
 

Science with the TianQin observatory:
Preliminary result on extreme-mass-ratio inspirals

Hui-Min Fan (范会敏) ,1 Yi-Ming Hu (胡一鸣) ,2,* Enrico Barausse ,3,4,5 Alberto Sesana,6

Jian-dong Zhang (张建东) ,2,† Xuefeng Zhang (张雪峰) ,2 Tie-Guang Zi (訾铁光),2 and Jianwei Mei (梅健伟)
2,‡

1MOE Key Laboratory of Fundamental Physical Quantities Measurement and
Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics,
Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
2TianQin Research Center for Gravitational Physics and School of Physics and Astronomy,

Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People’s Republic of China
3SISSA, Via Bonomea 265, 34136 Trieste, Italy and INFN Sezione di Trieste,

via Valerio 2, 34127 Trieste, Italy
4IFPU—Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy

5Institut d’Astrophysique de Paris, CNRS and Sorbonne Universités,
UMR 7095, 98 bis bd Arago, 75014 Paris, France

6Dipartimento di Fisica “G. Occhialini,” Universitá degli Studi Milano Bicocca,
Piazza della Scienza 3, I-20126 Milano, Italy

(Received 19 May 2020; accepted 14 August 2020; published 15 September 2020)

Systems consisting of a massive black hole and a stellar-origin compact object (CO), known as extreme-
mass-ratio inspirals (EMRIs), are of great significance for space-based gravitational-wave detectors, as they
will allow for testing gravitational theories in the strong field regime, and for checking the validity of the
black hole no-hair theorem. In this work, we present a calculation of the EMRI rate and parameter
estimation capabilities of the TianQin observatory, for various astrophysical models for these sources. We
find that TianQin can observe EMRIs involving COs with a mass of 10 M⊙ up to redshift ∼2. We also find
that detections could reach tens or hundreds per year in the most optimistic astrophysical scenarios.
Intrinsic parameters are expected to be recovered to within fractional errors of ∼10−6, while typical errors
on the luminosity distance and sky localization are 10% and 10 deg2, respectively. TianQin observation of
EMRIs can also constrain possible deviations from the Kerr quadrupole moment to within fractional errors
≲10−4. We also find that a network of multiple detectors would allow for improvements in both detection
rates (by a factor ∼1.5–3) and in parameter estimation precision (20-fold improvement for the sky
localization and fivefold improvement for the other parameters).

DOI: 10.1103/PhysRevD.102.063016

I. INTRODUCTION

Gravitational-wave (GW) observations provide informa-
tion on the minute vibrations of the spacetime and promise
to revolutionize astronomy and astrophysics by opening a
new window on the Universe. To date, the ground-based
GW observatories, LIGO and Virgo, have detected several
GW events [1–4]. Limited by seismic noise and their
relatively short arm lengths, however, ground-based detec-
tors are sensitive only to high-frequency GWs (above a few
hertz) generated by low-mass sources [e.g., mergers of
stellar-origin compact objects (COs)]. In order to detect
heavier sources, such as ones involving massive black holes
(MBHs), or even the low-frequency (subhertz) inspiral

phase of stellar-origin compact binaries [5], a significant
increase in the size of GW detectors is necessary, which can
be achieved only in space. LISA, for example, will present
arm lengths of about 2.5 million km and will be sensitive to
GWs in the frequency band 10−5–0.1 Hz [6,7].
TianQin is a proposed space-based, geocentric GW

observatory with arm lengths of about 1.7 × 105 km,
aiming to detect GW signals in the frequency band
10−4–1 Hz [8,9]. In the past few years, a systematic effort
has been undertaken to study the science prospects of
TianQin [10]. On the astrophysics side, this included the
study of the detection prospects for Galactic ultracompact
binaries [11], coalescing MBHs [12,13], the low-frequency
inspiral of stellar-mass black holes [14], and stochastic GW
backgrounds [15]. On the fundamental physics side,
TianQin’s ability to test the black hole no-hair theorem
with the ringdown of MBHs resulting from a merger has
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been analyzed, both in a theory-agnostic framework [16]
and within specific gravitational theories extending general
relativity [17], and more work is in preparation in this
direction.
In this paper, we focus on extreme-mass-ratio inspirals

(EMRIs), i.e., binaries consisting of a stellar-origin CO (a
stellar mass black hole or a neutron star) orbiting around a
MBH in a long inspiral [18,19]. These sources are expected
to be relatively numerous in the millihertz GW sky probed
by LISA and TianQin. Indeed, strong observational
evidence suggests the presence of MBHs at the center of
most local galaxies [20–23], typically surrounded by stellar
clusters or cusps [24,25] of a few parsec scale. Relaxation
processes in such a high-density environment occasionally
force stars and compact objects onto extremely eccentric,
low angular momentum orbits, resulting in a close encoun-
ter with the central MBH. While main sequence stars are
torn apart and tidally disrupted, potentially resulting in
luminous flares and prompting gas accretion onto the
central MBH [26–29], COs typically survive intact until
merger [30–32]. Depending on their orbital angular
momentum, COs can directly plunge into the MBH or
be captured in eccentric bound orbits, whose secular
evolution decouples from the cluster’s dynamics and is
dominated by GW emission [18]. These latter systems are
usually referred to as EMRIs.
Detecting GWs from EMRIs will be very significant for

our understanding of the astrophysics of these sources [18].
For instance, it will allow for gaining information on the
mass distribution of MBHs [33] and their host stellar
environments [18]. It may also provide information on
the expansion of the Universe [34], as well as allow for
mapping the spacetime geometry of the MBH in great
detail so that a stringent test of general relativity is possible
[35], through measuring the bumpy nature of black
holes [36], investigating the non-Kerr nature of central
objects [37], constraining modified gravity theories [38],
and testing the no-hair theorem [39–43]. Furthermore, it
can also reveal the possible presence of matter surrounding
MBHs through their effects on waveforms [44–50].
To estimate the detection rate for EMRIs with a specific

