
 

Late-time behavior of fast neutrino oscillations

Soumya Bhattacharyya * and Basudeb Dasgupta †

Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

(Received 21 July 2020; accepted 17 August 2020; published 16 September 2020)

We study the fully nonlinear fast flavor evolution of neutrinos in 1þ 1 dimensions. Our numerical
analysis shows that at late times, the system reaches an approximately steady state. Using the steady-state
approximation, we analytically show that the spatial variation of the polarization vectors is given by their
precession around a common axis, which itself has a motion reminiscent of a gyroscopic pendulum. We
then show that the steady-state solution to the equations of motion cannot be separated in position and
velocity—that is, the motion is not collective in the usual sense. However, the fast evolution allows
spectral-swap-like dynamics leading to partial decoherence over a range of velocities, constrained by the
conservation of lepton number(s). Finally, we numerically show that at late times, the transverse
components of the polarization vectors become randomly oriented at different spatial locations for any
velocity mode and lepton asymmetry.
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I. INTRODUCTION

Neutrinos emitted by stars present valuable opportunities
to study neutrino properties [1]. While solar neutrinos have
famously helped zero in on the large mixing angle scenario,
neutrinos from supernovae may yet provide a unique
opportunity to study neutrino-neutrino interactions—a
crucial piece of the standard model of particle physics that
has not been tested directly.
The rate of neutrino oscillations is typically dictated by

the vacuum oscillation frequency, ω, and the matter
potential, λ [2–4]. Until the early 2000s, it was believed
that this paradigm was sufficient to describe neutrino
oscillations inside supernovae as well [5]. At that time,
the outstanding problem of the field appeared to be to
understand the effect of fluctuations in the background
matter density [6–8].
Following the pioneering papers by Pantaleone [9,10],

however, it became clear that the issue is more subtle
[11,12]. Owing to the large neutrino density, even free-
streaming neutrinos experience significant forward-
scattering off other neutrinos. Such scattering leads to a
self-interaction potential, μ ≫ ω, that is proportional to the
neutrino density and can dominate over the vacuum term.

As a result, a gamut of new collective flavor transforma-
tions can occur inside supernovae.
The so-called “slow” collective effects, with an intrinsic

rate ∼ ffiffiffiffiffiffi
ωμ

p
, are already faster than usual neutrino oscil-

lations. These lead to a variety of new phenomena: e.g.,
synchronization [11], bipolar oscillations [12–16], spectral
swaps [17–20], three-flavor effects [21–24], multiangle
effects [25–28], decoherence [29–32], and linear instabil-
ities [33], including those that break symmetries of direc-
tion [34,35], space [36,37], and time [38,39]. Related
developments that followed the influential papers by
Duan, Fuller, Carslon and Qian, and their phenomenologi-
cal consequences have been reviewed in Refs. [40–43]; see
also references therein.
Ray Sawyer pointed out that much more rapid “fast”

flavor conversions can take place [44–47]. These have a
frequency∼μ and might have a much more drastic effect for
neutrino physics [48–68] as well as supernova astrophysics
[69–75]. The criterion for fast conversions to occur appears
to be related to that for slow conversions—i.e., the difference
of neutrino and antineutrino flux distributions in the
momentum space must have a zero crossing [20], though
a more detailed understanding still remains wanting.
The flavor evolution of a dense neutrino gas is governed

by a large number of coupled nonlinear partial differential
equations. These are almost always very difficult to solve.
Although linearized stability analysis is useful to ascertain
if and when fast conversion takes place, it cannot directly
answer an important question: What is the impact of fast
flavor conversion on observable neutrino fluxes or the
explosion mechanism? This is a significantly harder prob-
lem that requires understanding the nature of the solution in
the nonlinear regime. A step in this direction was taken by
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Sen and one of the present authors [51], where the flavor
evolution of a 4-beam model in 0þ 1 dimensions was
understood in the fully nonlinear regime.
In this work, we take another step in the same direction.

We consider a dense neutrino gas in 1þ 1 dimensions,with a
spectrum of velocity modes, and analyze the coupled flavor
evolution of the neutrino system into the nonlinear regime.
Our numerical analysis suggests that the system reaches an
approximately steady state at late time. In the steady-state
approximation, we analytically show that the spatial varia-
tion of the polarization vectors is given by their precession
around a gyrating flavor pendulum with a fixed length, spin,
and energy, and the solution is not collective. The polariza-
tion vectors, when averaged over space, however, exhibit
complete (partial) decoherence for zero (nonzero) lepton
asymmetry. For partial decoherence, the nonvanishing range
of velocity modes is dictated by the conservation of lepton
numbers. This kinematic decoherence stems from randomi-
zation of the transverse components. Numerical examples
confirm these analytical insights.
The paper is structured as follows: Section II recollects

the equations of motion, followed by our analytical results
on the nature of the solution, conserved quantities, partial
decoherence, and its dependence on lepton asymmetry.
Section III has our numerical results and their comparison
with analytical claims. We conclude in Sec. IV.

