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We develop a relativistic multifluid dynamics appropriate for describing neutron star cores at finite
temperatures based on Carter’s convective variational procedure. The model includes seven fluids,
accounting for both normal and superfluid/superconducting neutrons and protons, leptons (electrons and
muons) and entropy. The formulation is compared to the nonvariational relativistic multifluid hydro-
dynamics of Gusakov and collaborators and shown to be equivalent. Vortex lines and flux tubes, mutual
friction, vortex pinning, heat conduction and viscosity are incorporated into the model in steps after the
basic hydrodynamics is described. The multifluid system is then considered at the mesoscopic scale where
the currents around individual vortex lines and flux tubes are important, and this mesoscopic theory is
averaged to determine the detailed vortex line/flux tube contributions to the macroscopic “effective” theory.
This matching procedure is partially successful, though obtaining full agreement between the averaged
mesoscopic and macroscopic effective theory requires discarding subdominant terms. The matching
procedure allow us to interpret the magnetic H-field inside a neutron star in a way that is consistent with
condensed matter physics literature, and to clarify the difference between this interpretation and that in
previous astrophysical works.
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I. INTRODUCTION

Neutron stars are fundamentally relativistic objects, so it
is necessary to have a relativistic hydrodynamic formalism
to accurately model their internal dynamics. As it is
believed that neutron star cores can consist of both super-
fluid neutrons and superconducting protons [1–6], this
formalism needs to incorporate multiple separately moving
fluids. An ideal formalism will also incorporate effects such
as superfluid–normal fluid phase transitions, superfluid
neutron vortex lines, type-II superconducting proton flux
tubes and dissipation. Vortex lines/flux tubes can affect the
fluid dynamics through mutual friction due to scattering
between vortex lines and normal fluid particles, most
importantly leptons, and pinning between neutron and
proton vortex lines. These effects may be important in
determining the oscillation modes of neutron stars that
could be excited during binary inspiral [7,8], and in
explaining pulsar glitches [9–12].
In this paper we develop a fully general relativistic

formulation of finite temperature, multifluid hydrodynam-
ics appropriate for neutron star cores. We consider a core
consisting of four particle species: neutrons, protons,
electrons and muons. The neutrons and protons exist in
both superfluid/superconducting and normal phases, whose
relative motions are dynamically connected through super-
fluid entrainment. Our approach has a few advantages

compared to previous formulations of relativistic multifluid
dynamics applied to neutron stars. We follow the con-
vective variational approach originated by Taub [13] and
later elaborated by Carter and collaborators [14–17],
making only limited assumptions about the dependence
of the master function (Lagrangian) on Lorentz-invariant
combinations of vectors and tensors. We thus retain the full
symmetry of the variational procedure while being con-
nected, through strategic rearrangement of terms, to rela-
tivistic formulations of the Landau [18] (see also [19]) and
Khalatnikov [20] superfluid hydrodynamics based on Son’s
[21] hybrid multifluid hydrodynamics, most notably that
of Gusakov and collaborators [22–24]. This formulation
has been applied in numerous publications e.g., [25,26].
We improve on the most similar existing works on the
subject which use Carter-style variational procedures, by
Andersson et al. [27] and Glampedakis et al. [28], through
the inclusion of finite temperature effects, relativity and
quantized vortex lines/flux tubes, one or more of which is
absent from each of the two references. We carefully treat
how flux tubes and magnetized vortex lines change the
electromagnetic fields and the Maxwell equations and
compare to previous versions [17,24,28–30] of relativistic
and nonrelativistic superfluid-superconducting neutron star
magnetohydrodynamics (MHD). We also account for
causal heat conduction, not assuming thermal excitations
move with entropy as does [27]. A final distinction between
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ours and previous versions of relativistic multifluid hydro-
dynamics is an explicit separation between the normal and
superfluid degrees of freedom as separate current densities.
We find this separation more physically intuitive than the
Son hybrid multifluid hydrodynamics formulation.
In the first two sections, we describe the master function

and the variational procedure used to determine the stress-
energy tensor and equations of motion for the relativistic,
finite temperature multifluid system, making as few
assumptions about the dynamics as possible. We then
connect our dynamics to those of Gusakov [22] and
collaborators, showing that the two formulations are
similar, though ours is derivable from a variational prin-
ciple. Forces between the fluids and vortex lines/flux tubes
in the form of mutual friction and vortex pinning, viscosity,
and conduction are then added, using the second law of
thermodynamics to determine their form following Carter
[15]. We conclude by determining the form of the electro-
magnetic auxiliary field and vortex self-tension tensors,
which are conjugate to the electromagnetic field tensor Fμν

and vorticity tensors respectively, by considering a sim-
plified model of the multifluid hydrodynamics at the
“mesoscopic” scale where currents around individual
vortex lines and flux tubes are considered. The mesoscopic
theory is then averaged to determine an effective macro-
scopic theory, with most of the details of this procedure
relegated to an Appendix. We are successful in averaging
the mesoscopic theory, but only find an approximate match
to the effective macroscopic theory. We conclude by using
the results of the averaged mesoscopic-to-macroscopic
matching procedure to resolve some disagreements about
the interpretation of the magnetic H-field in a rotating
superfluid–superconducting neutron star and also clarify
the form of the Maxwell equations and Lorentz force acting
on the charged fluids in neutron star MHD. An alternate
form of the relativistic stress-energy tensor is included in an
Appendix. c ¼ G ¼ 1 units and the ð−;þ;þ;þÞ metric
convention are used throughout.

II. CONVECTIVE VARIATIONAL PROCEDURE

Starting with a Lagrangian density describing the finite
temperature multifluid in a neutron star core, we employ the
convective variational procedure [14–17] to compute the
relevant equations of motion. There has been recent interest
in this formulation [31,32] for application to problems
involving neutron star asteroseismology, pulsar glitches
and gravitational waves from binary neutron stars.
Compared to other fluid variational methods [13,33], with
the convective variational procedure we can transparently
include additional forces between the fluids that are not
obviously incorporated directly via a variational method. An
additional advantage which we exploit is the ability to
include viscosity using a convective variational-type method.
In the first subsection, we describe our Lagrangian

density and define the dynamical variables, adding in steps

the fluid number currents, electromagnetism and vorticity.
In the second subsection we introduce the Lagrangian
displacement fields employed in the convective variational
procedure and derive the equations of motion.

A. Lagrangian and its variation

Consider a multifluid neutron star core consisting of
neutrons (n), protons (p), electrons (e), muons (m) and
entropy (s). The neutrons and protons will have both
superfluid/superconducting and normal fluid excitation
components, with the former being distinguished using
an overline (n̄; p̄). The notation x̄ refers to either superfluid
species. There exists a four-current nμx, x ∈ fn; p; e; m; n̄;
p̄; sg, for each species/quantity. x ¼ s is the entropy four-
current sμ, which will later be related to the four-currents of
the entropy-carrying normal fluids. In principal each
normal fluid could have its own corresponding entropy
current, but as we will later restrict the normal fluids to
move together, we introduce only a single entropy current
here. The following Lorentz-invariant scalars can be con-
structed by contracting the four-currents:

n2x ¼ −nμxnxμ; α2xy ¼ −nμxnyμ ¼ α2yx; ð1Þ

where y ∈ fn; p; e;m; n̄; p̄; sg ≠ x. α2xy is equivalent to the
product of the Lorentz factor for the relative motion
between fluids x and y and the two number densities nx
and ny as measured in the respective fluids’ rest frames, as
will be clear from the definition of nμx given in Eq. (57). αxy
with y ≠ s will be responsible for superfluid entrainment,
while the αxs are “entropy entrainment” terms representing
heat convection by the particle currents. The αxs will later
allow for heat conduction independent of the particle
currents. There will be 10 nonzero αxy (αnp, αnn̄, αnp̄,
αpn̄, αpp̄, αn̄ p̄, αsn, αsp, αse, αsm). The superfluids do not
carry entropy, so αsn̄ ¼ αsp̄ ¼ 0. The exclusion of entropy
entrainment results in instabilities and causality violation
[34,35], and we discuss the effects of heat conduction on
the entropy current in Sec. IVA.
The Lagrangian density will be a function of dynamical

variables nμx, the electromagnetic field tensor Aμ, and
vorticity tensors wx̄

μν associated with the vortex line/flux
tube arrays for each superfluid species. We can split the
Lagrangian density into a master function Λ, interaction
terms and spacetime curvature terms. Λ includes the
thermodynamic internal energy density of the fluid, the
electromagnetic field energy and the vortex line/flux tube
energy, and is a function of Lorentz invariant scalars. To
begin, we consider only the dependence of this master
function on the number currents and the metric:

Λ ¼ Λðn2x;α2xy; gμνÞ; ð2Þ

where all x and distinct combinations of x and y are
implicitly included. Varying this Λ gives
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δΛ ¼ ∂Λ
∂n2x δn

2
x þ

∂Λ
∂α2xy δα

2
xy þ

∂Λ
∂gμν δgμν: ð3Þ

The variations with respect to the four-currents can be
rewritten in terms of the number and entropy four-currents
using

∂Λ
∂n2x δn

2
x ¼

�
−2

∂Λ
∂n2x n

x
μ

�
δnμx; ð4Þ

∂Λ
∂α2xy δα

2
xy ¼

�
−

∂Λ
∂α2xy n

x
μ

�
δnμy þ

�
−

∂Λ
∂α2xy n

y
μ

�
δnμx; ð5Þ

where we adopt the convention of [14,27,36], among
others, in defining

Bx ≡ −2
∂Λ
∂n2x ; Axy ¼ Ayx ≡ −

∂Λ
∂α2xy : ð6Þ

There will be 7 Bx, one for each particle current plus
the entropy current, and 10 Axy corresponding to each
nonzero αxy. Using Eq. (6) and noting which Axy are zero,
we can define the conjugate dynamical momenta or
generalized chemical potential four-vectors

μxμ ¼ Bxnxμ þ
X
y≠x

Axynyμ þ Asxsμ; ð7Þ

where x; y ∈ fn; p; e;m; n̄; p̄g, and a conjugate “thermal
momentum”

Θμ ¼ μsμ ¼ Bssμ þ
X
x

Asxnxμ; ð8Þ

where x∈fn;p;e;mg. To determine ∂Λ=∂gμν ¼ ∂Λ=∂gνμ,
following Carter [15], the variations in Eq. (3) are specified
by their Lie derivative £ξ with respect to a single infini-
tesimal displacement field ξρ which acts on the background
manifold. This displacement field is not the same as the
displacement fields which specify the motion of the
individual fluids and which are introduced in Sec. II B.
For the purposes of determining ∂Λ=∂gμν, we use