detector, one would need the corresponding astrophysical
models as input, including the description of the population
properties as well as the event rates [51–53]. In this paper,
we use previously published astrophysical models [54] for
the formation and evolution of EMRIs across cosmic time
to assess TianQin’s capability to detect these sources and
estimate their parameters. In more detail, by adopting, as
was done in Ref. [54] for LISA, analytic kludge waveforms
and using a simple Fisher information matrix (FIM) method
to analyze the parameter estimation prospects, we find that
EMRIs can be observed up to redshift ∼2, assuming a
10 M⊙ CO, with rates vary from 10 to 100 yr−1. Intrinsic
parameters are projected to be estimated to within fractional
errors of ∼10−6, while typical errors on the luminosity

distance and sky localization are 10% and 10 deg2,
respectively. We also estimate the potential scientific gain
of operating TianQin within a network of detectors, e.g.,
together with LISA and/or a twin TianQin detector (TQ II).
We find that a twin TianQin detector would increase
detection rates by a factor of ∼1.5–3.
The paper is organized as following. In Sec. II, we

describe our model for the EMRI astrophysical population,
the gravitational waveforms, the response of TianQin to
EMRI signals, and the TianQin noise model used in this
study. In Sec. III, we describe the method for calculating
the signal-to-noise ratio (SNR) and the precision of the
parameter estimation. The main results of our study are
presented in Sec. IV. In Sec. V, we present our conclusions.

II. THE MODEL

A. EMRI rate

Extensive evidence exists for the ubiquitous presence
of MBHs at the center of virtually every galaxy at low
redshifts [55–58], including our own Milky Way [59–62]
and, as recently confirmed by the Event Horizon Telescope,
M87 [63]. Moreover, nuclear stellar clusters with sizes of a
few parsecs (pc) and masses up to 107–108 M⊙ are also
known to coexist with MBHs in the local Universe (except
at the high-mass end of the MBH mass function) [25]. The
high densities of these clusters make them the perfect
cradles for the formation of EMRIs, as two-body relaxation
will make the system tend toward energy equipartion and,
thus, mass segregation, with the heavier objects (i.e.,
stellar-mass black holes) sinking deeper in the MBH
gravitational potential well. This process can eventually
lead to COs plunging or inspiraling into the MBH, depend-
ing on their angular momenta.
The rate of EMRIs and their properties depend on a

variety of (astro)physical processes, which determine the
evolution of the population of MBHs along cosmic history
and the accumulation of COs in their vicinity. In this paper,
we make use of the EMRI population models developed by
Babak et al. [54]. For the convenience of the readers, we
summarize the main features of the model here but refer to
Ref. [54] for more details. The intrinsic EMRI rate is given
by the following function:

RðM; z; aÞ ¼ d3N
dMdzda

× p0ðM; zÞ × κΓR0ðMÞ; ð1Þ

where M, z, and a are the mass, redshift, and spin of the
MBH, respectively. Terms on the right-hand side of this
equation are explained below.

(i) d3N=ðdMdzdaÞ is the redshift-dependent MBH
mass function. Two scenarios have been adopted
that bracket the uncertainties in the low-mass end of
the MBH mass function at z ¼ 0. One scenario is
based on the semianalytic model (SAM) developed
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by Barausse and collaborators in a series of papers
[64–66]. The SAM follows the formation and
evolution of MBH masses and spins along cosmic
history and produces a mass function dN=d logM ∝
M−0.3 in the range 105 M⊙ < M < 107 M⊙, con-
sistent with the upper bound of current observations
(see Fig. 1 in Ref. [54]). A second scenario employs
an empirical mass function where dN=d logM ∝
M0.3 in the same mass range 105M⊙<M<107 M⊙
[33], consistent with the lower bound of current
observations.

(ii) p0ðM; zÞ describes the probability that a MBH with
mass M and redshift z is surrounded by a cusp of
stars and COs, thus potentially giving rise to an
active EMRI source. When two galaxies merge, the
cusps of stars and COs around the central MBHs of
the parent galaxies are eroded by the action of the
inspiraling MBH binary. The cusp in the merger
remnant is, therefore, destroyed and is rebuilt only
after a fraction of the relaxation time [67]. The SAM
model allows one to follow the galaxy and MBH
merger rate and to estimate the time needed to
rebuild the cusp, from which the probability function
for each MBH to be a potential EMRI source is
constructed.

(iii) R0ðMÞ is the rate at which a galaxy hosting a MBH
with mass M surrounded by a stellar (and CO) cusp
actually generates an EMRI. Note that this proba-
bility depends on the density profile of the CO
population, which might depend on the redshift and
other parameters unrelated to the MBH mass. For
simplicity, however, any such possible dependence
is dropped, and R0ðMÞ is assumed to be a function of
the MBH mass only, following Ref. [67].

(iv) Finally, κ and Γ are two “ad hoc” correction factors
to R0ðMÞ that ensure that the overall EMRI rate is
consistent with the observed MBH mass function,
i.e., that the MBHs do not “overgrow‘” their present
masses by capturing too many EMRIs and plunges.

