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We study the role of the pasta phases on the properties of rotating and magnetized neutron stars. In order
to investigate such systems, we make use of two different relativistic mean-field unified inner-crust–core
equations of state, with a different density dependence of the symmetry energy, and an inner crust
computed within a Thomas-Fermi calculation. Special attention is given to the crust-core transition density,
and the pasta phases effects on the global properties of stars. The effects of strong magnetic fields and fast
rotation are computed by solving the Einstein-Maxwell equations self-consistently, taking into account
anisotropies induced by the centrifugal and the Lorentz force. The location of the magnetic field neutral line
and the maximum of the Lorentz force on the equatorial plane are calculated. The conditions under which
they fall inside the inner crust region are discussed. We verified that models with a larger symmetry energy
slope show more sensitivity to the variation of the magnetic field. One of the maxima of the Lorentz force,
as well as the neutral line, and for a certain range of frequencies, fall inside the inner crust region. This may
have consequences in the fracture of the crust, and may help explain phenomena associated with star
quakes.
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I. INTRODUCTION

Neutron stars (NS) are not only extremely dense objects,
but they are known to be associated with strong magnetic
fields, and fast rotation as well. At present, it is commonly
accepted that the huge range of densities inside NS can be
naturally divided into several regions. Typically, the neu-
tron star structure can be divided into an outer crust, an
inner crust and a core. The outer crust region of neutron
stars has an equation of state relatively well known [1–3].
The same is not true for the inner crust. This region of the
star begins when neutrons start dripping out of the nuclei at
densities of about ρdrip ∼ 4.3 × 1011 g=cm3. As a result, the
inner crust is formed by very neutron-rich nuclei, immersed
in a gas of neutrons and electrons. Heavy clusters, the pasta
phases, form due to the competition between the nuclear
and Coulomb forces [4–7]. This may affect the cooling of
the proton neutron star.
Pulsars rotate extremely fast, which is related to their

formation [8]. As the star core collapses, its rotation rate
increases as a result of conservation of angular momentum,
hence, pulsars rotate up to several hundred times per
second. In the case of millisecond pulsars, they are thought
to achieve such high speeds because they are gravitationally

bound in a binary system with another star. During part of
their life, matter flows from the companion star to the
pulsar. Over time, the impact of the accreted matter spins up
the pulsar’s rotation.
In addition, classes of neutron stars known as magnetars

have strong surface magnetic fields that span the range
∼1012−15 G. Such fields are usually estimated from obser-
vations of the star’s period, and period derivative. One
expects to find even stronger magnetic fields inside these
stars. According to the virial theorem, which gives an upper
estimate for the magnetic field inside neutron stars, they can
possess stronger central magnetic fields, of the order of
∼1018 G [9,10].
The main objective of the present work is to understand

how the distribution of the poloidal magnetic field lines
affect the inner crust of a neutron star. Moreover, we want
precisely to identify the thickness of the crust and the
position of the poloidal neutral line with respect to the crust,
taking as reference an unified equation of state, and
allowing for the symmetry energy to vary. The knowledge
of the size and position of the crust is important to
understand its possible role in the stabilization of the
magnetic field and the low frequency quasiperiodic oscil-
lations (QPO) associated with magnetar flares [11–15].
It has been suggested that QPO observed in the decay

tails of magnetar flares result from seismic vibrations from
neutron stars. Some of these oscillations may be confined to
the crust, in particular the low frequency ones, and, in this
case, they are perfect probes of the crust EoS, as discussed

*ivoabs@gmail.com
†hpais@uc.pt
‡franzon@fias.uni-frankfurt.de
§cp@uc.pt

PHYSICAL REVIEW D 102, 063013 (2020)

2470-0010=2020=102(6)=063013(10) 063013-1 © 2020 American Physical Society

https://orcid.org/0000-0002-7025-1361
https://orcid.org/0000-0001-7247-1950
https://orcid.org/0000-0001-6464-8023
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.063013&domain=pdf&date_stamp=2020-09-14
https://doi.org/10.1103/PhysRevD.102.063013
https://doi.org/10.1103/PhysRevD.102.063013
https://doi.org/10.1103/PhysRevD.102.063013
https://doi.org/10.1103/PhysRevD.102.063013


in [11]. The frequency of these modes is directly
related with both the thickness of the crust, and the
density-dependence of the symmetry energy [13–15].
Another possible interpretation is the association of QPO
to magneto-elastic modes [12].
Recently, the evolution of the magnetic field structure

