a,(p?).

(6)

where

&p
dp= | —=+- 7
P / (2m)°2p° 7
and M(p',r;p?, s;p°, r';p*,s’) is the Lorentz-invariant
amplitude of this interaction, as a function of photon
|

momenta and photon polarization indices r,r,s,s' =1,
2, where 1 and 2 here stand for the two independent
transverse polarizations. Moreover, a;(p) and a! (p) denote
the annihilation and creation operators, respectively, for
photons obeying the following canonical commutation
relation:

la,(p).al(p)] = (27)32p°6C) (p — p')o, . (8)

Inserting Eq. (6) into the forward-scattering term of Eq. (2),
we get

([H,(0). D;;(k)]) = /dp‘dpzdp%lp“(27r)35(3>(p3 +p*—p' —p?) x3M(p'. rip? sip’ riptls)

L(p*)a,(p)al (p*)a,(p?)a] (k)a;(k) — af (k)a;(k)a’,(p*)a,(p")al,(p*)a,(p?)).

Using Egs. (3) and (8), we obtain the following expectation value of the product of photon creation and annihilation

operators:

a,(p))

(am(p)

= (27)32p°6) (p = p')p,un ().

(10)

Thus, using Eq. (10), we can perform the expectation value in Eq. (9) by employing Wick’s theorem, and, after integrating
out three of the momenta with the Dirac deltas, we find the following final form of our Boltzmann equationZ:

d/’?j( ) 3i
. 2k°

/dp([alSErs’p (k) jr’5rs’pls k) + 5jﬂpjl/s(k>p?’r(p) - 5,5[?};,](1(),0?,([))]/\/1(1), r;k’ S5 k? r/;p, S/)

+[8u0 (K)pl (B) = 807, (K)p) ()M (K, 71 p. 53 p. s K. ')

1807, (K)pb () = 800, ()Pl ()M (K, 73 p, 53K, 7P, 7)),

where p and k indicate the momenta of the background (b)
and of the line-of-sight observed (y) photons, respectively.
In the next section, we will employ the latter equation to
evaluate the effects of photon-photon forward scattering
mediated by Euler-Heisenberg interactions on the CMB
polarization field. However, before doing this, in the
following subsections we will introduce a general para-
metrization of the photon-photon scattering amplitude.

B. General photon-photon scattering amplitude

In this subsection, by using symmetry considerations, we
introduce a general amplitude describing the scattering of
two massless spin-1 particles which does not rely on any

’In this equation, p’. refers to the density matrix of the
observed CMB photons, while pf’j denotes the density matrix
of the “background" target CMB photons.

(

+[8:0% ;(K)pl,(P) = 89,0k, (K)pL, (D) M(p. 11k, 5:p, 71 k. ')
)
)

(11)

|

specific photon-photon fundamental interaction. In fact,
assuming that we work in the context of a quantum field
theory (QFT) that is unitary and where all the interactions
are local, we can employ the following general para-
metrization for the photon-photon Lorentz-invariant scat-
tering amplitude [44—46]:

M = M”MU(1234)€1€,%€2 e, (12)

where ¢/, =¢,(p’) are the polarization vectors of

=
incoming and outgoing photons, and M,,,,(1234)=

M,...(p', p*, p*, p*), with p! and p? (p* and p*) denoting
the four-momenta of incoming (outgoing) photons in the

v(p1) +r(p2) = v(p3) +v(ps) scattering process. The
four-rank tensor M,,,,(1234) must respect the crossing
and gauge symmetries. The gauge symmetry implies the
following identities:
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p]
?, P,

FIG. 1. An example of a Feynman diagram associated with
photon-photon scattering.

pléMﬂvﬂﬂ = 0’
pZM/,wlﬂ =0, (13)

p’me/ﬂo' = 0’
péle/lo' = O’

while, due to the crossing symmetry, M, (p', p*, p*, p*)
is given by summing over all the 4! possible permutations

of external photons with momenta p', p2, p, and p* and
!

(1234

;wirf
T, (1234) = £

pHvio

e

nvic

) =

)
(1234) = f

)

)

simultaneously their corresponding vertex indices. We have
depicted one of these terms in Fig. 1.
We can expand M, (p", p?, p*. p*) in terms of a set of

four-rank independent tensors 70 as [45]

nvic

1%

5
M,:0(1238) =3 G(s,1,u)TY, (1234),  (14)
=1

i

where the coefficients G;(s,f,u) are invariant scalar

amplitudes that may depend on invariant kinematics, as

the Mandelstam variables

2)2 = (p' = p*)2.
(15)

s=(p'"+p t=(p'-p**

(i)

pvio

as [44,45]

Moreover, the tensors T, , can be expressed in terms of a

tensor basis f ,Mﬁ

= £, (1234) + £ (2143) + fWD(3412) + £, (4312)

+ f;(tizm'(1324) + fﬂ/my<3142) + furi/,tl(2413) + f(wl,u(4231)
+ f,uo'/ly(1432) + fa/wi(4123) + fﬁwa(3214) + fy/laﬂ( 1)’ (16)

where the tensor basis is defined in the following equations:

f ,(w)m(1234) = paplpipi -

£2)(1234) = p2pipiph + piplpipl -
+(p* pYgurirt = (p' - PN gupivi —
+ (P* - P)9uopipi — (P P)GsPppy —

(P pYapip) —

(P*- P gupips + (P' - P gupipi -
(P' - P*)9uopipi + (P' - P*)giepiri —
(P> PYgwpripi + (0" (P P?) 990

(p"- P awpap: —

(p' - Pguriri+ (' )P P 9090, (17)

(P*- pY)guripk
(P"- P?)gupaps

+ (pl : pZ)(p3 : p4)g/m'gu}w (18)
£2,(1234) = (p* - pY)p2ppiph — (- Pp2pbpiph — (0' - P PEpipipd + (' PP)(p' - p*)gispip)
+ ('t P)gwrivs — (PP PYgwpips + (p' - P (P P gurird
- ()PP P9 (19)

Thus, using Eq. (12), we can express the photon-photon scattering amplitude as a function of the metric tensor g,,, the
photon four-momenta and polarization vectors, and generic coefficients without specifying a given fundamental interaction.

063501-4
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P, P, P3

FIG.2. Three independent one-loop Feynman diagrams describing the photon-photon scattering for clockwise electron loop direction.
In all the diagrams, p; and p, denote the incoming photons’ momenta, while p; and p, refer to the outgoing momenta [49].

C. QED case: Euler-Heisenberg amplitude

In the quantum electrodynamics (QED) context, photon-
photon interactions are described by the so-called Euler-
Heisenberg Lagrangian, which is a low-energy effective
Lagrangian describing multiple photon interactions. This
reads [44,47,48]

'CE—H = o (Fuz/(x)F/w(x))z
+ ay(Fop(x) FP (X)F, (x) F**(x)),  (20)
where

S5a? 14a?

