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We develop a relativistic multifluid dynamics appropriate for describing neutron star cores at finite
temperatures based on Carter’s convective variational procedure. The model includes seven fluids,
accounting for both normal and superfluid/superconducting neutrons and protons, leptons (electrons and
muons) and entropy. The formulation is compared to the nonvariational relativistic multifluid hydro-
dynamics of Gusakov and collaborators and shown to be equivalent. Vortex lines and flux tubes, mutual
friction, vortex pinning, heat conduction and viscosity are incorporated into the model in steps after the
basic hydrodynamics is described. The multifluid system is then considered at the mesoscopic scale where
the currents around individual vortex lines and flux tubes are important, and this mesoscopic theory is
averaged to determine the detailed vortex line/flux tube contributions to the macroscopic “effective” theory.
This matching procedure is partially successful, though obtaining full agreement between the averaged
mesoscopic and macroscopic effective theory requires discarding subdominant terms. The matching
procedure allow us to interpret the magnetic H-field inside a neutron star in a way that is consistent with
condensed matter physics literature, and to clarify the difference between this interpretation and that in

previous astrophysical works.
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I. INTRODUCTION

Neutron stars are fundamentally relativistic objects, so it
is necessary to have a relativistic hydrodynamic formalism
to accurately model their internal dynamics. As it is
believed that neutron star cores can consist of both super-
fluid neutrons and superconducting protons [1-6], this
formalism needs to incorporate multiple separately moving
fluids. An ideal formalism will also incorporate effects such
as superfluid—normal fluid phase transitions, superfluid
neutron vortex lines, type-II superconducting proton flux
tubes and dissipation. Vortex lines/flux tubes can affect the
fluid dynamics through mutual friction due to scattering
between vortex lines and normal fluid particles, most
importantly leptons, and pinning between neutron and
proton vortex lines. These effects may be important in
determining the oscillation modes of neutron stars that
could be excited during binary inspiral [7,8], and in
explaining pulsar glitches [9—-12].

In this paper we develop a fully general relativistic
formulation of finite temperature, multifluid hydrodynam-
ics appropriate for neutron star cores. We consider a core
consisting of four particle species: neutrons, protons,
electrons and muons. The neutrons and protons exist in
both superfluid/superconducting and normal phases, whose
relative motions are dynamically connected through super-
fluid entrainment. Our approach has a few advantages
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compared to previous formulations of relativistic multifluid
dynamics applied to neutron stars. We follow the con-
vective variational approach originated by Taub [13] and
later elaborated by Carter and collaborators [14-17],
making only limited assumptions about the dependence
of the master function (Lagrangian) on Lorentz-invariant
combinations of vectors and tensors. We thus retain the full
symmetry of the variational procedure while being con-
nected, through strategic rearrangement of terms, to rela-
tivistic formulations of the Landau [18] (see also [19]) and
Khalatnikov [20] superfluid hydrodynamics based on Son’s
[21] hybrid multifluid hydrodynamics, most notably that
of Gusakov and collaborators [22-24]. This formulation
has been applied in numerous publications e.g., [25,26].
We improve on the most similar existing works on the
subject which use Carter-style variational procedures, by
Andersson et al. [27] and Glampedakis et al. [28], through
the inclusion of finite temperature effects, relativity and
quantized vortex lines/flux tubes, one or more of which is
absent from each of the two references. We carefully treat
how flux tubes and magnetized vortex lines change the
electromagnetic fields and the Maxwell equations and
compare to previous versions [17,24,28-30] of relativistic
and nonrelativistic superfluid-superconducting neutron star
magnetohydrodynamics (MHD). We also account for
causal heat conduction, not assuming thermal excitations
move with entropy as does [27]. A final distinction between
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ours and previous versions of relativistic multifluid hydro-
dynamics is an explicit separation between the normal and
superfluid degrees of freedom as separate current densities.
We find this separation more physically intuitive than the
Son hybrid multifluid hydrodynamics formulation.

In the first two sections, we describe the master function
and the variational procedure used to determine the stress-
energy tensor and equations of motion for the relativistic,
finite temperature multifluid system, making as few
assumptions about the dynamics as possible. We then
connect our dynamics to those of Gusakov [22] and
collaborators, showing that the two formulations are
similar, though ours is derivable from a variational prin-
ciple. Forces between the fluids and vortex lines/flux tubes
in the form of mutual friction and vortex pinning, viscosity,
and conduction are then added, using the second law of
thermodynamics to determine their form following Carter
[15]. We conclude by determining the form of the electro-
magnetic auxiliary field and vortex self-tension tensors,
which are conjugate to the electromagnetic field tensor F*¥
and vorticity tensors respectively, by considering a sim-
plified model of the multifluid hydrodynamics at the
“mesoscopic” scale where currents around individual
vortex lines and flux tubes are considered. The mesoscopic
theory is then averaged to determine an effective macro-
scopic theory, with most of the details of this procedure
relegated to an Appendix. We are successful in averaging
the mesoscopic theory, but only find an approximate match
to the effective macroscopic theory. We conclude by using
the results of the averaged mesoscopic-to-macroscopic
matching procedure to resolve some disagreements about
the interpretation of the magnetic H-field in a rotating
superfluid—superconducting neutron star and also clarify
the form of the Maxwell equations and Lorentz force acting
on the charged fluids in neutron star MHD. An alternate
form of the relativistic stress-energy tensor is included in an
Appendix. ¢ = G =1 units and the (—,+,+,+) metric
convention are used throughout.

II. CONVECTIVE VARIATIONAL PROCEDURE

Starting with a Lagrangian density describing the finite
temperature multifluid in a neutron star core, we employ the
convective variational procedure [14-17] to compute the
relevant equations of motion. There has been recent interest
in this formulation [31,32] for application to problems
involving neutron star asteroseismology, pulsar glitches
and gravitational waves from binary neutron stars.
Compared to other fluid variational methods [13,33], with
the convective variational procedure we can transparently
include additional forces between the fluids that are not
obviously incorporated directly via a variational method. An
additional advantage which we exploit is the ability to
include viscosity using a convective variational-type method.

In the first subsection, we describe our Lagrangian
density and define the dynamical variables, adding in steps

the fluid number currents, electromagnetism and vorticity.
In the second subsection we introduce the Lagrangian
displacement fields employed in the convective variational
procedure and derive the equations of motion.

A. Lagrangian and its variation

Consider a multifluid neutron star core consisting of
neutrons (n), protons (p), electrons (e), muons (m) and
entropy (s). The neutrons and protons will have both
superfluid/superconducting and normal fluid excitation
components, with the former being distinguished using
an overline (71, p). The notation X refers to either superfluid
species. There exists a four-current nk, x € {n, p.e,m,i,
D, s}, for each species/quantity. x = s is the entropy four-
current s#, which will later be related to the four-currents of
the entropy-carrying normal fluids. In principal each
normal fluid could have its own corresponding entropy
current, but as we will later restrict the normal fluids to
move together, we introduce only a single entropy current
here. The following Lorentz-invariant scalars can be con-
structed by contracting the four-currents:

u"

2 _ 2 Hy 2
ny = —nyn;, Ay = =Ny = Oy, (1)

where y € {n, p,e,m,n, p,s} # x. aﬁy is equivalent to the
product of the Lorentz factor for the relative motion
between fluids x and y and the two number densities 7,
and n, as measured in the respective fluids’ rest frames, as
will be clear from the definition of 7 given in Eq. (57). Ayy
with y # s will be responsible for superfluid entrainment,
while the a,, are “entropy entrainment” terms representing
heat convection by the particle currents. The a,, will later
allow for heat conduction independent of the particle
currents. There will be 10 nonzero a., (a,,, @uu, Ayps
Apiis Apps Ui ps Agps Agps Ages Agpy). The superfluids do not
carry entropy, so a,; = @, = 0. The exclusion of entropy
entrainment results in instabilities and causality violation
[34,35], and we discuss the effects of heat conduction on
the entropy current in Sec. IVA.

The Lagrangian density will be a function of dynamical
variables n%, the electromagnetic field tensor A, and
vorticity tensors wy, associated with the vortex line/flux
tube arrays for each superfluid species. We can split the
Lagrangian density into a master function A, interaction
terms and spacetime curvature terms. A includes the
thermodynamic internal energy density of the fluid, the
electromagnetic field energy and the vortex line/flux tube
energy, and is a function of Lorentz invariant scalars. To
begin, we consider only the dependence of this master
function on the number currents and the metric:

A= A(”l%va)zcyv g;w)’ (2)

where all x and distinct combinations of x and y are
implicitly included. Varying this A gives
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A = — on? + Sa, + (3)

The variations with respect to the four-currents can be
rewritten in terms of the number and entropy four-currents

using
OA OA
o’ on? = < o2 M>5nx, (4)
OA 0 ,
Sa 2 I xS H _ y S };’ 5
oz, ( aa%y””> ””( aa%y””> = G)

where we adopt the convention of [14,27,36], among
others, in defining

on
on?’

ON\
daz,’

BY=-2 AV = A =~ (6)

There will be 7 B*, one for each particle current plus
the entropy current, and 10 A™ corresponding to each
nonzero a,,. Using Eq. (6) and noting which A* are zero,
we can define the conjugate dynamical momenta or

generalized chemical potential four-vectors

— B+ YA A,

y#x

(7)

where x,y € {n, p,e,m,n, p}, and a conjugate “thermal
momentum”
(8)

©, = = B's, + Y _A"ns,
X

where x € {n, p,e,m}. To determine 9A/0Jg,, = OA/Dg,,,
following Carter [15], the variations in Eq. (3) are specified
by their Lie derivative £; with respect to a single infini-
tesimal displacement field & which acts on the background
manifold. This displacement field is not the same as the
displacement fields which specify the motion of the
individual fluids and which are introduced in Sec. II B.
For the purposes of determining 9A/dg,,, we use

oA\ = £§A = &’V,,A (98.)
ok = £:n = &V 0k — nkV &, (9b)
59;41/ = £§g;w = vﬂgb + vl/f},{ = zv(ﬂfl/)’ (90)

which, inserted into Eq. (3), give the following relation

(Zuﬁv ni =V A)é" = (Zﬂx” - )v &

(10)

Since this must be true for arbitrary & and V&, both sides
of this must be zero independently, giving

VA= iV,nt, (11)

2 Z"x

Inserting the second of these into Eq. (3) and using the
definitions of the conjugate momenta, A becomes

12
8g,w (12)

1
BA =D prsnli + 5 > niutsg,,.- (13)

As written, the extremization of the action with respect to
each current density would require the conjugate momen-
tum to be zero. This is of course too restrictive, and the
correct variation of the current densities in terms of
Lagrangian displacement fields is introduced in Sec. II B.

To include electromagnetism, we allow the master
function to depend on the electromagnetic field tensor
F,, =2V,A, through a contraction with another anti-
symmetric rank-two tensor. The electromagnetic four-
potential A, is minimally coupled to the total charge current

Lem coup. — ngp ’ (14)

where the charge current is
= _aurh.
X

for x including all species/quantities with g, = g; = e,
4o =¢qm = —€, q, = q5 = q, = 0. The variation of the
action thus contains additional terms

(15)

1
5(AEM + ﬁEMcoup.) = _glcﬂyéFm/ + ]leléAﬂ + AM‘S]I;

(16)

where we have defined the (antisymmetric) electromag-
netic auxiliary tensor

OA
OF ;

ﬂ”nw

K = —8z (17)

This tensor has been defined as the electromagnetic
displacement tensor H* in previous works [17], but for
reasons explained in Sec. V, we reserve this notation and
nomenclature for a different quantity. We have explicitly
denoted that all number currents 75 and vorticity tensors
wfjp are held fixed during this variation.

In a rotating superfluid-superconducting neutron star,
there will be quantized neutron vortex lines. If the proton
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superconductivity is type-II in some or all regions of the
core, there will also be quantized flux tubes in those
regions. These are incorporated into the variational for-
malism by adding terms coupling the superfluid currents to
the vorticity and allowing A to depend on the vorticity
tensors wy,, X € {f, p}. This method was developed in
[16,17,37], though we take a somewhat different approach.