δΛ ¼ £ξΛ ¼ ξρ∇ρΛ; ð9aÞ

δnμx ¼ £ξn
μ
x ¼ ξρ∇ρn

μ
x − nρx∇ρξ

μ; ð9bÞ

δgμν ¼ £ξgμν ¼ ∇μξν þ∇νξμ ¼ 2∇ðμξνÞ; ð9cÞ

which, inserted into Eq. (3), give the following relation

�X
x

μxν∇μnνx −∇μΛ
�
ξμ ¼

�X
x

μμxnνx − 2
∂Λ
∂gμν

�
∇μξν:

ð10Þ

Since this must be true for arbitrary ξμ and ∇μξν, both sides
of this must be zero independently, giving

∇μΛ ¼
X
x

μxν∇μnνx; ð11Þ

∂Λ
∂gμν ¼

1

2

X
x

μμxnνx: ð12Þ

Inserting the second of these into Eq. (3) and using the
definitions of the conjugate momenta, δΛ becomes

δΛ ¼
X
x

μxμδn
μ
x þ 1

2

X
x

nμxμνxδgμν: ð13Þ

As written, the extremization of the action with respect to
each current density would require the conjugate momen-
tum to be zero. This is of course too restrictive, and the
correct variation of the current densities in terms of
Lagrangian displacement fields is introduced in Sec. II B.
To include electromagnetism, we allow the master

function to depend on the electromagnetic field tensor
Fμν ¼ 2∇½μAν� through a contraction with another anti-
symmetric rank-two tensor. The electromagnetic four-
potential Aμ is minimally coupled to the total charge current

LEMcoup: ¼ jμeAμ; ð14Þ

where the charge current is

jμe ¼
X
x

qxn
μ
x; ð15Þ

for x including all species/quantities with qp ¼ qp̄ ¼ e,
qe ¼ qm ¼ −e, qn ¼ qn̄ ¼ qs ¼ 0. The variation of the
action thus contains additional terms

δðΛEM þ LEMcoup:Þ ¼ −
1

8π
KμνδFμν þ jμeδAμ þ Aμδj

μ
e

ð16Þ

where we have defined the (antisymmetric) electromag-
netic auxiliary tensor

Kμν ¼ −8π
∂Λ
∂Fμν

����
nμx;wx̄

μν

: ð17Þ

This tensor has been defined as the electromagnetic
displacement tensor Hμν in previous works [17], but for
reasons explained in Sec. V, we reserve this notation and
nomenclature for a different quantity. We have explicitly
denoted that all number currents nμx and vorticity tensors
wx̄
μν are held fixed during this variation.
In a rotating superfluid-superconducting neutron star,

there will be quantized neutron vortex lines. If the proton
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superconductivity is type-II in some or all regions of the
core, there will also be quantized flux tubes in those
regions. These are incorporated into the variational for-
malism by adding terms coupling the superfluid currents to
the vorticity and allowing Λ to depend on the vorticity
tensors wx̄

μν, x̄ ∈ fn̄; p̄g. This method was developed in
[16,17,37], though we take a somewhat different approach.
We first rewrite the vorticity tensor in terms of a lattice

field X x̄
μ

wx̄
μν ¼ 2∇½μX x̄

ν�: ð18Þ

X x̄
μ will be dynamically identified with the canonical

momentum four-vector πx̄μ. wx̄
μν can also be expressed in

terms of two lattice scalars χax̄ , a ∈ f1; 2g

wx̄
μν ¼ 2∇½μχ1x̄∇ν�χ2x̄: ð19Þ

The gradients of χax̄ define a plane that is locally orthogonal
to the vortex lines/flux tubes. We choose for a current-
vorticity coupling

Lv coup: ¼ −
X
x̄

nμx̄X
x̄
μ: ð20Þ

The variation of the action will thus contain the additional
vorticity terms

δðΛv þ Lv coup:Þ ¼ −
X
x̄

�
1

2
λμνx̄ δwx̄

μν þ X x̄
μδn

μ
x̄ þ nμx̄δX

x̄
μ

�
;

ð21Þ

where we have defined the vortex line/flux tube self-tension
[17] tensor

λμνx̄ ≡ −2
∂Λ
∂wx̄

μν

����
nμx;Fμν

: ð22Þ

The generalization of Eq. (10) to incorporate electro-
magnetism and vorticity modifies Eq. (11)–(12) into

∇μΛ ¼
X
x

μxν∇μnνx −
1

8π
Kρν∇μFρν −

1

2

X
x̄

λρνx̄ ∇μwx̄
ρν;

ð23Þ

∂Λ
∂gμν ¼

1

2

�X
x

μμxnνx þ
1

4π
KμρFν

ρ þ
X
x̄

λμρx̄ wν
x̄ρ

�
: ð24Þ

This was found using as the variation for rank two tensors
Yμν ¼ Fμν; wx̄

μν

δYμν ¼ £ξYμν ¼ ξρ∇ρYμν þ Yμρ∇νξ
ρ þ Yρν∇μξ

ρ: ð25Þ

The minimal coupling terms between the currents and both
electromagnetic field and vorticity are not part of Λ and
hence do not contribute to Eqs. (23)–(24).
We incorporate general relativity by including the

Einstein–Hilbert term in the action, which corresponds
to adding the following term to the Lagrangian

LEH ¼ 1

16π
R; ð26Þ

for Ricci scalar R, which adds the expected additional terms
to the variation of the action

δLEH ¼ −
1

16π

�
Rμν −

1

2
Rgμν

�
δgμν; ð27Þ

where Rμν is the Ricci tensor. To account for the Jacobian in
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Λ; ð28Þ

for metric determinant g, we add a term 1
2
Λgμνδgμν to the

variation of L. We thus end up with

δL ¼ δΛþ δLv coup: þ δLEMcoup: þ δLEH þ 1

2
Λgμνδgμν;

ð29Þ

where Λ includes ΛEM and Λv.

B. Deriving the equations of motion

We review the convective variational procedure of Carter
[14], which is further developed and expounded in later
papers [15,17,36]. The main result of interest is the
variation of the number four-current nμx, given by

δnμx ¼ ξσx∇σn
μ
x − nσx∇σξ

μ
x þ nμx∇σξ

σ
x −

1

2
nμxgσρδgσρ; ð30Þ

where ξμx is the Lagrangian infinitesimal displacement field
specifying the variation of the four-current of species x.
This expression differs from the Lie derivative of nμx by the
inclusion of the effects of gravitational perturbations. We
use the sign convention of Carter and Langlois [17], which
differs by ξμ → −ξμ compared to the expected nonrelativ-
istic limit and other references such as Andersson and
Comer [36]. This is derived by first starting with a dual to
the number current (omitting species labels)

�nμνσ ¼ εμνσρnρ ð31Þ

where εμνσρ is the Levi-Civita tensor. This three-form can
be specified by the derivatives of three scalars N1, N2, N3,
which label the coordinates of a particular fluid element in
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“matter space” and which are the same for all time. These
coordinates can be pushed forward to give the coordinates
of the fluid element at any time slice. So �nμνσ can be
written as

�nμνσ ¼ −fðN1; N2; N3Þ123∇μN1∇νN2∇σN3; ð32Þ

where fðN1; N2; N3Þ123 is antisymmetric in the scalar
indices 1, 2, 3. The variations of the scalars can be
expressed in terms of an infinitesimal displacement field

δNa ¼ ξρ∇ρNa; ð33Þ

and so Eq. (30) can be found by taking the variation of
Eq. (32) and using Eq. (31) and

δεμνσρ ¼
1

2
εμνσρgληδgλη: ð34Þ

Note that the form of �nμνσ as given by Eq. (32) is closed

∇½λð�nμνσ�Þ ¼ 0; ð35Þ

which automatically means that nμ is conserved through
Eq. (31). We thus assume separate conservation of each
current ∇μn

μ
x ¼ 0 in the rest of this paper for those currents

where the variation Eq. (30) is used. Implicit in this is the
assumption that the rate of interconversion between particle
species is much slower than the dynamical timescales of
interest, which is certainly true for weak interactions in cold
neutron stars, but not necessarily true for the formation or
breaking of Cooper pairs of neutrons or protons.
The vorticity tensor wx̄

μν can be specified in a similar way
to the dual number current �nμνσ , except now only with two
lattice scalars χ1x̄ and χ2x̄. The variation for these scalars is
simply their Lie derivative with respect to ξμx̄:

δχax̄ ¼ ξμx̄∇μχ
a
x̄ ; a ∈ f1; 2g; ð36Þ

where ξμx̄ are Lagrangian displacement fields describing the
spacetime motion of the vortex line/flux tube array asso-
ciated with the superfluid of species x̄. The vortex line/flux
tube arrays do not in general move along with the relevant
superfluid species. We have assumed here that the same
infinitesimal displacement field describes the variations of
both χ1x̄ and χ2x̄. Since it is these lattice scalars that are the
freely varying quantities relating to the vorticity [37], we
must write the variations of the vorticity tensor and lattice
field in terms of δχax̄ and hence ξμx̄. Equation (36) gives the
variation of the vorticity tensor to be

δwx̄
μν ¼ −2∇½μðwx̄

ν�ρξ
ρ
x̄Þ: ð37Þ

However, the perturbation of Eq. (18) gives

δwx̄
μν ¼ 2∇½μδX x̄

ν�; ð38Þ

so by comparison to Eq. (37) we have

δX x̄
μ ¼ −wx̄

μνξ
ν
x̄ þ∇μδϕx̄ ð39Þ

for a scalar δϕx̄ that can be thought of as a gauge field. If we
postulate the form X x̄

μ ¼ χ1x̄∇μχ
2
x̄ based on Eqs. (18)–(19),

then we find δϕx̄ ¼ ξνx̄X
x̄
ν. Note that X x̄

μ itself is not
determined uniquely, but only up to a physical unimportant
gradient of a scalar which we set to zero here.
Combining these Lagrangian variations plus δFμν ¼