BT B R Friw g (21)

a
where a = e?/(4x) denotes the so-called fine-structure con-
stant, m, is the electron mass, and F,, = 9,A, — 0,4, is the
well-known photon field strength. This Lagrangian can be
also expressed in terms of the electric and magnetic fields as

Le_y = a(E>-=B?)? +b(E-B)?, (22)
where
202 1402
- d b=—"—. 23
T asmt " 45m* (23)

This effective Lagrangian is derived by the photon-photon
scattering process mediated by the one-loop box Feynman
diagrams containing electrons in the internal lines (see, e.g.,
Fig. 2) in the low-energy limit where the external photons are
soft, with energies much lower than the electron mass m, . Itis
possible to show that the Feynman amplitude derived by the
Euler-Heisenberg Lagrangian can be expressed in terms of the

basis tensors fl(fgw as [44]
M,,,;(1234)

B 40?
- m?

146(2 2 2 2
= st Fiain(1239) 5 £ 00, (1324) + 1,2,,(1423)),

(24)

(F,(1234) + 1) (1324) + 71 (1423))

which is included in the general form in Eq. (14).

III. POLARIZATION MIXING FROM PHOTON-
PHOTON FORWARD SCATTERING

Now, the effect of the photon-photon forward scattering
on the dynamics of CMB Stokes parameters is obtained by
inserting Eq. (12) into the Boltzmann equation [Eq. (11)].
Because we are finally interested in the polarization and
intensity of CMB radiation, we first give the expression of
the Stokes parameters in terms of the CMB density matrix.
In this respect, the unperturbed CMB photon density matrix
is written as [1]

L lo(k) 0
Pij (k)2< 0 Io(k)>’ (25)

while the CMB radiation field perturbations are defined
as [1]3

Oly(k,)]-!
w2 k)
l( A}[,(X7kc)+AyQ(Xvkc) A?}(X’kc) _iA}\l/(Xvkc)>
2\ A (x. ko) +iaf(x. k) Aj(x.k)—Ap(x.k.) )

(26)

where k., = ak is the comoving wave number of CMB
photons, with a(#) denoting the scale factor as a function of
conformal time diy = dt/a(t), and I,(k) = (/T —1)7" is
the Bose-Einstein distribution function describing the
homogeneous (unperturbed) distribution of CMB photons.
As above, the upper index y refers to the observed photons.
In the same way, the background beam is described by

o, L(h(p) O
W =3y o) e

3These are analogous to the brightness perturbations defined in
Ref. [1] apart from a factor of 4—i.e., our A7 is a factor (1/4) of
the A; quantities defined in Ref. [1] [see, e.g., Eq. (6.51) of
Ref. [1]]—so that, e.g., here A} represents the temperature
fluctuations [It would correspond to the quantity ® defined,
e.g., in Ref. [7] or in Eq. (5.3) of Ref. [50]. For a discussion of
the various temperature variables that can be used, see, e.g.,
Refs. [51,52]].

063501-5



AHMAD HOSEINPOUR et al. PHYS. REV. D 102, 063501 (2020)

and

200" gy = (LD QD) D) -0 o8

opt ] Y 2\U(x.p) +iVP(x.p)  I'(x.p) - Q"(x.p)
where this time the upper index b refers to the background photons. [We use slightly different notations with respect to
Eq. (26) to easily keep track of the background target beam.]

Thus, using these definitions for the photon density matrices, we insert the general scattering amphtude [Eq. (12)] into

the Boltzmann equation [Eq. (11)] and sum over all the vector polarization indices. After some straightforward calculations,
we find

d
d—ﬂAg(x,kc) =0, (29)

which is expected, since there is no energy or momentum transfer in the forward scattering of photons, and

2 ar (k) — =220 / : a'p {poa’“é’)}ﬂg 1(x.B) + 9 UP(%. B) + 950" (x. B) + 51 (p. kAT (x. k. )

dn K 27)32p° dp
gV (D) (x. k). (30)
d 3a? & ol
araixik) =250 [0 PO (g B) + 06 (5. B) + 705, B) + 52 A . )
20,V (x D) A (x.k, ) . G1)

2 3
& (x k) == () [_d'p [ 0 0lo(p)
n

260 | 2n)2p0 a0 ] {lgsI°(x. B) + gs U’ (x. D) + 9708 (x. ) + 51(p. k)] AT (x. K,)
—2[giI°(x. D) + U’ (X, p) + g30°(x. ) + 51 (p. k.)]AL (x. k. )}, (32)

where the g; coefficients and the scalar functions s; are given in the Appendix A.

From the physical point of view, the set of coupled Egs. (30), (31), and (32) just derived gives rise both to the
transformation of Q modes into U modes and vice-versa (Faraday rotation), and to the conversion of linear polarization to
circular polarization and vice-versa (Faraday conversion). In this paper, we are interested only in the Faraday conversion
effect; thus, we decouple the Q and U modes by assuming g, = 0 (or G; = G,), leaving

612 3
rolxke) = =20 [ B 0 015, + 0.0 )+ 000 B) 5 (0o R (k). (33)

i ¥ _3‘12(’7)/ d3p oaIU(P) b o b . b . .
a2 [ R0 P i)+ 0ol (5) + Q' (50) 5Bk IAL (), (34)

d 3a? & ol R R -
k) = =200 [0 0O g )+ U (0. B) + Q)+ 55k 4 K

=2[qu1"(x.p) + U (x. D) + 5:0"(x.B) + 51(p. k)| A (x. k) }- (35)

A. Euler-Heisenberg case

In this subsection, we derive in our quantum Boltzmann equation formalism the linear-circular polarization mixing
induced by Euler-Heisenberg interactions. Thus, substituting the Euler-Heisenberg Feynman amplitude (24) into Eq. (11),
we get the following set of equations:

d
d—ﬂAy(x,kC) =0, (36)

*It is understood that we are using the FRW metric ds? = —dr® + a*dx? in evaluating Eq. (12).
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CMB V MODES FROM PHOTON-PHOTON FORWARD ...

PHYS. REV. D 102, 063501 (2020)

] I (%.B) + FUP(x.B) + £>0°(x.B) + fil. (37)

d 4a’a* () &’p Aly(p)

—AL(x, k) = — Al (x, k 00

dn Q(X c) 15/(9.171? V(X C>/(2ﬂ)32p0|: apo
d 2a%a*(n)

— A (x,k,) = ——F

oy Suxeke) =950 Ay 227250 |P "ap0

dn 15k9m? 27)32p° dp

sk [ : p [poa’O(”)][fdb(x,ﬁ)+f5Ub<x,ﬁ>+f6Qb<x,f»>+f31, (38)

a2a2 3
4 A (xk,) = =220 / : a’p [poa”’(é’)]{A@(x,k»[fm(x,m+f5Ub<x,ﬁ>+f6Qb<x,ﬁ>+f31

— 205 (%, k) [f11°(x, p) + LU (x, D) + f30°(x, p) + f1]}, (39)

where the explicit expressions for the f; coefficients are
given in Appendix B. Notice that these equations can be
directly derived by Eqgs. (33), (34), and (35) once we identify

40?