We first rewrite the vorticity tensor in terms of a lattice

field A
Wi, =2V}, X%, (18)

Xj_j will be dynamically identified with the canonical
momentum four-vector ﬂj_j. wj_jy can also be expressed in
terms of two lattice scalars y¢, a € {1,2}

The gradients of ¢ define a plane that is locally orthogonal
to the vortex lines/flux tubes. We choose for a current-
vorticity coupling

£1;coup, = _an)':‘)(i (20)

The variation of the action will thus contain the additional
vorticity terms

1 _ i _
(A + Lyeowp) = —Z {E,%Uéwjjy + XLon + nfo Xy |,
B

(21)

where we have defined the vortex line/flux tube self-tension
[17] tensor

OA

owpy

M =-2

(22)

"
nx.FW

The generalization of Eq. (10) to incorporate electro-
magnetism and vorticity modifies Eq. (11)—(12) into

1 1 o -
VA= iiV,nk - KV, =2 Z,lg V,wh,
(23)

N 1 L, 1
== b +-—KWFy+ 2wy, ). (24
agﬂy 2 < - Hxy + dr P + - X Wx/)> ( )

This was found using as the variation for rank two tensors
— X
y/w - F/un Wy

5y/w = £.fy;w = ‘Spvpy/w + yﬂpvygp =+ ypuvy'fp' (25)

The minimal coupling terms between the currents and both
electromagnetic field and vorticity are not part of A and
hence do not contribute to Eqgs. (23)—(24).

We incorporate general relativity by including the
Einstein—Hilbert term in the action, which corresponds
to adding the following term to the Lagrangian

1
Lgg =—R, 26
EH = To7 (26)
for Ricci scalar R, which adds the expected additional terms
to the variation of the action

1

1
SLpy = —— ( R —=Rg" )5, 27
LEH 167[( 2 g”) gﬂIJ ( )

where R is the Ricci tensor. To account for the Jacobian in
the action

S = / d*x,/=gA, (28)

for metric determinant g, we add a term %Ag’“@gﬂy to the
variation of £. We thus end up with

1
oL = 6A + 5'61; coup. + 5‘CEMc0up. + 5£EH + EAgﬂuégﬂw
(29)

where A includes Agy and A,,.

B. Deriving the equations of motion

We review the convective variational procedure of Carter
[14], which is further developed and expounded in later
papers [15,17,36]. The main result of interest is the
variation of the number four-current n%, given by

1
6n§§ = fgva”’; - ngvogﬁ + nﬁvo‘éz - Enﬁgl’pagﬂp’ (30)

where & is the Lagrangian infinitesimal displacement field
specifying the variation of the four-current of species x.
This expression differs from the Lie derivative of n by the
inclusion of the effects of gravitational perturbations. We
use the sign convention of Carter and Langlois [17], which
differs by & — —&* compared to the expected nonrelativ-
istic limit and other references such as Andersson and
Comer [36]. This is derived by first starting with a dual to
the number current (omitting species labels)

*

Nyye = g/wapn/) (31)

where & is the Levi-Civita tensor. This three-form can

pvop
be specified by the derivatives of three scalars N!, N>, N3,
which label the coordinates of a particular fluid element in
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“matter space” and which are the same for all time. These
coordinates can be pushed forward to give the coordinates

of the fluid element at any time slice. So *n,, can be
written as
*I’l/wo. — _f(Nl,NZ,N3)123VMNIVDNZVUN3, (32)

where f(N',N? N3),,; is antisymmetric in the scalar
indices 1, 2, 3. The variations of the scalars can be
expressed in terms of an infinitesimal displacement field

=&V, N, (33)
and so Eq. (30) can be found by taking the variation of
Eq. (32) and using Eq. (31) and

1
5€MD6/) = Egﬂyo'pglnég/{n' (34)

Note that the form of *n,,, as given by Eq. (32) is closed

v[l(*n/wﬂ]) =0, (35)
which automatically means that n* is conserved through
Eq. (31). We thus assume separate conservation of each
current V,nk = 0 in the rest of this paper for those currents
where the variation Eq. (30) is used. Implicit in this is the
assumption that the rate of interconversion between particle
species is much slower than the dynamical timescales of
interest, which is certainly true for weak interactions in cold
neutron stars, but not necessarily true for the formation or
breaking of Cooper pairs of neutrons or protons.

The vorticity tensor W;U can be specified in a similar way
to the dual number current *n,,,, except now only with two
lattice scalars y! and y2. The variation for these scalars is
simply their Lie derivative with respect to &:

=8V, ae{l2), (36)
where & are Lagrangian displacement fields describing the
spacetime motion of the vortex line/flux tube array asso-
ciated with the superfluid of species x. The vortex line/flux
tube arrays do not in general move along with the relevant
superfluid species. We have assumed here that the same
infinitesimal displacement field describes the variations of
both y1 and y2. Since it is these lattice scalars that are the
freely varying quantities relating to the vorticity [37], we
must write the variations of the vorticity tensor and lattice
field in terms of §y¢ and hence &. Equation (36) gives the
variation of the vorticity tensor to be

owh, = =2V, (w5, £0). (37)

However, the perturbation of Eq. (18) gives

Swy, = ZV[I,&X;_C], (38)
so by comparison to Eq. (37) we have
OXy = —w, &+ V, 65 (39)

for a scalar §¢; that can be thought of as a gauge field. If we
postulate the form Xﬁ = )(}CVM)(% based on Egs. (18)—(19),
then we find 6¢; = E£A7. Note that X} itself is not
determined uniquely, but only up to a physical unimportant
gradient of a scalar which we set to zero here.
Combining these Lagrangian variations plus 6F,, =

2V[”5A,,] and inserting into Eq. (29), we obtain

5L =y mionk +
X#X

—Z[ Mow, + (

+5 {Zn’;uﬁg"” + EIC"”FVP + Z/l’;pw’;(p
X X

1
it — —V KH ) 5A
<J 4n K ) s

— my)onk + nﬁéé\’i}

1 1
——RW A+—R|)g"|o 40
o +< T )g*‘]g,w (40)
where we have defined the gauge-dependent canonical
momentum covectors
T = p, + qA, (41)
For the normal fluids, we use Eq. (30) to constrain the

current variations, implying that the first term in Eq. (40)
becomes

1
&V il — mingV 8 4 minkV &7 —37 kg7 65,

= 2§§n;’v[6ﬂl’ﬁ] + &V, ng — %ﬂxﬂnﬁg”/’éggﬂ (42)
where we integrated by parts and dropped total derivative
terms. Use of Eq. (30) is unnecessary for the superfluid
components, since the variation of the superfluid number
currents is already constrained. However, this means we
must enforce conservation of the separate superfluid
current densities in a different manner. A simple way to
do this is by adding a Schutz-type [33] term for each

superfluid to the Lagrangian:
ES = _anvﬂ(p)_ﬁ

where @; is a scalar phase. Taking the variation of this and
setting the coefficient of d¢; equal to zero gives, after an
integration by parts, V,n§ = 0. The variation with respect
to n% adds the additional term

(43)
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_Zéng vy(p)? (44)

to Eq. (40). Setting the coefficient of 6% equal to zero now
gives

which correctly gives us as the vorticity tensor the covariant
curl of the canonical momentum covector. V,¢; will not
contribute to the vorticity, and can thus safely be set to zero.
Microscopically, ﬂfj is the gradient of a potential for
superfluid neutrons and the gradient of a potential plus
eA,, for superconducting protons. This equation represents
a macroscopic average. Using Eq. (37) and (39), the third
and fifth terms in Eq. (40) become

1 _ _
- Eﬂ;”éwjj,, - 8
= BV, (W, &) + nhw,, & — nkV,,(&A7)
= &wr, (n} + V,25") + n,V,nY], (46)

where we integrated by parts, dropping total derivative
terms, and used Eq. (45) in the last line.
Returning to Eq. (40), 6£/6A, = 0 gives the sourced

Maxwell equations in a continuous medium
V K = 4z, (47)

which also guarantees charge conservation V,, jo = 0dueto
the asymmetry of K#*. Both F,,, and wj_j,, satisfy the closure
condition

VM u) - O, VMW;_;D] =0. (48)

For F,,, this is just the source-free Maxwell equations. The

remainder of Eq. (40) becomes, using Egs. (42)—(46)

5L = ng‘ (2niV),x

XFEX
+ > EWh(nh + V) + 7V, 0]

1
+3 b nhps g™ +
\\ 1 RHv — R i S
+ Yg = ’r g; Guv

_ Zéﬂfx (T”"—L<R”D—1R9‘”U))5gﬂw

(49)

—Q—zz"Vn)

1
v E KPP v
E’C”pF/)+ XA)_CWX

where f7, is the generalized force (density) acting on fluid x,
the generalized pressure V¥ is defined as

Y=A- Z/,t;nﬁ, (50)
X
and the stress-energy tensor is
T = nhus + i/@ﬂm + Z@’;”w;p + Wy, (51)
x B
TH, of course, satisfies the Einstein field equations

1
R, — ERQW = 82T ,,. (52)
This stress-energy tensor does not appear to be explicitly
symmetric. We will discuss in Sec. V why it is symmetric
regardless by a comparison between this “macroscopic”
stress-energy tensor and an average “mesoscopic’ stress-
energy tensor which accounts for small-scale motion
around vortex lines and flux tubes. Using the forms of
the four currents and conjugate four-momenta introduced in
Sec. III, T* is expanded in Appendix A in a more explicitly
symmetric form which is compared to the stress-energy
tensor for a single perfect fluid.

The identification of the generalized forces in Eq. (49)
gives the equations of motion for the normal fluids and
vortex line/flux tube arrays associated to each superfluid

[ =20V o)) + mV,nk, (53)

i =wy(n} +V,2°) + mV,n. (54)

Note that, because the variational procedure assumes
conserved currents (or imposes it via Lagrange multipliers
for the superfluids), the final terms on the right-hand side of
both of these equations is zero. We will, however, allow for
nonconservation of the entropy current x = s, which allows
us to discuss entropy generation in Sec. I[V. In Sec. IV B, we
relate the equations of motion of the vortex line/flux tube
arrays to those of the associated superfluids.

Finally, summing Eqs. (53)—(54) for each fluid and using
Eq. (23), (48), (50), (51), we can show that the stress-
energy tensor is conserved up to external forces acting on
the fluids:

VI, = fa (55)

The right-hand side of this equation should equal zero if
energy and momentum are conserved in this system, so in
that case the f3, must sum to zero. This can be accomplished
if they are all zero individually, or if they cancel each other,
which corresponds to forces which act between the fluid
constituents. We can also add forces to the right-hand side
here as long as they act on multiple fluid constituents and
hence mutually cancel. This will allow us to insert forces
that we are unable to derive from a variational principle.
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III. RELATION TO PHYSICAL PARAMETERS

Our discussion so far has focused on a somewhat abstract
variational principle and the resulting equations of motion
and stress-energy tensor. To proceed, we need to relate the
variables in the previous section to physical quantities. First
we introduce the four-velocities of the fluids. Because of
short collisional coupling times [38—40], it is expected that
all four normal fluid components x = n, p, e, m will
comove and have common four-velocity ¥, normalized
in the standard manner u*u, = —1. Their currents are
defined as

nk = nut, x€{n,p,e,m}, (56)
where 7, is the number density of species x defined in the
normal fluid rest frame. We thus work in the Eckart
frame [41].

The superfluids do not have to comove with the normal
fluid, and we specify their four-currents by

2

b= nguk = ngy(vz) (u* + %),

n xe{n,p}, (57)
where i/ is the four-velocity of the superfluid species x and
% is a spacelike relative four-velocity between the normal
fluid and the superfluid x. n; is the number density of
species X in its own rest frame, equal to twice the density of
Cooper pairs. The i/ are defined in this way so that they are
normalized in the same way as the normal fluid four-
velocity. We will use a subscript * to indicate a quantity
measured in the normal fluid rest frame, so the superfluid
density in this frame is

ni = nzy(vy) = —u"n,’_j, y(vi) = (1 - v3)712, (58)
where v2 = %} and viu* = 0. Strong electrostatic cou-
pling between the normal fluid leptons and the super-
conducting protons means that the latter will also likely
move collisionlessly with the normal fluid, but for now we
permit the superconducting protons to move independently
of the normal fluid.

Like the superfluids, the entropy current can move
independently of the normal fluids, and is specified by

st = sy(w?)(u" + w*) = s* (" + wH), (59)

where w'w, =0, y(w?) = (1 =w?)"1/2 and w? = whw,.
The heat flux four-vector g* is related to w* by

q' = s*T*wh, (60)
Here s* and T* are the entropy density and temperature

measured in the normal fluid rest frame, while s is the
entropy density in the comoving frame.

