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The development of single charge resolving, macroscopic silicon detectors has opened a window into
rare processes at the OðeVÞ scale. In order to reconstruct the energy of a given event, or model the charge
signal obtained for a given amount of energy absorbed by the electrons in a detector, an accurate charge
yield model is needed. In this paper we review existing measurements of charge yield in silicon, focusing in
particular on the region below 1 keV. We highlight a calibration gap between 12–50 eV (referred to as the
“UV-gap”) and employ a phenomenological model of impact ionization to explore the likely charge yield in
this energy regime. Finally, we explore the impact of variations in this model on a test case, that of dark
matter scattering off electrons, to illustrate the scientific impact of uncertainties in charge yield.
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I. INTRODUCTION

Recent developments in silicon (Si) based particle
detectors, including cryogenic calorimeters [1,2] and pixe-
lated quantum charge detectors [3,4], have ushered in a new
era of OðeVÞ sensitivity to resolving the deposited energy
of particles that traverse through them. These devices,
capable of counting individual charge-pairs, not only have
specific particle physics applications—such as in placing
constraints on the existence of light MeV scale dark matter
that recoils off electrons [4–7], or in probing non-standard
model neutrino interactions [8,9]—but broad astronomical
applications such as in exoplanet searches [10].
Common to all of these use cases is the need to precisely

identify the energy of the external particle. Generically,
particle detectors work by measuring the deposited energy
in an absorber material by one of three main avenues:
charge production (ionization), photon production (e.g.,
scintillation) or collective excitations (phonons and plas-
mons), with further down-conversions intermixing these
different production modes.
In a semiconductor like Si—where ionization plays a

dominant role above the band gap Eg (∼1 eV)—the
deposited recoil energy Er is often inferred from counting
the number of electron-hole pairs created, n, by way of the
mean energy-per-pair ϵeh. Due to the concurrent emission
of phonons during the ionization process, ϵeh > Eg and ϵeh
is only reflective of the aggregate response of the material.
The Fano factor, F, quantifies the dispersion of n for a
given E and is sub-Poissonian (F < 1). For deposits ≫
50 eV and particularly past the K edge (∼1.84 keV) in Si

the statistical nature of this ionization process leads to an
almost constant behavior in the values for ϵeh and F and
thus provides for a simple relationship between the
expected energy and what was counted.
In this paper, we demonstrate that this relationship is not

straightforward in the low-count regime. We show that
systematics on the order of 50% can arise when applying
ionization models in scientific applications due to both the
finite band-gap and complex features of the band-structure
of crystalline Si which are not averaged out, and that the
width of the hole band has an impact on the charge yield in
the regime between 12–50 eV. Disentangling the effect of
ionization is vital for correctly attributing the response of
the detector to the physics of dark matter or some other
unmeasured process, such as potential signals from elastic
nuclear recoil, the Migdal effect1 [11], or other collective
effects [12,13].
The existing literature on ionization response is vast and

often delves deeply into the condensed matter foundations
of this topic which perhaps does not serve well a practi-
tioner from the particle-physics community. As such, this
paper is concerned with summarizing and providing for a
simple phenomenological model, well supported by data, to
allow experimental collaborations using Si detectors to
provide results on an equal footing. Similar work has been
done by Refs. [14,15] with particular focus on incorporat-
ing the shell structure of Silicon in the absorption process
and in dealing with how the inner-shells (L1, L2;3, K) affect
absorption at and above these edge energies. This work
seeks to refine and further the OðeVÞ portion of absorption
(i.e., where the valence band and M shells play a role).
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We start in Sec. II by describing the 4 parts of our model:
how to initially partition Er, how subsequent down-con-
version happens, how to fold in temperature effects, and
finally how to synthesize these parts using a Monte-Carlo
simulation approach. Next, Sec. III collates existing data
available in the literature. Finally, Sec. IV discusses how we
apply our model to investigate and extract the micro-
physics and energy dependence for the parameters in
question, leading to the main result of this work: provision
of tables of computed probabilities pnðE; TÞ, interpreted as
the probability to ionize n charge-pairs at temperature T as
a function of any deposited energy E.
This paper also serves as a blueprint for constructing a

low-energy ionization model for similar semiconductor
targets, which we leave for future work.

II. MODELING QUANTUM YIELD

The process we attempt to model is energy redistribution
from an initial hot carrier2 to the electron and phonon
system, in particular the ionization of subsequent electron-
hole pairs by the initial carrier, known as impact ionization.
All of the initial recoil energy is given to a single electron-
hole pair. The number of total electron-hole pairs created
after the cascade process is typically calculated as

n ¼ Er

ϵehðErÞ
ð1Þ

where ϵeh has been shown to be constant in the high-energy
limit (see Table I).
At low energy, we know that this formula breaks down.

In a perfect lattice, any ionizing interaction below Eg is
energetically inaccessible, so this equation is undefined
(ϵeh → ∞). For energies between Eg and 2Eg, only one
electron-hole pair is allowed by energy conservation,
forcing a direct relationship between energy and ϵeh to
ensure the mean is fixed. The uncertainty in this function
therefore enters between Er ¼ 2Eg and the high energy
limit Er ≫ Eg.
This allows us to summarize the goal of this work as

fully characterizing the behavior first of ϵeh:

ϵehðErÞ ¼

8>>><
>>>:

∞ Er < Eg

Er Eg ≤ Er < 2Eg

ϵimpðErÞ Er ≥ 2Eg

ϵeh;∞ Er → ∞

ð2Þ

where ϵimpðErÞ, the mean energy imparted by impact
ionization, is the unknown function.