during the late stage of a proto-neutron star has been studied
[16]. It was shown that the structure of the magnetic field is
similar in a hot and cold NS, the poloidal component of the
field being stronger than the toroidal one. Instabilities may
originate a large release of the magnetic energy, but then it is
difficult to explain the strong magnetic fields that many
magnetars have. The authors suggest that one of the possible
mechanisms to stabilize the magnetic field is the solidifica-
tion of the crust, starting at the crust-core transition. The
formation of a solid crust would give rise to elastic forces
that would avoid the development of magnetic field insta-
bilities, and a fast decay of the magnetic field. In the present
work, using a realistic unified EoS, we will show that the
neutral line of the poloidal field, i.e., the region where
instabilities develop, may, in fact, fall in the crust region for a
rotating star. As it will be discussed, this result is sensitive to
the density-dependence of the symmetry energy.
We will, therefore, concentrate our attention on the inner

crust-core transition, and will not investigate the outer crust
and transition to the inner crust of a strongly magnetized
star. Several studies have already shown the important
effects of the magnetic field on the outer crust and neutron
drip line [17–20]. In Ref. [21], the authors have shown that
including magnetic field effects in the EoS did not affect
much the magnetized neutron star structure, therefore, in
the following, we consider a nonmagnetized EoS.
In order to describe the neutron star interior, the complete

stellar matter EoS will be constructed by taking a standard
EoS for the outer crust [1], with an adequate inner crust
EoS that matches the outer crust EoS at the neutron drip
line, and the core EoS at the crust-core transition density
[6]. Between the neutron drip density and the crust-core
transition density, we employ an inner crust EoS, that we
have determined from a Thomas-Fermi calculation for
the NL3 family [6], with the inclusion of the ωρ meson
coupling terms. There, the authors addressed the effect of
the nonlinear ωρ coupling terms on the crust-core transition
density and pressure, and on the macroscopic properties of
hadronic stars. We will also consider that the magnetic field
affects the extension of the inner crust, as proposed in
[22–25]. The complete EoS will be used as input to
determine the star properties, such as the mass and radius,
from the integration of the Einstein-Maxwell equations,
in order to obtain both rotating and magnetized stellar
models [26–29].
Pasta phases impact not only the structure of NS, but also

may affect their rotation behavior, and the magnetic field
distribution. The effects of rotation and strong magnetic
fields in the inner crust region, where the pasta phases
appear, are going to be analyzed, for two models with

different slopes of the symmetry energy. For this purpose,
we are going to use the Lorene Cþþ library for numerical
relativity1 to self-consistently study the effects of strong
magnetic fields and rotation on neutron stars. We will solve
numerically the coupled Maxwell-Einstein equations by
means of a pseudospectral method, taking into consider-
ation the anisotropy of the energy-momentum tensor due to
the magnetic field, and also the effects of the centrifugal
force induced by rotation.
If the NS has a poloidal field with closed lines inside,

instabilities will appear in the neighborhood of the neutral
line characterized by a zero magnetic field [30,31], and a
mixed poloidal-toroidal configuration will stabilize the NS
[31–35]. However, the relative magnitude of each field
component depends on the boundary conditions imposed
on the magnetic field [32,33], and these will certainly
depend on the properties of matter at the NS surface. In this
paper, we want to address this issue, and the localization of
the neutral line of the poloidal magnetic field relative to the
crust of the NS will be determined. The structure of the
paper is the following: in Sec. II, we review the formalism,
in Sec. III, the results are presented, and, finally, in Sec. IV
some conclusions are drawn.

II. DESCRIPTION OF MAGNETIZED AND
ROTATING NEUTRON STARS

In this section, we review the formalism introduced in
Refs. [26] and [27], upon which the LORENE code is based.
Assuming maximum-slice quasi-isotropic (MSQI) coor-

dinates, stationarity and axisymmetry, the metric tensor
reads

ds2 ¼ gμνdxμxν ¼ −N2dt2 þ A2ðdr2 þ r2dθ2Þ
þ B2r2sin2θðdϕ − NϕdtÞ2; ð1Þ

with Nðr; θÞ, Aðr; θÞ, Bðr; θÞ and Nϕðr; θÞ function only
of ðr; θÞ.
We only consider stars with poloidal magnetic fields. In