2∇½μδAν� and inserting into Eq. (29), we obtain

δL ¼
X
x≠x̄

πxμδn
μ
x þ

�
jμe −

1

4π
∇νKμν

�
δAμ

−
X
x̄

�
1

2
λμνx̄ δwx̄

μν þ ðX x̄
μ − πx̄μÞδnμx̄ þ nμx̄δX

x̄
μ

�

þ 1

2

�X
x

nμxμxσgσν þ
1

4π
KμρFν

ρ þ
X
x̄

λμρx̄ wν
x̄ρ

−
1

8π
Rμν þ

�
Λþ 1

16π
R

�
gμν

�
δgμν ð40Þ

where we have defined the gauge-dependent canonical
momentum covectors

πxμ ≡ μxμ þ qxAμ: ð41Þ

For the normal fluids, we use Eq. (30) to constrain the
current variations, implying that the first term in Eq. (40)
becomes

πxμξ
σ
x∇σn

μ
x − πxμnσx∇σξ

μ
x þ πxμn

μ
x∇σξ

σ
x −

1

2
πxμn

μ
xgσρδgσρ

¼ 2ξμxnσx∇½σπxμ� þ ξμxπxμ∇σnσx −
1

2
πxμn

μ
xgσρδgσρ ð42Þ

where we integrated by parts and dropped total derivative
terms. Use of Eq. (30) is unnecessary for the superfluid
components, since the variation of the superfluid number
currents is already constrained. However, this means we
must enforce conservation of the separate superfluid
current densities in a different manner. A simple way to
do this is by adding a Schutz-type [33] term for each
superfluid to the Lagrangian:

LS ¼ −
X
x̄

nμx̄∇μφx̄; ð43Þ

where φx̄ is a scalar phase. Taking the variation of this and
setting the coefficient of δφx̄ equal to zero gives, after an
integration by parts, ∇μn

μ
x̄ ¼ 0. The variation with respect

to nμx̄ adds the additional term
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−
X
x̄

δnμx̄∇μφx̄ ð44Þ

to Eq. (40). Setting the coefficient of δnμx̄ equal to zero now
gives

πx̄μ ¼ ∇μφx̄ þ X x̄
μ ð45Þ

which correctly gives us as the vorticity tensor the covariant
curl of the canonical momentum covector. ∇μφx̄ will not
contribute to the vorticity, and can thus safely be set to zero.
Microscopically, πx̄μ is the gradient of a potential for
superfluid neutrons and the gradient of a potential plus
eAμ for superconducting protons. This equation represents
a macroscopic average. Using Eq. (37) and (39), the third
and fifth terms in Eq. (40) become

−
1

2
λμνx̄ δwx̄

μν − nμx̄δX
x̄
μ

¼ λμνx̄ ∇½μðwν�ρξ
ρ
x̄Þ þ nμx̄w

x̄
μνξ

ν
x̄ − nμx̄∇μðξνx̄X x̄

μÞ
¼ ξμx̄½wx̄

ρμðnρx̄ þ∇νλ
ρν
x̄ Þ þ πx̄μ∇νnνx̄�; ð46Þ

where we integrated by parts, dropping total derivative
terms, and used Eq. (45) in the last line.
Returning to Eq. (40), δL=δAμ ¼ 0 gives the sourced

Maxwell equations in a continuous medium

∇νKμν ¼ 4πjμe; ð47Þ

which also guarantees charge conservation∇μj
μ
e ¼ 0 due to

the asymmetry of Kμν. Both Fμν and wx̄
μν satisfy the closure

condition

∇½λFμν� ¼ 0; ∇½λwx̄
μν� ¼ 0: ð48Þ

For Fμν, this is just the source-free Maxwell equations. The
remainder of Eq. (40) becomes, using Eqs. (42)–(46)

δL ¼
X
x≠x̄

ξμxð2nνx∇½νπxμ� þ πxμ∇νnνxÞ

þ
X
x̄

ξμx̄½wx̄
ρμðnρx̄ þ∇νλ

ρν
x̄ Þ þ πx̄μ∇νnνx̄�

þ 1

2

�X
x

nμxμxρgρν þ
1

4π
KμρFν

ρ þ
X
x̄

λμρx̄ wν
x̄ρ

þ Ψgμν −
1

8π

�
Rμν −

1

2
Rgμν

��
δgμν

¼
X
x

ξμxfxμ þ
1

2

�
Tμν −

1

8π

�
Rμν −

1

2
Rgμν

��
δgμν;

ð49Þ

where fxμ is the generalized force (density) acting on fluid x,
the generalized pressure Ψ is defined as

Ψ ¼ Λ −
X
x

μxρn
ρ
x; ð50Þ

and the stress-energy tensor is

Tμν ¼
X
x

nμxμxν þ
1

4π
KμρFν

ρ þ
X
x̄

λμρx̄ wν
x̄ρ þ Ψgμν: ð51Þ

Tμν, of course, satisfies the Einstein field equations

Rμν −
1

2
Rgμν ¼ 8πTμν: ð52Þ

This stress-energy tensor does not appear to be explicitly
symmetric. We will discuss in Sec. V why it is symmetric
regardless by a comparison between this “macroscopic”
stress-energy tensor and an average “mesoscopic” stress-
energy tensor which accounts for small-scale motion
around vortex lines and flux tubes. Using the forms of
the four currents and conjugate four-momenta introduced in
Sec. III, Tμν is expanded in Appendix A in a more explicitly
symmetric form which is compared to the stress-energy
tensor for a single perfect fluid.
The identification of the generalized forces in Eq. (49)

gives the equations of motion for the normal fluids and
vortex line/flux tube arrays associated to each superfluid

fxμ ¼ 2nνx∇½νπxμ� þ πxμ∇νnνx; ð53Þ

fx̄μ ¼ wx̄
ρμðnρx̄ þ∇νλ

ρν
x̄ Þ þ πx̄μ∇νnνx̄: ð54Þ

Note that, because the variational procedure assumes
conserved currents (or imposes it via Lagrange multipliers
for the superfluids), the final terms on the right-hand side of
both of these equations is zero. We will, however, allow for
nonconservation of the entropy current x ¼ s, which allows
us to discuss entropy generation in Sec. IV. In Sec. IV B, we
relate the equations of motion of the vortex line/flux tube
arrays to those of the associated superfluids.
Finally, summing Eqs. (53)–(54) for each fluid and using

Eq. (23), (48), (50), (51), we can show that the stress-
energy tensor is conserved up to external forces acting on
the fluids:

∇νTν
μ ¼

X
x

fxμ: ð55Þ

The right-hand side of this equation should equal zero if
energy and momentum are conserved in this system, so in
that case the fxμ must sum to zero. This can be accomplished
if they are all zero individually, or if they cancel each other,
which corresponds to forces which act between the fluid
constituents. We can also add forces to the right-hand side
here as long as they act on multiple fluid constituents and
hence mutually cancel. This will allow us to insert forces
that we are unable to derive from a variational principle.
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III. RELATION TO PHYSICAL PARAMETERS

Our discussion so far has focused on a somewhat abstract
variational principle and the resulting equations of motion
and stress-energy tensor. To proceed, we need to relate the
variables in the previous section to physical quantities. First
we introduce the four-velocities of the fluids. Because of
short collisional coupling times [38–40], it is expected that
all four normal fluid components x ¼ n, p, e, m will
comove and have common four-velocity uμ, normalized
in the standard manner uμuμ ¼ −1. Their currents are
defined as

nμx ¼ nxuμ; x ∈ fn; p; e; mg; ð56Þ

where nx is the number density of species x defined in the
normal fluid rest frame. We thus work in the Eckart
frame [41].
The superfluids do not have to comove with the normal

fluid, and we specify their four-currents by

nμx̄ ¼ nx̄u
μ
x̄ ¼ nx̄γðv2x̄Þðuμ þ vμx̄Þ; x̄ ∈ fn̄; p̄g; ð57Þ

where uμx̄ is the four-velocity of the superfluid species x̄ and
vμx̄ is a spacelike relative four-velocity between the normal
fluid and the superfluid x̄. nx̄ is the number density of
species x̄ in its own rest frame, equal to twice the density of
Cooper pairs. The uμx̄ are defined in this way so that they are
normalized in the same way as the normal fluid four-
velocity. We will use a subscript � to indicate a quantity
measured in the normal fluid rest frame, so the superfluid
density in this frame is

n�̄x ≡ nx̄γðv2x̄Þ ¼ −uμnx̄μ; γðv2x̄Þ ¼ ð1 − v2x̄Þ−1=2; ð58Þ

where v2x̄ ¼ vμx̄v
x̄
μ and vx̄μuμ ¼ 0. Strong electrostatic cou-

pling between the normal fluid leptons and the super-
conducting protons means that the latter will also likely
move collisionlessly with the normal fluid, but for now we
permit the superconducting protons to move independently
of the normal fluid.
Like the superfluids, the entropy current can move

independently of the normal fluids, and is specified by

sμ ¼ sγðw2Þðuμ þ wμÞ ¼ s�ðuμ þ wμÞ; ð59Þ

where uμwμ ¼ 0, γðw2Þ ¼ ð1 − w2Þ−1=2 and w2 ¼ wμwμ.
The heat flux four-vector qμ is related to wμ by

qμ ¼ s�T�wμ; ð60Þ

Here s� and T� are the entropy density and temperature
measured in the normal fluid rest frame, while s is the
entropy density in the comoving frame.