This process also has a variance σ2ðErÞ, commonly
related to the mean energy by the Fano factor [37]:

FðErÞ ¼
σ2ðErÞ
nehðErÞ

¼ σ2ðErÞϵehðErÞ
Er

ð3Þ

This factor, too, has an energy dependence, and in the high-
energy limit some measurements have been made, but this
parameter is far less well constrained (see Table I). From
energy conservation, F ¼ 0 below 2Eg and like the mean,
has an asymptotic limit. The function is therefore

FðErÞ ¼

8><
>:

0 Er < 2Eg

FimpðErÞ Er ≥ 2Eg

F∞ Er → ∞
ð4Þ

This two-component model has been repeatedly vali-
dated for energies > 6 keV (see Table I). A straightforward
extension to lower energies, a placeholder often used in
literature when discussing low energy phenomena, is to
modify the piecewise descriptions above to ϵimp ¼ Er and
Fimp ¼ 0 for Eg < Er < ϵeh; we refer to this as the “simple
model” hereafter. Our goal here however is to explore a
phenomenological model which stitches together the near-
gap and high-energy limits based on available experimental
measurements. This requires a framework for calculating
ϵimp and Fimp. We begin by breaking down the calculation
into constituent components, and then explore calculations
made under different assumptions, as well as implications
for Fano factor modeling.
Following Wolf et al. [38], we calculate the number of

electron-hole pairs generated as

nðErÞ ¼ 1þ
Z

Er−Eg

E¼0

dEPðE;ErÞhNðEÞi ð5Þ

where PðE;ErÞ is the probability distribution of generating
a hole or electron of energy E relative to the top or bottom
of the respective band, given an energy deposition Er, and
hNðEÞi is the quantum yield, the average number of
charges produced by impact ionization by a carrier with
initial energy E above gap,3 assumed identical for electrons
and holes. By definition, if the carriers do not impact ionize
any additional electron-hole pairs, nðErÞ ¼ 1.

A. Initial energy distribution

The role of PðE;ErÞ is to describe how energy is
distributed between the carriers in the electron-hole pair,
and is normalized in E by definition to 2 (one electron and

2A hot carrier is any charge with momentum much larger than
that accessible thermally. For high-purity Si at and below room
temperature, all charge pairs generated by particle interactions
can be considered hot carriers.

3Note that Er is the total absorbed energy, measured from the
top of the valence band, while E is the energy above the bottom of
the conduction band for electrons or below the top of the valence
band for holes.
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one hole per pair). The full treatment used by Ref. [38] is to
treat carriers equally, such that this function obeys the
symmetry relationship

PðE; ErÞ ¼ PððEr − EgÞ − E;ErÞ ð6Þ

where, for small energies, we find the distribution is highly
peaked around E ¼ 0 and E ¼ Er − Eg. The robust cal-
culation involves a summation over allowed energy states
for the conduction and valence bands given the transition
matrix element for photon absorption, and that model will
be included in our comparison of calculations. The sym-
metry of this function, however, allows for three

simplifying assumptions to capture the full range of
possible outcomes:
(1) PðE;ErÞ ¼ δðEÞ þ δðEr − Eg − EÞ—A peaked dis-

tribution for maximal energy imbalance, approxi-
mately true for very low energy transfer (referred to
in this paper as “all to one”);

(2) PðE;ErÞ ¼ 2½Er − Eg�−1—A flat distribution, ap-
proximately true for Er ≫ Eg (referred to in this
paper as “uniform”);

(3) PðE;ErÞ ¼ 2δðEr − Eg − 2EÞ—A peaked distribu-
tion at half of the above-gap energy, which occurs
for Er around resonance features near the
∼3.4–4.2 eV direct-gap transitions in Si (referred
to in this paper as “equal split”). This is also the case

TABLE I. Literature values for the Fano factor F, mean energy per electron-hole pair ϵeh in the high-energy limit, band-gap energy Eg,
the ratio A of phonon-carrier to carrier-carrier scattering, the valence band width W, the optical phonon energies ℏωo, and the plasmon
energy ℏωpl. An earlier version of this table specific to Fano factor can also be found in Fraser et al. [16]. We summarize the energy gap
at a few key temperatures, but all references have many more data points and focus on fitting measurements to the functional form of
Varshni [17]; see there for more details. We exclude band-gap data from Macfarlane et al. [18], fit in [17], due to discrepancy with more
modern methods which have seen widespread adoption (see for example Canali et al. [19]). For the last four values, these are not from
quantum yield measurements. The Chang et al. [20] values come from hot-electron injection measurements.

Parameter Value Temperature Source Reference

F 0.118 110–240 K 5.9 keV γ Lowe and Sareen [21]
0.117 180 K 5.9 keV γ McCarthy et al. [22]

0.14–0.16 180 K 2–3.7 keV γ Owens et al. [23] a

0.128 130 K 5–8 keV γ Ramanathan et al. [24]
0.119 123 K 5.9 keV γ Rodrigues et al. [25]

ϵeh 3.66 eV 300 K 1 eV—1 keV γ Scholze et al. [26]
3.66 eV 300 K 115–136 keV e,γ Pehl et al. [27]
3.63 eV 300 K 1 MeV e−, 5.5 MeV α Ryan [28]
3.62 eV 300 K 5.5–6.3 MeV α [27]
3.67 eV 180 K 2–3.7 keV γ [23]
3.749 eV 123 K 5.9 keV γ [25]
3.75 eV 110 K 5.9 keV γ [21]
3.70 eV 100 K 5.5 MeV α Canali et al. [19]
3.72 eV 6–70 K 480 keV γ Dodge et al. [29]
3.72 eV 5 K 5.5 MeV α [19]

Eg ∼1.12 300 K Photoabsorption Alex et al. [30]
1.127 290 K Bludau et al. [31]
1.164 110 K [31]
1.166 90 K [31]
1.169 0 K [30]
1.170 0 K [31]

A 5.2 eV2 b 300 K 2–5 eV e− Chang et al. [20]

ℏω0 59 meV (TO), 62 meV (LO) N=A DFT c Jacoboni and Reggiani [32]

W 12 eV N=A DFT Scholze et al. [33]

ℏωpl
d

16.6� 0.1 eV N=A EELS e Chen et al. [34]

aSee also Owens et al. [35].
bData compared to the value obtained by Alig et al. [36].
cCalculated from density functional theory (DFT), assumed temperature independent; see [32] for more details.
dWe did not do an exhaustive survey of plasmon energy measurements as they were not important for the detailed low-energy

modeling, but we expect there is some uncertainty in this value beyond the statistical uncertainty on this measurement.
eElectron energy-loss spectroscopy.
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that minimizes overall impact ionization, which is a
strong function of energy.