Using Egs. (56), (57), (59), (60) in Egs. (7)—(8), the
conjugate momentum covectors can be rewritten as

sn

/,{Z = /,[nl,{'u + Anﬁn:gl)z + A"l_’n;f,lif + T* q;l’ (61a)
B B ~ _ sp

'u{: = ppu, + A””n;—jvﬁ + Appn;l);; + = dus (61b)

ui = pu, + Bingul + A'_”_’n},v,’?, (61c)

M = Wyt + BPnoll + AP, (61d)
se

Hiu = Pty + = Gy (61e)
sm

My = Pty + = Qs (61f)
o)

®}l — T*MM + qu (61g)

where we have defined the following chemical potentials/
temperature measured in the normal fluid rest frame

py = B'ny, + APny, + AV 4+ AP+ AYs*, (62a)
py =BPn, + A", + AP"ni + A"Pny 4 APs*, (62b)
py =B"n; + An, + AP"n, + A" P, (62¢)
Wy = BPnk + AP, + APPn, + A"Pnf, (62d)
Ue = Bn, + A%¢s*, (62¢)
Uy = B"n, + A, (62f)
T =Bs"+ A"n, + APn, + A*n, + A"n,,.  (62g)

The superfluid chemical potentials in the rest frames of
the respective superfluids, and the temperature in the rest
frame of the entropy, are

Hin = _ug/‘;’ = y(vrgz)(-Anﬁnn + Apﬁnp) + Bﬁnﬁ
+y(v3)(1 = o) A" P,
v

= y(v3)lus — 03Bn; — VGof A3, (63a)
up =~y = y(v3) (APn, + A"Pn,) + BPn,
+ y(v%,)(l — vhu) A" Py,
= y(v3) [ — v3BPnY — v vi AP Pnr], (63b)
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= —y(w?)(u* +w")®,
:Bss+y<w2)(Asnnn+Aspnp+Asene+Asn1nm)
=y(WH)[T* — w?B's*]. (63c)

If all of the normal fluids comove, the same Lagrangian
displacement field &, = &, = & = &, = &' must be used
to describe their variations, and a single generalized force
f. acts on this combined normal fluid. This force is

[ =2uV I + 1L, V,u® + uuzV,n,
+umyVn, + uniV,n, + u°zlV,n,, (64)

where II, = sTu, + n,u} + n,n) + n .z, + n,x, is the
effective momentum for the normal fluid. In the absence
of dissipation, the entropy will move with the same four-
velocity u# as the normal fluids since the superfluids carry
no entropy. In that case, s = s*, T = T*, & = & and there
is an entropy contribution to f, [17].

The coefficients 5%, A* need to be calculated using
microphysics. Previously, relativistic entrainment coeffi-
cients have been computed using Landau Fermi liquid
theory [42,43], though these references employ a different
formulation of the hydrodynamics and their relativistic
entrainment coefficients thus differ from the 5%, A% used
here. We invert our definitions of the conjugate four-
momenta and determine how these previously calculated
entrainment coefficients could be used in the more sym-
metric hydrodynamics of this paper.

We assume ¢* = 0, which is implied in Gusakov et al.
[42,43]. Inverting ,u;’ and yf to obtain equations for the
superfluid number currents and then adding to these the
equations for the normal fluid current of each species gives

()t = o = g
ol = Ger(A) T det(A)
_BP(An, + APny)

il +

det(A)
Aﬁﬁ(Anﬁnn +Api’np) p
+ det(A) u (65)
Bfl _ Afli) ~
H = P i H
(np)total det(A) Hyu det(A)ﬂ” + npu
~ B’_’(A"ﬁnn +Al7f?np) p
det(A)
AP (A0, + AP,
+ det(A) u (66)

where we have explicitly shown dependence on the B,
A and where

Bﬁ Afti)
A= <Aﬁf’ e ) (67)

Gusakov et al. [42,43] use as the total (normal plus
superfluid) baryon number currents

(nl';)total = [(nn)total - ﬂnan _ﬂpYer]uﬂ
+ Y Qi + Y, 0% (68)

(1) total = [(np)total e /"nan]”ﬂ

+Y,,05+7,,0; (69)

where the (symmetric, relativistic) entrainment matrix is

Y = ( Yon Yop ) (70)

Y”P YPP

and the number densities and chemical potentials are
measured in the rest frame of the normal fluid. The Q%
of the references are written in terms of superfluid
“velocities” V¥ (actually the conjugate four-momentum
divided by the chemical potential)

Q% = Vi = g™, (71)
where recall that p; is measured in the rest frame of the

superfluid of species X. Comparing Egs. (65)—(66) and
(68)—(69), it is obvious that

Y, =5 P v, =y, =2
" det(A)’ PP det(A)’ TP det(A)
(72)
which can be inverted to give
o Yop , BP = Yn ’ Aﬁp:ﬁ_
det(Y) det(Y) det(Y)
(73)
The total baryon currents in our notation are thus
(nl'll)total = Ynn/'l% + an/'ll;iz
+ [, = Y, (A0, + AP"n,)
—Y,,(A"Pn, + APPn,,)|u, (74)
(nI;’)tota] = Ypp/'l'l;; + an,bté—;
+[n, =Y ,,(A"Pn, + APPn,)
- an(“4nﬁnn + -Apﬁnp)}uﬂ' (75)

Using Egs. (62c), (62d), (72), we can rewrite Egs. (74)
and (75) as
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Yopls it + Yty + Y o5
(76)

(nl;)total = [nn +ng = Y5 —

(nlll’)tolal = [np + n% - Ypp/";f) - an/’l;fz]uﬂ + Ypp/’ll;) + an/"}rfw
(77)

which are nearly identical to Eq. (68) and (69) except for
including additional relativistic corrections due to the relative
motion between the normal and superfluid components of
each baryon species. The difference in the species labels
between normal and superfluid baryons on the chemical
potentials is not a concern since u, = i should be true in
chemical equilibrium i.e., in equilibrium, the protons and
neutrons should have no preference between the paired
(superfluid) and unpaired (normal fluid) phases.

While we have so far been as general as possible with
regards to the coefficients A*, simple physical arguments
allow us to reduce their number. If we assume that the
entrainment coefficients parametrize a coupling between
the fotal (normal and superfluid) neutron current and
the total proton current, we will have A" = A"’ =
AP = A"P_1f the total current of each baryon species is
coupled to itself, then we might expect B" = B" = A" and
likewise for the protons. However, we cannot have 8* = B*
unless A™s* =0, since this would prevent u, = pi in
equilibrium. The Lagrangian could also include nﬁnl’j and
nkn; terms which would allow B* # B* for the baryons.

IV. DISSIPATION

A. Heat conduction

We begin our discussion of dissipation by determining
the allowed form of the heat flux ¢* introduced in Eq. (60).
Its form is found by enforcing the positive definiteness of
the entropy generation I'y = Vs using a standard pro-
cedure in relativistic dissipative hydrodynamics (see e.g.,
[15,22,34,35,44-46]). Like Olson and Hiscock [34], Priou
[47] and Lopez-Monsalvo and Andersson [35], we are
careful to note that the “regular” Carter formulation of
relativistic finite temperature fluid dynamics, correspond-
ing to setting the parameters A** = 0, is acausal, which is
why we have included entropy entrainment.

The most general way to obtain the form of the heat flux
is to start with the equation of motion for the entropy
current

25°V,0, +0,V,5° = f3. (78)

Contraction with »* and rearranging gives

TV, 5% = —% [V,,T* Tty + Vg
. BYT* . ‘
o (850 ) ] e 7

where a = u*V ,a. The easiest way to enforce that the
entropy generation from heat conduction is positive definite
is to make

. 2B
e [VVT* + Ty, + -1V g,
. BT g,
; (B B ) %], (80)

where L = ¢ 4+ u'u”. This matches Lopez-Monsalvo
and Andersson [35] and gives the same entropy generation
term due to heat conduction as Weinberg [44] up to the
additional terms which are higher-order in ¢#. These terms
are necessary for causal heat conduction, since rearranging
Eq. (80) following [35] gives a relativistic version of the
Cattaneo—Vernotte equation

tw(@" + ¢V ') + ¢ = -k L*(V,T* + T*u,), (81)

where ¢, is a heat conduction timescale and & is a modified
heat conductivity, which are given by

BS T* BS
1+ ()
F=—" wr, (83)
1+ k(%)

where the approximate forms are valid if we drop higher-
order terms in an expansion in the mean free collision time.
The entropy entrainment parameters which appear in the
definition of 7* thus clearly affect #,. Causal heat conduc-
tivity is absent from the treatment of dissipation in previous
papers on relativistic multifluid neutron stars [22,24], which
use the treatment of dissipation in Weinberg [44].

The remaining term on the right-hand side of Eq. (79) is
due to the generalized force on the entropy current f,.
Using conservation of energy-momentum, we can rewrite
S5 in terms of the generalized forces on the other fluids.
The viscous contributions to entropy generation will be
included in this manner by modifying the stress-energy
tensor and hence the generalized forces. We next discuss
the inclusion of mutual friction and vortex pinning forces
which act between the fluids and vortex line/flux tube
arrays, and then incorporate viscosity.

B. Mutual friction and vortex pinning

Mutual friction is a dissipative drag force acting on
vortex lines/flux tubes, and hence on their associated
superfluids, due to scattering off of the normal fluid.
Vortex pinning is an attractive force between neutron
vortex lines and proton flux tubes that, in different limits
based on the relative velocity between the two arrays, either
make them move together or acts as an additional drag
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force. Both of these interactions are incorporated into the
hydrodynamics by adding additional forces between the
fluid constituents to the generalized forces f7, f}; appearing
on the right-hand side of Eq. (53)-(54). We follow a
relativistic version of the Hall-Vinen procedure [48] to
write the new equations of motion with these forces
included. Our procedure is similar to Andersson et al.
[49], but differs in the definitions of the fluid velocities so
as to be consistent with Sec. III, and also in our inclusion of
the vortex line self-tension, and later vortex pinning.
Consider a properly-normalized four-velocity for the
vortex lines/flux tubes within superfluid X, using subscript
L to denote vortex lines/flux tubes
W =y(B)WE+p5).  r(B)=(1=-p)71% (84)
where 2 = fipx, frul = 0. B4 is the relative (spacelike)
four-velocity of the vortex lines of species X with respect to
the corresponding superfluid. Since the vorticity moves
with the vortex lines,

uLJ-wajy =0, (85)
and [50]
nhwy, = —nzfiws, = i, (86)

where f,’,” * is the Magnus force acting on the superfluid X
due to the relative motion between it and the vortex lines/
flux tubes within it. Note that for the superconducting
proton fluid, the Lorentz force is included in this definition
of the Magnus force. In the absence of additional forces and
assuming current conservation, Eq. (54) and (86) say that
the Magnus force on the superfluid is balanced by a tension
force due to the vortex lines/flux tubes, which is repre-
sented by the second term on the right-hand side of the
equation. Due to this interpretation, we can use Eq. (54) as
a force balance equation for the superfluid of species X
instead of its associated vortex line/flux tube array. The
force balance equation for the array only differs from that
for the superfluid by an irrelevant overall minus sign.
The vortex lines/flux tubes would move along with their
associated superfluid if not for their scattering off of the
normal fluid (mutual friction) or due to pinning to the
vortex lines/flux tubes associated with the other superfluid
(vortex pinning). We consider the mutual friction first, and
represent it in Eq. (55) and Eq. (53)—(54) through equal but
opposite contributions to f; and f7,, the generalized force
on the combined normal fluid. To lowest order, this force
should depend only on the relative velocity between the
normal fluid and the vortex lines/flux tubes of species ¢k,
which we define analogously to Andersson et al. [49]
-q)7'% (87)

w =y(g) ;s +45),  r(gd) =

where ] ;g% = 0, ¢? = ¢q. So we modify the general-
ized force on superfluid X and the combined normal fluid
by setting

¥ _ pmfx __ mf,x p r _ pemfr __ mf,x
f/l_ p o =Ruw g5, fu— “ =_§ Ruw™ g%,

X

(88)

where the ,‘}L” projects out components of g% either along
the direction tangent to the corresponding vortex line/flux
tube array or along the respective vortex line/flux tube array
velocity

R,rﬁ,fx = Rmf.,?(glw + u’I;)?ug)‘c _ };}l)‘f)’ (89)

where ?;‘; is the average spacelike tangent vector to the
vortex lines/flux tube array. R™* are dissipative coeffi-
cients parametrizing the mutual friction. Since these addi-
tional forces cancel out in the right-hand side of Eq. (55),
the total stress-energy tensor is still conserved. In this case
the equation of motion for a superfluid becomes

R,Ty” q% = nfwy, +wi, V, 22 (90)

We would like to remove references to the vortex line
velocity and ¢% from Eq. (90) and rewrite it in the form

of Eq. (86). Equating the two forms of uf . using

Eq. (84), (87) gives

1 1
R 28 CL e P

X )ny

where 7, = 7(2). 7 = 1(¢2). 7+ = 7(v2). To perform the
necessary manipulations, it will be convenient to rewrite the
vorticity tensor in terms of the corresponding “electric” and
“magnetic” four-fields in the frame comoving with the
vortex lines,

1 —
Hoo_ vop, L.X x — ywH
WBVX—EM Puy " w Wx,

2% op =
(92)
in terms of which we can write 7 as
1, =Wi/\/WiWe. (93)
We can of course invert W% to find
Wiy = ~Euopt] s Wr. (94)

Using Eqgs. (90)—(91), (94), we solve for vj_j,
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- 1 7

X 4 pv
Uy = n_xgﬂyl)ﬂ;wf Rmfx WX v /1
1 _ _ e -
GRS R G A
X
where for simplicity we have defined,
Rt 3 .
Eup = EopupUs Ny = ﬁ» 75 = ¥5fz. (96)
XXX

Contracting Eq. (95) with g*# W“,_; and then using the same
equation to replace eﬂbpﬂ)’“—ch gives
L |> W
Nx

vy X% ) Nx7x v
MWy vy = =370k + <Wg (Wiu,
X

1 Wi I 2 A
+ T)_c__+_ Mx (W J_+7] )/})}
% Nx Mz
Vv 5,3 ”
+ Rmf.x (nzews p T e W'? Mﬂ)vv}“i‘c . (97)

where W2 = wi,w¥/2, and where we have used a spht of
W% into components parallel and perpendicular to uf
(98)

_ H H H X
= Wxuz + Wi o, Wi iy =0.