II. ANALYTICAL RESULTS

A. Equations of motion

Neglecting momentum-changing collisions, the space
and time evolution of two flavors of neutrinos with velocity
v and vacuum oscillation frequency ω ¼ jΔm2j=ð2EÞ is
given by [46,47]

ð∂t þ v:∇xÞPω;vðx; tÞ ¼ Hω;vðx; tÞ × Pω;vðx; tÞ: ð1Þ

Here Pω;v ¼ gω;vSω;v ¼ gω;vðsð1Þv ; sð2Þv ; sð3Þv ÞT is a so-called
polarization vector, that encapsulates the flavor composition
of the neutrino mode ω, v, while Hω;v ¼ Hvac

ω þHmat þ
Hself

ω;v is the Bloch vector representation of the flavor-
evolution Hamiltonian for each mode. The vector Hvac

ω ¼
ωB encodes vacuum oscillationswithB¼ðsin2θ;0;cos2θÞT ;
the vector Hmat ¼ λL encodes the matter effects with
λ ¼ ffiffiffi

2
p

GFðne− − neþÞ and L ¼ ð0; 0; 1ÞT ; and Hself
ω;v ¼

μ
R
dΓ0ð1 − v:v0ÞPω0;v0ðx; tÞ encodes the self-interactions,

with μ being the ν − ν potential. Note that we work in a
basis fê1; ê2; ê3g, where the Bloch vector for a νe points
along the direction ê3.
In the fast flavor limit, the vacuum and matter term in

Eq. (1) are negligible compared to the neutrino potential
term, so the solution for Pω;v becomes ω independent.
The self-term then enters the Hamiltonian only through
the electron lepton number (ELN) distribution—i.e., the
difference of occupation number densities integrated over

energy, defined by Gv ¼
R
dωgω;v—thereby allowing us to

rewrite Eq. (1) in 1þ 1D as

ð∂t þ v∂xÞPvðx; tÞ ¼
Z

1

−1
dv0ð1 − vv0ÞPv0 ðx; tÞ × Pvðx; tÞ;

ð2Þ

where Pvðx; tÞ ¼ GvSvðx; tÞ ¼ Gvðsð1Þv ; sð2Þv ; sð3Þv ÞT . We
choose our units in Eq. (2) such that the neutrino self-
interaction potential μ is 1, with length and time expressed
in units of μ−1. Gv encodes the amount of lepton asym-
metry of the system as a function of velocity modes.
One can obtain some more insight into the equations

of motion by expanding Pvðx; tÞ for each velocity mode
in terms of Legendre polynomials, LnðvÞ. Using the
expansion Pvðx;tÞ¼

P∞
n¼0ðnþ1

2
ÞMnðx;tÞLnðvÞ, and using

the orthogonal property of Legendre polynomials, i.e.,R
1
−1LrðvÞLnðvÞdv¼2δrn=ð2rþ1Þ, by following Ref. [29],
one can rewrite Eq. (2) as

ð∂tþv∂xÞPvðx;tÞ¼ ðM0ðx;tÞ−vM1ðx;tÞÞ×Pvðx;tÞ: ð3Þ

B. Steady state

We conjecture that at late times the system becomes
approximately stationary in time, which says that in Eq. (2)
we can drop the t dependence from all the quantities.
We will verify this conjecture in our numerical survey
described in Sec. III.
In the steady state, one can write Eq. (2) as

dxPvðxÞ ¼
�
M0ðxÞ

v
−M1ðxÞ

�
× PvðxÞ ð4Þ

and the equation for each multipole moment MrðxÞ as

dxMrðxÞ¼M0ðxÞ×
X∞
n¼0

lrnMnðxÞ−M1ðxÞ×MrðxÞ; ð5Þ

where

lrn ¼
�
nþ 1

2

�Z
1

−1

LnðvÞLrðvÞ
v

dv: ð6Þ

From Eq. (5), for r ¼ 1, and using l1n ¼ ð2nþ 1Þδ0n, one
gets that M1ðxÞ is constant in space. This means that all
the polarization vectors of different velocity modes precess
about a fixed axis M1 with the same frequency. This
common motion can be hidden away by considering a
rotating frame, using the transformation

edxePvðxÞ ¼ dxPvðxÞ þM1 × PvðxÞ; ð7Þ
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where we introduce the notation that all the quantities in
the rotating frame are denoted by a tilde, with spatial
derivatives in the rotating frame as edx, etc.
Using the rotation formula described in Eq. (7), the

equations of motion for the system at late times, described
by Eqs. (4) and (5) in the rotating frame, look like

edxePvðxÞ ¼
eM0ðxÞ
v

× ePvðxÞ; ð8aÞ

edx eMrðxÞ ¼ eM0ðxÞ ×
X∞
n¼0

lrn
eMnðxÞ: ð8bÞ

Considering r ¼ 0 and summing both sides of Eq. (8b)
with a weightage factor of l0r, from r ¼ 0 to r ¼ ∞, one
can rewrite Eq. (8b) as two coupled equations:

edx eM0ðxÞ ¼ eDðxÞ × eM0ðxÞ; ð9aÞ

edxeDðxÞ ¼ eBðxÞ × eM0ðxÞ; ð9bÞ

where

eDðxÞ ¼ −
X∞
n¼0

l0n
eMnðxÞ; ð10Þ

eBðxÞ ¼ X∞
r;n¼0

l0rlrn
eMnðxÞ: ð11Þ

Similarly, by summing both sides of Eq. (8b), with a
weightage factor of

P∞
p¼0 l0plpr, from r ¼ 0 to r ¼ ∞,

one obtains an equation for eBðxÞ:
edxeBðxÞ ¼ X∞

p;r;n¼0

l0plprlrnð eM0ðxÞ × eMnðxÞÞ: ð12Þ

Equations (9a) and (9b) are nominally the same set of
coupled equations which describe the “gyroscopic pendu-
lum” (see Ref. [15]), with the difference that eBðxÞ, instead
of being a constant, has an equation of motion in space
described by Eq. (12). Nevertheless, one can follow
Ref. [15] to derive an equation for a gyroscopic pendulum
with a position-independent length, spin, and energy.
Equation (9a) clearly indicates that M0—i.e., the length
of eM0ðxÞ, which is the same in rotating and nonrotating
frames—is a constant in space. Taking dot products witheDðxÞ or eBðxÞ, respectively, on both sides of Eq. (9a), and
with eM0ðxÞ or eDðxÞ, respectively, on both sides of Eq. (9b),
and with eM0ðxÞ for Eq. (12), one gets the following set of
equations:

eDðxÞ · edx eM0ðxÞ ¼ 0; ð13aÞ

eBðxÞ · edx eM0ðxÞ ¼ eBðxÞ · ðeDðxÞ × eM0ðxÞÞ; ð13bÞ

eM0ðxÞ · edxeDðxÞ ¼ 0; ð13cÞ

eDðxÞ · edxeDðxÞ ¼ eDðxÞ · ðeBðxÞ × eM0ðxÞÞ; ð13dÞ

eM0ðxÞ · edxeBðxÞ ¼ 0: ð13eÞ

Adding Eqs. (13a) and (13c), one obtains

edxð eM0ðxÞ:eDðxÞÞ ¼ 0; ð14Þ

which implies that the “spin”

em0ðxÞ · eDðxÞ ¼ σ ¼ constant; ð15Þ

i.e., it is position independent and, owing to the steady-state
approximation, also time independent. Here, em0ðxÞ ¼eM0ðxÞ=M0 is the unit vector along eM0ðxÞ. Similarly, the
addition of Eqs. (13b), (13d), and (13e) reveals energy
conservation:

edx
�eBðxÞ · eM0ðxÞ þ

1

2
eDðxÞ · eDðxÞ� ¼ 0; ð16Þ

which implies

eBðxÞ · eM0ðxÞ þ
1

2
eDðxÞ · eDðxÞ ¼ E ¼ constant: ð17Þ

Taking a cross product of Eq. (9a) with eM0ðxÞ, one gets

eM0ðxÞ × edx eM0ðxÞ
¼ −ð eM0ðxÞ · eDðxÞÞ eM0ðxÞ þM2

0
eDðxÞ: ð18Þ

Dividing both sides of Eq. (18) by M2
0 and then using

Eq. (15), one can rewrite Eq. (18) as

eDðxÞ ¼ em0ðxÞ × edx em0ðxÞ þ σ em0ðxÞ: ð19Þ

Differentiating Eq. (19) once, and using the spatial con-
servation of σ along with Eq. (9b), gives

em0ðxÞ × ed2x em0ðxÞ þ σedx em0ðxÞ ¼ M0
eBðxÞ × em0ðxÞ: ð20Þ

The vector eM0ðxÞ in flavor space plays the role of a
gyroscopic pendulum. It has a fixed length at all spatial
locations, so that it is restricted to move on a sphere of a
fixed radius M0. According to Eq. (17), the energy of the
pendulum is spatially invariant at late times, where the first
term eBðxÞ · eM0ðxÞ is equivalent to the potential energy of
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eM0ðxÞ in an inhomogeneous magnetic field eBðxÞ, and
1
2
eDðxÞ · eDðxÞ is the rotational energy of the system, witheDðxÞ playing the role of the orbital angular momentum of

the system. Equation (15) describes one more conserved
quantity, σ, which says that the component of the angular
momentum eDðxÞ that is parallel to eM0ðxÞ is equivalent to
the pendulum’s spin and is spatially constant.
The above analysis shows that at late times, the spatial

structure of the solution is very simple: every ePv has a
precession about an axis em0ðxÞ with a frequency M0

v , whereem0ðxÞ itself has a motion equivalent to that of a gyroscopic
pendulum in an inhomogeneous magnetic field, keeping
a fixed length, spin, and energy. This similarity to the
gyroscopic pendulum solution, in a corotating frame, is,
however, limited to the conserved quantities and a formal
similarity in the equations of motion. The actual motion is
different, because eB in this case has a nontrivial motion that
is not necessarily much slower than that of eMn. These
conserved quantities are formally identical to those in
Ref. [65], but they have a slightly different interpretation.
Unlike in the above, where exactly 0þ 1D or 1þ 0D was
considered, ours are obtained under a steady-state approxi-
mation in 1þ 1D and need not be exactly conserved.

1. Nature of the solution

We now prove that the solution at late times, described
by Eq. (8a), cannot be separable in position and velocity
coordinates—i.e., it cannot be written in the form

ePv ¼ Gv
eSv ¼ Gv

0
B@

f1ðxÞh1ðvÞ
f2ðxÞh2ðvÞ
f3ðxÞh3ðvÞ

1
CA: ð21Þ

In our notation, the components of Sv in the rotated frame

look like eSv ¼ ðesð1Þv ;esð2Þv ;esð3Þv ÞT , with jeSvj ¼ 1. For the
above type of solution, clearly f1ðxÞ ¼ f2ðxÞ ¼ f3ðxÞ is
not possible. Otherwise, the normalization of eSv for a fixed
velocity mode will be different at different points in space,
which is obviously unphysical. By a similar argument,
h1ðvÞ ¼ h2ðvÞ ¼ h3ðvÞ cannot be possible either, as that
will lead to eSv having different normalizations for different
velocity modes at a fixed point in space. Plugging Eq. (21)
into Eq. (8a), we get two separate sets of equations—one
governing the spatial dependence, and the other with the
velocity dependence of the full solution. The equations
governing the velocity dependence look like

vh1ðvÞ ¼ H2h3ðvÞ − h2ðvÞH3; ð22aÞ

vh2ðvÞ ¼ H3h1ðvÞ − h3ðvÞH1; ð22bÞ

vh3ðvÞ ¼ H1h2ðvÞ − h1ðvÞH2; ð22cÞ

where

H1 ¼
Z

1

−1
Gvh1ðvÞdv; ð23aÞ

H2 ¼
Z

1

−1
Gvh2ðvÞdv; ð23bÞ

H3 ¼
Z

1

−1
Gvh3ðvÞdv: ð23cÞ

For all modes with v ≠ 0, Eqs. (22a)–(22c) can be satisfied
only if h1ðvÞ ¼ h2ðvÞ ¼ h3ðvÞ ¼ 0. This already suggests
that, again, no meaningful solutions exist. However, we
should confirm that the spatial solutions do not diverge.
The equations for the spatial dependence look like