Moreover, notice that by matching the amplitudes (14) and
(24), we get

Gl = G27 (41)

telling us that photon-photon scattering, as predicted by
QED, leads only to Faraday conversion (moreover, in the
low-energy limit, one also finds G; = 0; see Ref. [45]).

|

f1:0,

|

Now, in order to perform the integral over p, we write the
momenta and photon polarization vectors in the following
general form:

RC = (sin @ cos ¢, sinOsin ¢, cos 6),
p = (sin@ cos @', sin @ sing’, cos &),
€,(k) = (cosfcos ¢, cos @sin ¢, —sin ),
€,(k) = (=sin¢,cos ¢,0),
€,(p) = (cos@ cos¢,cos@ sing’, —sin @),
€,(p) = (—sing’,cos¢’,0). (42)

In this generic reference frame, we get

3
fo= 3 (K°p®)2{—12sin’0sin’@ + 16 cos O cos & cos2(¢p — ¢') — (cos 20 + 3)(cos 26’ + 3) cos 2¢) cos 24’

+4cos(¢p— ') (4sinfsin@ — sin20sin20') — (cos 26 + 3)(cos 26’ + 3) sin 2¢ sin 2¢' },
f3=06(kp®)?(cos @ — cos @) sin(¢p — ¢'){(cos O cos & — 1)[(cos ¢ cos ¢’ + sin ¢ sin ¢'] + sinGsin &'},

f4:0’

fs=12(k°p%)?(cos O — cos &) sin(¢p — ¢'){(cos O cos @ — 1)[(cos ¢ cos ¢’ + sin ¢ sin '] + sinOsin '},

3
fe= 1 (k°p%)2{—6 cos 20sin*@ — 16 cos O cos &' cos 2(¢p — ¢') + (cos 20 + 3)(cos 26 + 3) cos 2¢ cos 24

—3c0s20' —4cos(¢p — ¢')(4sinOsin@ — sin20sin26') + (cos 20 + 3)(cos 20" + 3) sin2¢psin2¢’ +3}.  (43)

Now, without losing generality, we fix the frame where the line of sight is aligned with the z axis—i.e., ﬁc ||Iz—as in the end
we will work with quantities that are invariant under rotations. Thus, we get

fa==3(kp")? cos 2¢'(1 — cos &),

f3=3(K°p®)?sin2¢/(1 — cos &),

fs = 6(k°p®)?sin2¢/(1 — cos &),

fo =6(k°p®)? cos2¢/(1 — cos &) (44)

Hence, Egs. (37), (38), and (39) become

063501-7
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d 20° K0 &’p dly(p)
— A , k) =— C A , kc o Y10
dn olx. ko) S5my v )/ (27)° [p ap°
d 2a%k0 &p Aly(p)
— A k) = CAY k. o “Y10
d’? U(X L) 5m3 V(X L) / (2”)3 |:p apo
0510(17)

d 202K [ dp
— Al (X, k) = — d
dn V1K) 5m / (27)° [p op°

— Al (x, k. )[sin2¢/ QP (x, p) — cos 2¢' U (x, P)]}.

Notice that in Egs. (30), (31), and (32), the source terms
proportional to s; and s, are linear in the perturbations.
However, as we have just shown, such contributions at the
end vanish, leaving therefore only the remaining source
terms that are second order in the cosmological fluctua-
tions. Now, we can start to compare our results with
previous calculations of this effect, i.e., Refs. [20,31,34].
For instance, in Ref. [20], the time evolution of the CMB
Stokes parameter V obeys the following equation:

LA (k) o (1 = cos 6)2{ A%y (k) [sin(24) 0* (p)

dn
—c0s(2¢)U"(p)] — A (K)[sin(2¢) U” (p)

+cos(2¢)0" (p)]}. (48)
where 6 and ¢ are the polar angles between the observed
and background photons. Comparing Eqgs. (47) and (48),
we find that our results are fully consistent with Ref. [20],
apart from different normalization conventions in the
definition of CMB Stokes parameters.

We can show the consistency of our results also with
Refs. [31,34]. In these works, it is shown that the circular
polarization of the radiation field is generally produced by
Faraday conversion that occurs when a linearly polarized
radiation propagates through a medium in which the axes
perpendicular to the momentum of the incoming radiation
have a different refraction index. In order to compare our
results with Refs. [31,34], we need to expand the Q and U
modes in Eq. (28) in terms of spin-weighted spherical
harmonics (Y, as (see, e.g., Refs. [3,6])

(Q" +iU")(x.p) =

where a£, and a, denote the coefficients in the harmonic
sphere expansion of the so-called £ and B modes that give

]po(l —cos @)?[sin2¢/ Q" (x,Pp) — cos 2¢'Ub(x,p)], (45)

}po(l —cos @')*[cos 2¢’' QP (x,p) + sin2¢' U (x,p)],  (46)

]po(l —cos @)2{A7,(x, k. )[cos 2¢' QP (x, P) + sin 2¢/ U (x, p)]

(47)

|
an alternative (rotationally invariant) description of the
CMB linear polarization. Thus, we have

=2 m—~¢
-2 N
+ag ) (%)Y, ()] (50)
and
b oy LSn () A
U (X’ p) - _IZ Z [az,’m (X)+2Yfm(p)
=2 m=—¢
—aSx)_,7, (P 51
Apm X)—Z f,m(p)] ( )
Then, we also employ the fact that
1 2 -2 i 2 -2
a?m = _5 [a(f-tn> + af,’,m)]’ ag,m = 5 [a(ftn) - a(f.m)]’
(52)

which follows from Eq. (49), together with the identities

a% = azE,—zs ag,*z = a?,_z (53)
that follow from the reality condition on the E and
B modes.

Thus, after employing the angular decomposition of Q
and U modes, we perform the momenta integration in
Egs. (45), (46), and (47), and we get5

In deriving Egs. (55), (56), and (57), we have used the
following integral:

" d] -~
/ %p“dﬁ = lo(p)P*l7 - 4/ Iy(p)pdp
P 0

0
B 4/°° pdp _ —4n'T?
=), =i 15

_ 2 4
= —4r°a,qT".

(54)
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d 4wk’ 4 v E B

d_nAQ(X’ k) = 57 g?aradTCMBAV(Xv kc)[Im(Clz,—z(X)) - Re(az'_z(x))], (55)
d .y 4 [wkla’ 4 v E B
d_”AU(Xv k) = 5, g?aradTCMBAV(X’ k.)[Re(ay _,(x)) +Im(a5 _,(x))], (56)

d ., 4  [mila? . , - 5
d_nAV(X’ k.) = 5z g?aradTCMB{AU<X’ kc)[Re(az,—z(X>) + Im(az._z(x))]

— Ap(x. k.)[Im(ag ,(x)) — Re(a3 _,(x))]}. (57)

where a,,q = 7%/15 is the radiation energy density constant
and Tcyp is the CMB temperature. Notice that our effect
turns out to be proportional to CMB quadrupolar anisot-
ropies of the linear polarization fields. This result is
consistent with what we would have expected. In fact, it
is well known that the linear polarization of a light beam is
classically converted into circular polarization via Faraday
conversion as it traverses a medium with different refrac-
tion indices along two orthogonal directions on the polari-
zation plane of the propagating beam. Thus, since in our
context the photon-photon forward scattering leads to an
effective birefringent medium (induced by the target
photons), then to realize Faraday conversion, we need
quadrupolar anisotropies in the distribution of the target
(CMB) photons: in fact, only in this way can we get an
effective medium with local different refraction indices
along two orthogonal directions on the polarization plane
of the incoming (CMB) photon.