Contracting with ¢,,,W? again yields an equation from
which the Magnus force can be isolated:

(G TNl
M.x W2L+’/[

+ 1375 evngxlvp W2 vy
—7rz0 (WZLMD+WX,LW§’l)

A

Iz
Rmf,)‘c

(T S| (vEWD) Wit

(WXTXSL/O'/JWGWP +W2 J_an)vnﬂgn ’

Xa

(99)

where we have replaced 7¢nze,,, W45 with f,lyl”_‘ and where

Hvp
we have defined

NxTx w3

¥ x, L
_ x,Lull + W)_C,HW/‘
2 2,2
Wi +nzts

Rmf X

.a/u/ = G vpll)—fp'

(100)

Note that Eq. (99) still depends on gamma factors that are
functions of 2 and ¢2. If the relative velocities are assumed
to be small, these gamma factors can simply be approxi-
mated to be unity. In general, it is theoretically possible to
solve for these gamma factors in terms of only the normal
fluid velocity u* and the superfluid relative velocities v,
but we do not attempt such a calculation here.

Vortex pinning can be incorporated by adding a force
which acts between the vortex line and flux tube arrays in

the neutron superfluid and proton superconductor. This
force should behave like a drag force for intermediate
relative velocities between the two arrays and should force
the two arrays to move together for small relative velocities.

The pinning force f}" acting on the neutron vortex lines
due to the proton vortex lines is incorporated into the force
balance equations on the two arrays as

f/’z _ mfn+ p1n fﬂ _ mfp Ein' (101)
Since fj_j are force densities, the force per unit length on a
vortex line/flux tube equals f5 /N, where N is the areal
number density of vortex lines/flux tubes of species x
measured perpendicular to them (we give a relativistic
definition of N5 in Sec. VA). It is reasonable to expect that
the vortex pinning force should be proportional to the
product of A'; and AV, so the vortex pinning force per unit
length acting on a proton flux tube will be proportional to
N; ~2Q/k; ~104(Q/10 s7') cm™ where Q is the angu-
lar rotational frequency of the neutron star and «xj; is
the circulation quantum. This is much smaller than the
number density of proton flux tubes N, ~B/®; ~5 x
10'¥(B/10'? G) cm™ where B is the magnetic field
strength and @, is the flux quantum. x; and ®; are also
defined in Sec. VA. For this reason, the vortex pinning
force acting on a single proton flux tube is negligible and
often ignored. However, as we are interested in force
densities, we will retain the pinning force acting on the
proton flux tubes.

To lowest order, the vortex pinning force depends only
on the (average) relative velocity between the two vortex
line arrays contracted into an as yet undetermined rank
two tensor:

pm = Rﬂi,“b” (102)
where b” is the (spacelike, average) relative velocity of the
proton vortex lines in the (average) neutron vortex line rest
frame defined such that

”i.ﬁ:J’(bz)(ulIf,ﬁ+bﬂ)’ _bz)_l/27

y(0?)=(1 (103)
where b*ui™ =0 and b? = b"b,. A reasonable nonrela-
tivistic version of vortex pinning drag force would point in
the direction defined by the cross product of the tangent
vectors to both arrays, and only the component of the
relative velocity between the two arrays that is in this
direction will contribute to a drag force. One possible
relativistic generalization of this is

,R’ELH — _Rpinguo'/)( )/}n/luL nt”tpuL pt’7 7. (104)
The coefficient R, should be a function of b = /b"b,,
the relative orientation between the vortex line/flux tube
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arrays or 741/, and should scale linearly with both A/; and
N5 as discussed previously. The dependence on b should

be b~'/2 [51-53] when the linear b-dependence of the
pinning energy is considered, as this will give the correct
behaviour for the pinning force: at large b*, the vortex
pinning drag becomes insignificant compared to the mutual
friction drag, while for small »*, the vortex lines become
pinned to the flux tubes [54]. The principal dissipation
mechanism in the drag regime of vortex pinning is the
excitation of kelvons, and in calculations like those in
[51,52], the interactions exciting the kelvons were with
individual nuclei. However, in the core the pinning inter-
action is of course between lines of macroscopic extent, so
a modification of R, may be required when the finite
length of the lines is considered [55,56].

It should be noted that the pinning drag force would be
relevant only to a precessing neutron star with sufficiently
large precession amplitude. Even in that case, the drag
force estimated by Link [57] is large enough for
pinning to happen on rather short timescales of days to
weeks. Simple relative motion with energy stored in the
Baym-Chandler kinetic energy [58] would damp away
almost instantly.

The Magnus force acting on superfluid X can thus be
written as

M.% _
W o=n

W = wp VA7 + R,Tyf’_cq; + R/%nb”- (105)

with = corresponding to X = 72 and p respectively. It should
be possible in principle to rewrite this equation in terms of
only the vorticity tensor or vector, the normal fluid velocity
and the superfluid relative velocities ¢%; in a manner similar
to what was done in Eq. (95)—(99). We do not attempt this
calculation here because of the unessential complication it
would add to this paper.

C. Bulk and shear viscosity

To incorporate viscosity into this variational formalism,
we follow Carter [15], the review of his work in Andersson
and Comer [36] and the nonrelativistic generalization by
Andersson and Comer [59], though we specify to the fluids
expected in a superfluid—superconducting neutron star
core. We also neglect chemical reactions that convert
between fluid species as we have implicitly assumed
current conservation for the separate species.

Introducing the (assumed symmetric) viscosity tensor
7%, where the label X is used to specify the different fluid
constituents contributing to the viscosity. The variation of
the master function to include viscosity takes the form
(summing over X)

1 A
= KE‘UEZa—

9 (106)

where KEU is a strain tensor. The new form of Egs. (12)
and (23), giving the new form of dA/dg,,, is

1 oo =
V”A = Zﬂyvﬂnx - gl(:p V”Fp,, - 5 g v;twpll

1
+ -2V, 1,

5 %ip Vi (107)

OA 1 Moy 1 v HP v v
(108)

where we used

ST = £ = @V, 24V ). (109)
The full variation of 7%’ is, from Carter [15]
(o2 U v 1 v

o5 = &V,15 — ZTz(ﬂvnfz) + 75V, &5 - Efg 97695

(110)

so 8L becomes

SL=8fL+ 8+ S+ &fE
X p

1 1 1
—\T"W —— | R*¥ —=Rg"™ | |6 111
At () o )

where 7%, ¥ and f}; are given by

1 )
o = S K+ S A,
X X

+) K+ e, (112)
z

1 0o
¥Y=A- Zﬂ;nﬁ - 521’2 k2o, (113)
X z

v 17 1
ff‘ = KEI/VPT‘% + sz (VVKEP - EVﬂK§p>, (114)

& is the common displacement field for the normal fluid

and f, = fi + fu + o+ i
We now look at the u* f}, term in Eq. (79). Conservation
of energy-momentum implies

fo==f=>fi=>fn
X p

so contracting with u* and then using

(115)
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w'fn = (@R dig, (116)
X
ﬂfx — u.uM/X v ﬂ.m'
A = pe f,“,“‘vyxgv, (117)
X

Eq. (79) becomes

T*V,s" = — 1,q"q" + Z[ (3R g

+ 1 }1)/[xv ;Lbll_vllfx:| +Zuﬂf2 (118)
The second law of thermodynamics requires that Vs > 0,
which is most easily satisfied if each term on the right-hand
side of Eq. (118) is individually greater than or equal
to zero.

Define four-vectors

uy =y +05).  y(vg) = (1-0vg)7V2  (119)
where vy = 0 and v3 = v§vZ, such that
™ ur =0, K us =0 (120)

That is, the viscosity tensor and the strain tensor are both
purely spacelike in the frame moving with u%, and the
viscous and strain tensors have been constrained to have
only six independent components. The entropy generation
equation can be rewritten as

T'V,s" = — L.a"q" +Z[ r(ad) R " dhds

1
+— NV, A — v”fx]

- vhfx +—zﬂ”£u KZU:|. (121)
[+ gy
where 7% = w* and
L, IS, = 2l fE
= (V5 + 2 V). (122)

Analogously to Carter [15], introduce linear combina-
tions of the v% and v§ = w* such that
|

TV,s” = — L,q"q" + Z{ r(@) R gias +

2

[’%( (VuZ + V,u2) (Vi + Vi) — = (V) >+772M iy + s (Vi)

(123)

o= ok. D=1
a

a=x.s
so the terms depending on the forces can be combined
using

z Rabl}b,

b=sX

(124)

fat) ctfi=
p

where R,‘j,l} is a positive-definitive symmetric generalized
resistivity tensor. This tensor must be symmetric by the
Onsager reciprocal relations. This procedure assumes that
there are no other dynamical velocities in the problem than
vk, o5 and w*. There will also be a contribution to the
viscosity from the normal fluid

o Up
no_
gg“va—,

a=x,s

(125)

corresponding to uk, = uy = u*. To make the viscosity term
look more like a standard entropy generation equation,
we use

K%, = 1% = g, +uiul, (126a)
=, (126b)
Tgv n/zztl//m’fuz /%m (126C)
o e 110 1 (S M) e (196g
77% =nzly Ly + ) 3 Y ¥ ( )

where 77z and {y are (dynamic) shear and bulk viscosity
coefficients, respectively. This form ensures that the
entropy generation is positive definite. We do not include
the higher-order corrections to 75 discussed in Carter [15]
and hence assume that the we only have viscosity linear in
the fluid velocities. As written, the viscous forces are causal
for small perturbations from thermal equilibrium [47]. The
viscous tensor can also be rewritten as

v U 1 v v
= 2y (v(ﬂuz) + ufily) - 31 VM%) —Enly Voug

= s L LW — 65 LV g, (127)

where ik =ubV,uk and Wi, =V,ul +V,ul -
2/3g,,V,u$ is the shear tensor. Equation (121) becomes

R“bva vy

a,b=sx

fM sz/lw:|
4
3

(128)

063011-13



PETER B. RAU and IRA WASSERMAN

PHYS. REV. D 102, 063011 (2020)

In the case of the shear and bulk viscosity of the normal
fluid, uf, = u*, y(v3) = 1. We also expect a bulk viscosity
term from the superfluids [19,20,22]. The most general
form of the viscosity contribution to the entropy generation
[the second line on the right-hand side of Eq. (128)] should
thus be of the form

[T*v"sa]viso. — % <(vﬂuy + vbuﬂ)(v/‘ub + Vl/ull)

IS

(v(,wf)Z) it + £,V

Y V) (129)

X#r

where the subscript r is used to specify the viscosity
coefficients for the normal fluid. Only the normal fluid
X~ = r contributes to the shear viscosity, and it also gives a
contribution to the bulk viscosity from species-converting
reactions between the normal fluid constituents. The terms
with X # r represent the bulk viscosity contributions from
species-converting reactions involving the superfluids.
These reactions are: (1) conversion between the normal
and superfluid neutrons; (2) conversion between the normal
and superconducting protons; (3) between the neutron
superfluid and superconducting protons; (4) between the
(non-neutron) normal fluid and neutron superfluid; and
(5) between the (non-proton) normal fluid and super-
conducting protons. We thus require five distinct X # r
such that the five (s # {, can represent these five bulk
viscosity contributions. The corresponding v% will be linear
combinations only of the relative superfluid velocities v
and o5, but the exact specification of the 5 is somewhat
arbitrary as long as Eq. (123) is satisfied. However, the bulk
viscosity coefficients will be completely determined by the
microphysics.