Using Eqs. (56), (57), (59), (60) in Eqs. (7)–(8), the
conjugate momentum covectors can be rewritten as

μnμ ¼ μnuμ þAnn̄n�̄nvn̄μ þAnp̄n�̄pv
p̄
μ þAsn

T� qμ; ð61aÞ

μpμ ¼ μpuμ þApn̄n�̄nvn̄μ þApp̄n�̄pv
p̄
μ þAsp

T� qμ; ð61bÞ

μn̄μ ¼ μ�̄nuμ þ Bn̄n�̄nvn̄μ þAn̄ p̄n�̄pv
p̄
μ ; ð61cÞ

μp̄μ ¼ μ�̄puμ þ Bp̄n�̄pv
p̄
μ þAn̄ p̄n�̄nvn̄μ; ð61dÞ

μeμ ¼ μeuμ þ
Ase

T� qμ; ð61eÞ

μmμ ¼ μmuμ þ
Asm

T� qμ; ð61fÞ

Θμ ¼ T�uμ þ
Bs

T� qμ; ð61gÞ

where we have defined the following chemical potentials/
temperature measured in the normal fluid rest frame

μn ≡ Bnnn þAnpnp þAnn̄n�̄n þAnp̄n�̄p þAsns�; ð62aÞ

μp ≡ Bpnp þAnpnn þApn̄n�̄n þAnp̄n�̄p þAsps�; ð62bÞ

μ�̄n ≡ Bn̄n�̄n þAnn̄nn þApn̄np þAn̄ p̄n�̄p; ð62cÞ

μ�̄p ≡ Bp̄n�̄p þAnp̄nn þApp̄np þAn̄ p̄n�̄n; ð62dÞ

μe ≡ Bene þAses�; ð62eÞ

μm ≡ Bmnm þAsms�; ð62fÞ

T� ≡ Bss� þAsnnn þAspnp þAsene þAsmnm: ð62gÞ

The superfluid chemical potentials in the rest frames of
the respective superfluids, and the temperature in the rest
frame of the entropy, are

μn̄ ≡ −uμn̄μn̄μ ¼ γðv2n̄ÞðAnn̄nn þApn̄npÞ þ Bn̄nn̄

þ γðv2n̄Þð1 − vμn̄v
p̄
μ ÞAn̄ p̄n�̄p

¼ γðv2n̄Þ½μ�̄n − v2n̄B
n̄n�̄n − vμn̄v

p̄
μAn̄ p̄n�̄p�; ð63aÞ

μp̄ ≡ −uμp̄μ
p̄
μ ¼ γðv2p̄ÞðApp̄np þAnp̄nnÞ þ Bp̄np̄

þ γðv2p̄Þð1 − vμp̄v
n̄
μÞAn̄ p̄n�̄n

¼ γðv2p̄Þ½μ�̄p − v2p̄B
p̄n�̄p − vμp̄v

n̄
μAn̄ p̄n�̄n�; ð63bÞ
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T ≡ −γðw2Þðuμ þ wμÞΘμ

¼ Bssþ γðw2ÞðAsnnn þAspnp þAsene þAsmnmÞ
¼ γðw2Þ½T� − w2Bss��: ð63cÞ

If all of the normal fluids comove, the same Lagrangian
displacement field ξμn ¼ ξμp ¼ ξμe ¼ ξμm ≡ ξμr must be used
to describe their variations, and a single generalized force
frμ acts on this combined normal fluid. This force is

frμ ¼ 2uσ∇½σΠμ� þ Πμ∇σuσ þ uσμnσ∇μnn

þ uσπpσ∇μnp þ uσπeσ∇μne þ uσπmσ ∇μnm; ð64Þ

where Πμ ≡ sTuμ þ nnμnμ þ npπ
p
μ þ neπeμ þ nmπmμ is the

effective momentum for the normal fluid. In the absence
of dissipation, the entropy will move with the same four-
velocity uμ as the normal fluids since the superfluids carry
no entropy. In that case, s ¼ s�, T ¼ T�, ξμs ¼ ξμr and there
is an entropy contribution to frμ [17].
The coefficients Bx, Axy need to be calculated using

microphysics. Previously, relativistic entrainment coeffi-
cients have been computed using Landau Fermi liquid
theory [42,43], though these references employ a different
formulation of the hydrodynamics and their relativistic
entrainment coefficients thus differ from the Bx, Axy used
here. We invert our definitions of the conjugate four-
momenta and determine how these previously calculated
entrainment coefficients could be used in the more sym-
metric hydrodynamics of this paper.
We assume qμ ¼ 0, which is implied in Gusakov et al.

[42,43]. Inverting μn̄μ and μp̄μ to obtain equations for the
superfluid number currents and then adding to these the
equations for the normal fluid current of each species gives

ðnμn̄Þtotal ¼
Bp̄

detðAÞ μ
n̄
μ −

An̄ p̄

detðAÞ μ
p̄
μ þ nnuμ

−
Bp̄ðAnn̄nn þApn̄npÞ

detðAÞ uμ

þAn̄ p̄ðAnp̄nn þApp̄npÞ
detðAÞ uμ ð65Þ

ðnμp̄Þtotal ¼
Bn̄

detðAÞ μ
p̄
μ −

An̄ p̄

detðAÞ μ
n̄
μ þ npuμ

−
Bn̄ðAnp̄nn þApp̄npÞ

detðAÞ uμ

þAn̄ p̄ðAnn̄nn þApn̄npÞ
detðAÞ uμ ð66Þ

where we have explicitly shown dependence on the Bx,
Axy, and where

A≡
�

Bn̄ An̄ p̄

An̄ p̄ Bp̄

�
: ð67Þ

Gusakov et al. [42,43] use as the total (normal plus
superfluid) baryon number currents

ðnμnÞtotal ¼ ½ðnnÞtotal − μnYnp − μpYnp�uμ
þ YnnQ

μ
n̄ þ YnpQ

μ
p̄ ð68Þ

ðnμpÞtotal ¼ ½ðnpÞtotal − μpYpp − μnYnp�uμ
þ YppQ

μ
p̄ þ YnpQ

μ
n̄ ð69Þ

where the (symmetric, relativistic) entrainment matrix is

Y ¼
�
Ynn Ynp

Ynp Ypp

�
ð70Þ

and the number densities and chemical potentials are
measured in the rest frame of the normal fluid. The Qμ

x̄
of the references are written in terms of superfluid
“velocities” Vμ

x (actually the conjugate four-momentum
divided by the chemical potential)

Qμ
x̄ ¼ μx̄V

μ
x̄ ¼ μx̄νgνμ; ð71Þ

where recall that μx̄ is measured in the rest frame of the
superfluid of species x̄. Comparing Eqs. (65)–(66) and
(68)–(69), it is obvious that

Ynn ¼
Bp̄

detðAÞ ; Ypp ¼
Bn̄

detðAÞ ; Ynp ¼ Ypn ¼
−An̄ p̄

detðAÞ ;

ð72Þ

which can be inverted to give

Bn̄ ¼ Ypp

detðY Þ ; Bp̄ ¼ Ynn

detðY Þ ; An̄ p̄ ¼ −Ynp

detðY Þ :

ð73Þ

The total baryon currents in our notation are thus

ðnμnÞtotal ¼ Ynnμ
μ
n̄ þ Ynpμ

μ
p̄

þ ½nn − YnnðAnn̄nn þApn̄npÞ
− YnpðAnp̄nn þApp̄npÞ�uμ; ð74Þ

ðnμpÞtotal ¼ Yppμ
μ
p̄ þ Ynpμ

μ
n̄

þ ½np − YppðAnp̄nn þApp̄npÞ
− YnpðAnn̄nn þApn̄npÞ�uμ: ð75Þ

Using Eqs. (62c), (62d), (72), we can rewrite Eqs. (74)
and (75) as
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ðnμnÞtotal ¼ ½nn þ n�̄n − Ynnμ
�̄
n − Ynpμ

�̄
p�uμ þ Ynnμ

μ
n̄ þ Ynpμ

μ
p̄;

ð76Þ

ðnμpÞtotal ¼ ½np þ n�̄p − Yppμ
�̄
p − Ynpμ

�̄
n�uμ þ Yppμ

μ
p̄ þ Ynpμ

μ
n̄;

ð77Þ
which are nearly identical to Eq. (68) and (69) except for
including additional relativistic corrections due to the relative
motion between the normal and superfluid components of
each baryon species. The difference in the species labels
between normal and superfluid baryons on the chemical
potentials is not a concern since μx ¼ μ�̄x should be true in
chemical equilibrium i.e., in equilibrium, the protons and
neutrons should have no preference between the paired
(superfluid) and unpaired (normal fluid) phases.
While we have so far been as general as possible with

regards to the coefficients Axy, simple physical arguments
allow us to reduce their number. If we assume that the
entrainment coefficients parametrize a coupling between
the total (normal and superfluid) neutron current and
the total proton current, we will have Anp ¼ Anp̄ ¼
Apn̄ ¼ Anp. If the total current of each baryon species is
coupled to itself, then we might expect Bn ¼ Bn̄ ¼ Ann̄ and
likewise for the protons. However, we cannot haveBx ¼ Bx̄

unless Asxs� ¼ 0, since this would prevent μx ¼ μ�̄x in
equilibrium. The Lagrangian could also include nμxnxμ and
nμx̄n

x̄
μ terms which would allow Bx ≠ Bx̄ for the baryons.

IV. DISSIPATION

A. Heat conduction

We begin our discussion of dissipation by determining
the allowed form of the heat flux qμ introduced in Eq. (60).
Its form is found by enforcing the positive definiteness of
the entropy generation Γs ¼ ∇μsμ using a standard pro-
cedure in relativistic dissipative hydrodynamics (see e.g.,
[15,22,34,35,44–46]). Like Olson and Hiscock [34], Priou
[47] and Lopez-Monsalvo and Andersson [35], we are
careful to note that the “regular” Carter formulation of
relativistic finite temperature fluid dynamics, correspond-
ing to setting the parameters Asx ¼ 0, is acausal, which is
why we have included entropy entrainment.
The most general way to obtain the form of the heat flux

is to start with the equation of motion for the entropy
current

2sσ∇½σΘμ� þ Θμ∇σsσ ¼ fsμ: ð78Þ

Contraction with uμ and rearranging gives

T�∇σsσ ¼ −
qσ

T�

�
∇σT� þ T� _uσ þ

2Bs

T� uμ∇½μqσ�

þ
�

_Bs −
Bs _T�

T�

�
qσ
T�

�
− uμfsμ; ð79Þ

where _a ¼ uμ∇μa. The easiest way to enforce that the
entropy generation from heat conduction is positive definite
is to make

qμ ¼ −κ⊥μν

�
∇νT� þ T� _uν þ

2Bs

T� uσ∇½σqν�

þ
�

_Bs −
Bs _T�

T�

�
qν
T�

�
; ð80Þ

where ⊥μν ¼ gμν þ uμuν. This matches Lopez-Monsalvo
and Andersson [35] and gives the same entropy generation
term due to heat conduction as Weinberg [44] up to the
additional terms which are higher-order in qμ. These terms
are necessary for causal heat conduction, since rearranging
Eq. (80) following [35] gives a relativistic version of the
Cattaneo–Vernotte equation

thð _qμ þ qν∇νuμÞ þ qμ ¼ −κ̃⊥μνð∇νT� þ T�uνÞ; ð81Þ

where th is a heat conduction timescale and κ̃ is a modified
heat conductivity, which are given by

th ¼
Bs=T�

1þ κ _ðBs

T�Þ
≈
Bs

T� ; ð82Þ

κ̃ ¼ κ

1þ κ _ðBs

T�Þ
≈ κ; ð83Þ

where the approximate forms are valid if we drop higher-
order terms in an expansion in the mean free collision time.
The entropy entrainment parameters which appear in the
definition of T� thus clearly affect th. Causal heat conduc-
tivity is absent from the treatment of dissipation in previous
papers on relativistic multifluid neutron stars [22,24], which
use the treatment of dissipation in Weinberg [44].
The remaining term on the right-hand side of Eq. (79) is

due to the generalized force on the entropy current fsμ.
Using conservation of energy-momentum, we can rewrite
fsμ in terms of the generalized forces on the other fluids.
The viscous contributions to entropy generation will be
included in this manner by modifying the stress-energy
tensor and hence the generalized forces. We next discuss
the inclusion of mutual friction and vortex pinning forces
which act between the fluids and vortex line/flux tube
arrays, and then incorporate viscosity.