this case, the magnetic vector potential Aμ has components
Aμ ¼ ðAt; 0; 0; AϕÞ. Note that in Ref. [36], the authors
constructed toroidal magnetic fields with the choice
Aμ ¼ ð0; Ar; Aθ; 0Þ.
One important question about magnetic field in neutron

stars is its decay due to dissipation. Hence, stationary
models of neutron stars in magnetic fields require a
separation of dynamical and dissipative timescales,
encoded in an assumption of infinite conductivity (mag-
netic fields are “frozen in” and carried with the fluid, a
common assumption in astrophysics). This assumption is
exceedingly well justified for neutron star matter, since the
ohmic dissipation timescale is larger than the age of the
universe and, therefore, the electric current in the fluid
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would not suffer ohmic decay [37]. Therefore, we assume
infinite conductivity inside the stars. In this case, the
magnetic flux BR2 (R being the stellar radius) is conserved,
and the electric field as measured by the comoving observer
is zero. As a result, we find the relation between the
magnetic vector components:

At ¼ −ΩAϕ þ C; ð2Þ

withΩ the rotation velocity of the star, andC a constant that
determines the total electric charge of the star.
The energy-momentum conservation equation ∇μTμν¼0

gives an equation of stationary motion for the fluid with
magnetic field

1

E þ P
∂P
∂xi þ

∂ lnN
∂xi −

lnΓ
∂xi þ

Fiνjν
E þ P

¼ 0; ð3Þ

with the spatial coordinates xi ¼ ðr; θÞ. The first term in
Eq. (3) corresponds to the purely matter contribution, the
second represents the gravitational potential, the third
accounts for the centrifugal effects due to rotation, and the
last one is the Lorentz force (fμ ¼ Fμνjν) induced by
magnetic fields, which, in our case, are generated by the
four-electric current jν. Since Aμ ¼ ðAt; 0; 0; AϕÞ, then
jν ¼ ðjt; 0; 0; jϕÞ, which comes from the assumption of
circularity condition. In other words, there are not
meridional currents.
Equation (3) is the relativistic version of the Euler

equation. One can show, by taking the rotational, that
the Lorentz term in Eq. (3) can be written as

∂M
∂xi ¼

Fiνjν
E þ P

¼
�
jϕ −Ωjt

E þ P

� ∂Aϕ

∂xi : ð4Þ

Note that Eq. (4) represents also the integrability con-
dition of Eq. (3). The term in parenthesis in Eq. (4) can
be a constant, or a function of the magnetic vector
potential, gðAϕÞ. The arbitrary function M can then be
chosen such that:

∂M
∂Aϕ

¼ gðAϕÞ: ð5Þ

In other words,

M ¼ MðAϕðr; θÞÞ ¼
Z

Aϕ

0

gðuÞdu: ð6Þ

The function gðuÞ is called the current function, and M is
the magnetic potential. Here, the magnetic star models are
obtained by assuming a constant value for the dimension-
less current function, also referred to as current function
amplitude (CFA), and denoted by k0. In Ref. [27], other

choices for gðuÞ were considered, other than constants
functions, but the general conclusions remain the same.
For higher values of the current function, the magnetic

field in the star increases proportionally. In addition, k0 is
related to the macroscopic electric current via:

jϕ ¼ Ωjt þ ðE þ PÞk0; ð7Þ

which is obtained relating Eq. (5) with Eq. (4). Here, E is
the energy density and P is the pressure.
Finally, the integral form of the equation of motion for a

fluid in the presence of magnetic fields, Eq. (3), reads:

Hðr; θÞ þ lnNðr; θÞ − lnΓðr; θÞ þMðr; θÞ ¼ const:; ð8Þ

whereM is the magnetic potential, see Eq. (6), andH is the
dimensionless log-enthalpy (also called pseudoenthalpy or
heat function) defined as

HðPÞ ¼
Z

P

0

dP0

EðP0Þ þ P0 ; ð9Þ

which can be cast in terms of the specific enthalpy h

hðPÞ ¼ EðPÞ þ P
mbnb

; ð10Þ

as

HðPÞ ≔ ln hðPÞ ¼ ln

�
μ

mb

�
; ð11Þ

where mB ¼ 939 MeV is the baryonic mass, and μ the
baryonic chemical potential.

III. RESULTS

In the following, we present the main results of our study.
We consider the effect of the magnetic field on the NS crust
for a nonrotating star in Sec. III A, and, for a rotating star, in
Sec. III B.