Besides the choice of two different MBHmass functions,
Eq. (1)—and the observed EMRI rate—also depends on a
number of additional astrophysical factors, including

(i) The relative occurrence rate of plunges versus
EMRIs, which enters in the Γ factor.—The plunge
cross section of the MBH itself (4 GM=c2 for a
nonrotating MBH) is not negligible compared to
the EMRI capture cross section, which is generally
< 10 GM=c2. Recent simulations have actually
found that plunges are typically more frequent than
EMRIs [30], and this has an impact on the intrinsic
EMRI rate for a given MBH.

(ii) The choice of parameters of the MBH-galaxy scal-
ing relations, which is important to compute the
p0ðM; zÞ function.—In fact, the time needed to
rebuild the cusp depends on the properties of the

galactic nucleus, whose mass can be computed
from the MBH mass via the MBH-galaxy scaling
relations.

(iii) The MBH spin distribution, which has an impact
both on the EMRI capture rate and the EMRI
waveforms and, hence, on their detectability with
GWs (as shown in the following section).

(iv) The mass of the CO, which affects the rate normali-
zation and which enters the EMRI waveforms.—
Most models in Ref. [54] assume COs with 10 M⊙,
but some consider COs with 30 M⊙.

The above ingredients have been suitably combined in
Ref. [54] to build a suite of 12 models encompassing three
orders of magnitude in the expected cosmic EMRI rate,
from 10 to about 2 × 104 yr−1. These are also the models
that we employ in this investigation. We label the models as
M-i with i ¼ 1;…; 12, following the original nomencla-
ture. Detailed prescriptions for each model can be found in
Table I of Ref. [54].

B. Waveform

The calculation of the waveforms for EMRIs is a
challenging task. Although much progress has been
attained with the goal of producing accurate and efficient
EMRI waveforms including the effect of the self-force
[68–74], the problem has not been fully solved yet. Here,
we adopt simple waveforms suitable for predicting the
detection and parameter estimation capabilities of TianQin,
but one should keep in mind that full waveforms including
the effect of the self-force will be needed to analyze the
real data.
In more detail, in this paper we follow Ref. [54] and

utilize a class of simplified and approximate but computa-
tionally inexpensive EMRI waveforms, the analytic kludge
(AK) model from Ref. [75]. There are other kludge
waveforms available for EMRI events, like the numerical
kludge (NK) [76–78] or the augmented analytic kludge
(AAK) [79–81], with NK being significantly slower than
AK and AAK being comparable to AK in terms of
computing time. Both the NK and the AAK waveform
are physically more self-consistent compared with the AK
waveform, but neither is fully consistent, and, for the sake
of fair comparison, we stick with the AK waveform for the
following computations.
The AK waveform is calculated simply from the quadru-

pole formula, while the orbital evolution of the CO includes
post-Newtonian (PN) corrections accounting for pericenter
precession, Lense-Thirring precession, and (leading-order)
radiation reaction.
The waveform far away from the source is given in the

transverse traceless gauge by

hij ¼
2

D

�
PikPjl −

1

2
PijPkl

�̈
Ikl; ð2Þ
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where D is the source distance, Pij ≡ ηij − n̂in̂j is the
projection operator on the space orthogonal to the unit
vector of the source position n̂, and ̈Iij is the second time
derivative of the quadrupole. For an EMRI system with CO
mass m, central MBH mass M, and mass ratio m=M ≪ 1,
we have IijðtÞ ¼ mriðtÞrjðtÞ, where r⃗ is the displacement
vector of the CO from the MBH.
The orbit evolution of the CO is described by the first-

order derivative of the following five quantities:
(i) Φ, the mean anomaly of the CO’s orbit;
(ii) ν, the orbital frequency;
(iii) e, the orbital eccentricity;
(iv) α, the azimuthal angle of the CO orbital angular

momentum L⃗ with respect to the MBH’s spin
angular momentum S⃗; and

(v) γ̃, the direction of the pericenter relative to L⃗ × S⃗.
The evolution equations for Φ, ν, and e include terms up to
3.5PN order. The evolution of α caused by Lense-Thirring
precession and that of γ̃ caused by pericenter precession
are instead followed up to 2PN order. The equations depend
on the two masses m and M, the dimensionless spin
a ¼ S=M2, and the angle λ between L⃗ and S⃗. For a distant
source, the masses should be replaced by “redshifted”mass
mz ¼ mð1þ zÞ and Mz ¼ Mð1þ zÞ. To test the no-hair
theorem, one can also introduce an arbitrary quadrupole
moment Q for the central MBH in the evolution equations.
The explicit form of the evolution equations is given in
Eqs. (27)–(31) of Ref. [75] (without Q) and in Eqs. (4)–(8)
of Ref. [42] (with an arbitrary Q). Obviously, the orbital
evolution depends on the initial conditions at some initial
time t0. To obtain the waveform, we also need five other
extrinsic parameters, namely, the source’s sky position
(θS, ϕS), the luminosity distance D, and direction of the
MBH’s spin S⃗ relative to the line of sight (θK and ϕK). In
summary, there are 14 parameters (t0, m, M, a, e0, γ̃0, Φ0,
θS, ϕS, λ, α0, θK , ϕK, and DL), with the additional
parameter Q introduced when testing the no-hair theorem.
In Ref. [75], the waveform was conventionally cut off

at the last stable orbit (LSO) rLSO of the Schwarzschild
spacetime. We refer to this as the AK Schwarzschild (AKS)
case. However, since the exact value of the cutoff frequency
can have a significant impact on the parameter estimation,
we also consider, as in Ref. [54], an AK Kerr (AKK)
waveform model, where we cut the waveform off at the
Kerr LSO. As argued in Ref. [54], more realistic EMRI
waveforms including dissipative self-force effects should
yield results between the (more conservative) AKS results
and the (more optimistic) AKK ones.