B. Mutual friction and vortex pinning

Mutual friction is a dissipative drag force acting on
vortex lines/flux tubes, and hence on their associated
superfluids, due to scattering off of the normal fluid.
Vortex pinning is an attractive force between neutron
vortex lines and proton flux tubes that, in different limits
based on the relative velocity between the two arrays, either
make them move together or acts as an additional drag
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force. Both of these interactions are incorporated into the
hydrodynamics by adding additional forces between the
fluid constituents to the generalized forces fxμ, fx̄μ appearing
on the right-hand side of Eq. (53)–(54). We follow a
relativistic version of the Hall–Vinen procedure [48] to
write the new equations of motion with these forces
included. Our procedure is similar to Andersson et al.
[49], but differs in the definitions of the fluid velocities so
as to be consistent with Sec. III, and also in our inclusion of
the vortex line self-tension, and later vortex pinning.
Consider a properly-normalized four-velocity for the

vortex lines/flux tubes within superfluid x̄, using subscript
L to denote vortex lines/flux tubes

uμL;x̄ ¼ γðβ2x̄Þðuμx̄ þ βμx̄Þ; γðβ2x̄Þ ¼ ð1 − β2x̄Þ−1=2; ð84Þ

where β2x̄ ¼ βμx̄β
x̄
μ, β

μ
x̄u

x̄
μ ¼ 0. βμx̄ is the relative (spacelike)

four-velocity of the vortex lines of species x̄ with respect to
the corresponding superfluid. Since the vorticity moves
with the vortex lines,

uμL;x̄w
x̄
μν ¼ 0; ð85Þ

and [50]

nμx̄w
x̄
μν ¼ −nx̄β

μ
x̄w

x̄
μν ¼ fM;x̄

ν ; ð86Þ

where fM;x̄
ν is the Magnus force acting on the superfluid x̄

due to the relative motion between it and the vortex lines/
flux tubes within it. Note that for the superconducting
proton fluid, the Lorentz force is included in this definition
of the Magnus force. In the absence of additional forces and
assuming current conservation, Eq. (54) and (86) say that
the Magnus force on the superfluid is balanced by a tension
force due to the vortex lines/flux tubes, which is repre-
sented by the second term on the right-hand side of the
equation. Due to this interpretation, we can use Eq. (54) as
a force balance equation for the superfluid of species x̄
instead of its associated vortex line/flux tube array. The
force balance equation for the array only differs from that
for the superfluid by an irrelevant overall minus sign.
The vortex lines/flux tubes would move along with their

associated superfluid if not for their scattering off of the
normal fluid (mutual friction) or due to pinning to the
vortex lines/flux tubes associated with the other superfluid
(vortex pinning). We consider the mutual friction first, and
represent it in Eq. (55) and Eq. (53)–(54) through equal but
opposite contributions to fx̄μ and frμ, the generalized force
on the combined normal fluid. To lowest order, this force
should depend only on the relative velocity between the
normal fluid and the vortex lines/flux tubes of species qμx̄,
which we define analogously to Andersson et al. [49]

uμ ¼ γðq2x̄ÞðuμL;x̄ þ qμx̄Þ; γðq2x̄Þ ¼ ð1 − q2x̄Þ−1=2; ð87Þ

where uμL;x̄q
x̄
μ ¼ 0, q2x̄ ¼ qμx̄q

x̄
μ. So we modify the general-

ized force on superfluid x̄ and the combined normal fluid
by setting

fx̄μ ¼ fmf;x̄
μ ≡Rmf;x̄

μν qνx̄; frμ ¼ fmf;r
μ ≡ −

X
x̄

Rmf;x̄
μν qνx̄;

ð88Þ

where theRmf;x̄
μν projects out components of qνx̄ either along

the direction tangent to the corresponding vortex line/flux
tube array or along the respective vortex line/flux tube array
velocity

Rmf;x̄
μν ≡Rmf;x̄ðgμν þ uL;x̄μ uL;x̄ν − t̂x̄μt̂x̄νÞ; ð89Þ

where t̂x̄μ is the average spacelike tangent vector to the
vortex lines/flux tube array. Rmf;x̄ are dissipative coeffi-
cients parametrizing the mutual friction. Since these addi-
tional forces cancel out in the right-hand side of Eq. (55),
the total stress-energy tensor is still conserved. In this case
the equation of motion for a superfluid becomes

Rmf;x̄
μν qνx̄ ¼ nρx̄w

x̄
ρμ þ wx̄

ρμ∇νλ
ρν
x̄ : ð90Þ

We would like to remove references to the vortex line
velocity and qμx̄ from Eq. (90) and rewrite it in the form
of Eq. (86). Equating the two forms of uμL;x̄ using
Eq. (84), (87) gives

qμx̄ ¼ −
1

γ̂x̄
vμx̄ − γ̃x̄β

μ
x̄ þ

�
1

γx̄γ̂x̄
− γ̃x̄

�
uμx̄ ; ð91Þ

where γ̃x̄ ≡ γðβ2x̄Þ, γ̂x̄ ≡ γðq2x̄Þ, γx̄ ≡ γðv2x̄Þ. To perform the
necessary manipulations, it will be convenient to rewrite the
vorticity tensor in terms of the corresponding “electric” and
“magnetic” four-fields in the frame comoving with the
vortex lines,

WE;x̄
μ ¼ uνL;x̄w

x̄
μν ¼ 0; Wμ

B;x̄ ¼
1

2
εμνσρuL;x̄ν wx̄

σρ ≡Wμ
x̄ ;

ð92Þ

in terms of which we can write t̂x̄μ as

t̂x̄μ ¼ Wx̄
μ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Wx̄

σWσ
x̄

q
: ð93Þ

We can of course invert Wμ
x̄ to find

wx̄
μν ¼ −εμνσρuσL;x̄W

ρ
x̄: ð94Þ

Using Eqs. (90)–(91), (94), we solve for vx̄μ,
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vx̄μ ¼
1

ηx̄
εμνρβ

ν
x̄W

ρ
x̄ −

γ̂x̄
Rmf;x̄ w

x̄
ρμ∇νλ

ρν
x̄

þ
�
1

γx̄
− τx̄

�
ux̄μ − τx̄β

x̄
μ − ðt̂x̄νuνÞt̂x̄μ; ð95Þ

where for simplicity we have defined,

εμνρ ≡ εσμνρuσx̄ ; ηx̄ ≡ Rmf;x̄

γ̃x̄γ̂x̄nx̄
; τx̄ ≡ γ̃x̄γ̂x̄: ð96Þ

Contracting Eq. (95) with ελημWx̄
η and then using the same

equation to replace εμνρβ
ν
x̄W

ρ
x̄ gives

ελημWx̄
ηvx̄μ ¼ −ηx̄τx̄vλx̄ þ

�
ηx̄τx̄
W2

x̄
ðWν

x̄uνÞ −
Wx̄;k
ηx̄

�
Wλ

x̄

þ
�
τx̄ −

1

γx̄
þ
W2

x̄;k
ηx̄

�
uλx̄ þ

1

ηx̄
ðW2

x̄;⊥ þ η2x̄τ
2
x̄Þβλx̄

þ γ̂x̄
Rmf;x̄ ðηx̄τx̄wλ

x̄ρ þ ελημWx̄
ηwx̄

μρÞ∇νλ
ρν
x̄ ; ð97Þ

where W2
x̄ ¼ wx̄

μνw
νμ
x̄ =2, and where we have used a split of

Wμ
x̄ into components parallel and perpendicular to uμx̄

Wμ
x̄ ¼ Wx̄;ku

μ
x̄ þWμ

x̄;⊥; Wμ
x̄;⊥ux̄μ ¼ 0: ð98Þ

Contracting with ελσαWσ
x̄ again yields an equation from

which the Magnus force can be isolated:

fμM;x̄¼ðg̃μνÞ−1
γ̃x̄nx̄ηx̄

W2
x̄;⊥þη2x̄τ

2
x̄

�
ðvx̄σWσ

x̄ÞWx̄;⊥
ν

þηx̄τx̄ενσρWσ
x̄;⊥v

ρ
x̄−W2

x̄;⊥vx̄ν
−γx̄v2x̄ðW2

x̄;⊥ux̄νþWx̄;⊥Wx̄;⊥
ν Þ

−
γ̂x̄

Rmf;x̄ ðηx̄τx̄ενσρWσwρ
x̄αþW2

x̄;⊥wx̄
ναÞ∇ηλ

αη
x̄

�
; ð99Þ

where we have replaced γ̃x̄nx̄εμνρWν
x̄β

ρ
x̄ with f

M;x̄
μ and where

we have defined

g̃μν ≡ gμν −
ηx̄τx̄

W2
x̄;⊥ þ η2x̄τ

2
x̄

W2
x̄;⊥ux̄μ þWx̄;kW

x̄;⊥
μ

Rmf;x̄ ∇ρλ
x̄ρ
ν :

ð100Þ

Note that Eq. (99) still depends on gamma factors that are
functions of β2x̄ and q