[

Notice also that Eq. (57) is consistent with Refs. [31,34],
after ignoring the a% _, term with respect to a5 _,, which is
equivalent to neglecting target (CMB) photons with
B-mode polarization with respect to those with E-mode
polarization. This assumption is well motivated by the fact
that the amplitude of CMB B modes is already constrained
to be smaller than that of £ modes (see, e.g., Ref. [53]),
which thus will give the most relevant effects in our
Faraday conversion. This is also equivalent to neglecting
tensor perturbations from inflation, as in the standard
picture these represent the most important source of
B-mode quadrupolar anisotropies.

We can obtain analogous equations for describing the
Faraday conversion also in the general photon-photon
forward-scattering case [Eq. (14)]. In fact, after using the
spin-weighted spherical harmonic expansion and perform-
ing the momenta integrals in Egs. (30), (31), and (32) with
the same prescriptions as before, we find

d 3 In

5.k = (G + o 4 260) 2 [ Haa T 8 K lIm(af a(x)) = Re(ad s (x) (58)
A1 (x.k) = —(G1 + Gy +2Ga) > | h0 o T4 AT (x. k) [Re(aE Im (a8 59
d_’? u(x, k) =—=(G) + G, + 4); 5 clra TevpAY (X, ko) [Re(ay _,(x)) +Im(a3 ,(x))]. (59)

dn

d 3 In
LAYk = (G1-+ G+ 2602 [T (8 (5. ) Re(a_y(x) + Im(af y(x)]

— A (X, ke)[Im(af 5 (x)) = Re(aF ,(x))]}. (60)

Interestingly, the only difference between the general and
the Euler-Heisenberg cases is in the overall coefficient
G, + G, + 2G4, which in the Euler-Heisenberg case is
fixed as in Eq. (40), but in the general case is undetermined.

IV. POWER SPECTRUM OF CIRCULAR
POLARIZATION

In this section, we derive the expression of the expected
CMB circular polarization angular power spectrum induced
by photon-photon forward scattering. We will assume

|

Euler-Heisenberg interactions, but the final result will be
generalized to any photon-photon interaction through
Eq. (40). To this purpose, we first define the following
quantities [3]:

AT = AL A, (61)

which encode CMB linear polarization and in Fourier space
can be expressed in terms of rotationally invariant quan-
tities, namely E and B modes. Using Eqs. (55) and (56) and
assuming a5 _, < a5_,, we get
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d kO 2 )
A () \/ G Thyip A (%. k) Im(a _y(x)) + iRe(a_y(x))]
kO 2
=i [ T (xR a0 (62)
and
d ,_ 4 ﬂ'ko 2
d_nA; (X’kc‘) - 571'\/7 4 aradTCMBAV(X»kc)ag,—z(X>~ (63)

These equations can be written in Fourier space as

d 4 [zkla? a’P

— A (K k) = i— |25 apaTé / A7 (K. k. K-P 64
DAk = i [ Tt [ ST ALK K - ) (64
d 4 [wkla? d’P

— AL (K, k. —i— [ == a  T? A% (K, k, K-P 65
AR = i [ ity [ MK k(K ) (65)

where K denotes the Fourier conjugate of x.
Moreover, we also give the Fourier-space expression of the CMB V-mode polarization induced by Euler-Heisenberg
interactions. From Eq. (57), we get

Oa2 3
AU KD = oo [T gy [ R A] (K R Relaf (K - P)) = 8 (K. Kim(af (K = P)]. (69

Now, we need to implement in the equations of motion of the CMB polarization fields also the standard radiation transport
terms, as given in the literature (see, e.g., Refs. [1,3,6]). These take into consideration the contributions of the photon-
electron Thomson scattering and projection effects. Thus, the Boltzmann equations (64), (65), and (66) get modified into

A (K )+ KU (KK = = {—Aﬁ(K,keH%(l ~ P ()II(K) + iAL[AY(K. k) * df 2<K>]} (67)

S () TR (K, ) = = |=AF (K ) 45 (1 = PaG)TI(K) = iy [ (K, k) - af (K] (68

d 3
d—nN{,(K,kc) + iKuA, (K k) = —1’{—A{,(K,k )+ 2/4A (KL k) +AL[AL (K, k) * Re(ah _,(K))

- 8 (K. ko) + m(af (K] (69)

where a * denotes convolution in Fourier space; /(1) is the so-called “differential optical depth” of Thomson scattering,
defined as

)= [ dratiinsor. €)= atmnor (70)
with n, being the electron density, x, the ionization fraction, and o7 = (87/3)a?/m? the Thomson cross section;
u=K- k. (71)
is the cosine of the angle between the observed CMB photon and the Fourier mode K; and

3ur -1

Pz(ﬂ): ) )

(72)
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4 |z k(c)az arad(TCMB)4 ) 2n* [z TOCMB k(c) (1+ Z)z y
AL =—/]275 =102~/ = . (73)
Sr 5 m, a(rl)nexeoT §(3) 5 m, m, xe(z) ne

H - AIZ + AQO + AQZ? (74)
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where Aj,, Ag,, and Ay, represent the nth-order terms in the Legendre polynomial expansion of the corresponding
quantities, 7% denotes the CMB temperature today, n, (n,) is the photon (electron) number density, and z is the redshift.
In analogy with the standard CMB radiation transport solutions, the differential equations (67), (68), and (69) admit the

following integral solutions:

, . 3
Af;(ﬂo’ K.k,) = A”O dﬂetKﬂ(ﬂ—'?o)—rT/<”){Z

AT (10 K. k) = A dneiKum)-

/—/H
-B|UJ

o . 3
A(/(%’K’kc)z/ dnetSrin=m)=c7/ () E,UAJ\//I

0

— A (K, k) * Im(a§_2(K))]}

= /’70 dﬂeiKﬂ(ﬂ_”]O)_TT/ (]7) {3ﬂA
0 2

where 7, denotes the conformal time today with the
condition e~*") = 1. We have also assumed e~ x~0
as a first approximation.