C. Detector response

TianQin will consist of three satellites orbiting the Earth,
forming a regular triangular constellation, with each side
measuring about L ¼ 1.7 × 108 m. The detector orienta-
tion, i.e., the direction normal to the plane of the

constellation, will point to a reference source, the white
dwarf binary system RX J0806.3+1527 (J0806 for short).
The nominal operation time of TianQin will be 5 yr, which
is assumed throughout this paper. There is expected to be
only a very small drift of the detector orientation over a 5-yr
period [82], and, since that should have negligible effect on
the present study, we will not consider it. The location of
J0806 is close to the ecliptic plane, so the constellation
plane of TianQin will be nearly perpendicular to the ecliptic
plane. The TianQin satellites will have nearly identical
orbits and nearly identical periods, which will be about
T ¼ 3.6 days [8–10].
In the Solar Ecliptic Coordinate System where the x axis

points towards the direction of the vernal equinox and the z
axis is normal to and northward from the ecliptic plane,
the location of the satellites at a given time can be
formulated as [13]

xðtÞ ¼ R cos αe þ
1

2
R · ee · cosð2αe − 3Þ

þ 1ffiffiffi
3

p L · ðcos θ cosϕ cos γe − sinϕ sin γeÞ;

yðtÞ ¼ R sin αe þ
1

2
R · ee · sinð2αeÞ

þ 1ffiffiffi
3

p L · ðcos θ sinϕ cos γe þ cosϕ sin γeÞ;

zðtÞ ¼ −
1ffiffiffi
3

p L · sin θ cos γe; ð3Þ

where R ¼ 1 AU is the semimajor axis, ee ¼ 0.0167 is
the eccentricity, and αe ¼ 2πfetþΦe is the phase, with
fe ¼ 1=yr and Φe being, respectively, the frequency and
initial phase of the orbit of Earth. The angular parameters
(θ, ϕ) specify the space direction to J0806 and γe ¼
2πt=T þ 2πn=3þ δ (n ¼ 1, 2, 3) are the phases of the
satellites in their geocentric orbits, where δ is some
reference phase that can be set to zero.
The effect of a propagating GW hðξÞ on the optical path

length Lij starting from the satellite i at time t − Lij

and arriving at the satellite j at time t can be expressed
as [83,84]

δLijðtÞ ¼
1

2

r̂ijðtÞ ⊗ r̂ijðtÞ
1 − k̂ · r̂ijðtÞ

∶
Z

ξj

ξi

hðξÞdξ; ð4Þ

where ξi is the phase and r̂ijðtÞ is the unit vector from the
satellite i to the satellite j at time t. Two independent
Michelson interferometer signals can be constructed [85]:

h1ðtÞ ¼ ½δL12ðtÞ − δL13ðtÞ�=L;

h2ðtÞ ¼
1ffiffiffi
3

p ½δL12ðtÞ þ δL13ðtÞ − δL23ðtÞ�=L: ð5Þ
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Note that the orbital motion of the TianQin satellites also
contributes a phase modulation (due to the Doppler shift) to
the observed signal:

ΦDðtÞ ¼ 2πνðtÞR sin θS cos½ϕðtÞ − ϕS�; ð6Þ

where 2ν is the frequency of the GW signal, (θS, ϕS) are
the angular coordinates of the source, and ϕðtÞ ¼ αe is the
orbit phase.

D. Detector noise

The noise model of TianQin is encoded in the following
sensitivity curve [11,12,16,86]:

SnðfÞ ¼
1

L2

�
4Sa

ð2πfÞ4
�
1þ 10−4 Hz

f

�
þ Sx

�

×

�
1þ 0.6

�
f
f�

�
2
�
; ð7Þ

where S1=2a ¼ 1 × 10−15 ms−2=Hz1=2 characterizes the
residual acceleration on a test mass playing the role of
an inertial reference, S1=2x ¼ 1 × 10−12 m=Hz1=2 character-
izes the one-way noise of the displacement measurement
with intersatellite laser interferometry, and f� ¼ 1=ð2πLÞ is
the transfer frequency [8]. An illustration of the sensitivity
curve of TianQin is given in Fig. 1. For comparison, we
also plot the LISA sensitivity curve in Fig. 1 based
on Ref. [54].
At the low-frequency end of the TianQin observation

range, there exist numerous compact binaries in the Galaxy,
whose GW signals overlap to give rise to a stochastic
unresolved signal, sometimes referred to as the foreground.
Preliminary analyses suggest that such a foreground will be
consistently below the sensitivity curve for resolved
sources, given that the operation time of TianQin is limited

to 5 yr [15]. We therefore do not consider the effect of
Galactic compact binaries throughout this work.

III. METHOD

A. Signal-to-noise ratio

In order to study the prospects of detecting EMRIs with
TianQin, one can calculate the SNR. Previous studies have
shown that EMRIs with SNRs as low as 15 can be detected
by LISA under favorable circumstances [87]. In this paper,
we adopt the more conservative SNR threshold of 20 for
detection, following Ref. [54].
Using the noise-weighted inner product between two

signals s1ðtÞ and s2ðtÞ,

ðs1js2Þ ¼ 2

Z
∞

0

s̃1ðfÞs̃�2ðfÞ þ s̃�1ðfÞs̃2ðfÞ
SnðfÞ

df; ð8Þ

where s̃iðfÞ, i ¼ 1, 2, are the Fourier transforms of siðtÞ,
the SNR can be defined as

ρ ¼ ðhjhÞ1=2 ¼ 2

�Z
∞

0

h̃ðfÞh̃�ðfÞ
SnðfÞ

df

�
1=2

; ð9Þ

where hðtÞ is the GW-induced signal in the detector. The
Fourier transform h̃ðfÞ is obtained from hðtÞ by applying a
discrete Fourier transform:

h̃

�
k

NΔt

�
¼ Δt

XN
n¼1

hðnΔtÞe−i2πkn=N; ð10Þ

where Δt is the sampling interval.
The basic TianQin data stream consists of data seg-

ments each lasting for 3 months for protection from heat
instability, and the total accrued SNR is obtained as the
root sum square of the individual SNR from each data
segment. The same root-sum-square rule is also used
when combining the contributions from different inter-
ferometer signals (when we consider TianQin operating
within a detector network).