We extend these three cases to the one-component model
described by the one-parameter beta distribution

PðxjαÞ ¼ 2

BðαÞ x
α−1ð1 − xÞα−1 ð7Þ

where x ¼ E
Er−Eg

and BðαÞ is the one-parameter Beta
function used to normalize the probability distribution.
One can see that this function has the same symmetry as
PðE; ErÞ, and each case above has a corresponding α value:
case 1 corresponds to α → 0, case 2 to α ¼ 1, and case 3 to
α → ∞. These cases, and more general cases for a range of
α values found in this paper, are shown in Fig. 1.
We can qualitatively compare the shape of this distri-

bution to the calculations done by Ref. [38], to set
expectations for how α scales with energy. We see that,
for Er ∼ Eg, the excess energy is given entirely to either the
electron or hole, and we expect α → 0 in the low energy
limit. Around Er ¼ 4.3–4.4 eV, see Fig. 1, we observe a
transition from equal energy split to more uniform energy
sharing, corresponding to a rapid increase in α through 1 to
α > 1. Reference [33] notes that the hole valence band
width W is only 12 eV wide, and thus we expect in the
high-energy limit that the electron takes the majority of the
energy; so we expect the applicability of our PðE;ErÞ
description to lessen due to its inability to capture the

narrower allowed space for the hole energy and the
asymmetry of the distribution.

B. Impact ionization model

The second leg of the yield model is the quantum yield
impact ionization function hNðEÞi, which we recollect
describes the mean number of electron-hole pairs produced
by a hot carrier with initial energy E. This function is
bounded by two extremes; in the limit of maximal impact
ionization, up to hNðEÞi ¼ E=Eg, electron-hole pairs can
be created (rounding down to the nearest integer), and in
the limit of no impact ionization, hNðEÞi ¼ 0. In the
second case, energy is largely dissipated by phonon
emission, meaning that the true hNðEÞi is thus determined
by a rate balance between impact ionization and phonon
emission as a function of energy. Reference [32] shows that
the dominant phonon-scattering mechanism in these energy
ranges, both by rate and total energy dissipated, is through
the emission of optical phonons, and thus acoustic phonon
emission can be neglected in impact ionization modeling.
As in Ref. [38], we adopt the “Alig” impact ionization

model outlined in Ref. [36]. In this model, only two energy
dissipation processes are considered: electron-hole pair
creation, and emission of a phonon of energy ℏω0. In
Si, ℏω0 ∼ 63 meV [32], so a charge carrier well above the
gap energy can easily create many optical phonons. If the
rate of electron-hole pair creation is ΓehðEÞ and phonon
production is ΓphðEÞ, then the probability of generating an
electron-hole pair at a given energy is dependent only on
the ratio of these rates, found to be

ΓphðEÞ
Γeh

¼ A
105

2π

ðE − ℏω0Þ1=2
ðE − EgÞ7=2

: ð8Þ

Here A is a constant of the system, defined as

A ¼ jMphj2
jMehj2

4π4

VΔ

�
ℏ2

2m

�
3

ð9Þ

where V is the semiconductor volume, Δ is the volume per
electronic state, m is the free particle mass, and jMphj
(jMehj) is the phonon (electron) scattering matrix element.
This enables us to calculate the charge production

probability of a particle with energy Ei, using Eq. (8), as

peh ¼
�
1þ ΓphðEiÞ

ΓehðEiÞ
�−1

: ð10Þ

The elegance of this model is that it is able to reduce the
complex microphysics of the problem to one phenomeno-
logical constant, A, which can be tuned to match exper-
imental values. This is beneficial due to the complex nature
of electron-electron interactions at this energy scale.

FIG. 1. Evolution of the finite support Beta distribution, used to
model the double probability distribution PðE;ErÞ, for selected
values of shape parameter α. The α → 0 case corresponds to all
the deposited energy going to a single carrier. The α ¼ 1 scenario
is a uniform distribution, while α → ∞ corresponds to an equal
energy splitting. Overlaid (dotted lines) is data extracted from
Wolf [38] for Si at 4.32 and 4.42 eV (derived from internal
quantum efficiency measurements of a Si solar cell) and
Si0.32Ge0.68 at 1.66 eV (numerical calculations), indicating the
general evolution even over a small energy range between the
different regimes of energy partitioning between hot carriers.
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There are a number of simplifying assumptions made in
this model which need to be explicitly stated. The electrons
and holes are assumed to be free particles to first approxi-
mation, and therefore scattering is isotropic and effective
masses are vacuum masses. It assumes all states are equally
accessible, and therefore that the matrix element for each
transition is identical. We do however constrain the hole
energy Eh ≤ W, whereW is the maximumwidth of the hole
band. All these assumptions are akin to assuming inter-
actions are highly athermal and occur far enough above the
band-gap that the detailed band structure is negligible. It
also simplifies phonon scattering substantially, allowing for
a single, quantized phonon energy, ignoring the multiple
optical phonons and the continuum of acoustic phonon
energies [32].
The latter assumption is justified by the rate difference