Now, following, e.g., Ref. [3], in order to obtain the
expected value of the V-mode polarization today in the 7
direction to the sky, we need to integrate over all the
possible Fourier momenta as

N (h) = / PRK) (10 Kop). (78)

where {(K) is a random function used to describe the
initial amplitude of primordial scalar perturbations from
|

. 3
ay, = /dQnY}m(ﬁ)/(PKC(K) A% dne’K”(”_”°>_TT'(7I){EﬂA}{,l

and thus the V-mode power spectrum reads

1
cY = 2f+1/d3KP§(K)

where P;(K), defined as

dQ,Y?, )A dneiKutn=no)= (17){ ull, (K) +AL(Im[a§i2(K) * Ay(K,ﬂ)]}

(1= J2)TI(K ) + i [ (K. k) # a3 (K)] } (75)

K.) — iA, [N (K. k) + a£_2<K>J}, (76)

(K.k,) + AL [A} (K, k) * Re(af_,(K))

(K k) + A Tmla" o(K) * A7 (K, kcn}, ()

|
inflation.® After computing Eq. (78), we can define its
harmonic sphere coefficients as

at, = / 49, Y%, (A)Ay (3). (79)

Then, the V-mode angular power spectrum reads

CVV 27 + IZ afmafm> (80)

Therefore, inserting Eq. (78) into (79), we get

(K) + A, Im{aE",(K) » Aé*(K,un}, (81)

T ®)

®We remind the reader that primordial tensor perturbations are neglected in our picture. In fact, they are observationally bound to have
a much smaller amplitude, thus yielding a subdominant effect on the CMB polarization field.
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(C(KNL(K))) = 6 (K = K)Py(K), (83)

denotes the scalar primordial power spectrum from inflation.
Equation (82) can be simplified by assuming that the circular polarization source terms are negligible in comparison with
linear polarization terms.” Therefore, Eq. (82) reads

1
VV o 3
cV _%H/d KP.(K))

m

2
/ dQ,Yy,,(7) / ! dne™ =) g(m)A Imlay™, (K) * AR (K. )] (84)
0

where g(n) = 7’¢™" is the so-called visibility function, and

8 = [ e =gt 21 - e (55)

Now, due to the product of the two visibility functions in Eqs. (84) and (85), the latter takes the relevant contributions for
' =~ n. Thus, Eq. (84) becomes

1
VvV SKP.(K
Ce ‘2f+1/d (K))

m

2

[ a9z (a) [ dngn 3 40(1 = s)e il oK) <K )

1 3 * (A o 3 2 ,ix Ex .
=51 ] KPS| [ 0500 [ dngn) AL+ By S () 1) (86)
where x = K(n — o). Now, using the integral (see, e.g., Ref. [54])
4doy* (6 ¢) ixp ,irg 1 r\/2 \/4T l’ﬂ+| iri f-]f( )
m e - 77-' + I"] 5mrv (87)
! X
we can perform the angular integration in Eq. (86), obtaining
Vv 3 o 3,0 ’
Cet = (4n) | EKP(K)| | dngln) 7 Acle(x) + Je /(x)|Im[a3”, (K) = TI(K)]
9 . 5
= (4n)(¢* —26° + ﬂ)/dSKPc K)‘/ dng( L”(J;H(l)) +”( )] Im[a,(K) «T(K)]| . (88)
- 1)x

where in the last step we have used the differential equation satisfied by the spherical Bessel functions,

#+ (2 + (1-255 ) 50 = (%9)

together with the Bessel recurrence relation,

J0) = =i+ (£) i) (90)
Finally, we rewrite the quantity
3
() « 1K) = tm| [ 5t - PG| ©1)

"This assumption is well motivated, as at present we do not have any observational evidence of circular polarization in the CMB,
suggesting that the circular polarization signal, even if present, is much smaller than the linear polarization one. Moreover, we are here
interested in a possible mechanism that, starting from initial vanishing V-mode polarization, does indeed produce it.
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Here, a5 _,(K — P) can be expressed in terms of the same
quantity in the frame where K — P is aligned with the z
axis, as [34]

af _,(K—=P)=D2, (¢k_p.Ok_p.0)a5 (K - P|z),

(92)

where qu ’m,(a, B,y) is the well-known Wigner rotation
matrix [55], and we have employed the fact that, since we
have scalar perturbations, only the m = 0 term of ag (K —
P||z) gives a contribution. Thus, Eq. (91) reads

Im[a3”,(K) +TI(K. )]

B \/—/d3P

sin?(Ok_p) sin 2k _p)a%,

< (|K - P)II(K), (93)
where we have used the fact that the quantity a5 ,(K'[z)
depends only on the wave number K’ due to the invariance
of E modes under rotations on the polarization plane. Thus,
Eq. (88) finally gives

CYV = (4r)(¢* = 26° + £7) / d*KP;(K)

[Od”g( )3f {21@1()6) +jf<x)}

x 16 “Lleir—x T 2

3
x / é’,j;sinzwx_p) sin(2x_p)

2

x ajo(|K = PII(K) (94)

Now, in order to give an order-of-magnitude estimate on the
amount of circular polarization produced by this effect, we
employ in Eq. (94) the expected level of CMB linear
polarization. To this purpose, we define CMB E and B
modes as [3]

w1 -2
=2t [(f+2)!] /‘pKPC(K)Z

m

= (47) [((;;?):] / PKP(K ' / dng(n

:(4ﬂ)(f4+2f3—f2—2f)/d3K77C(K)‘/) dﬂg(n)%l‘[(](,n)jf(zx)

where we have used again Eqgs. (87), (89), and (90).

1.2 _
Ny = -5 [PAY + AT, (95)

I -
AL = 3 [0°A} — *A7), (96)
where @ and 9 are the so-called spin raising and lowering
operators [3]. Using these definitions, together with

Egs. (75) and (76), we get [3]

"o 3
N0, Ko) = = [ " dnglo) 311(K.)

X (‘)ﬁ[(l _ﬂ2)26iKﬂ(n—no)L

B / ' dﬂg(ﬂ)gn(lﬂ n)Q(x)(x*e™),  (97)

0

Al(no. K, ) = 0, (98)
where again x = K( — 1) and Q(x) = (1 + 02)%. Here,
we have neglected the backreaction terms due to the
coupling with circular polarization. Now, following again
Ref. [3], the expected E-mode angular power spectrum is

given by

f 25_’_1 5:1 gm (99)
where
=] [ i@, oo
and
A% () —/d3KC(K)&2(nO,K,u). (101)
Thus, we get
|
[ a0y, @) [ gt Sk QG )|
2 1K, 1) Q) (2 ()|
2
enl (102)
[
C‘;V ~ [A% (”rec)cgE(ﬂrec)]CgEa (103)

Now, by the matching between Eqgs. (94) and (102), we
get the following approximate relation between the circular
and linear CMB polarization fields:

which holds apart from ~O(1) coefficients. Here, A; (#;c)
denotes the redshift-averaged value of A; (1) for an average
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CMB comoving frequency mode k0 = z*/(30(3)) T2\
This is estimated by evaluating Eq. (73) for k0 = &¥ as

Vi) S ()

(104)

Ap(k2) =107

and taking the following values for the constant parameters:

n

2L =2x10, m, =5x10° eV,
n@
T =3.1x 107 eV, (105)
and the following redshift average:
1 fae  (1+2)?
b [ 4D g, (106)
Zrec JO Xe (Z)

where z,.. indicates the redshift at the recombination epoch.
Therefore, we obtain

AL (Mree) 2.4 x 1072, (107)

Also, we know that the relative amplitude of the CMB
E-mode polarization quadrupole left imprinted by scalar
perturbations is of the order [56]

A
\/CEE = 52 < 1076, (108)
T
Thus, Eq. (103) reads
CVV ~ 107 16CEE, (109)

This result suggests that the number of V modes produced
by this effect is much smaller than the level of linear
polarization that we actually observe in the CMB, in such a
way that our procedure of neglecting the backreaction of
V-mode source terms on linear polarization is a consistent
and very good approximation. Moreover, the rms value of
V modes is given approximately by

1 4% 12 —16 1 EE 1/2

= 1078E,, ~ 10714K. (110)
Notice that by employing Eq. (40), we can express
Eq. (110) in terms of the G; general coefficients as

15m?
Vs 2 1078(Gy + Gy + 2G4)4—”§Em,
104

(111)
which gives the order of magnitude of the expected
amplitude of V modes from the photon-photon forward
scattering mediated by a generic interaction.