B. Fisher information matrix

The existence of noise leads to uncertainties in the
inference on source parameters. To quantify these uncer-
tainties, we use the FIM method to obtain the lowest-order
expansion of the posteriors (valid in the high SNR limit),
which can be more accurately estimated through a full
Bayesian parameter estimation analysis. Indeed, we note
that the FIM method can be used as a fast assessment of the
expected parameter estimation capabilities of an experi-
ment, but the obtained Σ represents only the Cramer-Rao
bound of the covariance matrix. More advanced techniques
are required to obtain more realistic results [88,89].FIG. 1. The sensitivity curve for TianQin and LISA.
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The FIM is defined as

Γij ¼
�∂h̃ðfÞ

∂θi
���� ∂h̃ðfÞ∂θj

�
; ð11Þ

where θi, i ¼ 1; 2;…, are the parameters appearing in the
template h̃ðfÞ. When multiple interferometers are present,
the network’s FIM can be obtained as the sum of the
individual FIM from each interferometer.
The EMRI waveform, even assuming the relatively

simple AK model, is rather complicated, and it is difficult
to obtain general analytical expressions for the partial
derivatives ∂hðfÞ=∂θi. We therefore approximate deriva-
tives with respect to the parameters by numerical finite
differences. In the lowest-order expansion (i.e., in the high
SNR limit), the variance-covariance matrix can be obtained
as the inverse of the FIM:

Σij ≡ hδθiδθji ¼ ðΓ−1Þij: ð12Þ

From the variance-covariance matrix, the uncertainty σi of
the ith parameter θi can be obtained as

σi ¼ Σ1=2
ii : ð13Þ

We also note that it is often meaningful to discuss the sky
localization in terms of the solid angleΔΩ corresponding to
the error ellipse for which there is a probability expð−1Þ for
the source to be outside of it [54], which can be expressed
as a combination of the uncertainties on the ecliptic
longitude angle ϕS and the ecliptic latitude angle θS:

ΔΩ ¼ 2πj sin θSj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣθSΣϕS

− Σ2
θSϕS

q
: ð14Þ

IV. RESULTS

A. Horizon distance

As a first assessment of TianQin’s capability of detecting
EMRIs, we compute the horizon distance, i.e., the farthest
distance at which an EMRI source can be detected, or,
equivalently, the farthest distance at which the SNR
exceeds our detection threshold of 20, under the most
favorable conditions possible [90].
For the seven intrinsic parameters m, M, S=M2, e0, γ̃0,

ϕ0, and λ, we fix the mass of CO tom ¼ 10 M⊙, the orbital
eccentricity to elso ¼ 0.1, the MBH’s spin to a ¼ 0.98, and
the inclination angle to λ ¼ π=3, while the initial condition
for γ̃0 is set to 0, although that choice has a marginal effect
on the SNR. One can see from Eq. (4) that TianQin has the
strongest response to sources sitting on the line passing
through the detector and J0806, so the source is placed in
the direction of J0806. We also fixΦ0, α0 to 0 and θK;ϕK to
π=4, while the plunge time is taken to be 5 yr, which is the

mission time of TianQin. These values of the parameters
are all set at the moment when the CO reaches the Kerr
LSO of the MBH.
The maximum redshift at which EMRIs can be detected

by TianQin with a threshold SNR of 20 is illustrated in
Fig. 2 as a function of the MBH mass. The red curve
(corresponding to AKK waveforms) would allow for a
larger detection range and features better sensitivity to
systems with heavier MBHs than the black curve (which
more conservatively uses AKS waveforms). This is mainly
due to the fact that, by adopting a cutoff at later times (i.e.,
higher frequencies), the AKK waveforms include the larger
GW amplitudes emitted when the CO is very close to the
MBH. Thus, farther events are expected to be detectable
under the fixed SNR threshold. The maximum horizon
distance for AKK waveforms corresponds to z ≈ 2.6 and to
a MBH mass around 4 × 105 M⊙. For the AKS waveform,
on the other hand, the maximum horizon distance is
smaller, with a corresponding redshift of about 1.6. The
MBH mass for which the AKS horizon distance peaks is
also smaller and around 2 × 105 M⊙. This feature can also
be explained in a simple manner: For the same EMRI
system, AKK waveforms extend to higher frequencies, but
that high-frequency component is most important for high-
mass systems, whose low-frequency inspiral produces little
SNR as it lies at lower frequencies than TianQin’s sensi-
tivity sweet spot. Therefore, when using AKS waveforms
(for which that high-frequency part is absent), the SNR of
high-mass EMRIs is suppressed.