mentioned earlier; the optical phonons all have comparable
energy, so the impact of having multiple distinct energies is
small. The former assumption comes from the high density
of states for particles far above the band-gap, but none-
theless makes A a nonphysical parameter, and requires
explicit validation of this model before it can be considered
predictive. The benefit is that A can be tuned to produce the
correct ϵeh in the large energy limit, where it is the only
degree of freedom since the interplay between parameters
like α andW will wash out to a constant ϵeh and F, meaning
that the success of the impact ionization model matching
data across many energy scales validates its underpinning
assumptions (see, e.g., Refs. [20,38,39]). Nevertheless, we
should keep in mind that, in practice, A may be a function
of temperature or substrate purity, among other possible
effects. This is likely to be the leading systematic in
applying this model to regimes which have not been
validated (e.g., T < 5 K, or highly-doped substrates).
The last mode of energy dissipation that needs to be

accounted for is plasmon production [40]. The Alig model
[36] makes the simplifying assumptions that energy redis-
tribution is largely done through conservative creation of
plasmons above the plasmon energy ℏωpl, and below this
value energy redistribution proceeds according to the
charge-phonon scattering balance model. This implies that
charge production should be linear above this energy,
which matches what is measured experimentally (see
Table I). In our implementation, we split the total energy
into npl ¼ bðEr − EgÞ=ℏωplc plasmons of energy ℏωpl

with a final electron that has energy Er − Eg − nplℏωpl.
This implicitly assumes that the total energy is evenly
divided among plasmons of a fixed energy, and that those
plasmons decay by production of an electron-hole pair with
total energy equal to the plasmon energy. We do not
observe any impact on the ionization yield by adding or
removing this mechanism in agreement with the conclu-
sions of Ref. [36]. We include plasmons in this way to be
consistent with the reference, but will discuss the impact of
plasmons, if any, on the ionization yield in Sec. V.

C. Temperature dependence

A final, important consideration we make in this paper is
the effect of temperature dependence on the ionization
yield. Detectors relevant to rare event searches are often
operated cryogenically in order to mitigate high dark rates
at room temperature, in the temperature range below 120 K
down to ∼10 mK. Given the simplified nature of the band
structure for the ionization model discussed above, we
incorporate temperature dependence purely through the
variation of the gap energy, as first described by Varshni
[17] and given by Eq. (11):

EgðTÞ ¼ Egð0Þ −
aT2

T þ b
ð11Þ

where we take Egð0Þ ¼ 1.1692, a ¼ ð4.9� 0.2Þ ×
10−4 eV and b ¼ 655� 40 K following the results of
Alex et al. [30] who experimentally measure the photo-
luminescence spectra of crystalline silicon up to 1000 K.
The resulting gap energies, plotted in Fig. 2, are in general
agreement with other values in Table I. It should be noted
that this equation is purely phenomenological, but can
successfully fit the temperature dependence of the band-
gap across many semiconductors [17]. Other forms, such as
piecewise quadratic fits [31], have been used as well, and
give similar results.
While one can discuss tuning the gap energy independ-

ently without modifying temperature, that is a distinct
effect with many potential causes. We recognize the
primacy of temperature as an experimental input, and thus
argue that any change in T can be seen to first approxi-
mation as a change in Eg.
The only other parameters that may show a temperature

dependence are A and the phonon energy ℏω0. Because
these processes are highly athermal, however, we fix them

FIG. 2. Evolution of band-gap as a function of silicon temper-
ature from Eq. (11) (solid line) showing �1σ bands (shaded
region) and a characteristic sample of data points from Table I.
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in our model, and expect that any change in these
parameters due to temperature is subdominant to the
systematic uncertainties on their nominal values. As we
will briefly see in Sec. IV, a change in gap is sufficient to
match temperature dependent results from the literature,
validating this approach.

D. Monte-Carlo simulation

We are now in a position to combine elements of the
previous subsections into a cohesive structure. To compute
pn, ϵeh F, and hNðEÞi we employ the Monte-Carlo
algorithm of Alig [41], following the schematic shown
in Fig. 1 of Ref. [36]. A single external particle deposits
energy Er, and with selected parameters A, ℏω0 and Eg

triggers a cascade briefly outlined as follows:
(1) If Er > Eg, we generate an electron and a hole with

energies given by PðE; ErÞ (with the imposed
simulation constraint forcing the hole energy Eh
to be less than W); otherwise, if Er < Eg the chain
terminates.

(2) We follow each particle as it down-converts. Any
electrons with energy > ℏωpl are assumed to create
plasmons of quantity npl ¼ bEi=ℏωplc. These are
individually treated as impact ionizations.

(3) We calculate the charge production probability pn of
a particle with energy Ei using Eq. (10). We select
ionization or phonon production according to this
probability.

(4) If a phonon is produced, then energy ℏω0 is lost in
the medium and the process loops back to step 2
with new energy Eiþ1 ¼ Ei − ℏω0.

(5) If instead an ionization event occurs then 3 new
particles are effectively created—the original plus
and electron and a hole, with a total energy of Ei −
Eg due to the release of the new electron-hole pair.
We assume here that the conduction and valence
bands are isotropic and parabolic, and that all states
are available to the new scattered products. The split
between these 3 particles results in energies Eiþ1;e;h

with values given by integrating over the density of
states (see Sec. II.B. in Ref. [41]) and where Eiþ1 is
the new energy of the original particle. Here is
where, post-hoc, we set Eh ≤ W, also applicable to
the original particle if it is a hole, and resplit the
difference in energies uniformly between remaining
carriers.

(6) If Eiþ1 < Eg then the process terminates and only
Ee;h are fed back into step 2 otherwise all 3 particles
are independently looped back to step 2.

This process continues until all tracked particles have
kinetic energy below Eg, including those produced by the
plasmons, resulting in the production of n electrons (and
holes). Repeating this nested approach a few thousand
times per energy, yields a distribution of charge pairs—
normalization of which gives the requisite probability of

pair-creation pn. We can always recover the quantum yield
and Fano factor as:

hNðEÞi ¼
X∞
n¼0

npn

hNðEÞ2i ¼
X∞
n¼0

n2pn

F ¼ hNðEÞ2i − hNðEÞi2
hNðEÞi ð12Þ

III. DATA

The specific data for quantum yield and Fano factor in Si
considered in this paper are summarized in Table I. Most of
the available measurements of F and ϵeh are made at high
energy, and these measurements are broadly consistent with
each other. There are few references which make measure-
ments between 2.4 eVand 1 keV, the energy range in which
our models show the most variation:
(1) Chang et al. [20] measure electron impact ionization

via injection of hot electrons of known energy into a
Si transistor. Their measurements validate the impact
ionization model of Alig et al. [36] up to 5 eV.