A. Magnetized neutron stars

As already discussed in Ref. [23], the presence of strong
magnetic fields originates a region, at the boundary
between the inner crust and the core, where homogeneous
and nonhomogeneous matter (matter with the presence of
clusters) coexist—the extended crust—identified by the
densities ρ1 and ρ2 (cf. Fig. 1). We shall denote the radii
that correspond to each of these densities as R1 and R2,
respectively. In this notation, the thickness of the extended
crust is defined as ΔRt ¼ R1 − R2, while the total size of
the crust is given by the difference ΔR2 ¼ R − R2 (with R
being the coordinate radius of the star). The difference
ΔR1 ¼ R − R1 corresponds to the size of the crust without
the extended region.
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For the region between the surface and the boundary
defined by R1 and the density ρ1, which coincides with the
crust-core transition of a nonmagnetized star, we take the
EoS of nonmagnetized matter. In [24], it has been shown
that the magnetic field does not affect much the value of R1,
and the results of [38] concerning the inner crust seem to
indicate that the structure of the pasta phases inside R1 are
not influenced by the magnetic field, if the intensity of the
field satisfies B < 1018 G, as expected in the crust region.
The authors of [38] did not consider the possibility that at
densities above ρ1 new nonhomogeneous regions would
exist, as calculated in [24], using a dynamical spinodal
approach. For the region bounded by ρ1 and ρ2 in Fig. 1, we
will take results of Refs. [23,24] to define the location of
the nonhomogeneous regions, since presently no other
results are available that identify these regions.
We consider two models which only differ in the

isovector properties: NL3ωρ with the symmetry energy
slope L ¼ 55 and 88 MeV at saturation [6]. These values
lie at the average and top limit obtained in [39] for
the symmetry energy slope at saturation from constraints
for nuclear properties and neutron star observations,
L ¼ 58.7� 28.1 MeV.
In order to study the effects of the magnetic field on the

star crust, we first analyze how the three quantities, ΔR1,
ΔR2 and ΔRt, vary with the radial component of the
magnetic field measured at the surface (poles), Bs. These
results are presented in Fig. 2 for stars with baryon masses
1.2, 1.4 and 1.8 M⊙. On the top panel, we show how the
size of the crust is affected by the presence of the magnetic
field. We note that for Bs ¼ 0, the results for the two
models considered do not differ much from each other in
comparison with the case where Bs ≠ 0. However, a
difference does exist, as discussed in [40], where it was
shown that the larger the slope L, the smaller the transition
density to the core. This, in turn, may reflect itself on the

thickness of the crust: in [41], it was found that a thinner
crust corresponds to a larger L, when comparing NL3
(L ¼ 118 MeV) with NL3ωρ with L ¼ 55 MeV.
On the other hand, a much greater difference is verified

for Bs ≠ 0. This is because the value ρ2, which defines the
crust size, depends on the proton fraction value considered.
It was shown in [42] that the proton fraction at the crust-
core transition is determined by the slope of symmetry
energy, the smaller the L the larger the proton fraction.
A similar conclusion was drawn in [43] for the average
proton fraction at the inner crust. Therefore, even though
both models predict the same properties for symmetric
nuclear matter, they will respond differently with the
inclusion of the magnetic field due to their different
symmetry energy properties. As a result, the model with

FIG. 2. Effect of the magnetic field on the total size of the crust
ΔR2 (top), on the crust without its extension, ΔR1, (middle), and
on the extended region, ΔRt (bottom). Full lines correspond to
the model with L ¼ 55 MeV, while dashed lines are for the
L ¼ 88 MeV model. The colors red, blue and green correspond
to baryon masses 1.2 M⊙,1.5 M⊙ and 1.8 M⊙, respectively.

FIG. 1. The extended crust region. The densities ρ1 and ρ2
define the boundaries of this region.
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L ¼ 88 MeV shows a much bigger sensitivity to the
increase of the magnetic field. The reason lies in the fact
that, for densities below saturation density, the fraction of
protons is smaller for larger values of L, and, therefore,
more sensitive to a given value of the magnetic field. It is
also clear that the smaller the star mass, the larger the effect
of the magnetic field.
In the middle panel of Fig. 2, it is shown how the size of