B. Detection rate

We compute the expected detection rates for EMRI
systems with TianQin by using the 12 astrophysical models

FIG. 2. TianQin’s horizon distance for EMRI systems as a
function of the MBH mass, assuming a MBH spin of 0.98,
eccentricity of 0.1, and inclination angle of π=3. The black line
adopts the AKS waveform, while the red curve adopts the AKK
waveform.
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developed in Ref. [54] and reviewed in Sec. II A. For each
of the 12 models, we construct catalogs of simulated events
with both the number of events and their physical param-
eters randomly generated according to the underlying
distribution. Five parameters, including M, m, a, λ, and
z, are inherited from the catalog realizations used by
Ref. [54], while all other parameters are randomly extracted
again. In more detail, the plunge time is distributed
uniformly within the mission lifetime of TianQin (5 yr).
The sky positions of the sources (θS;ϕs) and their spin
orientations (θk;ϕk) are drawn from an isotropic distribu-
tion on the sphere. The phase parameters Φ, γ̃, and α at
plunge are uniformly distributed in ½0; 2π�. The orbital
eccentricity at plunge is drawn from a uniform distribution
in [0, 0.2].
The SNR for all events is calculated, and events with

SNR larger than 20 are considered as detected. Again, we
perform calculations with AKS and AKK waveforms
separately (cf. Sec. II B). For both AKK and AKS wave-
forms, the physical parameters are assumed to be measured
at the Schwarzschild LSO. In both cases, each system is
then evolved backward to a sufficiently long time before
merger.
We present the expected detection rates for different

models in Table I, where the results for AKS (AKK)
waveforms are inside (outside) the brackets. The overall
detection rates are summarized in the rightmost column,
and a breakdown of the rates for three different MBH mass
ranges, M10 < 5, 5 < M10 < 6, and M10 > 6 with
M10 ≡ logðM=M⊙Þ, is also given.

For most of the 12 models, the expected detection rates
vary from dozens to hundreds of events per year, regardless
of whether AKS or AKK waveforms are used. Models M5,
M8, and M11 predict, however, significantly smaller
detection rates, mainly because of the significantly lower
intrinsic EMRI rate in the models themselves. Note that
using the AKK waveforms generally predicts a signifi-
cantly higher detection rate than using AKS waveforms.
This happens because sources with prograde orbits are
about 40% more numerous than those with retrograde
orbits. Sources on prograde orbits can have the Kerr LSO
closer to the MBH, and, thus, AKK waveforms accrue
much higher SNRs.
One can also see from Table I and Fig. 2 that the majority

of EMRIs exceeding the SNR detection threshold are those
with masses 105–106 M⊙. A similar feature was also found
to hold for the detectability of massive binary black hole
mergers using TianQin [12]. This feature is mostly related
to the frequency dependence of the sensitivity curve and to
the relation between the MBHmass and the peak frequency
of a GW signal.
We remark that the calculations performed in this section

account for EMRIs and not for direct plunges into the
MBH. In fact, as mentioned in Sec. II A, for each EMRI
there is expected to be a potentially sizable number Np of
COs plunging directly into the MBH along low angular
momentum orbits. We have, however, verified that these
plunges typically have a SNR as high as a few [91,92] and
are, thus, not easily detectable by TianQin.

C. Parameter estimation

As already mentioned, observation of the GW signal from
EMRIs by space-based detectors may allow for testing the
no-hair theorem [35,37,39–43] and for revealing the possible
presence of matter surrounding MBHs [44–49]. Moreover,
EMRIs may permit gaining information on the mass dis-
tribution of MBHs [33] and on their host stellar environ-
ments [18], as well as on the expansion of the Universe [34].
All these goals, however, rely on high-precision measure-
ments of the source parameters. In this section, we therefore
investigate the parameter estimation of EMRIs with TianQin,
using a FIM approach.
Among the 14 parameters introduced in Sec. II B, one is

generally mostly interested in the redshifted mass mz and
the orbital eccentricity e0 of the CO, the redshifted massMz
and the spin a of the MBH, the luminosity distance to the
source DL, and the sky localization (the solid angle within
which the source is located) Ω. The FIM-predicted uncer-
tainties in the estimation of these parameters are given in
Fig. 3 for AKS and AKK waveforms shown in the form of
box plots. The central box represents the middle half with
the central line indicating the median value. The whiskers
covers the most extreme points when it is shorter than 1.5
times the box size; otherwise, the more extreme points are
plotted individually.

TABLE I. The expected detection rate of EMRIs with TianQin
for different astrophysical models. The physical assumptions of
the 12 models are described in Table I of Ref. [54]. The numbers
are broken into different MBH mass ranges in the middle three
columns, M10 ≡ log10ðM=M⊙Þ, while the rightmost column
summarizes the total detection rate. Numbers in brackets corre-
spond to detection rates with AKS waveforms, while numbers
outside brackets assume the AKK waveform.

Detection rate of TianQin
in mass range (yr−1)

Model
Event

rate (yr−1) M10<5 5<M10<6 6<M10 Total (yr−1)

M1 1600 1(1) 25(11) 8(1) 34(13)
M2 1400 0(0) 18(12) 2(0) 20(12)
M3 2770 0(0) 83(28) 27(2) 110(30)
M4 520 1(0) 42(28) 7(3) 49(31)
M5 140 0(0) 4(2) 4(0) 8(2)
M6 2080 1(1) 40(22) 23(0) 64(23)
M7 15800 18(18) 187(121) 55(4) 260(143)
M8 180 0(0) 5(0) 1(0) 6(0)
M9 1530 2(1) 16(14) 2(1) 20(16)
M10 1520 0(0) 18(14) 0(0) 18(14)
M11 13 0(0) 0(0) 0(0) 0(0)
M12 20000 13(11) 273(113) 150(2) 436(126)
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We first notice that, although the 12 models cover a wide
range of different astrophysical setups, the distributions of
the predicted errors are quite similar as expected from
earlier studies conducted for the LISA mission [54].