(2) Wolf et al. [38] measure quantum yield for photon
absorption between 2.5 eVand 5 eV, and compare it
to the quantum yield predicted by the Alig et al. [36]
model and an energy-sharing distribution deter-
mined from summing over momentum eigenstates
from band structure calculations, but do not directly
comment on ϵeh or F as relevant for Table I.

(3) Scholze et al. [26] measure of ϵeh at 300 K between
3 and 1500 eV, with a gap between 8 eV and 50 eV,
using a Si photodiode in an x-ray beamline. The
span of this data is useful for extracting an α curve as
a function of photon energy at room temperature, as
we will discuss in Sec. IV B.

(4) Canfield et al. [42] and Wilkinson et al. [43] come
from spectral irradiation of Si photodiodes at
unspecified temperatures, assumed to be ambient.

(5) Borders et al. [44] include measurements from
averaged surface integration tests of the Hubble
Wide Field Camera 3 CCDs at 224 K, under light
exposure.

The gap in the Ref. [26] data is reflective of a broader “UV-
gap” in the region between VUVand x-ray energies caused
both by lack of tunable sources and the very short mean free
path of photons in this energy range in all materials (see,
e.g., Ref. [45]). For wavelengths below ∼8 eV, photons
from a thermal or athermal source can penetrate through
thin windows and coatings, and enough deposition occurs
in the Si to be distinguished from quenched surface events.
Above 8 eV, very few table-top sources exist, and only
specialized windows can transmit light with adequate
efficiencies. At 50 eVand above x-ray fluorescence sources
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become available.4 At these energies, the photoelectric
cross section also begins to drop, and high intensity light
can be generated and propagated to the detector through
thin metal windows [26]. For these reasons very little data
exist over this 40 eV energy gap, and in the following
section we discuss the extrapolations we employ to stitch
together the quantum yield across this gap.

IV. RESULTS

We begin this section by exploring through simulation
the effects of the parameters A and Eg at ∼100 eV (≫ Eg)
on ϵeh and F, allowing us to fold in the effects of
temperature. Next, we present the results of fitting our
single-parameter model to data to finally produce the pair-
creation probabilities pnðE; TÞ.

A. Micro-physics dependence

To investigate the effects of both temperature, by proxy
of gap energy Eg as through Eq. (11), and changes in the
probability of phonon emission A, we compute the

dependence of both ϵeh and F on these parameters via
simulation. Based on linear behavior across both dimen-
sions for both quantities, we identify the global relations at
high-energy as:

ϵeh;∞ ¼ 1.7Eg þ 0.084Aþ 1.3; ð13Þ

F∞ ¼ −0.028Eg þ 0.0015Aþ 0.14 ð14Þ

via least-squares regression. We confirm the consistency of
both the model and of selecting A ¼ 5.2 eV2, matching the
original derivation in Ref. [36] and the empirical validation
in Ref. [20], by noting that the resultant ϵeh values are in
agreement with Table I at 300 K, seen by the confluence of
dashed lines in the planar slices of Fig. 3.
Fano values, shown in Fig. 3 (bottom) are constant at the

2% level, but undershoot literature as per Table I. For
example, the most recent measurements of the Fano Factor
in Si from Rodrigues et al. [25], using a device with single
charge resolution, indicate F ¼ 0.119ð2Þ at 123K which at
first blush is inconsistent with Figs. 2 and 3. We note that
unlike for ϵeh, our model is not tuned for a specific Fano
factor, and thus should be predictive. However the

FIG. 3. Left: Simulation of dependence of both mean energy-per-pair ϵeh;∞ (top) and Fano factor F∞ (bottom) at the 300 K slice
(Eg ¼ 1.124) on the A parameter, the propensity for energy loss to occur due to phonon emission (larger A) versus ionization, as
represented from Eq. (9). Linear fits, and corresponding equations, are also provided (solid red lines). The scatter in data points is due to
Monte-Carlo statistics. Right: Simulation of mean energy-per-pair ϵeh;∞ (top) and Fano factor F∞ (bottom) dependence on band-gap
energy Eg at the A ¼ 5.2 eV2 slice. The temperature effect is expressed by varying the band-gap energy according to Eq. (11). Linear
fits, and corresponding equations, are also provided (solid red lines). A fit from Canali et al., Ref. [19], for Eg is also shown (dashed
blue) demonstrating the general capture of features seen in data. The scatter in data points is again due to Monte-Carlo statistics.

4The lowest Kα line is found in Lithium at 52 eV.
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discrepancy observed between Fano measurements, and
between the model and measurements, can potentially be
attributed to one-sided systematics inherent to the mea-
surements we quote that serve to inflate the measured Fano
factor. As expanded on in Appendix A and Fig. 10, a very
small 0.4% degradation in charge collection efficiency
would be sufficient to explain the differences we see.
Broadly, any experimental systematic that affects charge
production or measurement will result in a higher Fano
factor. Furthermore, chronologically speaking, the Silicon
measurements in Table. I have trended closer to our
asymptotic value and with Ref. [25] is now within 5%.
Finally, ϵeh tracks the relationship from the experimental

setup of Canali et al. [19], to within 0.5%, allowing us to
conclude that our single-parameter model, regardless of
energy partition, is capable of reproducing measured ϵeh
and F for high-energy depositions.