the crust without the extended zone varies with the
magnetic field. Here, the overall trend is a reduction on
the size of the region, as the magnetic field increases. Again
we note that the model with the larger L is more affected by
the increase of the magnetic field, a conclusion that can also
be reached by looking at the bottom panel of the same
figure, where we present the behavior of the extended crust
alone. It is important to note that this behavior is not
monotonic, which is a consequence of the discrete feature
of the Landau levels introduced by the magnetic field [23].
Concerning Fig. 2, some comments are in order: (a) there

is a large increase of the crust size when the magnetic field
increases from 0 to 4.4 × 1015 G, but the size of the crust is
practically the same for 4.4 × 1015 < B < 4.4 × 1016 G;
(b) the effect of the magnetic field is much stronger if the
model has a large symmetry energy slope; (c) stars with
smaller masses are more strongly affected.
In Fig. 3, we have used the results obtained with the

stronger magnetic field intensity (Bs ¼ 4.41 × 1016 G at
the surface’s pole) to show how the width of the crust varies
along the polar angle θ. We have normalized the curves
with the values obtained with B ¼ 0: for both R1 and R2,
we divided the values obtained with Bs ¼ 4.41 × 1016 G
by the corresponding values (i.e., same mass and same L)
obtained at B ¼ 0. Since the values ρ1 and ρ2 do not have
any spatial dependency, the results that we observe here are
only consequence of the overall deformation of the star
induced by the magnetic field. In fact, the way the crust is
deformed is quite similar to the deformation of the radius
(i.e., coordinate radius) of the star itself, as shown on the
bottom panel of the same figure, where the radius R of
the star is plotted versus the polar angle. Nonetheless, it
becomes clear from Fig. 3 that the effect of the magnetic
field is much stronger in the L ¼ 88 MeV model: the
difference between the equatorial and polar radii is larger;
and the extended crust extends much more into the interior
of the star. As discussed before, the magnetic field has a
stronger effect on the width of the crust of the less massive
star: for the 1.2 M⊙ star, the ratio between the equatorial
radius is ≈5% larger then the polar radius, while for the 1.4
and 1.8 M⊙ stars, this difference is ≈2% − 3%. It is also
interesting to notice that the reduction of the radius at the
pole is stronger than its increase at the equator. This is
also true for the thickness of the crust. The middle panel
shows that the location of the transition of the extended
crust-core is shifted toward the interior of the star for the
model with L ¼ 88 MeV, and the star with the smallest

mass. This shift is larger at the equator, going up to more
than 5% (15%) for the model with 55 MeV (88 MeV). At
the pole, it is not more than 1% for the L ¼ 55 MeVmodel,
but rises to above 10% for the L ¼ 88 MeV model.
This is also evident in Fig. 4, where we plot the profile of

each star that we have considered and, in each of them, we
identify the extended zone, the region delimited by R2 and
R1. By doing this, we observe that the extended crust,
which is itself a consequence of the inclusion of the
magnetic field, is much bigger for the model with the
larger L.
We next analyze how the magnetic field potential varies

inside the star, and we discuss the localization of the points

FIG. 3. Normalized R1, R2 and R as a function the polar angle,
θ. Full lines correspond to the model with L ¼ 55 MeV, while
dashed lines are for the L ¼ 88 MeV model. The colors red, blue
and green correspond to baryon masses 1.2 M⊙, 1.5 M⊙ and
1.8 M⊙, respectively. In each panel, the results obtained with
Bs ¼ 4.4 × 1016 G are divided by the corresponding value at
Bs ¼ 0 [notice that R2ðB ¼ 0Þ ¼ R1ðB ¼ 0Þ]. See text for
more details.
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where its gradient, proportional to the Lorentz force, is
extreme and zero.
On the top panel of Fig. 5, we plot the radial component

of the gradient of the magnetic potential measured along
the plane θ ¼ 0 as a function of the radial coordinate. This
quantity gives us the shape of the radial component of the
Lorentz force inside the star, since FL ∼∇Mðr; θÞ. At the
equator, the gradient of the magnetic potential function is
zero at the neutral line of the poloidal magnetic field [31].
For polar angles close to the equator, the Lorentz force
verifies a sign change inside the star, as discussed in [44],
because the lines of field are closed. It was shown in [31],
where the authors have studied instabilities in NS with
poloidal magnetic fields, that the most unstable perturba-
tions develop around the neutral line.
Wewanted to ascertain whether the neutral line coincides