d
dx

f1ðxÞ ¼ f2ðxÞf3ðxÞ; ð24aÞ

d
dx

f2ðxÞ ¼ f1ðxÞf3ðxÞ; ð24bÞ

d
dx

f3ðxÞ ¼ f1ðxÞf2ðxÞ: ð24cÞ

To solve Eqs. (24a), (24b), and (24c), we multiply them by
f1ðxÞ, f2ðxÞ, and f3ðxÞ, respectively, which gives

d
dx

f1ðxÞ2
2

¼ d
dx

f2ðxÞ2
2

¼ d
dx

f3ðxÞ2
2

¼ f1ðxÞf2ðxÞf3ðxÞ: ð25Þ

Equation (25) implies

f1ðxÞ2 ¼ f3ðxÞ2 þ C1; ð26aÞ

f2ðxÞ2 ¼ f3ðxÞ2 þ C2; ð26bÞ

where C1 and C2 are integration constants. The choices
C1 ¼ C2 ¼ 0 are disallowed, as that will mimic the case
f1ðxÞ ¼ f2ðxÞ ¼ f3ðxÞ. Equations (26a) and (26b), along
with Eq. (24c), give

d
dx

f3ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f3ðxÞ2 þ C1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f3ðxÞ2 þ C2

q
: ð27Þ

Solving Eq. (27), one gets

−iffiffiffiffiffiffi
C2

p F

�
sin−1½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=C1

p
f3ðxÞ�;

C1

C2

�
¼ xþ C3; ð28Þ

where Fðsin−1½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=C1

p
f3ðxÞ�; C1

C2
Þ is an elliptic integral of

first kind defined as

Fðϕ; mÞ ¼
Z

ϕ

0

ð1 −m sin2 θÞ−1=2dθ; ð29Þ
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and C3 is an integration constant. One has to basically
invert Eq. (28) to get the behavior of f3ðxÞ as a function
of x. This function is not infinite everywhere and concludes
our analytical proof that there are no separable solutions in
steady state.
Still, this may be opaque, and to give a flavor for the

solution, consider a special case with C1 ¼ C2, and the
solution for Eq. (27) then becomes

f3ðxÞ ¼ �C1 tanhð
ffiffiffiffi
C

p
1x�

ffiffiffiffi
C

p
1C3Þ: ð30Þ

For any value of C1 and C3, the solutions for f1ðxÞ, f2ðxÞ,
and f3ðxÞ, are finite—with either oscillatory or constant
behavior over all space. This implies that for all the modes
with v ≠ 0, the solution for all the components of eSvðxÞ
will be exactly zero, giving rise to an unphysical solution.
Another qualitative way to understand this is from Eq. (4),
where one can see that due to the spatial dependence of the
velocity-dependent term, M0ðxÞ

v × PvðxÞ, on the right-hand
side of the equation, it cannot be rotated away by a rotation
of PvðxÞ in the position space. So, the equation of motion
governing the spatial behavior for each PvðxÞ cannot be the
same for every velocity mode v, indicating a nonseparable
solution in x and v.

C. Approach to steady state

In this section, we consider the approach to steady state,
without making the steady-state approximation. Rather,
we investigate how the spatially averaged polarization
vectors rearrange themselves at late times, conserving
lepton number and giving rise to flavor depolarization
over a range of velocities.

1. Dependence on lepton asymmetry

Polarization vectors cannot be completely depolarized
if the lepton asymmetry is nonvanishing. To see this, we
integrate both sides of Eq. (2) over all velocity modes to get

∂xM1ðx; tÞ þ ∂tM0ðx; tÞ ¼ 0: ð31Þ

Performing a spatial average on both sides of Eq. (31)
over the entire box with the periodic boundary condition
M1ðL; tÞ ¼ M1ð0; tÞ, one gets

dthM0ðtÞi ¼ 0: ð32Þ

This implies

hM0ðtÞi ¼ constant; ð33Þ

where hM0ðtÞi is understood as

hM0ðtÞi ¼
1

L

Z
L

0

dxM0ðx; tÞ: ð34Þ

Using the approximate stationarity at late times, one can
argue from Eq. (31) thatM1ðx; tÞ is approximately constant
all over space. The constant in Eq. (33) can be determined
from the initial condition of the system, where all neutrinos
are emitted as approximately flavor-pure states from every

point in space—i.e., sð3Þv ðx; 0Þ ¼ 1 for all x and v. One can
write hM0ðtÞi as

hM0ðtÞi ¼

0
BB@

R
1
−1 dvGvhsð1Þv ðtÞiR
1
−1 dvGvhsð2Þv ðtÞiR
1
−1 dvGvhsð3Þv ðtÞi

1
CCA; ð35Þ

which remains true at all times. The above initial con-
ditions, and defining

R
1
−1Gvdv ¼ A, give rise to a set of

three conditions that have to be satisfied even in the
nonlinear regime:Z

1

−1
dvGvhsð1Þv i ¼

Z
1

−1
dvGvhsð2Þv i ¼ 0; ð36aÞ

Z
1

−1
dvGvhsð3Þv i ¼ A: ð36bÞ

One way that Eqs. (36a) and (36b) can be satisfied at late
times for systems with zero lepton asymmetry—i.e.,

A ¼ 0—is if hsð1Þv i ¼ hsð2Þv i ¼ hsð3Þv i ¼ 0 for every velocity
mode v. This indicates flavor depolarization. However, for
systems with A ≠ 0, such a simple solution can exist if

hsð3Þv i ¼ 1 for every v. This is possible only for an inert
system where fast flavor conversion does not occur.
Therefore, fast flavor conversion in the nonlinear regime

can happen for A ≠ 0, if hsð3Þv i behaves in such a velocity-
dependent way that it preserves the value of the lepton
asymmetry A. We will find, numerically, in the case of A

beingþve (or −ve), that hsð3Þv iwill remain much closer to 1
for the modes with þve (or −ve) values of Gv.