B. Energy dependence

We account for PðE;ErÞ by extracting it from Scholze
et al. [26], fitting to their measured pair creation energy as a
function of energy below 100 eV. This fit is performed with
the Monte-Carlo set at A ¼ 5.2 eV2 and by setting
T ¼ 300 K, the temperature at which these data were
acquired. The left panel of Fig. 4 shows the mean
energy-per-pair ϵeh as a function of initial energy for the
3 simplified energy distribution scenarios discussed in
Sec. II A. We note that the assumptions lead to the same
behavior below 3 eV, and converge to the same value by the
L-shell (∼100 eV), but are largely discrepant in the

energies between these points. None of the simplified
models accurately reproduce the measured behavior
between 3 and 10 eV; by 20 eV, all but the extreme α ¼
0 energy distributions have converged. We turn off the
effects of W and plasmon production when discussing the
simplified energy distribution scenarios to more precisely
disentangle their effects on the overall charge yield.
The lack of experimental data in the region between

∼9–50 eV, the aforementioned UV-gap, necessitates the
use of an extrapolation, where we have chosen to drive α to
1 parsimoniously using a single parameter exponential tied
to the location of the last point. In and above this region, we
expect a transition to the microphysics based model of
capping the maximum amount of energy transferable to a
hole (W) [33].
The right panel of Fig. 4 shows the best-fit values for α in

the range between 0 and 8 eV, and the left panel demon-
strates that the mean energy inferred from each fit point is
an excellent fit to the data. The structure observed implies
the following:
(1) Up to ∼4 eV, the data is consistent with a uniform

energy distribution; there is little enough impact
ionization, however, that we can only really con-
clude that the “all to one” case is not valid above
∼3.5 eV. For event energies in the range Eg–2Eg

(1.2–2.4 eV in Si) only one electron-hole pair is
allowed by energy conservation, forcing all charge
yields to be insensitive to charge energy distribution
and thus all models are identical. Above 2Eg, impact
ionization is possible, but the probability is strongly
energy independent, and impact ionization only

FIG. 4. Left: Pair creation energy ϵeh for various energy partitioning schemes outlined in Secs. II and IV B. Low-energy data points
(black circles) from Scholze et al. [26] between 2–8 eV are fit using the model prescribed in this paper to give α values which are then
interpolated and simulated back into ϵeh space (brown solid curve). The feature seen at 15–20 eV is a result of the imposed finite valence
band width. Right: The extracted Beta distribution parameter, α, with linear interpolation between neighboring points and single
parameter exponential extrapolation in UV-gap region as discussed in the text. The shaded bands represents the resultant fit on the �1σ
from the extracted Scholze points. However, some values of ϵeh are not recoverable to within a tolerance of 1 × 10−4, regardless of the α
parameter, hence the shaded area encompasses α ¼ ½0;∞� for certain energies.
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becomes appreciable when carriers exceed ∼2 eV of
energy above gap.

(2) Around 4–7.5 eV, our best-fit α rises quickly,
indicating the distribution trends from a “uniform
split” (α ¼ 1) to “equal split” ðα → ∞Þ.

(3) At ∼8 eV, where existing data stops, ϵeh appears to
disfavour the charge yield predicted by the all to one
model, while still in tension between the uniform
split and equal split models. The range of best-fit α
parameters implies that PðE; ErÞ is perhaps not
captured effectively by a one parameter Beta dis-
tribution.

(4) Above 8 eV ϵeh trends toward ϵeh;∞ with an
oscillatory feature spanning between 14–20 eV (a
signature of the inclusion and finite value of W).

The conclusions based on this empirical model agree with
the energy distributions derived from density functional
theory (DFT) of Ref. [38], where a local maximum in the
quantum yield curve around 4.5 eV is attributed to a point
of maximum energy sharing between electrons and holes,
as shown in Fig. 1. The large error in α from Fig. 4 Right for
∼8 eV does not affect the extrapolation past this point since
the error is partially an artifact of the similarity in ϵeh
between the α ¼ 0 and α ¼ ∞ curves near this energy as
seen in Fig. 4 (left).
It is interesting to note that as we pass the UV-gap, where

W ≪ Er, one would expect the behavior of ϵeh to be
indistinguishable from the all to one case since the cap on
the hole energy mimics all the energy going to the electron
in every down-conversion step. Nevertheless the ϵeh curve
more closely tracks α > 0 and agrees with the best-fit and
energy sharing models by 20 eV, a result also seen in
Ref. [26]. The remaining uncertainty is therefore largely
restricted to the 10–20 eV energy range, where our best-fit

model shows some nonlinear behavior, and the different
energy-sharing models are still not in agreement. Our
exponential extrapolation largely splits the difference
between the uniform and energy sharing distributions,
and is only an approximate guess at the behavior here.5

The full range of possible charge yields is bounded by the
three energy sharing models, and does not include potential
resonance features near, e.g., the plasmon energy. On this
point, no choice of ℏωpl (varied from 14–22 eV and → ∞
effectively turning it off) modified the shape of the curves
or ϵeh;∞ and F∞. This is likely attributed to the perfect
down-conversion efficiency baked into our plasmon model.
Suffice to say, experimental data in this energy regime is
needed to refine the empirical model further.
Figure 5 demonstrates the nonconstant behavior of the

Fano factor at energies < 20 eV. We once again note that
the presented assumptions all match the observed asymp-
totic value F∞ by the L2;3 edge but are all individually
discrepant from measured behaviour below that, by a factor
of 2× in some regimes.

C. Pair-creation probabilities

Tuning and validating the parameters of the Monte-Carlo
model, as discussed in the prior section, enables us to
produce the pair-creation probabilities seen in Fig. 6 for 3
temperature points around which many detectors operate at
(see Appendix B, Ref. [46]). The empirically derived nature

FIG. 6. Pair-creation probability distributions for best-fit model
at 0 K, 100 K and 300 K (former curves effectively overlap).
These lines are to be interpreted as the probability to ionize the
labeled number of charge pairs for a given deposited energy.
These are not PDFs in that only the sum of curves across a given
point in energy is normalized to 1.