Comparing our formulation of the viscosity to the
relativistic version of the Landau—Khalatnikov superfluid
viscosity [19,20,22], both formulations have six bulk
viscosity coefficients. In a realistic neutron star core, with
the superconducting protons comoving with the normal

fluid due to electrostatic attraction, 1)’1-‘, = 0 and there will

be only three distinct bulk viscosity coefficients para-
metrizing the reactions (1) between normal fluid constitu-
ents; (2) conversion between normal and superfluid
neutrons; and (3) between the neutron superfluid and
(non-neutron) normal fluid constituents. However, as
shown by Gusakov [22], only two of these bulk viscosity
coefficients will be independent of each other.

The different viscosity coefficients are, in principle,
possible to calculate from microphysics. The shear viscos-
ity will have contributions from lepton-lepton, lepton-
proton, nucleon-nucleon [39,60—63] and proton-mediated
lepton-neutron scattering [40]. The bulk viscosity in both
the normal fluids and superfluids is due to modified and

direct Urca processes [22,64,65]. Superfluidity generally
increases the shear viscosity of the normal fluid and lowers
the bulk viscosity.

D. Electrical conductivity

The generalized resistivity tensor introduced in Eq. (124)
cannot fully account for electrical conductivity because the
only relative velocities in this equation are the v% and w*.
To properly incorporate electrical conductivity we must
relax our assumption that the normal fluid components are
comoving. Reserving u* to denote the rest frame of the
normal fluid neutrons, the dominant normal fluid compo-
nent in a neutron star core, Eq. (56) is replaced by

nk = ngy(v3) (' + %),

x €{p,e,m}, (130)

where the relative velocities v are all fractionally small
compared to u and satisfy v%u, = 0. In this case, the sum
on the right side of Eq. (124) runs over the normal fluid
species in addition to s, X. The generalized resistivity forces
can then be included in the equations of motion by solving
Eq. (124) for the generalized force f; and inserting into
Eq. (53)—(54), noting that forces such as mutual friction can
in principle be included within the generalized resistivity
forces, though this may require rewriting velocities such as
the vortex line/flux tube velocities in terms of the velocities
of the different fluids.

The generalized Ohm’s law can thus be derived by
appropriately combining the equations of motion for the
charged fluids, but this is beyond the scope of this paper.
The generalized Ohm’s law is discussed in more detail for
nonrelativistic nonsuperfluid neutron stars in [66,67], for
superfluid neutron stars in [68], and for relativistic multi-
fluids in [69,70].

V. VORTEX LINE/FLUX TUBE CONTRIBUTION
AND THE MAGNETIC FIELD PROBLEM

A remaining question is how to interpret and compute
the tensors K* and 45", and to determine if they can be
written in terms of F** and w%”. Since it is impossible
to account for the dynamics of individual vortex lines and
flux tubes in a macroscopic fluid dynamics, the vorticity
tensors wj_jy and the electromagnetic field tensor F** should
be considered as macroscopic averaged quantities. The
electromagnetic field tensor F** should somehow depend
on the wy,, since assuming type-II proton superconduc-
tivity, the magnetic field inside the star is largely confined
to proton flux tubes, plus neutron vortex lines that are
magnetized through superfluid entrainment.

We first consider this problem at the mesoscopic scale of
individual or small numbers of vortex lines and flux tubes.
By averaging over a large number of flux tubes in the
mesoscopic theory, we find an averaged mesoscopic stress-
energy tensor, which is then matched term-by-term to the
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completely macroscopic stress-energy tensor derived in
Section IIB. This allow us to find an macroscopic
“effective” theory in the form of the electromagnetic and
vorticity-dependent contribution to the master function
Agmyv, Which fixes the forms of X# and 45". We match
to the stress-energy tensor as opposed to simply the master
function because the former also contains information
about the partial derivatives of the latter. A summary of
this calculation is presented in the main text, reserving the
full calculation for Appendix B.

This section is concluded by discussing the relation of
these quantities to the electromagnetic displacement tensor
‘H*¥, which we show is distinct from C#*. We compare the
resulting electromagnetism to previous studies of super-
conducting neutron star cores with flux tubes and magnet-
ized vortex lines. Finally, we discuss how to compute the
magnetic field in a superconducting neutron star core given
an electric current density, and the form of the Lorentz force
in the total equation of motion for the charged fluids.

A. Mesoscopic stress-energy tensor, averaging
procedure and effective theory

We postulate the following Lorentz-invariant splitting of
the (macroscopic) master function A as a function of the
contractions of F* and w4

A=A+ Apmyv(Xp X Xp. Ya, Y5, Z) - (131)
where the scalars of which Agy,y is a function are
defined as

1 1 _
Xp = ZFWFW, X; = ZWW Wi

lw”” 5 1 )
Xf’:Z S Wi Y,—l_EF Wi,

_1 v, ,P
Yﬁ—EF Wiy,

Z- %wf,_;"wﬁy

Ay is the contribution to the master function from the four-
currents alone, while Agy,y contains all contributions
from flux tubes/vortex lines and electromagnetic fields.
Agmyv will also contain functional dependence on con-
tractions of the superfluid/superconducting four-currents,
since the flux tube/vortex line energies will depend on
number densities through dependence on the London
length A, and coherence lengths &,, but we have assumed
that there are no terms involving contractions between the
number currents and the tensors F** and w%". According to
Egs. (17), (22) K* and 44" will then take the forms

ON EM+V oA EM+V v
nwo— _ Uy
K 4r < X, Fr 4 o, wh

4 ZEMAV a/\EMJrV Wﬁy>

Y. (132)

2= _ a/\EM+V W — aAEM-‘rV W — aAEM-&-V Frv

ox, """ oz " T oy,
(133)
A;’;y = _ al\@]’l}l}’lJrV W;w _ aAg:;JrV W/;)zz aAaE;/PFV FHv.
(134)

The goal of the mesoscopic averaging procedure is to
determine what Agy,y and its partial derivatives are.

We define the mesoscopic scale # such that there are
many vortex lines and flux tubes within an area #2. £ obeys
the following hierarchy of length scales:

Co>C>d,>d, >N, >E,.8,. (135)

Z, is some characteristic length scale of the spacetime
curvature, d, and d, are the spacings between neutron
vortex lines/proton flux tubes, A, = (4ze®Y,,)~"/? is the
London length, and ¢&,/&, are the neutron vortex line/
proton flux tube coherence lengths. We assume that
physical properties like n,, u,, Y,,, etc., are uniform over
mesoscopic scales.

The system we consider is a simple configuration of
two vortex line/flux tubes arrays, one for each superfluid/
superconducting species. The vortex line array results from
the rotation of the star, while the flux tube array is a result
of a combination of a remnant magnetic field and field
generation mechanisms early in the neutron star’s life [71].
We consider only the strong type-II limit of the super-
conducting protons i.e., HY, < H < HY,, where H is the
macroscopic average magnetic field and where H’? .1 and
H fz are the proton type—II superconductivity critical fields.
Strong vortex pinning due to the significant outnumbering
of neutron vortex lines by proton flux tubes could modify
this simple model by distorting the vortex line lattice, but
we ignore vortex pinning here. We also ignore mutual
friction, heat conduction (including “entropy entrainment”
A*Y) and viscosity as a first approximation.

Denoting with a tilde a mesoscopic quantity, we take as the
mesoscopic master function A=A(ii2,a2,) — F*°F ,,/16x,
using the microscopic electromagnetic field Lagrangian in
place of arbitrary dependence of A on F - Following the
same procedure used to derive the stress-energy tensor in
Sec. II B, the mesoscopic stress-energy tensor is

W—Zwﬁ i,

+ ([\(fz}%,&i‘,)

/JaF an,up)

(136)
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This result combines the stress-energy tensors of a perfect
multifluid plus that of vacuum electromagnetism. We also
have the equations of motion

2V 75 =0, (137)

V,F" = anje = Ane(ity + ity — ite — itn,),  (138)
plus the Bianchi identity for F**. 7} is defined as in Eq. (41).
In this case, we used Eq. (30) for all of the currents in deriving
their equations of motion, not just for the normal fluids.
The averaging procedure first splits the number currents
into large-scale and small-scale contributions. The latter
represent currents around vortex lines and flux tubes and
hence source the magnetic field associated with flux tubes
and magnetized vortex lines. The mesoscopic stress-energy
tensor is then averaged over an area ~£2 perpendicular to
the vortex line/flux tube array in a procedure similar to [30]
and Appendix E of [23], allowing us to replace the sum
over vortex lines/flux tubes with multiplication by the
relevant areal number density N This averaged meso-
scopic stress-energy tensor is then compared to the macro-
scopic stress-energy tensor to determine the macroscopic
effective master function Agyy,v and its partial derivatives.
We relegate most of the details of the calculation to
Appendix B, but discuss the averaging procedure for the
electromagnetic field and vorticity here. The canonical four
momenta for the superfluid neutrons and superconducting
protons, and hence the vorticity tensors, are quantized

%ﬁ,";dx” = /wj_j,,dS"” = hN~, (139)

where N* € Z, h=2xh and the generalized Stokes’
theorem [72] was used. Recall that in Section IV B we
defined a vorticity vector

1 -
We = Es"’ﬂ””uj‘xvv,’jw

(140)

where ué‘" is the average four-velocity of the vortex lines/
flux tubes of species X. Since we are ignoring mutual
friction and vortex pinning in the averaging calculation,
to lowest order the vortex lines/flux tubes comove with
their corresponding fluids i.e., u;” = uf and uf”™ = ul.
This assumption is equivalent to assuming that the vortex
lines are straight and uniformly distributed, since we are
ignoring the vortex line self-tension force in Eq. (54). Since
we will find a general expression for the 45 that does not
necessarily correspond to zero vortex line self-tension
force, this force can be considered a first-order correction
to the equations of motion. Over length scales # much
larger than the separation of the vortex lines/flux tubes, the
quantization condition allows us to write W¢ as

W = N kil = N @ el (141)
ky = h/(2u%) is the relativistic generalization of the quan-
tum of circulation with a factor of 2 because the superfluid
neutrons/superconducting protons will form Cooper pairs,
®; = h/(2e) is the flux quantum associated with a proton
flux tube, 7¢ is the average spatial tangent vector to the
vortex lines/flux tubes defined in Eq. (93), and N is the
areal number density of vortex lines/flux tubes in the spatial
plane perpendicular to 7¢. N; is Lorentz-invariant and
defined by

(142)

N}E *\/W;Wﬁ—
X

1 ;
VX
5 % Wﬂl"

We expect contributions to Agy, y that will be proportional
to the Ny times an energy per unit length. The electro-
magnetic field contributions due to flux tubes/magnetized
vortex lines should also be linearly proportional to N';. The
separations between proton flux tubes/neutron vortex lines
d,/d, are defined by N';/N; through

2
NX_\/—TJZX’

assuming equilateral triangular lattices.

Because of entrainment, the neutron vortex lines will
become magnetized. This is made apparent by combining
the vorticity tensors w,’;’y and w;’y in a way to eliminate the
superfluid neutron current, which itself does not source a
magnetic field. In our formulation, this corresponds to
eliminating v;. We thus add the two tensors in such a way
as to give

(143)

Youp
eY

wi (144)

Hv

1 -
F, =Fu +-wh+
€ pp

where F ,ED is the London electromagnetic field tensor. If we

can ignore derivatives of u,, n, and the coefficients B*, 4",
it takes the form

2 Y 2n .
FL z——(y*—i—ﬂy,’;)@[ﬂu]——”a[yvp, (145)
" e\'" Yy, doey,, M
where v has canceled out as expected. In the general case
where the gradients of yu,, n,, B*, A% cannot be ignored,
this will not be true.
Based on Eq. (144), we split the mesoscopic electro-
magnetic field tensor F* into
Pro— B P 4 P (146)
with the right-hand side terms corresponding to the London
field, proton flux tube field and magnetized neutron vortex
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line field, respectively. F}" is a large-scale quantity and is
the same when averaged i.e., (F}") = F}". The average of
the second and third terms on the right-hand side of
Eq. (146) can be identified with the second and third terms
on the right-hand side of Eq. (144) ie., (F}) = wh'/e,
(F')y =Y, Wi’ /(Y ,pe). The invertability of Eq. (140)
thus says that (F%) o N;®@; as expected. Note that
®, =Y,,®,/Y,, so (Fi) >0 when the entrainment
is zero (Y,
we enforce

pp>
= 0) as required. Finally, since (F%") o w4”,

(147)

that is, there is no electric field due to the flux tubes/
magnetized vortex lines in their respective rest frames.