with the extended crust region, which should be taken into
account when one considers strong magnetic fields. For the
models considered, we verified that that does not occur,
and, in fact, we obtained the neutral line at r ¼ Rn, with
Rn=R ∼ 0.8, as predicted in [31]. It has, however, been
shown that stability in a magnetized star is attained with
both a poloidal and a toroidal component, with the last one
embedded inside the region defined by the poloidal closed
lines [32,33,35]. We have included in Table I the position of
the neutral line Rn, and the extension of the crust R2 and R1,

as well as the NS radius R, for stars with masses 1.2, 1.4
and 1.8 M⊙ described by models with L ¼ 55 and
L ¼ 88 MeV, and the surface magnetic field
Bs ¼ 4.41 × 1015 G. In the next section, we will discuss
the effect of rotation on the neutral line.
Besides the neutral line, the Lorentz force has two local

extrema inside the NS, one located at the core and the other
one in the crust. We may assume that a maximum of the
Lorentz force inside the nonhomogeneous region of the star
may cause more easily matter to fracture or break. On the
middle and bottom panels of Fig. 5, we identify the location
of the pasta phases in the crust region. In the case of the
L ¼ 88 MeV model, no inner crust configurations besides
droplets exist. However, for the L ¼ 55 MeV, the maxi-
mum of the Lorentz force occurs near the region of rodlike
configurations, which may be easier to deform. The
localization of the transition between pasta phases in our

FIG. 4. Baryon density as function of the radial coordinate. The
top panel corresponds to L ¼ 55 MeV while the bottom one
corresponds to L ¼ 88 MeV. The colors red, blue and green
correspond to baryon masses 1.2 M⊙, 1.5 M⊙ and 1.8 M⊙,
respectively. The vertical bands correspond to the transition zone
at the crust-core transition.

FIG. 5. Gradient of the magnetic potential as function of the
radial coordinate for aMb¼1.5M⊙ star with Bs ¼ 4.4 × 1016 G.
Full lines correspond to the model with L ¼ 55 MeV, while
dashed lines are for the L ¼ 88 MeV model. The two bottom
panels show in more detail the region inside the crust, and the
transition between the different pasta phases is signaled.
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work is only indicative, since they have been obtained in a
calculation that considered the possible formation of only
five different configurations. In a calculation that allows the
appearance of any kind of geometry as in [45–47], the
extreme of the Lorentz force would most probably fall in a
region of nonspherical pasta phases.

B. Magnetized and rotating neutron stars

The effects of rotation on the geometry of neutron stars
are already well documented [27], the major result being
the flatness of the star on the polar regions, an effect similar
to that of the polar magnetic fields discussed in the previous
section. In [31], the authors showed that rotation stabilizes
the instabilities developed in neutron stars with a poloidal
magnetic field due to perturbations. Here we analyze how
the profile of the Lorentz force in the equatorial plane is
affected, relatively to the crust, when we take into account
the effects of rotation. In particular, we will determine the
frequency above which the neutral line does not exist.
It is important to notice that even though we fix the

magnitude of the magnetic field on the star by choosing the
current function amplitude (CFA), which is equivalent to
fixing the magnetic dipole moment, the magnitude of the
magnetic field measured at the pole surface Bs is going to
vary as we increase the frequency. This stems from the fact

that the angular velocity of the fluid and the magnetic
function are related by the fluid’s conservation equation (8).
The behavior of Bs with the rotation frequency is shown in
Fig. 6, where the radial component of the magnetic field at
the pole surface is plotted for a fixed CFA value (the one
that gives, for each star, a field magnitude of 2.2 × 1016 G
when there is no rotation), using the two models of the
present study, and considering stars with masses 1.2, 1.4
and 1.8 M⊙. We conclude that larger magnetic field
intensities are attained for the smaller mass stars, and with
a larger symmetry energy slope. This happens because the
proton fraction is bigger for the model with the larger L.
As already discussed in [29] and shown in the last

section, the magnetic potential function, M, may present a
concave shape and, thus, a local minimum. Since the
Lorentz force is proportional to the gradient of M, this
minimum, at the equator, corresponds to a line of points
where the Lorentz force changes sign, and defines the
neutral line. This means that there is a region in which the
magnetic field acts toward the center of the star, and another

TABLE I. The position of the inner crust boundaries R1 and R2,
the NS radius R, and the neutral line Rn measured along the
equatorial plane, for different values of the surface magnetic
field, Bs, and for stars with masses 1.2, 1.4 and 1.8 M⊙, and
described by models with L ¼ 55 and L ¼ 88 MeV. Note:
B� ¼ 4.41 × 1015 G.