2
x̄. If the relative velocities are assumed

to be small, these gamma factors can simply be approxi-
mated to be unity. In general, it is theoretically possible to
solve for these gamma factors in terms of only the normal
fluid velocity uμ and the superfluid relative velocities vμx̄,
but we do not attempt such a calculation here.
Vortex pinning can be incorporated by adding a force

which acts between the vortex line and flux tube arrays in

the neutron superfluid and proton superconductor. This
force should behave like a drag force for intermediate
relative velocities between the two arrays and should force
the two arrays to move together for small relative velocities.
The pinning force fpinμ acting on the neutron vortex lines
due to the proton vortex lines is incorporated into the force
balance equations on the two arrays as

fn̄μ ¼ fmf;n̄
μ þ fpinμ ; fp̄μ ¼ fmf;p̄

μ − fpinμ : ð101Þ

Since fx̄μ are force densities, the force per unit length on a
vortex line/flux tube equals fx̄μ=N x̄, where N x̄ is the areal
number density of vortex lines/flux tubes of species x̄
measured perpendicular to them (we give a relativistic
definition ofN x̄ in Sec. VA). It is reasonable to expect that
the vortex pinning force should be proportional to the
product ofN p̄ andN n̄, so the vortex pinning force per unit
length acting on a proton flux tube will be proportional to
N n̄ ∼ 2Ω=κn̄ ∼ 104ðΩ=10 s−1Þ cm−2 where Ω is the angu-
lar rotational frequency of the neutron star and κn̄ is
the circulation quantum. This is much smaller than the
number density of proton flux tubes N p̄ ∼ B=Φp̄ ∼ 5 ×
1018ðB=1012 GÞ cm−2 where B is the magnetic field
strength and Φp̄ is the flux quantum. κn̄ and Φp̄ are also
defined in Sec. VA. For this reason, the vortex pinning
force acting on a single proton flux tube is negligible and
often ignored. However, as we are interested in force
densities, we will retain the pinning force acting on the
proton flux tubes.
To lowest order, the vortex pinning force depends only

on the (average) relative velocity between the two vortex
line arrays contracted into an as yet undetermined rank
two tensor:

fpinμ ≡Rpin
μν bν; ð102Þ

where bν is the (spacelike, average) relative velocity of the
proton vortex lines in the (average) neutron vortex line rest
frame defined such that

uμL;p̄¼ γðb2ÞðuμL;n̄þbμÞ; γðb2Þ¼ð1−b2Þ−1=2; ð103Þ

where bμuL;n̄μ ¼ 0 and b2 ¼ bμbμ. A reasonable nonrela-
tivistic version of vortex pinning drag force would point in
the direction defined by the cross product of the tangent
vectors to both arrays, and only the component of the
relative velocity between the two arrays that is in this
direction will contribute to a drag force. One possible
relativistic generalization of this is

Rpin
μν ¼ −RpinεασρðμενÞβηλuαL;n̄t̂

σ
n̄t̂

ρ
p̄u

β
L;p̄t̂

η
n̄t̂

λ
p̄: ð104Þ

The coefficient Rpin should be a function of b ¼ ffiffiffiffiffiffiffiffiffiffi
bμbμ

p
,

the relative orientation between the vortex line/flux tube

RELATIVISTIC FINITE TEMPERATURE MULTIFLUID … PHYS. REV. D 102, 063011 (2020)

063011-11



arrays or t̂μn̄t̂
p̄
μ , and should scale linearly with both N n̄ and

N p̄ as discussed previously. The dependence on b should
be b−1=2 [51–53] when the linear b-dependence of the
pinning energy is considered, as this will give the correct
behaviour for the pinning force: at large bμ, the vortex
pinning drag becomes insignificant compared to the mutual
friction drag, while for small bμ, the vortex lines become
pinned to the flux tubes [54]. The principal dissipation
mechanism in the drag regime of vortex pinning is the
excitation of kelvons, and in calculations like those in
[51,52], the interactions exciting the kelvons were with
individual nuclei. However, in the core the pinning inter-
action is of course between lines of macroscopic extent, so
a modification of Rpin may be required when the finite
length of the lines is considered [55,56].
It should be noted that the pinning drag force would be

relevant only to a precessing neutron star with sufficiently
large precession amplitude. Even in that case, the drag
force estimated by Link [57] is large enough for
pinning to happen on rather short timescales of days to
weeks. Simple relative motion with energy stored in the
Baym–Chandler kinetic energy [58] would damp away
almost instantly.
The Magnus force acting on superfluid x̄ can thus be

written as

fM;x̄
μ ¼ nρx̄w

x̄
ρμ ¼ wx̄

ρμ∇νλ
νρ
x̄ þRmf;x̄

μν qνx̄ �Rpin
μν bν: ð105Þ

with� corresponding to x̄ ¼ n̄ and p̄ respectively. It should
be possible in principle to rewrite this equation in terms of
only the vorticity tensor or vector, the normal fluid velocity
and the superfluid relative velocities vμx̄ in a manner similar
to what was done in Eq. (95)–(99). We do not attempt this
calculation here because of the unessential complication it
would add to this paper.

C. Bulk and shear viscosity

To incorporate viscosity into this variational formalism,
we follow Carter [15], the review of his work in Andersson
and Comer [36] and the nonrelativistic generalization by
Andersson and Comer [59], though we specify to the fluids
expected in a superfluid–superconducting neutron star
core. We also neglect chemical reactions that convert
between fluid species as we have implicitly assumed
current conservation for the separate species.
Introducing the (assumed symmetric) viscosity tensor

τμνΣ , where the label Σ is used to specify the different fluid
constituents contributing to the viscosity. The variation of
the master function to include viscosity takes the form
(summing over Σ)

δΛvis ¼
1

2
κΣμνδτ

μν
Σ ; κΣμν ≡ 2

∂Λ
∂τμνΣ ; ð106Þ

where κΣμν is a strain tensor. The new form of Eqs. (12)
and (23), giving the new form of ∂Λ=∂gμν, is

∇μΛ ¼
X
x

μxν∇μnνx −
1

8π
Kρν∇μFρν −

1

2
λρνx̄ ∇μwx̄

ρν

þ 1

2
κΣνρ∇μτ

νρ
Σ ; ð107Þ

∂Λ
∂gμν ¼

1

2

�X
x

μμxnνx þ
1

4π
KμρFν

ρ þ λμρx̄ wν
x̄ρ þ κμΣρτ

ρν
Σ

�
;

ð108Þ

where we used

δτμνΣ ¼ £ξτ
μν
Σ ¼ ξρ∇ρτ

μν
Σ − 2τρðμΣ ∇ρξ

νÞ: ð109Þ

The full variation of τμνΣ is, from Carter [15]

δτμνΣ ¼ ξσΣ∇στ
μν
Σ − 2τσðμΣ ∇σξ

νÞ
Σ þ τμνΣ ∇σξ

σ
Σ −

1

2
τμνΣ gσρδgσρ;

ð110Þ

so δL becomes

δL ¼ ξμfrμ þ ξμsfsμ þ
X
x̄

ξμx̄f
x̄
μ þ

X
Σ
ξμΣf

Σ
μ

þ 1

2

�
Tμν −

1

8π

�
Rμν −

1

2
Rgμν

��
δgμν; ð111Þ

where Tμν, Ψ and fΣμ are given by

Tμν ¼
X
x

nμxμxρgρν þ
1

4π
KμρFν

ρ þ
X
x̄

λμρx̄ wν
x̄ρ

þ
X
Σ
κμΣρτ

ρν
Σ þ Ψgμν; ð112Þ

Ψ ¼ Λ −
X
x

μxρn
ρ
x −

1

2

X
Σ
τρσΣ κΣρσ; ð113Þ

fΣμ ¼ κΣμν∇ρτ
ρν
Σ þ τνρΣ

�
∇νκ

Σ
μρ −

1

2
∇μκ

Σ
νρ

�
; ð114Þ

ξμ is the common displacement field for the normal fluid
and frμ ¼ fnμ þ fpμ þ feμ þ fmμ .
We now look at the uμfsμ term in Eq. (79). Conservation

of energy-momentum implies

fsμ ¼ −frμ −
X
x̄

fx̄μ −
X
Σ
fΣμ ; ð115Þ

so contracting with uμ and then using
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uμfrμ ¼
X
x

γðq2x̄ÞRmf;x̄
μν qμx̄q

ν
x̄; ð116Þ

uμx̄f
x̄
μ ¼ uμx̄w

x̄
σμ∇νλ

σν
x̄

→ uμfx̄μ ¼ −vμx̄fx̄μ −
1

n�̄x
fM;x̄
σ ∇νλ

σν
x̄ ; ð117Þ

Eq. (79) becomes

T�∇σsσ ¼
1

κT�⊥μνqμqν þ
X
x̄

�
γðq2x̄ÞRmf;x̄

μν qμx̄q
ν
x̄

þ 1

n�̄x
fM;x̄
μ ∇νλ

νμ
x̄ − vμx̄f

x̄
μ

�
þ
X
Σ
uμfΣμ : ð118Þ

The second law of thermodynamics requires that∇σsσ ≥ 0,
which is most easily satisfied if each term on the right-hand
side of Eq. (118) is individually greater than or equal
to zero.
Define four-vectors

uμΣ ¼ γðv2ΣÞðuμ þ vμΣÞ; γðv2ΣÞ ¼ ð1 − v2ΣÞ−1=2; ð119Þ
where uμvΣμ ¼ 0 and v2Σ ¼ vμΣv

Σ
μ , such that

τμνΣ uΣν ¼ 0; κΣμνuνΣ ¼ 0: ð120Þ
That is, the viscosity tensor and the strain tensor are both
purely spacelike in the frame moving with uμΣ, and the
viscous and strain tensors have been constrained to have
only six independent components. The entropy generation
equation can be rewritten as

T�∇σsσ ¼
1

κT�⊥μνqμqν þ
X
x̄

�
γðq2x̄ÞRmf;x̄

μν qμx̄q
ν
x̄

þ 1

n�̄x
fM;x̄
μ ∇νλ

νμ
x̄ − vμx̄f

x̄
μ

�

−
X
Σ

�
vμΣf

Σ
μ þ

1

2γðv2ΣÞ
τμνΣ £uΣκ

Σ
μν

�
: ð121Þ

where vμs ¼ wμ and

τμνΣ £uΣκ
Σ
μν ¼ −2uμΣfΣμ

¼ τμνΣ

�
uρΣ∇ρκ

Σ
μν þ 2κΣρðμ∇νÞu

ρ
Σ

	
: ð122Þ

Analogously to Carter [15], introduce linear combina-
tions of the vμx̄ and vμs ¼ wμ such that

X
a¼x̄;s

ςaΣv
μ
a ¼ vμΣ;

X
a

ςaΣ ¼ 1; ð123Þ

so the terms depending on the forces can be combined
using

faμ þ
X
Σ
ςaΣf

Σ
μ ≡ −

X
b¼s;x̄

Rab
μνvνb; ð124Þ

where Rab
μν is a positive-definitive symmetric generalized

resistivity tensor. This tensor must be symmetric by the
Onsager reciprocal relations. This procedure assumes that
there are no other dynamical velocities in the problem than
vμp̄, v

μ
p̄ and wμ. There will also be a contribution to the

viscosity from the normal fluid

X
a¼x̄;s

ςavμa ¼ 0; ð125Þ

corresponding to uμΣ ≡ uμr ¼ uμ. To make the viscosity term
look more like a standard entropy generation equation,
we use