After performing the averaging procedure on the meso-
scopic stress-energy tensor, we obtain the following aver-
aged mesoscopic stress-energy tensor

Tﬂb aniux ([\0 + anﬂ)C)gﬂ

(1 zv)p
+ Z<E FUFY >

_I_L <FM/7FL/ _lFUPFL g/w)

4

51;.56 P U l v
s (“’;W 2ot )
whwY

1
+ 2w (148

where ni and % are the macroscopic number currents and
conjugate momenta defined in terms of four-velocities in
Sec. III and A, only includes dependence on those macro-
scopic number currents. We have defined the energy per
unit length per flux tube/vortex line

2 1.12A,
Evp Ton
P 1672 A2 &,

mh? 0.0712 1.12A
o=im(xng) e (e) 0

(149)

q)Z
1672 A2

We ignore condensation energy in the &, ;, which is much
smaller than the other contributions. Since w%” « N, the
final two terms in Eq. (148) are proportional to the areal
density of vortex lines/flux tubes as expected.

Equation (148) is then matched to Eq. (51). The averaged
mesoscopic-macroscopic stress energy tensor matching
procedure is described in full detail in Appendix B 3.
The resulting Agypyy 1S

HY L
FL Fﬂ,,

16z

ZN Evsr

or in terms of the scalars Xy, X;, Y; and Z and using

Apmiv = (151)

4 av2, 4. 4y

F’FL =4x — X, —-Y,-—=LY;
" ) + rten, 2Y127P e " eY,, "
4an
Z, 152
+ ZY ( )
plus Eq. (142), (144), we can write
1 Y,
MV 4t dre?y
2X5 D; D;
- vzt — <—XX—Y>>.
g( Qe Y Azed; \ @, 7 7
(153)

The final term on the fourth line of Eq. (148) does not
have a corresponding term in the macroscopic effective
theory for reasons which we discuss in Appendix B 3,
and is thus not included in the averaged mesoscopic-
macroscopic stress energy tensor matching procedure.
We also exclude the final term in Eq. (148) from the
matching procedure, which is certainly legitimate in the
strong type-II limit where the kinetic energy associated
with flux tubes ~&,; is much larger than the flux tube/
vortex line magnetic field energy per unit length
®2/(3272A2). If this term is not removed, there would
be an inconsistency between (a) the Agy,y found by
comparing the terms proportional to the metric in Eq. (148)
to those in Eq. (51), and (b) the partial derivatives of Agy,y
found by comparing the rest of the terms in Eq. (148) and
Eq. (51). For consistency we also must ignore the derivative
of &, with respect to X; o A2, which is justified since

h? d,

since d, > £,. That some terms in either the averaged
mesoscopic stress-energy tensor or the partial derivatives
of Agy.v must be ignored to obtain a consistent Agy, v 1S
not unexpected, as there was no guarantee that an exact
macroscopic effective action could be found to reproduce
the averaged mesoscopic action and stress-energy tensor.
That this procedure works so well suggests that we could
simply use the averaging method as a motivation for an
effective theory, for which we would use Eq. (151) as the
macroscopic master function, and then use this to derive the
Macroscopic stress-energy tensor.

Equation (151) agrees with the vortex line-flux tube-
electromagnetic energy density obtained in [28-30],
including in the lack of terms coupling the London field
to the flux tube/magnetized vortex line fields. Such terms

h?
=—<&,;
88" v,

0,5

Vs %
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were eliminated in the references by the rotation energy
cancellation lemma. In our paper this lemma is used to
eliminate the London field—flux tube/magnetized vortex
line field cross terms that are proportional to the metric as
discussed Appendix B 2. However, this lemma requires
making additional approximations to those used in the rest
of the averaging procedure. First, the velocity differences
between the normal fluid and superconducting protons v’]-‘,
is negligible. Second, that v/; is negligible or there is zero
entrainment and hence no electromagnetic field associated
with neutron vortex lines. These conditions are true in
the fully pinned, lines comoving with superfluid case
uy, =uy , =uf as long as Eq. (147) is true, but are
not necessarily true otherwise.

As the final result of this section, we calculate K and
the 45", Using Eq. (153) and the argument in Eq. (154),
Egs. (132)—(134) gives

K = F, (155)
Eur 1
M o=——t W —— F, 156
PONG®R TP Age? (156)
g n Yn v
A = o . 4 Fi”. (157)

TN d22 T 2y
J\/ﬁCI>[-)e dre’Y,,

B. Magnetic H-field and Maxwell equations
in a neutron star

There is disagreement in the literature about what the
electromagnetic displacement field tensor H**, or equiv-
alently the magnetic H-field (and electric displacement
field D if we were concerned about electric fields) is inside
a superconducting neutron star core. One of the early
studies of neutron star MHD by Mendell [73] found
H = B. This result was contradicted by later studies, the
first of which appears to be Carter and Langlois [17], who
argued that H = By, where B, is the London field which
has approximate nonrelativistic, zero entrainment form
B, ~ —2m ,Q/e for proton mass m, and uniform stellar
rotation rate €. This result has been the standard since then
[24,28,29]. However, H = B; disagrees with the accepted
value for a type-II superconductor in the condensed matter
literature: in the nonrotating case it suggests H = 0, while
in the low flux tube density limit the standard electronic

superconductivity result is [74] H = H”, where H”, is the
first critical field for proton superconductivity. We clarify
this disagreement below, and further discuss its implica-
tions for the Maxwell equations inside a neutron star.
According to [75], the thermodynamic definition of the

magnetic H-field is

HT = 477:%

158
o8|, (158)

for internal energy density u, average magnetic field B,
entropy density s, and number density n;. The subscript T is
used to denote the thermodynamic definition. In our
formulation, the analog to the internal energy density is
the master function A, and the analog to the entropy and
number densities are the currents n%, including the entropy
current s#. This means that the electromagnetic displace-
ment tensor H*, whose components in the fluid rest frame
are the electric displacement field D and magnetic H-field,
is not equal to the electromagnetic auxiliary tensor defined
in Eq. (17), but is instead defined through the variation

OA
HW = -8
”aF/W n
o[ 0N A owyy
= —OT —
aF/U’ e owk X awl)jl/ " F aF/U/ nt
= K 4 4ﬂe/1’1f7”, (159)
where we use Eq. (18), (41), (45) in computing

Owyy/OF ,|,». H* can then be related to F** by defining
a magnetization-polarization tensor M** and writing

FH = "HM + 4z MM, (160)
This subtle distinction between ¥ (which has often been
called H") and H" as defined in Eq. (159), to be the
source of disagreement between neutron star MHD and
condensed matter superconductivity literature regarding the
magnetic H-field in a type-II proton superconducting
neutron star. Based on Eqgs. (155)-(156), H* is

HW = HY\ Wy (161)

where the first critical field for proton superconductivity is

5 4n&,
fl q)[_i . ’ (1 62)

and Wy =w} /(N ;®ye). Equation (161) agrees with
the standard condensed matter result in the strong
type-II limit.

The distinction between K* and H* as we define them
here has implications on the interpretation of the Maxwell
equations. The variation of the Lagrangian with respect to
A, in Sec. II B gives Eq. (47), which by Eq. (155) gives as
the sourced Maxwell equations

V,F" =4zj.. (163)
If the H-field is interpreted as the field whose curl is
proportional to the current density, this suggests that

H = B; and agrees with the Maxwell equations in
[17,24,28]. Using Eq. (145) and working in the zero
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temperature approximation such that nj =Y, ,u5 + Y, 15
[42], Eq. (163) then implies

e + nly — nly & 0ty + N30, (O ny — O n%)

~ (14 L72A7), (164)
where L is the hydrodynamic length scale ~10° cm. Since
A, ~107'2 cm, the right-hand side of Eq. (163) is very
close to n’g So to a very good approximation, jz = 0 inside
a neutron star core, a conclusion drawn by Jones [76] and
which is a consequence of the proton superconductivity.
We can thus interpret Eq. (163) as telling us how to
compute j. given F%”. We note that the source term on
the right-hand side of Eq. (163) may need to be augmented
by surface currents as in the original derivation of the
London field by London [77]; as in London’s original
derivation, the surface currents are actually currents in a
boundary layer whose thickness is of order A,.

We conclude our discussion on electromagnetism in the
presence of vortex lines and flux tubes by finding the
Lorentz force acting on the charged fluids. Using Eq. (47),
(53), (54), (159), the combined force acting on the charged
fluids x € {p, p,e,m} is

> fi=

X=p,p,e,m

> 204V i + 2Vl V 20

X=p,p,e,m

1
+ - Fu Y,

(165)

This can be clearly separated into three parts: the sum of the
relativistic Euler equation for each fluid, the flux tube self-
tension force where the electromagnetic field contribution
is subtracted from the vorticity tensor, and the Lorentz
force. The last of these has the standard relativistic form in a
magnetizable medium and reduces to (V x Hy) x B/4x
nonrelativistically.

As is suggested by our recovering the same Maxwell
equations as [17,24,28], the meaning of H is somewhat
subjective—we have discretion to choose between the field
which obeys the Maxwell equation Eq. (163), or (up to
proportionality constants) the free energy per length asso-
ciated with adding a flux tube. The first option is more
appropriate to electrodynamics problems e.g., “find H
given j,.” However, in this case the solution may also
involve surface current densities, as in London’s original
derivation of his eponymous field. The second option, the
H defined in Eq. (158), is more appropriate to (magneto)
hydrodynamics because the Lorentz force contains
(VxHy) x B/4z. Tt also corresponds more closely to
condensed matter literature where the systems are typically
nondynamical, but it is also consistent with the stress tensor
in Easson and Pethick [78], which does not refer to a
system in thermodynamic equilibrium and which leads to a
force equation [79]. Note that this “thermodynamic” field

H; has a curl that may be largely unrelated to the current
density. Given Hy as a function of density and B, we can
compute equilibrium models (e.g., axisymmetric) and their
perturbations (i.e., using Faraday’s Law to compute
changes in B and conservation laws to compute changes
in density for given displacement field). The third option,
H = B [73], only works if the curl of the magnetic field
due to the flux tubes/magnetized vortex lines is zero so that
it has no effect on the current.

VI. CONCLUSION

This article has extended the elegant convective varia-
tional principle first developed by Carter to a finite temper-
ature, fully general relativistic multifluid system including
neutron superfluidity and proton superconductivity that is
appropriate for use in studying the fluid dynamics of
neutron star cores. The hydrodynamics includes the proton
flux tubes and magnetized neutron vortex lines, with
mutual friction and vortex pinning incorporated cova-
riantly. Viscosity and heat conduction are also included
in the equations of the motion to further extend the scope of
the hydrodynamics. This is the first work to incorporate all
of these contributions to a relativistic, variational pro-
cedure-based hydrodynamics simultaneously, though we
note that there are other, equivalent relativistic formulations
based on the Landau—Khalatnikov hydrodynamics [23,24].
Our formulation has the practical advantage of using the
distinct fluid species as degrees of freedom, including
distinct currents for normal fluid and superfluid baryons
which were neglected in the zero temperature calculation of
[17]. One advantage of this choice is that it allows sources
of buoyancy among the different fluids to emerge naturally.

The averaging procedure used to determine the form
of the macroscopic action from the mesoscopic theory
allowed us to find an approximate effective macroscopic
theory, but not an exact term-by-term match. In particular,
we were forced to ignore certain terms in the averaged
mesoscopic stress-energy tensor, and to drop subdominant
terms in partial derivatives of the electromagnetism-
vorticity master function Agyy, to obtain a consistent
macroscopic effective theory. In principle, one could use the
averaged mesoscopic theory to perform calculations instead
of the effective macroscopic theory based on it. Like
previous attempts at obtaining vortex energy contributions
starting from a mesoscopic theory, we made use of the
rotation energy cancellation lemma to eliminate cross terms
between the large-scale (but measurably small) London field
and the magnetic field of the flux tubes and magnetized
vortex lines. We verified this lemma’s applicability to the
energy density, but found that the averaged mesoscopic
stress-energy tensor as a whole does not satisfy the lemma.