2. Fast depolarization

Now we will show that a set of polarization vectors can
undergo a “fast depolarization”—i.e., the system exhibits a
“fast spectral split”–like evolution, similar to what appears
in the foundational study by Raffelt and Smirnov [17,18],
that leads to sð3Þv ðx; tÞ flipping (and approximately vanish-
ing) over a range of velocities, but constrained by con-
served lepton numbers.
Consider Eq. (3). After averaging over space, we get

∂thPvðtÞi ¼ hM0ðtÞ × PvðtÞi − vhM1ðtÞ × PvðtÞi: ð37Þ

The averaging is over the cross product of the vectors, but
because the polarization vectors vary very fast over space,

LATE TIME BEHAVIOR OF FAST NEUTRINO OSCILLATIONS PHYS. REV. D 102, 063018 (2020)

063018-5



one expects that the averaging factorizes over the cross
product, which gives

∂thPvðtÞi ¼ ðhM0ðtÞi − vhM1ðtÞiÞ × hPvðtÞi: ð38Þ

By integrating the above equation over all velocities, one
recovers that hM0i is time independent. However, multi-
plying the above equation with v and then integrating over
v gives

∂thM1ðtÞi ¼ ðhM0ðtÞi þ hXðtÞiÞ × hM1ðtÞi; ð39Þ

where we define a new vector,

hXðtÞi ¼
Z þ1

−1
dvv2hPðtÞi: ð40Þ

Equation (38) ensures that each hPvðtÞi precesses around
its Hamiltonian:

hHvðtÞi ¼ hM0ðtÞi − vhM1ðtÞi: ð41Þ

Initially, all polarization vectors are either aligned or
antialigned to ê3, and over time hM1ðtÞi has dynamics,
while the polarization vectors are dragged by hHvðtÞi.
We assume that the polarization vectors stay close to

their Hamiltonians, and thus remain in the plane formed by
hM0ðtÞi and hM1ðtÞi, ignoring the precession around their
Hamiltonian. The vector hXðtÞi can be decomposed as

hXðtÞi ¼ αðtÞhM0ðtÞi þ hX⊥ðtÞi; ð42Þ

which, upon insertion in Eq. (39), gives

∂thM1ðtÞi ¼ ðð1þ αðtÞÞhM0ðtÞi þ hX⊥ðtÞiÞ × hM1ðtÞi:
ð43Þ

Note that hXðtÞi typically has dynamics at the same
frequency as hM1ðtÞi. So hM1ðtÞi, which has the dynamics
of a gyroscopic pendulum, not only can precess around
hM0ðtÞi but also can have bipolar nutations.
In a frame that corotates with the plane formed

by hM0ðtÞi and hM1ðtÞi, the Hamiltonian shifts by
−ð1þ αðtÞÞhM0ðtÞi due to pure precession of hM1ðtÞi.
Focusing on the ê3 component of the Hamiltonian, we find
that

heHð3Þ
v ðtÞi ¼ −αðtÞhMð3Þ

0 ðtÞi − vhMð3Þ
1 ðtÞi: ð44Þ

The components of hM0ðtÞi and hM1ðtÞi along ê3 remain
conserved if hM1ðtÞi has no nutation. In any case, in
addition to Eq. (36b), we can define another useful lepton
number,

hMð3Þ
1 ðtÞi ¼

Z þ1

−1
dvvGvhsð3Þv i ¼ BðtÞ: ð45Þ

hMð3Þ
0 ðtÞi stays constant at A, while hM1ðtÞi may either

precess, keeping BðtÞ constant, or flip by changing BðtÞ if a
bipolar instability is triggered. The ê3 component of the
corotating Hamiltonian is therefore

heHð3Þ
v ðtÞi ¼ −αðtÞA − vBðtÞ: ð46Þ

Depending on how αðtÞ and BðtÞ vary with time, the above
can change its sign between some initial time and final
time. The condition for such a sign flip to occur is

ðαiniAþ vBiniÞðαfinAþ vBfinÞ < 0; ð47Þ

where ð…Þini;fin are at the beginning and end of the
evolution. If the Hamiltonian for a velocity mode v can
change sign by fulfilling Eq. (47), and obeying the
constraints on A and B, then that velocity mode following
its Hamiltonian may flip its sign as well.
So far, our discussion closely follows the discussion in

Refs. [17,18]. There are a few subtle differences. Unlike in
the case of bipolar swaps where only the lepton number A
needs to remain conserved, here one has two constraint
equations—i.e., conservation of A and conservation or flip
of B, depending on whether nutations occur. Further, this
derivation was for spatially averaged polarization vectors,
hPvðtÞi, that do not necessarily maintain the same length as
their unaveraged counterparts PvðtÞ. This point is quite
crucial, as the astute reader will notice; otherwise, there is
no obvious source of irreversibility: unlike in the bipolar
spectral swap where that is provided by a decreasing μ, the
irreversibility is provided by the relative dephasing—i.e.,
kinematic decoherence—of the polarization vectors, which
is responsible for the irreversibility of αðtÞ. Further, with
simple choices of Gv, the swapping function of the hsð3Þv i
cannot be a mere sign flip over a block of velocities, in
general. Such a sign change across a crossing can preserve
A, but unless this block of Gv is antisymmetric in v, such a
flip does not obey the constraint on B.
More detailed exploration of fast depolarization will be

published separately, but here we note a main qualitative
feature: over time, the hsð3Þv i for a range of velocities—say,
v < 0—become close to zero, even flipping their signs, but

others stay close to their initial state, hsð3Þv i ¼ 1. Consider a
simple case, where A > 0, B > 0 and Gv has a single
crossing at zero. It is possible that the modes with v ≈þ1
do not flip sign or become small, whereas those with
smaller v either become very small or flip their signs (with
changes in magnitude, as well). The converse, however, is
not possible, because such a configuration cannot preserve
A and B. On the other hand, when A < 0 and B < 0, the
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modes with v ≈ −1 cannot flip sign. Wewill see this pattern
in our numerical calculations.