κΣμν ¼ ⊥Σ
μν ¼ gμν þ uΣμuΣν ; ð126aÞ

fΣμ ¼ ∇ρτ
ρ
Σμ; ð126bÞ

τμνΣ ¼ −ημνρσΣ £uΣκ
Σ
ρσ; ð126cÞ

ημνρσΣ ¼ ηΣ⊥μðρ
Σ ⊥σÞν

Σ þ
�
ζΣ
2
−
ηΣ
3

�
⊥μν

Σ ⊥ρσ
Σ ; ð126dÞ

where ηΣ and ζΣ are (dynamic) shear and bulk viscosity
coefficients, respectively. This form ensures that the
entropy generation is positive definite. We do not include
the higher-order corrections to τμνΣ discussed in Carter [15]
and hence assume that the we only have viscosity linear in
the fluid velocities. As written, the viscous forces are causal
for small perturbations from thermal equilibrium [47]. The
viscous tensor can also be rewritten as

τμνΣ ¼ −2ηΣ
�
∇ðμuνÞΣ þ uðμΣ _uνÞΣ −

1

3
⊥μν

Σ ∇σuσΣ

�
− ζΣ⊥μν

Σ ∇σuσΣ

¼ −ηΣ⊥μα
Σ ⊥νβ

Σ WΣ
αβ − ζΣ⊥μν

Σ ∇σuσΣ; ð127Þ

where _uμΣ ¼ uρΣ∇ρu
μ
Σ and WΣ

μν ¼ ∇μuΣν þ∇νuΣμ −
2=3gμν∇σuσΣ is the shear tensor. Equation (121) becomes

T�∇σsσ ¼
1

κT� ⊥μνqμqν þ
X
x̄

�
γðq2x̄ÞRmf;x̄

μν qμx̄q
ν
x̄ þ

1

n�̄x
fM;x̄
μ ∇νλ

νμ
x̄

�
þ

X
a;b¼s;x̄

Rab
μνv

μ
avνb

þ
X
Σ

1

γðv2ΣÞ
�
ηΣ
2

�
ð∇μuΣν þ∇νuΣμÞð∇μuνΣ þ∇νuμΣÞ −

4

3
ð∇μu

μ
ΣÞ2

�
þ ηΣ _uΣμ _u

μ
Σ þ ζΣð∇μu

μ
ΣÞ2

�
: ð128Þ
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In the case of the shear and bulk viscosity of the normal
fluid, uμΣ ¼ uμ, γðv2ΣÞ ¼ 1. We also expect a bulk viscosity
term from the superfluids [19,20,22]. The most general
form of the viscosity contribution to the entropy generation
[the second line on the right-hand side of Eq. (128)] should
thus be of the form

½T�∇σsσ�visc: ¼
ηr
2

�
ð∇μuν þ∇νuμÞð∇μuν þ∇νuμÞ

−
4

3
ð∇σuσÞ2

�
þ ηr _uμ _uμ þ ζrð∇σuσÞ2

þ
X
Σ≠r

1

γðv2ΣÞ
ζΣð∇σuσΣÞ2; ð129Þ

where the subscript r is used to specify the viscosity
coefficients for the normal fluid. Only the normal fluid
Σ ¼ r contributes to the shear viscosity, and it also gives a
contribution to the bulk viscosity from species-converting
reactions between the normal fluid constituents. The terms
with Σ ≠ r represent the bulk viscosity contributions from
species-converting reactions involving the superfluids.
These reactions are: (1) conversion between the normal
and superfluid neutrons; (2) conversion between the normal
and superconducting protons; (3) between the neutron
superfluid and superconducting protons; (4) between the
(non-neutron) normal fluid and neutron superfluid; and
(5) between the (non-proton) normal fluid and super-
conducting protons. We thus require five distinct Σ ≠ r
such that the five ζΣ ≠ ζr can represent these five bulk
viscosity contributions. The corresponding vμΣ will be linear
combinations only of the relative superfluid velocities vμn̄
and vμp̄, but the exact specification of the vμΣ is somewhat
arbitrary as long as Eq. (123) is satisfied. However, the bulk
viscosity coefficients will be completely determined by the
microphysics.
Comparing our formulation of the viscosity to the

relativistic version of the Landau–Khalatnikov superfluid
viscosity [19,20,22], both formulations have six bulk
viscosity coefficients. In a realistic neutron star core, with
the superconducting protons comoving with the normal
fluid due to electrostatic attraction, vμp̄ ¼ 0 and there will
be only three distinct bulk viscosity coefficients para-
metrizing the reactions (1) between normal fluid constitu-
ents; (2) conversion between normal and superfluid
neutrons; and (3) between the neutron superfluid and
(non-neutron) normal fluid constituents. However, as
shown by Gusakov [22], only two of these bulk viscosity
coefficients will be independent of each other.
The different viscosity coefficients are, in principle,

possible to calculate from microphysics. The shear viscos-
ity will have contributions from lepton-lepton, lepton-
proton, nucleon-nucleon [39,60–63] and proton-mediated
lepton-neutron scattering [40]. The bulk viscosity in both
the normal fluids and superfluids is due to modified and

direct Urca processes [22,64,65]. Superfluidity generally
increases the shear viscosity of the normal fluid and lowers
the bulk viscosity.

D. Electrical conductivity

The generalized resistivity tensor introduced in Eq. (124)
cannot fully account for electrical conductivity because the
only relative velocities in this equation are the vμx̄ and wμ.
To properly incorporate electrical conductivity we must
relax our assumption that the normal fluid components are
comoving. Reserving uμ to denote the rest frame of the
normal fluid neutrons, the dominant normal fluid compo-
nent in a neutron star core, Eq. (56) is replaced by

nμx ¼ nxγðv2xÞðuμ þ vμxÞ; x ∈ fp; e;mg; ð130Þ

where the relative velocities vμx are all fractionally small
compared to uμ and satisfy vμxuμ ¼ 0. In this case, the sum
on the right side of Eq. (124) runs over the normal fluid
species in addition to s, x̄. The generalized resistivity forces
can then be included in the equations of motion by solving
Eq. (124) for the generalized force faμ and inserting into
Eq. (53)–(54), noting that forces such as mutual friction can
in principle be included within the generalized resistivity
forces, though this may require rewriting velocities such as
the vortex line/flux tube velocities in terms of the velocities
of the different fluids.
The generalized Ohm’s law can thus be derived by

appropriately combining the equations of motion for the
charged fluids, but this is beyond the scope of this paper.
The generalized Ohm’s law is discussed in more detail for
nonrelativistic nonsuperfluid neutron stars in [66,67], for
superfluid neutron stars in [68], and for relativistic multi-
fluids in [69,70].

V. VORTEX LINE/FLUX TUBE CONTRIBUTION
AND THE MAGNETIC FIELD PROBLEM

A remaining question is how to interpret and compute
the tensors Kμν and λμνx̄ , and to determine if they can be
written in terms of Fμν and wμν

x̄ . Since it is impossible
to account for the dynamics of individual vortex lines and
flux tubes in a macroscopic fluid dynamics, the vorticity
tensors wx̄

μν and the electromagnetic field tensor Fμν should
be considered as macroscopic averaged quantities. The
electromagnetic field tensor Fμν should somehow depend
on the wx̄

μν, since assuming type–II proton superconduc-
tivity, the magnetic field inside the star is largely confined
to proton flux tubes, plus neutron vortex lines that are
magnetized through superfluid entrainment.
We first consider this problem at the mesoscopic scale of

individual or small numbers of vortex lines and flux tubes.
By averaging over a large number of flux tubes in the
mesoscopic theory, we find an averaged mesoscopic stress-
energy tensor, which is then matched term-by-term to the
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completely macroscopic stress-energy tensor derived in
Section II B. This allow us to find an macroscopic
“effective” theory in the form of the electromagnetic and
vorticity-dependent contribution to the master function
ΛEMþV, which fixes the forms of Kμν and λμνx̄ . We match
to the stress-energy tensor as opposed to simply the master
function because the former also contains information
about the partial derivatives of the latter. A summary of
this calculation is presented in the main text, reserving the
full calculation for Appendix B.
This section is concluded by discussing the relation of

these quantities to the electromagnetic displacement tensor
Hμν, which we show is distinct from Kμν. We compare the
resulting electromagnetism to previous studies of super-
conducting neutron star cores with flux tubes and magnet-
ized vortex lines. Finally, we discuss how to compute the
magnetic field in a superconducting neutron star core given
an electric current density, and the form of the Lorentz force
in the total equation of motion for the charged fluids.

A. Mesoscopic stress-energy tensor, averaging
procedure and effective theory

We postulate the following Lorentz-invariant splitting of
the (macroscopic) master function Λ as a function of the
contractions of Fμν and wμμ

x̄ :

Λ ¼ Λ0 þ ΛEMþVðXF; Xn̄; Xp̄; Yn̄; Yp̄; ZÞ ð131Þ

where the scalars of which ΛEMþV is a function are
defined as

XF ¼ 1

4
FμνFμν; Xn̄ ¼

1

4
wμν
n̄ wn̄

μν;

Xp̄ ¼ 1

4
wμν
p̄ wp̄

μν; Yn̄ ¼
1

2
Fμνwn̄

μν;

Yp̄ ¼ 1

2
Fμνwp̄

μν; Z ¼ 1

2
wμν
n̄ wp̄

μν:

Λ0 is the contribution to the master function from the four-
currents alone, while ΛEMþV contains all contributions
from flux tubes/vortex lines and electromagnetic fields.
ΛEMþV will also contain functional dependence on con-
tractions of the superfluid/superconducting four-currents,
since the flux tube/vortex line energies will depend on
number densities through dependence on the London
length Λ� and coherence lengths ξx, but we have assumed
that there are no terms involving contractions between the
number currents and the tensors Fμν and wμμ

x̄ . According to
Eqs. (17), (22) Kμν and λμνx̄ will then take the forms

Kμν ≡ −4π
�∂ΛEMþV

∂XF
Fμν þ ∂ΛEMþV

∂Yp̄
wμν
p̄

þ ∂ΛEMþV

∂Yn̄
wμν
n̄

�
ð132Þ

λμνp̄ ≡ −
∂ΛEMþV

∂Xp̄
wμν
p̄ −

∂ΛEMþV

∂Z wμν
n̄ −

∂ΛEMþV

∂Yp̄
Fμν;

ð133Þ

λμνn̄ ≡ −
∂ΛEMþV

∂Xn̄
wμν
n̄ −

∂ΛEMþV

∂Z wμν
p̄ −

∂ΛEMþV

∂Yn̄
Fμν:

ð134Þ

The goal of the mesoscopic averaging procedure is to
determine what ΛEMþV and its partial derivatives are.
We define the mesoscopic scale l such that there are

many vortex lines and flux tubes within an area l2. l obeys
the following hierarchy of length scales:

lg ≫ l ≫ dn ≫ dp > Λ� > ξp; ξn: ð135Þ

lg is some characteristic length scale of the spacetime
curvature, dn and dp are the spacings between neutron
vortex lines/proton flux tubes, Λ� ≡ ð4πe2YppÞ−1=2 is the
London length, and ξn=ξp are the neutron vortex line/
proton flux tube coherence lengths. We assume that
physical properties like nx, μx, Yxy, etc., are uniform over
mesoscopic scales.
The system we consider is a simple configuration of

two vortex line/flux tubes arrays, one for each superfluid/
superconducting species. The vortex line array results from
the rotation of the star, while the flux tube array is a result
of a combination of a remnant magnetic field and field
generation mechanisms early in the neutron star’s life [71].
We consider only the strong type-II limit of the super-
conducting protons i.e., Hp̄

c1 ≲H ≪ Hp̄
c2, where H is the

macroscopic average magnetic field and where Hp̄
c1 and

Hp̄
c2 are the proton type–II superconductivity critical fields.