L (MeV) Mb ðM⊙Þ R1 (km) R2 (km) R (km) Rn (km)

Bs ¼ B�
55 1.2 9.987 9.752 11.79 8.660

1.5 10.14 9.944 11.59 8.640
1.8 10.15 9.991 11.36 8.522

88 1.2 10.60 9.067 12.25 8.946
1.5 10.64 9.402 11.96 8.820
1.8 10.59 9.545 11.65 8.632

Bs ¼ 5B�
55 1.2 10.06 9.729 11.83 8.691

1.5 10.17 9.907 11.62 8.658
1.8 10.19 9.955 11.38 8.536

88 1.2 10.72 9.131 12.30 8.982
1.5 10.74 9.444 11.99 8.842
1.8 10.65 9.573 11.67 8.646

Bs ¼ 10B�
55 1.2 10.17 9.873 11.94 8.775

1.5 10.25 10.01 11.69 8.711
1.8 10.24 10.02 11.43 8.576

88 1.2 10.98 9.267 12.44 9.084
1.5 10.91 9.528 12.07 8.905
1.8 10.77 9.625 11.73 8.688

FIG. 6. Radial component of the magnetic field at the pole
surface, Bs, as function of rotation frequency, f, for a fixed
magnetic dipole moment. Full lines correspond to the model with
L ¼ 55 MeV, while dashed lines are for L ¼ 88 MeV. The
colors red, blue and green correspond to baryon masses
1.2 M⊙, 1.5 M⊙ and 1.8 M⊙, respectively.

FIG. 7. Gradient of the magnetic potential at the equator as a
function of the radial coordinate for different values of the
rotation frequency, and for the L ¼ 55 MeV model, and a Mb ¼
1.5 M⊙ star with Bs ≈ 2.2 × 1016 G.
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one where the Lorentz force pushes outward. A change of
the direction of the Lorentz force, if occurring in a fragile
region as the crust, could be associated to the breaking of
the stellar crust and leading to flares. As discussed in the
previous section, in [31] it was argued that in the neighbor-
hood of the neutral line large instabilities could develop in a
star with a poloidal field.

Taking into account the effects of rotation, for each
model and mass, there is a frequency (hereafter referred to
as critical frequency, and designated by fcrit) at which the
Lorentz force sign changes. This effect is shown in Fig. 7,
where we present the radial component of ∇M, measured
along the equatorial plane with θ ¼ π

2
. It is seen that for a

frequency f ≳ fcrit, the Lorentz force is always pointing
outwards. The larger the frequency, the stronger the
Lorentz force.
In Table II we present the values of the critical frequency,

fcrit, for the two models considered, and for stars with
Mb ¼ 1.2 M⊙,Mb ¼ 1.5 M⊙ andMb ¼ 1.8 M⊙. We note
that this so called critical frequency does not depend a lot
on the model considered, but only on the baryonic mass of
the star, and on the magnitude of the magnetic field. The
critical frequencies obtained are all above 90 Hz. As shown,
for instance, in Ref. [48], pulsars with strong magnetic
fields have periods of the order of 1 or larger. This means
that the poloidal field inside these pulsars will always have
a neutral magnetic line and closed lines.
In Table III we show how the neutral line position is

altered by the inclusion of rotation for the models and

TABLE II. Frequency, fcrit, at which the neutral line disappears
for the two models considered, and stars with different baryonic
masses. The surface magnetic field is set to Bs ≈ 2.2 × 1016 G.

L (MeV) Mb ðM⊙Þ fcrit (Hz)

55 1.2 127
1.5 109
1.8 96

88 1.2 125
1.5 108
1.8 96

TABLE III. The position of the inner crust boundaries R1 and
R2, the NS radius R, and the neutral line Rn measured along the
equatorial plane, for different rotation frequencies, and stars
with masses 1.2, 1.4 and 1.8 M⊙, and described by models with
L ¼ 55 and L ¼ 88 MeV. The surface magnetic field at the pole
is Bs ≈ 2.2 × 1016 G.