III. NUMERICAL STUDY

In the following subsections, we now discuss our own
numerical strategy to solve the equations of motion, the
late-time behavior of the solution, and their relation to the
analytical claims made in Sec. II.
We developed a code for solving Eq. (2). In our code, we

discretize each of the spatial directions as well as the
velocities, considering Nx spatial modes and Nv velocity
modes, to get a total of 3NxNv coupled nonlinear ODEs,
where the factor of 3 comes due to the three elements of
each polarization vector. It solves these coupled nonlinear
ODEs as a function of time using Python’s ZVODE solver,
which is a complex-valued variable-coefficient ordinary
differential equation solver in Python which implements a
backward differentiation formula for doing numerical
integration. The spatial derivatives at each spatial point
are computed using Python’s SCIPY.FFTPACK.DIFF package,
which uses the fast Fourier transform method for calculat-
ing derivatives.
For the computations shown in this paper, we choose a

periodic boundary condition in space such that, for any
time t and any velocity mode v, our solution satisfies

Pvðx; tÞ ¼ Pvðxþ L; tÞ: ð48Þ

We choose initial conditions such that all the neutrinos,
with any velocity, are emitted as purely electron flavored
states at every point in space. To trigger the flavor
evolution, a perturbation of 10−6 is used as an initial seed
for the transverse components of the polarization vectors,
for every velocity mode at the midpoint of the 1D box. This
choice is arbitrary, but motivated by trying to seed all
wavelength modes of the instability equally, as opposed to
using, say, homogeneous initial conditions that favor a
specific mode. We ensure that the size of the box L and the
maximum time tfinal up to which we solve the equations are
such that 2tfinal < L, as a result of which the mode with the
largest velocity does not see the boundary of the box when
emitted from the center of the box, where we seed the
instability.
Specifically, we choose a 1D box of size L ¼ 115 and

discretize it into 212 spatial bins to solve Eq. (2) numeri-
cally up to a time of tfinal ¼ 50. We discretize the ELN
distributions into 27 velocity modes, giving rise to a total of
3 × 212 × 27 ¼ 1 572 864 coupled ODEs. These choices
are optimized to obtain sufficient accuracy and precision, as
we show in the Appendix. To show the dependence of our
results on the ELN, we consider three qualitatively different
continuous ELN distributions shown in Fig. 1. We choose
these ELNs in such a way that they all have a zero crossing
in their velocity distribution for fast flavor conversion to
occur, but they have lepton asymmetries that are either zero,

or negative, or positive. Figure 2 clearly indicates that the
system becomes approximately steady already at tNL ≈ 10,
and to ensure that we are deeply in the nonlinear regime, we
run our code until t ¼ 50.
We define some notation for convenience:

S⊥
v ðx; tÞ ¼ sð1Þv ðx; tÞ − isð2Þv ðx; tÞ

¼ jS⊥
v ðx; tÞjeiϕvðx;tÞ; ð49Þ

where ϕvðx; tÞ encodes the correlation between the two
transverse components of the polarization vector for each
velocity mode, with jS⊥

v ðx; tÞj describing the length of the
vector in the ê1 − ê2 plane. We will denote all the spatially
averaged quantities over the whole box of size L as h� � �i,
the velocity averaged quantities by � � �, the probability
distribution for the spatial distribution of some quantity as
PDFð� � �Þ, and the standard deviation for that distribution
as hh� � �ii.

A. Late-time behavior of parallel
and perpendicular components

In Fig. 3, we show the time evolution of the spatial
average and standard deviation of sð3Þv ðx; tÞ for all three
types of lepton asymmetry. In Fig. 4, we show the histo-

grams of sð3Þv ðx; tÞ and jS⊥
v ðx; tÞj at a time t ¼ 50 and for

various velocity modes color coded by their velocity. We
have checked that these histograms are themselves quasis-
tationary at late times. These results indicate approximate
stationarity in time in the nonlinear regime for all velocities.
Note how hsð3ÞðtÞi separates into two cohorts, dictated

FIG. 1. ELN distributions used in our numerical examples. The
case A ¼ 0 has vanishing lepton asymmetry, whereas A < 0 and
A > 0 have more net negative and positive lepton numbers,
respectively.
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FIG. 2. Top: absolute value of the off-diagonal element of the density matrix, color coded as per the color bar, shown for the velocity
mode v ¼ 0.5. Bottom: growth of the off-diagonal elements of the density matrix as a function of time for various different k modes,
color coded as per the color bar, for the same velocity mode. Left panels show the case A ¼ 0, middle panels A < 0, and right panels
A > 0. Note the approximately steady-state solution at late times.

FIG. 3. Top: mean value of spatial distributions of sð3Þv varying with time, for a set of velocity modes color coded by the velocity.