Based on the effective macroscopic theory found by
averaging the mesoscopic theory, we have clarified the
interpretation of the magnetic field in a type-II super-
conducting neutron star core. Using the thermodynamic
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definition of the H-field provided by Eq. (158), our result
matches that found in the condensed matter literature;
that is, in the low flux tube density limit, H is the first
critical field H . for proton superconductivity. The sourced
Maxwell equations found using the effective macroscopic
theory only involve the London field, which is why it has
previously, and alternatively, been identified with the
magnetic H-field in the MHD of [17,24,28]. We emphasize
that the MHD based on both of these options is
equivalent—the difference is a matter of how terms are
grouped together in the equations of motion. We are able to
combine the charged fluid equations of motions into a
single equation and show that the Lorentz force is the
relativistic analog of (V x H) x B /47, whereas in previous
versions of relativistic MHD the same forces would be

|

TH = (Maphy + Npphy + Moty + Nphty + Wy + 0o + ST ' + P + 2ulg?) + 2nksu v,

20504 + EICW)FU’) + Zﬂgf’w;,, + ;T’g

. B*
+2A”"n,’-§n;‘-,v,(f1”vyl—,) +—=—q'q" + B'(n})*v

T*

vhvy 4 BP (n},

distributed among different terms where such an identi-
fication would be obscured.
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APPENDIX A: ALTERNATIVE FORM OF
STRESS-ENERGY TENSOR

Starting from Eq. (112), insert the forms of n%, u, s* and
0, as given in Sec. IVA and wa as given by Eq. (126) to
obtain

v)

NS

v
+ 2np,ul7 ulky vy

B* v
= (Y- A)uw'v’ +Pg* + <F g'q" +2utg” > o KE, Y AW ZH‘

X=n,p

+ ([B"nzvy + APl nivs 4 2usu <"n,fﬂ);)) + ([BPnohy + AP Priuh]ni vty + 2uuns vp))

T*

The first term proportional to u#u” is found by rewriting P,
given by Eq. (113), as

Y=A+ nn/’tn + np/"p T Npe T My + Ny + Nppy
Zi’é

The similarity of this form of 7#¥ to that of a single perfect
fluid [44] is now evident; this form is effectively the same
as that for such a fluid, plus electromagnetism, vorticity and
viscosity, with differences depending on the relative motion
of heat and the superfluids separated out.

+ 5T —— q (A2)

APPENDIX B: FULL DETAILS OF MESOSCOPIC
STRESS-ENERGY TENSOR AND AVERAGING
PROCEDURE

We continue from the main text immediately following
the introduction of the mesoscopic Lagrangian and stress-
energy tensor Eq. (136). On the mesoscopic scale, currents
around vortex lines/flux tubes are represented within the
currents 7%, not by using the vorticity tensors w%” as is the
case in the macroscopic dynamics. We incorporate these
purely “mesoscale” currents 5v% by defining 7% as

Bs _ _ o
+ < q* + B'(ny)*v; + BP (n})* 03, + 2A" Pnyns o,

_>u”u”.

(A1)

==

fixy (803) (uf + 60%),

[t

x=a.p. (Bl)

where uf is defined as in Eq. (57). 74 satisfies the

normalization condition —7;7i} = ii2, since uksvy, =0 as
aresult of the approximation that the vortex lines/flux tubes
move with their respective superfluid. We enforce that the
Sv average to zero over scales larger than the typical cross
section of a vortex line/flux tube, and that any large-scale
average part of a relative velocity between the normal fluid
and superfluids is included in u%. 7i; is the number density
of species x¥ measured in the frame comoving with the total
current of that species, and it is related to the number
density ny in the frame of the bulk flow (the frame of u%) by

= ﬁx?’(‘S”% . (B2)

Note that the for the normal fluid species, 7ty = nk.

We first expand out the terms in Eq. (136), removing any
dependence on the vortex line/flux tube mesoscale currents
from the master function A and replace it with A,, which
represents only the internal energy of the fluid and the
kinetic energy of macroscopic currents. Following [30],
we write
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where the “0” subscript denotes the master function with
the 6v% removed, and where

25,2 - =
—nidvy, X =1n,p,

b) =2 -t = {

0, otherwise,

d(azy) = a3, — oz, = —Agig + ngng
n,n; VUL, X=1i,y=p,
n,nveSvl, X=1i,y=n,
n”nﬁvgév,’;’, xX=p,y=n,

B npn,—,v%évf;’, X=p,y=p,
nanp [y (v3) (v — 07)505
+y(v3)(vg = v3)d0;
—60,605), X=1i,y=p,
0, otherwise,
where u*6v;, = —v/6v;, was used. For the normal fluids, 7%

simply equals nk, since the normal fluid currents are
unchanged by the inclusion of the mesoscale currents.
We have kept only terms that are order Sv2 in the
mesoscopic-scale velocities.

The partial derivatives of A, in Eq. (B3) are identified
with the entrainment coefficients as defined in the macro-
scopic theory [Eq. (6)]. We use the physical arguments
presented at the end of Sec. III to reduce the number of
entrainment coefficients i.e., AW = A"’ = AP? = A"P.
Hence A(7i2,a2,) becomes

R(2&) = Ao+ %Bf’nﬁévﬁ + %Bﬁn[%&f-,
— AP [n,n; v360) + n,n;v56vs
+ nang (y (v3) (05 — v§) 505
+7(v3)(vf = v5)dv5 — 5v;605)]
— A" n,n;v585 — APPn,n, 0565 (B4)

It is also convenient to define a mesoscale superfluid
neutron canonical momentum covector

= By y p

on = B'n;évy, + AP n;é0), (B5)

which is simply the part of jj that depends on the

mesoscale velocities 51},’3. Note that, because the neutron

superfluid is not coupled to the electromagnetic field, we
could also have called 6z, simply &};. The definition of 67,

will simply some terms of the stress-energy tensor
immensely by canceling terms which couple 6v]; and 61),’;’ .

Combining these definitions and results with Eq. (72)
and Eq. (61a)—(62g), the mesoscopic stress-energy tensor
resulting from Eq. (B3) is

- 1 1
TH — Zn’;y; + ﬁﬁﬂg(‘)‘ﬂ% + Y—n%év’},év’},
X pp

2 v 14
+ pulsry) = 2en, Al 50"

1

~ 1
+ [Ao + Y g, ———o6nk — n2ov’
zx: Mo T oy, PO

1 ) _
- ﬁygﬁng + enl—,Afévf;] [rad

| A 1. .
+ o (FF - 4FFg) (B6)

where nk and u% are the number current and conjugate
momenta as defined in terms of the macroscopic currents in

Sec. III. We have used Eq. (61a)—(62g) plus the definition
of the London four-potential

1 Y nt
ALE——K/ff—i—ﬁptf)u +—”vfj] (B7)
! ¢ Py, ) Yy,

in writing 7* this way. The nonelectromagnetic part of this
stress-energy tensor has been separated into three parts:
those which only depend on large-scale flows, those which
depend on mixed large-scale—mesoscale flows, and those
which only depend on mesoscale flows. We now want to
make this separation for the electromagnetic part of 7,
and also to determine the form of the mesoscale super-
conducting proton velocity 50’;, and the mesoscale super-
fluid neutron canonical momentum 67),.

1. Mesoscopic treatment of vortex lines,
flux tubes and magnetic fields

We first calculate 5ﬂZ. In its rest frame, the canonical
3-momenta for a single quantized vortex line will have the
following form [28]

575} = % ew, (BS)
where @ and ¢ are the cylindrical radius and azimuthal
angle in a coordinate system in which the vortex line lies
along the z-axis. For a single vortex line labeled a, this is
expressed in covariant form as

i} n A
D T L o (B9)
X,
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where wg_a points radially outward from the vortex
line/flux tube and 7%, is the unit tangent vector to the
vortex line/flux tube. This form is also consistent with
Eq. (139)—(141) and the definition of wfw, since for a single
vortex line/flux tube in its rest frame we have [80]

Lx X,a h 2 %
MgV oy =50 (@5.0)1% 45

(B10)
where & (w,) is a two-dimensional delta function at the
position of the vortex line labeled “a”. So whenever 57:,’_}
appears in Eq. (B6), it is replaced with a sum of Eq. (B9)
over the line labels a and with utL,x = u? since we work in
the approximation that the vortex lines move with the
superfluid.

We next find the form of the electromagnetic tensor and
51}’;,. We use the splitting Eq. (146) for F#*. Along with the
split of F* in Eq. (146), we split the Maxwell equation
Eq. (138) into large-scale and mesoscale parts, with the
mesoscale proton current o év’;, sourcing the mesoscale

fields and the other parts of the current sourcing the large-
scale field (the London field). Using Eq. (56), (57), (B1)
and assuming local charge neutrality

V,F" = 4zenit;

505, V,,(F’;,” + ) = 4renySv),.

(B11)

We can also split the four-potential A , Into large-scale and
mesoscale contributions A,I; and 0A, = 5A5 + 8A), respec-
tively where f?fj,, = 2VLM5AZ_‘]. Then, defining a mesoscale

canonical momentum covector for the protons analogously
to Eq. (BS)
onf, = BPnydvf + AP npdvi + edA,,  (B12)

and combining it with Eq. (B5) to eliminate 51;;’, we obtain

1 _ s Y _
——n,8v)) + ebA, = onl) + "L ol
pp pp

(B13)

or, eliminating 6v}, with Eq. (B11) and using @, = h/(2e)
and ®; =Y,,®;/Y,, and A, = (4ne?Y )71/,

Z <VDF§” - AE&AQ) = thz Z%aﬁ;.

Equation (B13) is used to obtain the London equation for
proton flux tubes or magnetized neutron vortex lines. We
will assume that the magnetic fields due to the flux tubes
or magnetized vortex lines will have negligible overlap,
and so we can fix X to be either p or 77 and drop the other
contribution to Eq. (B14). As a consequence of Eq. (147)
with uﬁ’x = u,,, we have

(B14)

P = —e*u5Bj, (B15)
where 5ij is the magnetic field due to the flux tubes/vortex
lines measured in their rest frame. Then contracting with
PO uf;V,,, ignoring spatial curvature (which is a very good
approximation for microscopic structures like vortex lines
and flux tubes), assuming the flux tubes/vortex lines move
with their respective superfluid and using Eq. (B10), we
obtain

U

P
V25B; — i —pzf’;,afsz(wx,a)- (B16)

This is the London equation in the comoving frame,
whose solutions are the magnetic fields for flux tubes/
magnetized vortex lines. V? is the usual flat space
Laplacian, and A, is the London length. The right-hand
side of the equation is a sum over flux tubes/magnetized
vortex lines labeled by index a and represented as two-
dimensional delta functions. The solutions in the comov-
ing frame for single flux tubes/magnetized vortex lines
take the familiar form [30]
o DO:iKo(ws /A A

O0B%. =154 W = 0B o(wr4)lias  (B17)
where K, (x) is the modified Bessel function of the
second kind of order n and xj = &, /A,. Flux in the core
of the flux tubes/vortex lines, included in e.g., [30], is
ignored here.

Using Egs. (B15), (B17), the mesoscale electromagnetic
field tensors are

Fiu = _ZgﬂpaﬁugéBg,a' (BIS)
a

Hence we can replace 5UI;, in Eq. (B6) using the mesoscale
Maxwell equation Eq. (B11) with the gradient of Eq. (B18).

2. Averaging the mesoscopic stress-energy tensor

We now average the mesoscopic stress-energy tensor,
Eq. (B6). As noted before, the nonelectromagnetic part of
this equation consists of purely large-scale flow terms,
purely mesoscale flow terms, and mixed terms. Though 67,
does not average to zero, we will absorb any effect of the
large scale—small scale superfluid neutron momentum term
o« u%57%) or yugsaiig" in T into the purely small-scale
superfluid neutron momentum terms using a cutoff length.
We thus treat (67);) = 0 and so both of the aforementioned
terms vanish upon averaging. The purely large-scale flow
terms > nut + (Ag + >, nypt, )¢, do not change upon
averaging, and have exact matches in the macroscopic
stress-energy tensor as we will demonstrate in the next

section. We label the remaining terms AT
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~ 1 1 n3
AT = — |drbons — = onig™ | + -
B 2 Ypp
P E ) W P W g

+2F,,F +2an —|—2FW i

We now integrate Eq. (B19) over a surface of size ~£2,
then replace the quantities in the mesoscopic stress-energy
tensor with averaged quantities. First we consider

~ 1 1
W =—|onként — = omig”|.