Although notice that, for the models M8 and M11, the
ratio between plunges to EMRIs is extremely high, so that
the expected event rates are among the lowest, and, there-
fore, the detection rates can be as low as zero. Different

FIG. 3. The parameter estimation precision for various astrophysical models, assuming AKS (red) and AKK (grey) waveforms,
respectively, shown in box plots. The interquartile range, or the central box, represents the middle half of all values, with the median
value also shown. The points outside the box are either covered by the whiskers when the most extreme point is no further than 1.5 times
the box size or extreme points are plotted individually.
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choices of cutoff between the AKK and AKS waveforms
can make a difference in the overall detectability in model
M8, where we expect to detect six events assuming the
AKK waveform; no detection is expected when adopting
the AKS waveform. This leads to the difference in Figs. 3
and 4. There is also an intriguing similarity between the
results of AKS and AKK, as one may have expected much
better results for AKK waveforms. Indeed, for a prograde
source that can be detected with both AKS and AKK
waveforms, the precision of parameter estimation is cer-
tainly better with AKK waveforms, because the SNR is
greater. However, there is a large portion of events that can
be detected with AKK waveforms but which do not have
enough SNR when using AKS waveforms. The high
precision achieved for the high SNR events is largely
diluted by these relatively low SNR events. In this sense,
the similarity between AKS and AKK is a demonstration of
the strong link between the SNR and the precision of
parameter estimation.
Figure 3 also shows a stark difference between intrinsic

and extrinsic parameters. The intrinsic parameters are those
that contribute to the phase of the GWs, such as the
redshifted mass Mz and the spin a of the MBH and the
redshifted mass mz and the orbit eccentricity e0 of the CO.
Parameters such as the luminosity distance DL and the sky
localizationΩ affect only the amplitude of the GWs and are
referred to as extrinsic. Assuming a typical observation
time of 108 s and a typical frequency of 10−2 Hz, the
number of wave cycles in an EMRI signal is of the order of
106. Because of the huge number of cycles, a very slight
change in the intrinsic parameters (and, hence, in the phase)
could change the cycle number by one, which is, in
principle, detectable. Therefore, a (relative) precision of
the order of 10−6 is expected for the intrinsic parameters.
We indeed observe peaks roughly at this precision in Fig. 3,

for all models. On the other hand, the estimation of the
extrinsic parameters cannot benefit from the accumulation
of a large number of wave cycles, and, therefore, the
expected precision is much worse than for the intrinsic
parameters.
We have also considered the possibility of testing the no-

hair theorem by measuring the multipole moments of the
MBH [42,83,93]. A Kerr black hole satisfies the no-hair
theorem and has a quadruple moment QK determined
completely by its mass and spin: QK ¼ −a2M3 [94].
Here, we relax the Kerr hypothesis and allow for the
quadrupole moment Q to deviate from the Kerr value. In
Fig. 4, we present the predicted errors on the dimensionless
quantity Q≡ ðQ −QkÞ=M3, with the two distributions
corresponding to the AKS and AKK waveform for the
12 models, respectively.

D. TianQin in a network of detectors

The operation of TianQin inevitably leads to gaps
between data or effectively lowering the duty cycle for
the observation. The proposed twin constellation configu-
ration of TQ Iþ II, where two identical constellations
differ only by orientation, has been considered in the
following consideration. The TQ II constellation would
be perpendicular to both the ecliptic plane and the orbital
plane of TQ. Under such a design, and adopting the
nominal 3 months operation followed by 3 months break,
the TQ II can be configured in a relay mode so that, when
the TQ starts operation exactly when the TQ II ends, there
would be no gap between data and, therefore, significantly
increase the duty cycle. We briefly discuss the intriguing
possibility that TianQin could be observing within a
network of detectors, such as TQ Iþ II, TQþ LISA,

FIG. 4. The parameter estimation precision for the “anomalous”
quadrupole moment Q defined in the text, for AKS (red) and
AKK (gray) waveforms, shown in box plots, with the same
setting as in Fig. 3.

FIG. 5. The expected detection rates of different models, using
both the TQ (red dots) and the TQ Iþ II (black dots) configu-
ration. With a logarithm scale in detection rate, the length of the
dashed line segments represents the factor of improvement of
detection rates.
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and TQ Iþ IIþ LISA (see [11] for a detailed explanation
of each of the detector networks).
In Fig. 5, we plot the expected detection rate using TQ and

TQ Iþ II, adopting AKK waveforms. Note that, for burst
signals, extending the observation time to full coverage
would effectively double the detection rate. However, since
EMRIs are long-lived sources, the increase in the detection
rate will not scale with the duty cycle and is shown in Fig. 5.
As can be seen, detection rates could increase by a factor
ranging from ∼2 in model 8 up to even ∼3.
A comparison of the precision of parameter estimation

with TQ, TQ Iþ II, LISA, TQþ LISA, and TQ Iþ IIþ
LISA is given in Table II. In the calculation, we considered
EMRIs with four different MBH masses logðM=M⊙Þ ¼ 5,
5.5, 6, 6.5 using the same set of parameters assumed for the
horizon distance calculation, with the exception of the
plunge time, which is taken to be 1 yr, and the luminosity
distance, which is taken to be 1 Gpc. Notice that, due to the
better sensitivity in lower frequency, LISA outperforms
TianQin consistently, by no more than one order of
magnitude. We note that a detector network can usually
improve on the precision of sky localization by more than
20 times, while for other parameters, the improvement can
reach over 5 times. As a comparison among the networks of
detectors, TQþ LISA is consistently better than TQ Iþ II,
while TQ Iþ IIþ LISA is always the best.