Now, confronting our result in Eq. (110) with the one
found in Ref. [28], it turns out that our result is about 4
orders of magnitude smaller. This discrepancy may be
explained by the following considerations: First, in
Ref. [28], the coupling between the observed CMB
linear and circular polarization is realized through the
CMB background intensity field. But, as is also empha-
sized in Ref. [34], this is not possible, because in such a
case the f9 parameter of Eq. (49) in Ref. [28] would
identically vanish once we perform the underlying
angular integrals. As we have explicitly shown in
our work, Faraday conversion is possible only if the
coupling is realized through the linear polarization field
of the background photons. This leads to a 6-order-of-
magnitude discrepancy. Moreover, we notice that in
Ref. [28], the matching between the linear and circular
polarization fields is made by taking the average value of
the parameter ngy(z) in their Eq. (49), which is related
to our A;(n) apart from constant coefficients. These
constant coefficients are such that nfj; is 2 orders of
magnitude smaller than A; (7).

Thus, the 4-order-of-magnitude difference is explained
by the exchange Q(p)(U(p)) <> I(p) between our
Eq. (47) and Eq. (12) in Ref. [28], together with the
exchange A (fec) <> iy

V. POLARIZATION MIXING FROM PHOTON
AND MASSIVE SPIN-1 PARTICLE
FORWARD SCATTERING

In this section, we investigate a new viable way to get
circular polarization out of the forward scattering between
CMB photons and massive spin-1 particles. An example of
such cosmological candidates are the so-called hidden
photons. These massive bosons are present in extensions
of the Standard Model of particle physics containing a
general new hidden U(1) gauge group [57-60]. The
dominant interaction between the conventional photons
and the hidden photons is realized through the gauge
kinetic mixing between them. In the literature, different
methods have been proposed to constrain the coupling and
mass of hidden photons using astrophysical and cosmo-
logical observations [61-76]. Here, we will consider only a
generic photon—spin-1-massive-particle scattering, leaving
the extension of our final set of equations for specific cases
to future work.

First of all, it is well known that a massive spin-1 field
satisfies the so-called Proca equation [77], with a mass term
that explicitly breaks gauge invariance. The polarization
vector of such a field involves three independent compo-
nents. Moreover, the polarization field is characterized by
eight parameters which describe all the possible indepen-
dent polarization states (see Appendix C for a brief review).
In particular, the polarization matrix of a massive photon
can be written as [78-80]

063501-14



CMB V MODES FROM PHOTON-PHOTON FORWARD ... PHYS. REV. D 102, 063501 (2020)

given system. However, since there is little knowledge
], (112) about the physical polarization states of massive spin-1
particles, here we will focus only on their intensity,
assuming an unpolarized background.
where p;; is a 3 X 3 matrix, 4; are the generators of the As in the previous examples, we begin by writing down
SU@3) group, tr(p) =1 is the intensity field describing  the scattering amplitude. The general scattering amplitude
unpolarized massive photons, and 7; are eight generalized  of two generic spin-1 particles has been found by Ref. [46]
Stokes parameters describing the polarization state of a  in the following form:
|

tr(p) :
pij = (T [1]3 + Z%‘Ti

i=1

M,,,0(1234) = A, (1234)11),,(1234) + A, (1234)112),,(1234) + A3(1234)153),,(1234)
+ Ay (1234)15) 5(1234) + As(1234)15),5(1234), (113)
where A; are Lorentz-invariant coefficients and / ,(,iy),,g are five independent gauge-invariant tensors that must be determined.

After applying crossing and gauge-invariant symmetries, the / f,iv)p,; tensors are given by [46]

1
11(4270'(1234>:§{p11/p;%p2-p/1 8100 Pi(P - P*) = 8, pipi (P - P?) + 8,6 (p" - P (P - p*)} (114)

1,2,3,4 3

1
152,6,(1234) = —{pLp2p3p* + pLp2p2pt + 6,02 p2(p" - p*) = ,4pLp2(p* - P*) = 810p2p3 (p' - p*)
8
— 8Py (P? - PY) = 8150 Pu(P? - PP) + 8ipipa(P' - P?) = Spipia(p' - P?)
—8u,Pipi(P' - P?) = Supipi(p' - p*) - Wpapi‘(p -p*) +6,pip3 (P pY)
+ 8,6y P3(P? - P?) + 8,625 (P" - P (P PP) + 8,0,(P" - P?) (P - p*)}. (115)

1
3
Iipe(1234) = TS 4{pup,,pﬂpa(p P+ piraperi(p' - PY) = pirapips(P’ - PY) = Siepira(p' - P (P pY)

- 5,wplp;;(p -pA) (P pY) +8upips(pt - p?) (PP p*) = Supipi(p' - PP (P - P?)

+8,6,(p" - P?)(p" - PP) (- P} (116)
1
4
Ihe(1234) = TS 4{p,,p,,pﬂpa(p -pY) + pupapapi(p? - P?) — popapips(p? - p*) = Sipiri(p? - PP) (P - pY)
- %pm;,(p -pA) (Pt pY) +8upips(pt - p?) (PP p*) = Supipi(p' - P?)(P? - P?)
+ 8,0,(P" - P?)(P* - P?)(p' - Y)Y, (117)

1
5
Iﬁu%a(1234):W{pépip2pi(p -pY)+ pepypipl(p' - p*) — pipipip(p? - pY) — pipapipy(p' - p*)

1

+8upepi(P" - P (P - PY) +8upepi(p' - PN (P P?) = Superi(p' - p*) (P P?)
+8upopi(p' - p*)(p* - p) = Suropi(p' - ) (P - P?) + Supspi(p' - ) (P - p*)
= 8upspi(P* - PP) (P P*) = Supspi(p' - PP) (P - P*) = Supspi(p' - pPP) (7 - PY)
+8upepi(P* - PP)(p* - p*) = Supepi(p' - P (" PP) + Supepi(p' - P?) (P - P} (118)

Now, inserting the invariant amplitude [Eq. (113)] into the quantum Boltzmann equation, and imposing the massless
condition for CMB photons and the massive condition for massive spin-1 fields, we find the following expressions for the
time evolution of the CMB Stokes parameters:

d
T (xk) =0, (119)

i 4 7# 4 / d’p p_o(alo(p) b
thQ(X7kc)_6k2pAV(X7kc) (271')32}70 8 apo [LOI (pﬂ’ (120)
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d 1 d’p
— AL (x,k,.) = AV (x.k L
Aok = =3 Av(x, C>/(2ﬂ)32p0{8 ap°

p° 0ly(p)

p°0ly(p)

} Mol (p). (121)

d 1 d’p
— Al (x.k,) = =
dt v(x k) 12k2p/(2ﬂ)32p0[8 op°

where I”(p) labels the intensity of the background massive
spin-1 field. The parameters L, and M, are given in
Appendix D. It is straightforward to check that the
coefficients L, and M, vanish in a general reference frame.
This result shows that just like the photon-photon scattering
case, the CMB V-mode polarization does not couple with
the intensity of massive spin-1 photons, but only with their
polarization fields.