Bn n n 2 (BZO)

on; is replaced by a sum over individual vortex lines. For
this purpose, we rewrite Eq. (BS8) as

h N
5”;,11 = D) (_ sin (pﬁ.aC/; a + cos (ph.aﬁ/; a) (BZI)
. . .

n,a

where ¢;; , is an azimuthal angle measured around a vortex
line labeled @ and &%, and %, are mutually orthogonal
unit vectors which are also orthogonal to both u; and 7 .
When integrating over a surface area ~7? in the plane
perpendicular to the average vortex line tangent vector
# = (1% ,), the sum over different vortex lines is replaced
with a multiplication by the areal density of vortex lines
N ;. We also replace the other vectors with their average
values over the area of integration (% = (C% ), its = (s ).
This means we only need to consider the integral for a
single vortex line, integrating radially from the coherence

length (since we are ignoring the core) to a cutoff
radius r$Ut:

(T’”’ B h2 /27; /rwl dw;
‘:’I

in2 . PHPV 2. sHay
X <sm @il + COS“ @il

NV
~ 2sin g cos ¢} - 59””)

hz cut
N (5 )(:mwnn 7). (B22)

The neutron vortex line cutoff radius r$" accounts for the
long-range nature of the vortex lines and incorporates the
effect of interactions between them. (7%) thus absorbs
the « oz;pu; terms in Eq. (B6) that we argued average to
zero earlier. Based on Tkachenko [81] and Sonin [82], we
expect r$" ~ 0.0712(£,N;)~!. Additionally we have

¢ = -t + S8 g+ (B23)

1 2 v (g, V) L v 1 v v
{50”61)_ 60}-,9/‘} —2eA} 61) + eAgov%g" +—[F””F + P Ey +F”pFL/,

) gﬂl’ 0P TP ~ 650 = =0p L, =0 1. - o
:| _E [Fﬁ/)ng + Fi‘/ FZ/’ + FL/)FGIJ + 2F[_J/)F6P + 2FﬁpF6p + 2Fp/ Fﬁ/’i| .

(B19)

[
SO we can write

oy TR (0.0712Y /) .
(1) = (e ) (s = ).

(B24)

Eq. (B24) has the general form of the stress-energy tensor
for a single string along 7; [83].
Next consider

{51/;,51;;, - %51}%@””} : (B25)
At this point, we neglect the interactions between different
flux tubes/vortex lines and consider only their self-energy
contributions. This allows us to simplify in our averaging
integral and again integrate only over a surface locally
perpendicular to the flux lines/vortex tubes, then multiply
by the relevant areal number density N';z. Using Eq. (B11),
(B15) and ignoring spatial curvature, we find an integral
very similar to Eq. (B22)

./\/ O /2;: /““ dwyw K3 (w3 /A,)
16;#/\4 . K ()P

X (Sinz(p;&-:a; + cos’ gt

(V) =

s 1
— 2sin 5 cos €0x€;(zﬂﬁx) - 29‘”)
N;®2 0.681A,
= Y o (M) @+ i - )

(B26)

where we use the definition of the London length and an

identical coordinate system as was used to compute (T’,‘,”)
We take the large cutoff radius r$" — oo limit and use the
approximation

Ko(x) K, (x3 1 %
<>)<>1 2[1n< >_o_3g4}, g<1.
X0

(B27)

Now we consider the electromagnetic field tensor terms
in the mesoscopic stress-energy tensor. As we have
previously discussed, the overlap between the magnetic
fields due to different flux tubes and magnetized vortex
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lines is negligibly small, and hence we neglect the F ,—,i? P
terms in Eq. (B19). The London field is the same before and
after averaging, and so the F? terms are unchanged by
averaging other than removing the tilde. We combine the
London field-vortex line/flux tube field cross terms in
Eq. (B19) with the terms depending on the London four-
potential to give

1 1
T s = Z<—2A”V Fr +2 FUpr

1 I
+—ALV FP g — —

i (B28)

Uﬂ FL g/tv)
where we use the second equation in Eq. (B11) to replace
51}’[-‘,. In taking the average of this term, we approximate that
the relative velocities v%; are small so v ~ u#, and we work
in the common rest frame of the fluids. We also assume that
the lines can be regarded as straight to lowest order.
First consider the first term on the right-hand side of
Eq. (B28). Our treatment is similar to that of Baym and
Chandler [58] for the terms in the energy per unit length
|

1 L 1 iy P v

N;®:K(n

coupling large-scale rotation and the flow around super-
fluid vortex lines. From Eq. (B7), we approximate A to be

(B29)

where K(n,) is a function of the number densities and can
be approximated as constant over length scales #. To lowest
order u is pure rotation, so

ut =8 + 8lel, QFrm (B30)
for radial position and rotational velocity three-vectors r™
and Q. Ignoring electric fields associated with the vortex
lines/flux tubes, the only nonzero components of the first
two terms of Eq. (B28) will be the spatial components
p.v =i, j, since §,V,F will average to zero. Expanding
M=ry+ w+ (&7 cos s + ﬁj? sin (px) near a vortex line/
flux tube of species X, where § and g’ are the three-vector
versions of the spacelike four-vectors £+ and 2’;, we again

perform the averaging integral for a single line and then
multiply by the number density N:

. 2r n
= AR e, 0 A do(E7 cos s + 72 sin )

8m2A3

. e
X (sin 3% — cos st ) / dw;ws
5«\

N;®:K (n,)

e (LY

4

k~m

where we use 7 = e} % and again approximate x§ < 1,

1 ~ N ®:K (n,
Ly ) o N ()
2w 4

Ignoring electric fields,
so using F{* = F{*

~ N)‘CCI)XK( Ny
= 2

SO

1
<2”F£C/,FL)’> <AL”VF >

only the spatial components u,v =1,
~ 2K (n,)e/Q'5/8% and FE' =Y, €/ 6B% 864, we find

x.a%i%j>

1 y ./\/q)K(nx) ; ; et
<4 Fz,,Fﬂ> M e vty [ do: /5

) (g — vyt

K, (w:/A,)
xp K (xg)
— SIQNT) IS, (B31)
M 0. So
85% x ((1Q) + HQT) — 267QH). (B32)

j of the second term in Eq. (B28) survive,

Kl(xx) 1%

(B33)

(B34)

The first two terms in Eq. (B28) thus partially cancel each other upon averaging under these approximations. The remaining
terms in Eq. (B28), those proportional to g, entirely cancel each other, which is demonstrated by taking the trace of
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Eq. (B34). That these remaining two terms cancel is
consistent with the rotation energy cancellation lemma
applied in [28-30], since nonrelativistically the energy
density is simply the coefficient of the metric in the stress-
energy tensor. However, we do not find that there is a
tensorial version of the rotation energy cancellation lemma
that eliminates all such cross terms from (7#*). Addition-
ally, higher order (in velocity over ¢) corrections to the
energy density will appear due to contractions between the
four-velocity of the reference frame in which the energy
density is measured and the noncanceled part of the first
two terms in Eq. (B28).
The final terms to average in AT are
=ap 1

= B35
B.x 47[ ( )

1
|:FMPF1/ _ UPF.;C_ g;u/:|

Using Eq. (B15) and again ignoring interactions between
different flux tubes and vortex lines, we can compute the

average of T%"

/2” /“‘“ dww K3 (w3 /A,)
16713/\4 . [XCK ()]

x (u’;u; +5 9" —?ﬁ-l‘?z)
Z16 2A2( it g;w tﬂ’_‘t?‘)’

where we used the approximation K3(x%)/K3(x}) ~0
for xj < 1.

Using Egs. (140), (141), (B23) we can rewrite the
following contractions of tensors as

analogously to Eqgs. (B22), (B26), giving

(Thz) =

(B36)

wi'wE, = (¢ + k) WEW5 — WiWs
= (qu)pe)z[gw + uful — %%’J
= (N5@pe)? (8585 + ). (B38)

ONgmty
ATW = Agyyg" — —— FprL,) |2

X,

Replacing terms in Eq. (B19) with their respective averages
and using Eq. (B38), we finally obtain

- S+ (Aot anux) g
+ Z< FyF >

1 1
Fﬂ/’Fv __ FO'PFL v
+ s < 1 od" >

EL)_C 1 v
+ZN( o7 <W” wxp—iw wgpg”>

|
p
+Z32n2/\/ Az (B39)

which is Eq. (148) in the main text, and where the £, ; are
defined in Egs. (149)—(150).

3. Matching to the macroscopic stress-energy tensor

We now match the macroscopic stress-energy tensor as
found in Eq. (51) with the averaged mesoscopic stress-
energy tensor Eq. (B39). To begin, expanding out the
>, nhu; terms using the definitions of the currents and
conjugate momenta from Sec. III. This gives

T =k +
X
+ <A + anﬂx) .
X

1
E JCHe FV/, + Z i;pw,%p

(B40)

The macroscopic current terms in Eq. (B40) and Eq. (B39)
match, so we now focus on matching the remaining terms.

We postulate the Lorentz-invariant form of the macro-
scopic master function A as in Eq. (131) and identify
Ay = Ay. Using Eq. (131)—(134) in Eq. (B40) and then
substituting F** using Eq. (144) gives

3 [ Yi, OApmiv 2., OApysy +6AEM+V] WP

y2, 9Xp  eY,, 0Y;

1 a/\EMJrV 8AEM+V
2 |:e 8XF + 8Y

F/)(ﬂ v) +2

an a/\EM+\/

1 OApmyv | 20Apmiv | OApmyy WPl
X, e ov, « ox, |"7"w
(:)X n n/)
Y,p ONemev | ONemv | o )
) + e
Ve T ey, oxp | o,
10Agm1v

2|: an aAEMJrV

e’Y,, 0Xp ey,

oy,

5 Wi (B41)

aAEM+V (u. v)
e 0Y; 0z w5
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where AT* is defined to only include those terms in the
macroscopic stress-energy tensor which do not have an
exact matching term in the mesoscopic stress-energy
tensor, but including all of the electromagnetic terms.
We can now match terms by comparing Eq. (B41) to
(AT*) [the last four lines of Eq. (B39)]. We first note that

since the (F %’,Fi)p )/4x terms in Eq. (B39) do not have a
corresponding term proportional to the metric (such a term
having been eliminated by the rotation energy cancellation
lemma), there is no way to incorporate such a term into the
macroscopic effective theory. If we try to include this term
in the theory, say by matching to the third line of Eq. (B41)
using (FULF) = @y /(e®,)wl FY”, we will find that the
partial derivatives of Agy,y will be inconsistent with the
definition of Agy, v found by matching the terms propor-
tional to ¢". We thus exclude these terms from the
matching procedure and from the resulting macroscopic
effective theory. For this reason, a reader might choose to
use the averaged mesoscopic theory rather than the effec-
tive theory for dynamical calculations, though the terms
missing from the macroscopic theory are relatively unim-
portant for dynamics.

Matching the London magnetic field squared terms
requires

ONevyy 1

e et (B42)

Matching to the London field—flux tube/vortex line field
cross terms, which are all zero in the averaged mesoscopic
theory after dropping the (F ;’;F?” )/4n term, and using

Eq. (B42), we require

aAEMJrV _ L 8AEMJrV o an
Y, dre’ Y5

= . B43
dreY,, ( )

The flux tube/vortex line cross term in Eq. (B41) are zero as
a result of our ignoring their interactions in the averaged
mesoscopic theory. In accordance with Egs. (B42)—-(B43),
this requires

a/\EMJrV _ _ an
9z 4re’Y,,

(B44)

Matching to terms proportional to wh’w%, gives

OMpuev 1 1 £ 4 2
X,  dme® No(@pe)? \ "7 322°A2)°

(B45)

A Yo, [ 1 1 P2
= 3 7t 2\ Evat o )|
oX; Y2, [4me® " Ny (@ge) 32722
(B46)

Matching terms proportional to ¢ gives the same
Agm.v as Eq. (151). Rewriting this in terms of the scalars
Xr, X3, Y5, Z and taking the partial derivatives of Agyyv
with respect to each scalar, we obtain the same results as in
Egs. (B42)—(B44). However, we do not completely recover
Egs. (B45)—(B46) and miss additional vortex line/flux tube
magnetic field energy contributions o ®2/(327°A2) (in
fact, one-half the magnetic field energy per unit length).
In the strong type-II superconductivity limit, the missing
terms would be irrelevant and so both ways to find Agy, v
would be consistent. We drop them regardless of the
physical limit, which is equivalent to dropping the last
line in Eq. (B39). We also gain an extra term in Eq. (B46)
because of the Nz-dependence of the vortex line energy
cutoff radius in £, ;. This contribution is argued to be small
in Eq. (154).

That we cannot obtain a completely consistent macro-
scopic master function and stress-energy tensor from
averaging the mesoscopic theory is not entirely surprising,
as we had no reason to believe this was possible before we
began. We can at least have an approximate effective
macroscopic theory by using the Agyy, v found by matching
terms proportional to ¢** between the averaged mesoscopic
and macroscopic theories and then ignoring terms in
the stress-energy tensor inconsistent with this—fortunately
there are only three such terms, and in the strong type-II
superconductivity limit and for d,>¢&, only the

<F§’;Fi)p>/47t term is not negligible.
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