V. SUMMARY AND FUTURE WORK

In this work, we have performed a preliminary study of
the horizon distance, detection rate, and precision of

parameter estimation for EMRIs with TianQin. We have
employed 12 astrophysical models encapsulating a wide
range of different scenarios for the underlying EMRI pop-
ulations, which result in significantly different intrinsic EMRI
rates (ranging from∼10 to∼20000 per year). Waveforms are
described by simple analytic kludge templates.
Adopting a detection threshold of SNR ¼ 20, we find

that most of the 12 astrophysical models predict that
TianQin will detect dozens to thousands of EMRIs. The
only model in which this is not the case (model 11) predicts
that the vast majority of events should involve a CO
plunging directly into the MBHs, which results in very
low rates irrespective of the GW detector configuration.
As for the horizon distance, we find that EMRIs can be

detected up to maximum redshifts varying from 1.6 to ∼2.6
according to what waveform model is adopted (AKS versus
AKK). The MBH mass yielding the maximum horizon
distance also changes from around 2 × 105 M⊙ if AKS
waveforms are used to around 4 × 105 M⊙ for AKK
waveforms. As a result, AKK waveforms also predict larger
detection rates. Overall, this dependence on the waveform
model highlights the need to develop fast and accurate EMRI
waveforms beyond the kludge approximation.
The expected precision of the parameter estimation is

calculated using the FIM method. We find that the majority
of detected events can determine the intrinsic parameters
to within fractional errors of ∼10−6, while the errors on
the extrinsic parameters are much less stringent. However,
the majority of detected events can still determine the
relative uncertainty in the luminosity distance with 10%

TABLE II. Parameter estimation precisions for different sources of TQ, TQ Iþ II, LISA, TQþ LISA, and TQ Iþ IIþ LISA.

MBH mass Configuration ΔMz=Mz Δmz=mz Δa Δe0 ΔDL=DL ΔΩðdeg2Þ
logð M

M⊙
Þ ¼ 5.0 TQ 2.25 × 10−7 9.15 × 10−7 1.46 × 10−7 1.71 × 10−8 2.23 × 10−2 0.31

TQ Iþ II 1.54 × 10−7 7.3 × 10−7 1.15 × 10−7 1.25 × 10−8 2.19 × 10−2 0.19
LISA 1.15 × 10−7 6.76 × 10−7 1.01 × 10−7 0.98 × 10−8 2.67 × 10−2 0.18

TQþ LISA 1.01 × 10−7 4.86 × 10−7 0.80 × 10−7 0.84 × 10−8 1.70 × 10−2 0.09
TQ Iþ IIþ LISA 0.91 × 10−7 4.67 × 10−7 0.75 × 10−7 0.76 × 10−8 1.69 × 10−2 0.08

logð M
M⊙

Þ ¼ 5.5 TQ 1.87 × 10−6 1.41 × 10−6 6.3 × 10−7 4.09 × 10−7 1.27 × 10−2 1.51
TQ Iþ II 1.23 × 10−6 0.82 × 10−6 5.47 × 10−7 2.32 × 10−7 1.24 × 10−2 0.46
LISA 0.97 × 10−6 0.68 × 10−6 5.06 × 10−7 2.16 × 10−7 1.15 × 10−2 0.22

TQþ LISA 0.72 × 10−6 0.51 × 10−6 3.59 × 10−7 1.51 × 10−7 0.85 × 10−2 0.15
TQ Iþ IIþ LISA 0.69 × 10−6 0.49 × 10−6 3.51 × 10−7 1.48 × 10−7 0.84 × 10−2 0.14

logð M
M⊙

Þ ¼ 6.0 TQ 6.63 × 10−6 3.53 × 10−6 9.66 × 10−7 5.53 × 10−6 9.7 × 10−3 4.88
TQ Iþ II 3.08 × 10−6 1.87 × 10−6 6.30 × 10−7 2.55 × 10−6 9.11 × 10−3 1.61
LISA 0.59 × 10−6 0.44 × 10−6 3.32 × 10−7 0.50 × 10−6 6.94 × 10−3 0.19

TQþ LISA 0.57 × 10−6 0.40 × 10−6 2.74 × 10−7 0.48 × 10−6 5.48 × 10−3 0.16
TQ Iþ IIþ LISA 0.57 × 10−6 0.40 × 10−6 2.72 × 10−7 0.48 × 10−6 5.45 × 10−3 0.15

logð M
M⊙

Þ ¼ 6.5 TQ 3.40 × 10−6 5.01 × 10−6 9.07 × 10−7 3.38 × 10−6 1.5 × 10−2 11.8
TQ Iþ II 3.04 × 10−6 2.68 × 10−6 8.19 × 10−7 2.94 × 10−6 1.46 × 10−2 4.51
LISA 0.54 × 10−6 0.89 × 10−6 2.74 × 10−7 0.68 × 10−6 0.62 × 10−2 0.49

TQþ LISA 0.51 × 10−6 0.83 × 10−6 2.59 × 10−7 0.64 × 10−6 0.57 × 10−2 0.44
TQ Iþ IIþ LISA 0.51 × 10−6 0.82 × 10−6 2.57 × 10−7 0.64 × 10−6 0.57 × 10−2 0.42
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and the uncertainty in the sky localization to the level of
about 10 deg2. The precise determination of the three-
dimensional location might make it possible for EMRIs to
be used as standard sirens for cosmology [34,95,96],
although further detailed studies are needed in this
direction.
We briefly consider using EMRIs to put constraints on

possible deviations from the Kerr quadruple moment, and
we find the uncertainty in the dimensionless parameter Q
peaks at about ΔQ ∼ 10−4.
We also briefly consider the possible cases when

TianQin is observing within a network of detectors. We
find that such networks of detectors can improve the
precision on sky localization by more than 20 times and
the precision on other parameters as large as 5 times.
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