VI. CONCLUSION

In this paper we have studied the generation of CMB V
modes from photon-photon forward scattering using a
quantum Boltzmann equation formalism. We have derived
a set of general Eqgs. (33), (34), and (35) describing the
conversion of CMB linear polarization into circular
polarization. Then, we specialized to the case of Euler-
Heisenberg interactions and derived the consequent
amplitude of V modes produced. Our final estimation, in
Eq. (110), is in line with previous literature [31,34] and
corrects the computations made by a previous paper [28],
which used the same formalism adopted here.

Since the amplitude of CMB circular polarization is
expected to be almost 8 orders of magnitude smaller than
the amplitude of CMB linear polarization, we have no hope
to observe soon such a signature with CMB experiments.

Moreover, throughout this paper we have provided very
general expressions extending the computations described
|

= (G + Gy +2G4){(k - p)*[(e2(p) - €1(K)) (€2
— (k- p)(k-ex(p))[(p - e2(k))
— (k- p)(k-€1(p))[(p - ex(k))
+(p (
9> = (
— (k- p)(k-e(p)
— (k- p)(k-ei(p)

(p-exlk

)l
(P - ek

+2(k-e1(p))(k-ex(p))(p - €1(k)(p - €2(k))}

93 = (G1 + Gy + 2G4 ){(k - p)*[(es

-€1(k)(p - e2(k)[(k - €1(p))? + (k- e2(p))*]}.

] () [ 2LoA (x, k) + MoAly (x. k). (122)

|

above and the corresponding expected number of V modes
in the case of a generic photon-photon interaction, not
relying on any specific fundamental interaction [Eq. (111)].
Finally, we have investigated the possibility to get some V
modes from the forward scattering between CMB photons
and spin-1 massive particles. Our final set of equa-
tions (120), (121), and (122) confirms that only polarized
spin-1 massive particles can couple linear to circular
polarization in the CMB. These latter results provide the
basis to further investigate new cosmological signatures of
physics beyond the standard model of particle physics. We
leave further study in this direction for future research.
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APPENDIX A: COEFFICIENTS OF STOKES
PARAMETERS IN THE CASE OF GENERAL
PHOTON-PHOTON INTERACTION

Here, we provide the explicit expression of the coef-
ficients in Egs. (30), (31), and (32):

(G1+ Gy +2G){(k - p)*[(e1(p) - €1(K)(e2(p) - €2(k)) + (e2(p) - €1 (k) (€1 (p) - €2(K))]

(A2)

)

+ (k- p)(k-ex(p))(p - e2(k)
— (k- p)(k-er(p))| I
+(p-e(k)(p - e2(k)[(k- €1 (p))? = (k- ex(p))*]}.
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94 = (G = Go){(k- p)*[(e1(p) - e1(K))(e2(p) - €2(k)) = (e1(p) - €2(k)) (€2(p) - €1(K))]
— (k- p)(k-ex(p))[(p - €2(k))( : '
+ (k- p)(k-er(p))[(p - e2(k)) (e2(p) -

g5 = (G + G, +2G){(k - p)*[(e1(p
+2(k- p)(k-ei(p))l(p-e
+2(k- p)(k-e(p))l(p- e
+((k-e1(p))* + (k- ex(p)*)(p - €1(k)* = (p - e2(k))?]}. (A5)

96 = 2(Gy + Gy + 2G4 ){(k- p)*[(e2(p) - €1(k))(e1 () - €1 (k) = (e1(p) - €2(k))(e2(p) - €2(K))]
+ (k- p)(k-e(p))[(p - ex(k)

+ (k- p)(k-e(p))[(p - €2(k)

+ (k-ei1(p))(k-ex(p))[(p- e

o
S

[\S]

k))> = (p - e2(k))*]}, (A6)

= 2(k- p)(k-ex(p)(p - e(k)
+2(k - p)(k-e(p))[(p-e(k)
+[(p-e1(k)* = (p-ex(k)?][(k-e1(p)* = (k-exp))*]}, (A7)

(Gi + G5 +2Gy)
TG+ G +26) 7
= (G + G3 +2G){(k- p)*[(e2(p) - €1(K))(e2(p) - €2(k)) + (e1(p) - €1(K))(e1(p) - €2(k))]
— (k- p)(k-e(p))[(p - e2(k))(e2(p) - €1(k)) + (p - €1(k))(e2(p) - €2(k))]

— (k- p)(k-ei1(p))[(p-exk))(e1(p) - €1(k)) + (p - e1(k))(e1(p) - 2(k))]
+(p-ei(k)(p-ex(k)[(k-e(p) + (k-exp))]} (A8)

_ (G +G3+2Gy)

2 (G + G, +2Gy) 9
= (G + G5 +2G4){(k - p)*[(e1(p) - €1(k))* = (e1(p) - €2(k))* + (e2(p) - €1(k))* = (€2(p) - €2(k))?]

(A9)
where €, (p) and €,(p) denote the two independent transverse polarizations of a massless spin-1 particle.

APPENDIX B: COEFFICIENTS OF STOKES PARAMETERS IN THE CASE
OF EULER-HEISENBERG INTERACTION

Here, we provide the explicit expression of the coefficients in Eqgs. (37), (38), and (39):

e(k)) + (e1(p) - €1(k))(e1(p) - €2(k))]

)(€2(p) - €2(k))]

)(€1(p) - €2(k))]

2+ (k- ea(p))], (B1)

f1=3(k-p)*[(e2(p) - €1(k))(ex2(p) -
=3(k-p)(k-ex(p)(p - €2(k)
=3(k-p)(k-ei(p)l(p-ex(k)) (e
+3(p-e1(k)(p-ek)[(k-e(p)

~—  ~—
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f2=3(k-p)*[(e2(p) - €1(k))(€1(p) - €2(k)) + (e1(p) - €1(k))(€2(p) - €2(k))]

[
=3(k-p)(k-ex(p))[(p-exk))
=3(k-p)(k-e1(p)(p - €ex(k))

f3=3(k- P)Z[(el(l?)
=3(k-p)
+3(k- p)

fa=3(k-p)*[(e(p) - €1(k))* = (ex(
+6(k-p)(k-e1(p))l(p-exk))
+6(k-p)(k-ex(p))[(p-exk))