FIG. 5. Computed Fano factor at 300 K for energy partitioning
schemes discussed in text, along with curve (solid purple) from
best-fit model. Dashed lines indicate values from literature as
compiled in Table I.

5The exponential extrapolation is just an ansatz that allows us
to connect fits at 8 eV to data at 50 eV, and is a median model
within the bounded behavior shown in Fig. 4.
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of p1;2;3 is clearly visible with smoother curves for p>¼4

where the model is reflective of the transition to an α ¼ 1
regime. Figure 7 illustrates the behavior of the best-fit
quantum yield and Fano factor as a function of temperature
compared to measurements from the literature, illustrating a
significant dispersion of quantum yield measurements at a
few eV and with our computed values lying centrally in
this range.
We stress here the point that both hNðEÞi and F are

derived quantities, which are arguably only useful at “high”
energies where they are a shorthand for packaging the
messy dynamics of ionization response with appeals to the
central limit theorem. We argue that pn is the preferential

basis to understand charge yield by referring back to
Eq. (12) from which we recognize that the use of
aggregate quantities, and exclusion of higher moments,
informationally constrains both parameters. Stated more
concretely, if

P
n½pnðEÞ > 0� > 2, as is true for most

energies, then there are more terms than constraining
equations and multiple solutions of pn would satisfy the
same hNðEÞi and F curves.
However, due to the well behaved nature of ϵeh and F for

Er ≳ 50 eV, where they are effectively flat, we can
compute the exact Gaussian functional form,

pnðEÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πnF∞
p Exp

�
−
1

2

�
nϵeh;∞ − Effiffiffiffiffiffiffiffiffiffi
nF∞

p
ϵeh;∞

�
2
�

ð15Þ

to infer pn in and beyond this region, sufficient for practical
applications.

D. Scientific impact example: DM scattering

To investigate how low energy ionization statistics can
potentially affect scientific results, we study the case of
dark matter particles scattering off electrons. The bound
nature of the electrons and crystalline band structure of the
target requires us to follow the prescription of Ref. [5] to
compute scattering rates. Exploring the case of a 2 MeVand
10 MeV DM particle for form factors FDM ∝ q−k (k ¼ 0,
2), after convolution with the various presented charge
yield models, we see the ionization spectra represented in
Fig. 8. The simple division of energies into bins of ϵeh
dramatically underestimates the tails of the spectra by many
orders of magnitude. Even with application of a charge
yield model, 1 and 2 e− production rates are significantly
different for varying α ¼ 0 → þ∞. Translating these
scattering spectra to a hypothetical direct detection experi-
ment, under the assumption of a 2 e− threshold and Poisson
background fluctuations, we can look at exclusion curves
of electron-recoil dark matter scattering in a Si detector as
presented in Fig. 9. These curves represent 90% confidence
level upper limits on the reference cross-section σe for a
1 kg year exposure with 0 observed events, as a function of
DM mass. The effect of the charge yield modeling is
pronounced at masses < 10 MeV as seen by the lower
panel ratio of the various models to the parsimonious
simple model—revealing a difference of ∼50% in limits
when using a more accurate charge yield prescription. The
case of α ¼ 0 significantly underestimates limits, particu-
larly at masses of 1–5 MeV. Finally, the sensitivity of the
experiment is different for the different cases, with lower
mass thresholds varying from 0.5–1 MeV, which is a purely
model dependent effect and does not accurately reflect the
true underlying physics.

FIG. 7. Top: The quantum yield, defined as the average number
of charge pairs created at a given energy, for the best-fit model at
0K, 100K and 300K. Empirical data from Wolf et al. [38],
Wilkinson et al. [43], Canfield et al. [42], and WFC3 tests [44]
are provided as points of comparison. Bottom: Variation of the
Fano factor F for the best-fit model at 0K, 100K and 300K. While
the asymptotic values, equivalent to those computed in Fig. 3
(bottom right), are within 1% of each other, there can be upwards
of a ∼10% difference at specific energy values.
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V. DISCUSSION

We have provided a physically motivated charge yield
model for a Si detector. By appealing to well-measured
laboratory data, we have constructed an ionization response

model valid between ∼1.2–8 eV and further motivated an
extension into the UV-gap in which there are no current
measurements. We have investigated how these probabilities
varywith temperature and have explored the scientific impact
of these models on a test case of electron-recoil dark matter.

FIG. 9. Dark matter electron scattering exclusion curves for a hypothetical experiment assuming a 2 e− threshold and Poisson
backgrounds for DM form factor FDM ∝ 1 (left) and FDM ∝ q−2 (right). The ratios of the curves against the simple model are plotted
below each, highlighting the around 50% discrepancy to computed limits accounting for silicon ionization micro-physics. The
sensitivity for masses above 10 MeV is largely dominated by the 2 e− bin, while differences in reach below 10 MeV are due to the
relative production of one or two electron-hole pairs. For this reason, the ’equal split’ model, with lower 2 e− charge production across
all masses, has worse reach than the rest of the models, and the ’simple model’ has no reach below 2 MeV where only single electrons
are produced.