Bottom: standard deviation of the spatial distributions of sð3Þv as a function of time. Left panels show the case A ¼ 0, middle panels
A < 0, and right panels A > 0. Note that both the spatial mean and standard deviation become approximately stationary in time in the

nonlinear regime. Note also the spectral-swap-like separation of sð3Þv into two cohorts for A ≠ 0.
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FIG. 4. Top: histograms of spatial distributions of sð3Þv at time t ¼ 50 for different velocity modes color coded by the velocity. Bottom:
same for histograms for jS⊥

v j.

FIG. 5. Top: spatial variation of the three components of the polarization vector at time t ¼ 50 for v ¼ 0.5. Bottom: spatially averaged
value of the three components of the polarization vector as a function of different velocity modes at time t ¼ 50. Left panels show the
case A ¼ 0, middle panels A < 0, and right panels A > 0. Note the fast oscillations over spatial coordinates, but a relatively simpler
velocity dependence for the spatially averaged solution. For A ¼ 0 there is flavor depolarization, whereas there is a partial
depolarization, with an incomplete swap, for A ≠ 0.

LATE TIME BEHAVIOR OF FAST NEUTRINO OSCILLATIONS PHYS. REV. D 102, 063018 (2020)

063018-9



essentially by the sign of v, at late times in the cases A > 0
and A < 0. This behavior is very similar to spectral swaps.
As explained in Sec. II, which modes remain close to their
initial state and which move away depends on A, B, and the
higher moments.
The spatial distribution of sð3Þv —i.e., PDFðsð3Þv Þ—and the

distribution of jS⊥
v j—i.e., PDFðjS⊥

v jÞ—shown in Fig. 4, are
obviously related, because jSvj ¼ 1. The latter is obtained
from the former by multiplying with the Jacobian of the

transformation from sð3Þv to jS⊥
v j:

PDFðjS⊥
v jÞ ¼

jS⊥
v jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jS⊥
v j2

p PDFðsð3Þv Þ: ð50Þ

Consider the case with A ¼ 0. In this case, PDFðsð3Þv Þ is
approximately uniform (see the top-left panel of Fig. 4),
and as a result, PDFðjSz⊥

v jÞ should be a sharply peaked

distribution for every v with a peak very close to jS⊥
v j ¼ 1

and a tail at jS⊥
v j ¼ 0. In the bottom-left panel of Fig. 4, we

recover this unsurprising feature. For cases with A < 0
(A > 0), the negative (positive) velocity modes show a

peaked distribution in sð3Þv almost close to 1, implying a
more broadened distribution for jS⊥

v j between 0 and 1, as
seen in the middle and right panels.
The top panels of Fig. 5 show the oscillatory nature of

the spatial variation of sð3Þv ðx; tÞ at time t ¼ 50, when the
system becomes fully nonlinear. The bottom panels of
Fig. 5 show that the spatially averaged polarization vectors
are depolarized for A ¼ 0, with hsvi ≈ 0, but not so in the
case of nonzero lepton asymmetry. For A ≠ 0, the polari-
zation vectors have not flipped close to v ≈ −1 (v ≈þ1) for
A < 0 (A > 0), as predicted by our analysis of fast spectral
swaps. One interesting point to note from the bottom-
middle and bottom-right panels of Fig. 5, with spectra

FIG. 6. Top: average of the spatial distribution of ϕvðx; tÞ at time t ¼ 50. Middle: standard deviations. Bottom: histograms of the
spatial distribution of ϕvðx; tÞ. In each plot, different velocity modes are depicted by color coding as per the color bar. Left panels show
the case A ¼ 0, middle panels A < 0, and right panels A > 0. Note the approximate randomization of ϕvðx; tÞ.
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A ≠ 0, is that the functional behavior in the velocity space
shows a mirror symmetry when we switch the sign of A.
This is not surprising, because our chosen ELNs have a
symmetry GA<0ðvÞ ¼ −GA>0ð−vÞ.

B. Behavior of the phase ϕvðx; tÞ
We obtain the phase ϕvðx; tÞ, for a given space-time

point ðx; tÞ with a velocity v, in the range ½−π; π� using the

Python package MATH.ATAN2, which takes sð1Þv ðx; tÞ and

sð2Þv ðx; tÞ as inputs, obtained from our numerical simulation,
and returns the principal value of argðS⊥

v ðx; tÞÞ as the
output.
Figure 6 shows that the phase is almost uniformly

random, and its mean and variance are consistent with
those expected of a uniformly random distribution over
space, for every velocity mode and for any type of lepton
asymmetry. Initially, for each velocity mode, the transverse
components of a polarization vector Svðx; tÞ are correlated,

but in the extreme nonlinear regime, such a kinematic phase
coherence is lost.

C. Conserved quantities

In Sec. II, we showed thatM1 is almost constant in space
in the steady-state approximation, which allowed us to go
to a rotating frame where eM0 has a motion equivalent to a
gyroscopic pendulum. Further, the pendulum’s length M0,
spin σ, and energy E can be seen to be spatially conserved.
In this subsection, we undertake a numerical survey to
verify if these quantities indeed satisfy the above analyti-
cal claim.
To calculate the different multipole moments numeri-

cally, we use the late-time solution for Pvðx; tÞ from our
code and integrate over all the velocity modes from −1 to 1
at each spatial point with an appropriate weightage factor,
corresponding to the Legendre polynomial of a degree
equivalent to the multipole number of that particular
moment. One technical issue is that the quantities σ and

FIG. 7. Top: spatial variations of the conserved quantities (M1;M2
0; σ; E) that are supposed to be spatially constant in the extreme

nonlinear regime. Left panels show the case A ¼ 0, middle panels A < 0, and right panels A > 0. We believe that the approximate-ness
of the constancy of these conserved quantities is related to the approximate-ness of the steady state.