L (MeV) Mb ðM⊙Þ R1 (km) R2 (km) R (km) Rn (km)

f ¼ 0 Hz
55 1.2 10.06 9.729 11.83 8.691

1.5 10.17 9.907 11.62 8.658
1.8 10.19 9.955 11.38 8.536

88 1.2 10.72 9.131 12.30 8.981
1.5 10.74 9.444 11.99 8.842
1.8 10.65 9.573 11.67 8.646

f ¼ 0.1 Hz
55 1.2 10.06 9.729 11.83 8.691

1.5 10.17 9.907 11.62 8.658
1.8 10.16 9.955 11.38 8.536

88 1.2 10.72 9.131 12.30 8.982
1.5 10.73 9.443 11.99 8.842
1.8 10.65 9.573 11.67 8.646

f ¼ 10 Hz
55 1.2 10.06 9.729 11.83 8.699

1.5 10.17 9.907 11.62 8.668
1.8 10.19 9.955 11.38 8.549

88 1.2 10.73 9.131 12.30 8.990
1.5 10.74 9.444 11.99 8.852
1.8 10.65 9.573 11.67 8.659

f ¼ 50 Hz
55 1.2 10.05 9.728 11.84 8.876

1.5 10.18 9.914 11.63 8.917
1.8 10.19 9.960 11.39 8.872

88 1.2 10.73 9.133 12.31 9.183
1.5 10.74 9.446 11.995 9.113
1.8 10.65 9.576 11.67 8.991

FIG. 8. Neutral line as function of the frequency. The top
panel shows the results for a 1.5 M⊙ star, with L ¼ 55 MeV
(solid line, blue horizontal band) and L ¼ 88 MeV (dashed
line, grey horizontal band). The horizontal bands correspond to
the extended crust. The bottom panel shows the results for the
L ¼ 55 MeV model, for stars with 1.2 (red), 1.5 (blue) and 1.8
(green) M⊙. The horizontal lines correspond to the crust-core
boundary, i.e., R2. In all cases, the magnetic field at the surface
is set to Bs ≈ 2.2 × 1016 G.
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masses previously considered. Similarly to what happens to
the full coordinate radius of the star, the distance of the
neutral line to the star center increases with the frequency.
The lower mass stars are the ones where this effect is more
evident. On the other hand, for f ¼ 50 Hz the increase is
roughly the same for the two models: ∼2.2% for the lower
mass stars.
As already mentioned in the previous section, stars

endowed with a poloidal magnetic field may show insta-
bilities around the neutral line, and it is believed that
rotation might cease those instabilities [31]. Unlike the
nonrotating case, Fig. 8 shows that the neutral line can
indeed fall inside the crust region, when the extended crust
is taken into account. In the bottom panel of the same
figure, we show, for the model with L ¼ 55 MeV, how the
neutral line is affected by the frequency increase for
different masses. We conclude that lower mass stars are
much more sensitive to the effects of the frequency. The
results are analogous for L ¼ 88 MeV, however, the
neutral line enters the extended crust for smaller
frequencies.

IV. CONCLUSIONS

In this paper, we analyse how strong magnetic fields and
rotation affect the inner crust of a NS. The inner crust is
complemented with an extended crust which, as reported in
[22,23], should be taken into consideration when strong
magnetic fields are present. Part of our goal was to
understand how models of the same family, but with
different symmetry energy slope, L, compare when subject
to extreme magnetic fields and rotation. Our results show
that the larger the slope of the symmetry energy L, the
bigger the sensitivity of the model regarding variations of
the magnetic field, which is consistent with the fact that

below saturation density, the fraction of protons is smaller
for larger values of L, and above it is larger. This is
particularly evident on the difference in the size of the
extended crust. The magnetic field may affect the different
types of layers that exist in the crust. We verified that the
Lorentz force has two local maxima, one of them localized
in the region populated by pasta phases. This indicates that
the geometries more susceptible to break lie in a region
where some of the strongest stresses occur.
Studies on the evolution of magnetic fields in neutron

stars have reported the existence of a line inside the star,
the neutral line, where the magnetic field is zero. These
same studies indicate the existence of instabilities around
this line [31], if a pure poloidal field is considered. If a
mixed magnetic field configuration is assumed, the
toroidal field lies on top of the poloidal neutral line
[35]. We wanted to ascertain whether this line falls inside
the inner crust, when one takes into account the extended
crust. This was not verified for nonrotating stars, but the
situation changes when one includes rotation. Given the
richness of phenomena that occur at the region of the
neutral line, it is expected that they will depend on the
properties of matter that is present in this region. It would
be interesting to understand the role that pasta phases
might have in connection to known astrophysical phe-
nomena associated with magnetars.
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