FIG. 8. Dark matter electron scattering ionization spectra for the various ionization schemes presented in this paper, using a DM form
factor FDM ∝ 1 and masses of 2 MeV (left) and 10 MeV (right).
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In contrast to the treatment by Durnford et al. [47], in
which the Fano distribution is used to model charge yield
down to the ionization threshold, we find that both ϵeh and
F are inadequate to accurately capture low-energy ioniza-
tion yield. This is in large part due to the solid-state nature
of Si; for processes close to the gap, where the phase space
is restricted by the band-structure, we observe non-trivial
departures from this simple two-parameter model. For
processes at energies much larger than the band-gap, where
carriers can be treated as free particles, we find that we
recover the simple model.
While this model is the best current estimate of the

behavior of charge yield due to electron-recoil processes in
Si, we wish to highlight shortcomings of the model which
further data will help to address. In particular, this model
appeals to the plasmon (with energy ∼17 eV in Si) to
explain the linearity at high-energy without any theoretical
motivation for doing so. While the plasmon explanation
provides a convenient heuristic, it is merely empirical, and
is not predictive, as shown by Rothwarf [48]. In this work,
we see no significant feature at the plasmon energy in any
model. The parameter which has the largest impact on
ionization yield is the width of the hole band, which
introduces a nonlinearity in the predicted yield for energies
comparable to the hole band width, ∼12 eV, as shown in
Fig. 6. Direct measurements of charge yield near the hole
band edge and around the plasmon energy, within the UV
gap, may yield more information about the relative impor-
tance of these processes at intermediate energies between
the optical and soft x-ray data currently available.
In contrast, the general consensus ties the high-energy

value of ϵeh only to the band-gap energy and impact
ionization energies. The generic expression for ϵeh is
[19,48–50]

ϵeh ¼ Eg þ 2L½Ei;e þ Ei;h� þ Epp ð16Þ

where L is a factor which depends on the dispersion curve
of the conduction and valence bands, Ei;e and Ei;h

are the ionization thresholds for electrons and holes, and
Epp are phonon losses. Reference [19] shows that, for
Ei;e ∼ Ei;h ∝ Eg, we get the formula

ϵeh ¼ C · Eg þ Epp ð17Þ

where Epp takes on values from 0.25 to 1.2 eV, and C is
found to be∼2.2 to 2.9 eV. Klein [50] finds, using a broader
range of materials, the parameters C ∼ 2.8 and
Epp ∼ 0.5–1.0 eV. Studying materials with a fixed plas-
mon energy but varying gaps (such as the polytypes of SiC,
with gaps ranging from 2.4 to 3.3 eV for a fixed plasmon
energy; see, e.g., Ref [51]) may help elucidate the role the
plasmon plays, if any, in this down-conversion process.
Finally, we note that this model does not include the

effects of inner shell electrons or any possible temperature

dependence in the phenomenological constant A. The latter
we expect to be a small effect, as the energy scales involved
are higher than thermal energies at room temperature. The
former have been noted to produce slight increases in the
relative energy per pair (see, e.g., Ref. [35]), but only at the
level of a few percent, and likely subdominant to statistical
fluctuations for all but the most precise measurements. In
addition, it is possible that charged particles and photons,
which impart a different distribution of momenta to the
electron-hole pairs, may require slightly different amounts
of energy per subsequent pair created. Direct measurement
of ionization yield by low energy electron recoils using
electron energy loss spectroscopy (EELS) and an active
target will allow for better characterization of the corre-
spondence between electronic depositions from massive
particles or photons.
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APPENDIX A: FANO FACTOR SYSTEMATICS

A significant observation in this paper is that the Fano
factors predicted by the model are lower than all of the
existing measurements, which are inconsistent with each
other. This can be accounted for by the one-sided system-
atic introduced into the measurement if finite charge
collection efficiency (CCE) is not accounted for, or if other
secondary processes can lead to impact ionization of
additional charge in the crystal.
As an example of the systematic effect on measured Fano

factor, we consider here the effect of finite charge collec-
tion. In this case, the probability of observing n − k final
charges given n initial charges is [52,53]
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Pn−k ¼
n!

k!ðn − kÞ! η
n−kð1 − ηÞk; ðA1Þ

where η is the collection efficiency. For η ¼ 1, we find that
Pn−k ¼ δðn − kÞ as expected. If we assume perfect charge
resolution, we can calculate the measured mean (nmeas) and
variance (σCCE) of the resulting charge distribution, which
gives

nmeas ¼ η · n; ðA2Þ

σ2CCE ¼ η · nð1 − ηÞ ¼ nmeasð1 − ηÞ: ðA3Þ

Given these moments, we thus get the measured Fano
factor

Fmeas ¼
σ2meas

nmeas
ðA4Þ

¼ σ2fano þ σ2CCE
nmeas

ðA5Þ

≈
F · nþ η · nð1 − ηÞ

η · n
ðA6Þ

¼ F
η
þ ð1 − ηÞ ðA7Þ

where F is the intrinsic Fano factor. Here the approximate
sign comes from the fact that the CCE variance is slightly
broadened due to the Fano factor as well; this approxima-
tion actually makes this estimate a lower bound on the
measured Fano factor, but it is a small effect.
This is significant because η does not fall out via

averaging but presents as a measurement systematic. If
we assume a true Fano factor of 0.115, for example, we
only need charge collection efficiency to drop to 98% in
order to produce a measured Fano factor of 0.130, and a
drop to better than 95% gives a measured Fano factor of
0.160, the largest of the numbers we quote, as shown in
Fig. 10. Absolute measures of charge collection are rarely
made, and instead, voltage is converted to charge by
assuming a known ϵeh given that these measurements have
yet to be done with single charge-resolving detectors.

Single charge resolving detectors, which can more easily
characterize CCE by observing partial collection of single
electron-hole pairs (see, e.g., Ref. [53]), promise to
significantly reduce these systematics, and should be able
to produce much more accurate measurements of intrinsic
Fano factor. In particular, the recent measurement of
Ref. [25] with a skipper CCD at 6 keV is much closer
in absolute terms to our model for both ϵeh and F and have
demonstrated CCE much better than 90%. A more in-depth
discussion of Fano factor systematics can be found in
e.g., Ref. [54].

APPENDIX B: SUPPLEMENTARY MATERIAL

We provide three tab-delimited flat files (p0K.dat,
p100K.dat, and p300K.dat) containing the quantity
pnðEÞ computed in this paper at the three different
reference temperatures. The first column of each file is
energy Eg ≤ E ≤ 50 eV, while consecutive columns are pn

for n ¼ ½1::20�. The rows entries are normalized to one and
are straightforwardly interpreted as probabilities.
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