FIG. 8. Variation of RðiÞ
v1;v2ðx; tÞ as a function of x at t ¼ 50 is shown for v1 ¼ 0.5, v2 ¼ 1. The large variation as a function of x shows

that the late-time solution is not separable in space and velocity. In other words, at late times the different velocity modes do not show an
approximately collective (correlated) evolution in space.
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E involve infinite series in the multipole moments which
are numerically impossible to calculate. Thankfully, the
spatially averaged components of the polarization vectors,
shown in the bottom panel of Fig. 5, behave very smoothly
as a function of velocity and can be adequately approxi-
mated by the first few multipole moments.
Figure 7 shows the numerical results for the spatial

variation of the conserved quantities at late times. Most of
the conserved quantities are approximately constant over
space, but the energy E of the gyroscopic pendulum does
not appear to be sufficiently constant (relative to, say, the
variation of individual polarization vectors). Even at late
times, the stationarity of the components of eSvðx; tÞ is
approximate, which is reflected in the degree of variation in
the spatial behavior of the conserved quantities. In contrast,
if one were to look at the velocity averaged P̄ðx; tÞ, that is
much noisier even at late times, not unlike what is shown in
the upper panels of Fig. 5.
To verify if Eq. (2) has a separable solution for the

components of Svðx; tÞ in position and velocity space, we

define a ratio as RðiÞ
v1;v2ðx; tÞ ¼

sðiÞv1 ðx;tÞ
sðiÞv2 ðx;tÞ

for the ith component

of the polarization vector at a time t in the full nonlinear
regime for two different velocity modes v1, v2. This will be
spatially constant if the solution is separable in x and v. To
calculate this quantity, we consider the solution at t ¼ 50
with the modes v1 ¼ 0.5 and v2 ¼ 1 for all three compo-
nents (i ¼ 1, 2, 3) of the polarization vector, and we plot

RðiÞ
v1;v2ðx; tÞ as a function of x. Figure 8 shows a large

deviation from a constant, confirming a nonseparable
solution in the nonlinear regime.

IV. CONCLUSIONS

Our goal in this paper was to study the late-time behavior
of fast oscillations. To this end, we considered a model in
1þ 1D and gave an analytical as well as a numerical
understanding of its flavor dynamics. Here we summarize
our main results:
(1) The system reaches an approximately steady state in

time in the extreme nonlinear regime.
(2) In a rotating frame, the spatial evolution of all the

polarization vectors is a velocity-dependent preces-
sion about a common axis.

(3) This common axis acts as a gyroscopic pendulum
with a fixed length, spin, and energy, leading to an
oscillatory behavior in position space.

(4) The steady-state solution for the components of the
polarization vector is not separable in position and
momentum space.

(5) The phase of the transverse polarization vector at
different spatial locations becomes randomly dis-
tributed over the interval ½−π; π� at late times for
all velocity modes and with any value of lepton
asymmetry.

(6) The velocity dependence of the components of the
polarization vector is controlled by the lepton
asymmetry of the system. Systems with zero lepton
asymmetry have a “decoherent” behavior for all
velocity modes, with hsð1Þv i ¼ hsð2Þv i ¼ hsð3Þv i ¼ 0 for
every v. In the case of nonzero lepton asymmetry, the

decoherence is not complete, but hsð1Þv i and hsð2Þv i
still remain zero for every velocity mode, while

hsð3Þv i shows some velocity dependence to conserve
the lepton asymmetry.

(7) The behavior of hsð3Þv i in the velocity space shows a
mirror symmetry if the sign of the lepton asymmetry
is flipped.

(8) hsð3Þv i changes with time in a way reminiscent of
spectral swaps. At late times, the configuration
becomes steady and is given by a velocity-dependent
“swap” function. The constraints on A and Bmust be
obeyed for such a “swap.”

We hope that these results provide some insight into the
late-time flavor dynamics associated with fast flavor con-
versions of self-interacting neutrinos. Although we have
chosen to study a simple system in 1þ 1D, some of these
physics results may be useful in understanding the more
realistic scenario associated with neutrinos in a core-
collapse supernova.

ACKNOWLEDGMENTS

This work is partially supported by the Department
of Atomic Energy (Government of India) Research
Project No. 12-R&D-TFR5.02-0200, by the Department
of Science and Technology (Government of India) through
a Ramanujan Fellowship, and by the Max-Planck-
Gesellschaft through a Max Planck Partner Group awarded
to B. D. The numerical computations were done on the
Pride and Flock computing clusters in the Department of
Theoretical Physics at TIFR Mumbai.

APPENDIX: ERROR ESTIMATE

In the left panel of Fig. 9, we illustrate the precision to be
expected of our calculation. We solve the problem, outlined
in the main text, for a sequence of increasingly fine
discretizations for space (Nx) and velocity (Nv), with the
log2 of the number of divisions noted in the legend of the
figure. We check for convergence by comparing the results
for these discretizations with the discretization Nx ¼ 212

and Nv ¼ 28. Our results indicate that a discretization of
Nx ¼ 212 andNv ¼ 27 is at mostOð10−8Þ off from yet finer
discretizations.
In the right panel of Fig. 9, we show the accuracy

expected of our calculation. We check if the lengths of the
polarization vectors remain fixed at 1. The error we incur on
this is a lower bound on the error in our calculations. We
find that our chosen discretization, Nx ¼ 212 and Nv ¼ 27,
does as well as finer discretizations, making an error of
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Oð10−4Þ at late times. Considering that the quantities we
are interested in are close to Oð1Þ, this error is tolerable.
Also, we find that the tolerance dictates how fast the errors
increase initially, but the errors plateau out at ∼100 times

the tolerance. Whereas, if one is interested in a solution that
is accurate to Oð10−4Þ, it is less expensive to raise the
tolerance to 10−6, without a significant penalty on accuracy
and with a significant gain in speed.
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