)7)

ﬂ)

+6(k-p)(k-e(p))
+6(k-p)(k-exp))

+6(k-p)(k el(p)
+6(k-p)(k-exp)
+3[(k-e1(p))* = (k-

APPENDIX C: STOKES PARAMETERS FOR
MASSIVE SPIN-1 PARTICLES

In this Appendix, we briefly review the definition of
Stokes parameters for massive spin-1 particles. As was
shown in the text, one can parametrize the intensity and the
polarization of massless photons using a 2 x 2 polarization
matrix involving four Stokes parameters:

tr(p)

pij:T[]]2+6'P]’ (C1)

where P = (U,V,Q)/tr(p), tr(p) =1, and o; are the
Pauli matrices associated with the generators of the
SU(2) group. However, when we want to describe massive
photons, it is more convenient to use an alternative
representation of the polarization matrix that is made
with the generators 4;,, i = 1,...,8 of the SU(3) group.

(e
(e2(p

+6(k-e1(p))(k-ex(p))(p - €1(k))(p - e2(k))],

1(k)(er(p) - €2
(k-e1(p))[(p-e(k)) (e
(k- ex(p)[(p-ei(k))(e2(p) - €
=3(p-e1(k)(p - e2(k)[(k - e2(p))* =

k)) — (e2(p) - €
p)-€e(k)) + (p-ex(k))(er(p) - €1 (k))]

(€1(p) - €2(k))* + (e2(p) - €1(K))?
(e1(p) - e
(e2(p) - €
+3((k-e1(p)* + (k- e2(p)*)((p - €

fs=06(k-p)*[(e2(p) - €1(k))(e1(p) - €1 (k) —

(k)? = (p - 2(k))?).

p-e(k)(e(p) e
p-ek))(ei(p) e

+6(k-e1(p))(k-ex(p))((p-€1(k)* = (p - ex(k))?).

)-e1(k) + (p-e1(k)(e1(p) - €2(k))]
) e )

k) + (p-er(k

'61

(B2)
1(k)(e2(p) - €2(k))]

2(k)) + (p - e2(k))(e2(p) - €1(k))]

(k-e(p))], (B3)

|

—

[0
5]
—
<
~—

[
[3%)
—

k)
~—
~—
o

2(K)
2(K)

)= (p-ei(k))(er(

)= (p-e1(k))(ea(
))%) (B4)

(e1(p) - e2(k))(€2(p) - €2(K))]

(k) = (p-e1(k))(e2(p) - €1 (k))]

(k

) = (p-e1(k))(er(p) - €1 (k)]

(B6)

In fact, the polarization matrix can be also written
as [78-80]

(C2)

tr(” {ﬁz/n]

where p;; is a 3 x 3 matrix, the generators 4; satisfy
tr(4;4;) = 36;;, and T; are eight parameters defined as
T; = tr(4;p)/tr(p), which describe all the possible polariza-
tion states of massive photons. In fact, as discussed, e.g., in
Ref. [80], the representation of Eq. (C2) is sufficiently general
to describe not only “physical photons,” which are only
transverse, but also massive photons, admitting longitudinal
polarization states. As an example, consider a spin-1 particle
moving along the z axis. In this case, taking € = (e, €, €,) as
its polarization vector, it is possible to show that the corre-
sponding polarization matrix can be written as [80]
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€,€x + €,€5 4 2Im(e e5) —V2(e, + iey)e;s  —eey + €€y — 2iRe(e,€7)

x€y
1
pij = > —\/E(e,*; + iey)e, 2¢.€t \/Z(ex + iey)e, . (C3)
—€,€5 + €,€5 + 2iRe(e€y)) V2(e, — iey)es €€y + €y€5 — 2Im(esey)
Now, by matching Eq, (C2) with Eq. (C3), we get the 1 _
following definition of the parameters 7; in terms of the I; = —Zlm((€§ + ie})e,), (C10)
photon polarization vector:
3 1
1 . g = € € + 2Im(eey) — 3l (C11)
T, = —ﬁRe((ex + iey)€r), (C4) 2v2

For massless photons with no longitudinal polarization

1 states, we have necessarily €, = 0. As a consequence, we

T, = —ﬁlm((ex + iey)er), (C5) getT, =T, =T¢=T7=0, “and T is related to Tg. Thus,
only three independent degrees of freedom remain, which

correspond to the usual Q, U, and V Stokes parameters.

1 N N However, if we include in the picture the possibility to have
2 \/%(1 —3e€ + ZIm(exey ) (Co) longitudinal polarization states, we need to describe the
polarization state of a spin-1 particle with the 7'; parameters

T3:

T, - _% (exet — ey6%), () that play the role of generalized Stokes parameters.
APPENDIX D: COEFFICIENTS OF STOKES
Ts = —Re(e,€y), (C8) PARAMETERS IN THE CASE OF GENERAL
PHOTON-SPIN-1 INTERACTION
T LRe((ejg + i€})e,), (C9) Here, we provide the explicit expression of the coef-
2 ’ ficients in Eqgs. (120), (121), and (122):
|
Lo = (4A4(k - p) = kp(A; +245) + 4mpA3){ (k- p)*[(e2(p) - €1(Kk))(e2(p) - 2(K)) + (e1(p) - €1 (k)) (€1 (p) - €2(k))
+ (e(p) - e1(k))(es(p) - 2(k))] = (k- p)(k - €2(p))[(p - €2(K))(e(p) - €1(k)) + (P - €1(k))(es(p) - €2(k))]
— (k- p)(k-ex(p))[(p - e2(K))(e2(p) - €1(K)) + (p - €1(k))(e2(p) - €2(K))]
— (k- p)(k-e1(p))[(p - ex(k))(e1(p) - 1(k)) + (p - €1(k))(e1(p) - €2(K))]
+(p-ei(k)(p-e2(k)[(k-es(p))* + (k-e1(p))* + (k- ex(p))’]} (D1)

My = (4A4(k - p) — kp(A; + 2A;) 4+ 4m} A3)

x {(k-p)*[(e2(p) - €1(k))* = (e2(p) - €2(k))* + (e1(p) - €1 (K))* = (€1 () - 2(K))?

+ (er(p) - €1(k))* = (e2(p) - €2(k))*] + 2(k - p) (k- e-(p))[(p - €2(k))(er(p) - €2(k)) — (p - €1(k))(er(p) - €1 (k))]
+2(k- p)(k-ex(p))[(p - e2(k))(€2(p) - €2(k)) = (p - €1(k))(e2(p) - €1(K))]

+2(k-p)(k-e1(p))l(p-exlk))(e(p) - €2(k)) = (p - e1(k))(e1(p) - €1(k))]

+(p-er(k)? = (p-ex(k)*][(k - e(p))* + (k- e1(p))* + (k- ex(p))*]}. (D2)

where mp denotes the mass of the spin-1 particle and ¢,(p) its longitudinal polarization.
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