Strong vortex pinning due to the significant outnumbering
of neutron vortex lines by proton flux tubes could modify
this simple model by distorting the vortex line lattice, but
we ignore vortex pinning here. We also ignore mutual
friction, heat conduction (including “entropy entrainment”
Asx) and viscosity as a first approximation.
Denotingwith a tilde amesoscopic quantity, we take as the

mesoscopic master function Λ̃¼ Λ̃ðñ2x; α̃2xyÞ− F̃ρσF̃ρσ=16π,
using the microscopic electromagnetic field Lagrangian in
place of arbitrary dependence of Λ̃ on F̃μν. Following the
same procedure used to derive the stress-energy tensor in
Sec. II B, the mesoscopic stress-energy tensor is

T̃μν ¼
X
x

ñμxμ̃νx þ
1

4π
F̃μρF̃ν

ρ

þ
�
Λ̃ðñ2x; α̃2xyÞ −

1

16π
F̃ρσF̃ρσ −

X
x

ñρxμ̃xρ

�
gμν:

ð136Þ
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This result combines the stress-energy tensors of a perfect
multifluid plus that of vacuum electromagnetism. We also
have the equations of motion

2ñμx∇½μπ̃xν� ¼ 0; ð137Þ

∇νF̃μν ¼ 4πj̃μe ¼ 4πeðñμp þ ñμp̄ − ñμe − ñμmÞ; ð138Þ

plus the Bianchi identity for F̃μν. π̃xν is defined as in Eq. (41).
In this case, we used Eq. (30) for all of the currents in deriving
their equations of motion, not just for the normal fluids.
The averaging procedure first splits the number currents

into large-scale and small-scale contributions. The latter
represent currents around vortex lines and flux tubes and
hence source the magnetic field associated with flux tubes
and magnetized vortex lines. The mesoscopic stress-energy
tensor is then averaged over an area ∼l2 perpendicular to
the vortex line/flux tube array in a procedure similar to [30]
and Appendix E of [23], allowing us to replace the sum
over vortex lines/flux tubes with multiplication by the
relevant areal number density N x̄. This averaged meso-
scopic stress-energy tensor is then compared to the macro-
scopic stress-energy tensor to determine the macroscopic
effective master function ΛEMþV and its partial derivatives.
We relegate most of the details of the calculation to

Appendix B, but discuss the averaging procedure for the
electromagnetic field and vorticity here. The canonical four
momenta for the superfluid neutrons and superconducting
protons, and hence the vorticity tensors, are quantized

I
πx̄μdxμ ¼

Z
wx̄
μνdSμν ¼ hNx̄; ð139Þ

where Nx̄ ∈ Z, h ¼ 2πℏ and the generalized Stokes’
theorem [72] was used. Recall that in Section IV B we
defined a vorticity vector

Wα
x̄ ≡ 1

2
εαβμνuL;x̄β wx̄

μν; ð140Þ

where uL;x̄β is the average four-velocity of the vortex lines/
flux tubes of species x̄. Since we are ignoring mutual
friction and vortex pinning in the averaging calculation,
to lowest order the vortex lines/flux tubes comove with
their corresponding fluids i.e., uL;p̄μ ¼ up̄μ and uL;n̄μ ¼ un̄μ.
This assumption is equivalent to assuming that the vortex
lines are straight and uniformly distributed, since we are
ignoring the vortex line self-tension force in Eq. (54). Since
we will find a general expression for the λμνx̄ that does not
necessarily correspond to zero vortex line self-tension
force, this force can be considered a first-order correction
to the equations of motion. Over length scales l much
larger than the separation of the vortex lines/flux tubes, the
quantization condition allows us to write Wα

x̄ as

Wα
x̄ ¼ N x̄κx̄μ

�̄
xt̂

α
x̄ ¼ N x̄Φp̄et̂αx̄ : ð141Þ

κx̄ ¼ h=ð2μ�̄xÞ is the relativistic generalization of the quan-
tum of circulation with a factor of 2 because the superfluid
neutrons/superconducting protons will form Cooper pairs,
Φp̄ ¼ h=ð2eÞ is the flux quantum associated with a proton
flux tube, t̂αx̄ is the average spatial tangent vector to the
vortex lines/flux tubes defined in Eq. (93), and N x̄ is the
areal number density of vortex lines/flux tubes in the spatial
plane perpendicular to t̂αx̄ . N x̄ is Lorentz-invariant and
defined by

N x̄ ≡ 1

κx̄μ
�̄
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Wμ

x̄W
x̄
μ

q
¼ 1

κx̄μ
�̄
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
wμν
x̄ wx̄

μν

r
: ð142Þ

We expect contributions to ΛEMþV that will be proportional
to the N x̄ times an energy per unit length. The electro-
magnetic field contributions due to flux tubes/magnetized
vortex lines should also be linearly proportional toN x̄. The
separations between proton flux tubes/neutron vortex lines
dp=dn are defined by N p̄=N n̄ through

N x̄ ¼
2ffiffiffi
3

p
d2x

; ð143Þ

assuming equilateral triangular lattices.
Because of entrainment, the neutron vortex lines will

become magnetized. This is made apparent by combining
the vorticity tensors wp̄

μν and wn̄
μν in a way to eliminate the

superfluid neutron current, which itself does not source a
magnetic field. In our formulation, this corresponds to
eliminating vμn̄. We thus add the two tensors in such a way
as to give

Fμν ¼ FL
μν þ

1

e
wp̄
μν þ Ynp

eYpp
wn̄
μν; ð144Þ

where FL
μν is the London electromagnetic field tensor. If we

can ignore derivatives of μx, nx and the coefficients Bx,Axy,
it takes the form

FL
μν ≈ −

2

e

�
μ�̄p þ

Ynp

Ypp
μ�̄n

�
∂ ½μuν� −

2n�̄p
eYpp

∂ ½μv
p̄
ν�; ð145Þ

where vμn̄ has canceled out as expected. In the general case
where the gradients of μx, nx, Bx, Axy cannot be ignored,
this will not be true.
Based on Eq. (144), we split the mesoscopic electro-

magnetic field tensor F̃μν into

F̃μν ¼ F̃μν
L þ F̃μν

p̄ þ F̃μν
n̄ ; ð146Þ

with the right-hand side terms corresponding to the London
field, proton flux tube field and magnetized neutron vortex
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line field, respectively. Fμν
L is a large-scale quantity and is

the same when averaged i.e., hF̃μν
L i ¼ Fμν

L . The average of
the second and third terms on the right-hand side of
Eq. (146) can be identified with the second and third terms
on the right-hand side of Eq. (144) i.e., hF̃μν

p̄ i ¼ wμν
p̄ =e,

hF̃μν
n̄ i ¼ Ynpw

μν
n̄ =ðYppeÞ. The invertability of Eq. (140)

thus says that hF̃μν
x̄ i ∝ N x̄Φx̄ as expected. Note that

Φn̄ ¼ YnpΦp̄=Ypp, so hF̃μν
n̄ i → 0 when the entrainment

is zero (Ynp ¼ 0) as required. Finally, since hF̃μν
x̄ i ∝ wμν

x̄ ,
we enforce

uL;x̄μ F̃μν
x̄ ¼ 0; ð147Þ

that is, there is no electric field due to the flux tubes/
magnetized vortex lines in their respective rest frames.
After performing the averaging procedure on the meso-

scopic stress-energy tensor, we obtain the following aver-
aged mesoscopic stress-energy tensor

hT̃μνi ¼
X
x

nμxμνx þ
�
Λ̃0 þ

X
x

nxμx

�
gμν

þ
X
x̄



1

4π
F̃ðμ
x̄ρF̃

νÞρ
L

�

þ 1

4π

�
Fμρ
L Fν

Lρ −
1

4
Fσρ
L FL

σρgμν
�

þ
X
x̄

Ev;x̄

N x̄ðΦp̄eÞ2
�
wμρ
x̄ wν

x̄ρ −
1

2
wσρ
x̄ wx̄

σρgμν
�

þ
X
x̄

1

32π2N x̄Λ2�e2
wμρ
x̄ wν

x̄ρ; ð148Þ

where nμx and μνx are the macroscopic number currents and
conjugate momenta defined in terms of four-velocities in
Sec. III and Λ̃0 only includes dependence on those macro-
scopic number currents. We have defined the energy per
unit length per flux tube/vortex line

Ev;p̄ ≡ Φ2
p̄

16π2Λ2�
ln

�
1.12Λ�
ξp

�
ð149Þ

Ev;n̄ ≡ πℏ2

8Bn̄ ln

�
0.0712
N n̄ξ

2
n

�
þ Φ2

n̄

16π2Λ2�
ln

�
1.12Λ�
ξn

�
: ð150Þ

We ignore condensation energy in the Ev;x̄, which is much
smaller than the other contributions. Since wμν

x̄ ∝ N x̄, the
final two terms in Eq. (148) are proportional to the areal
density of vortex lines/flux tubes as expected.
Equation (148) is then matched to Eq. (51). The averaged

mesoscopic-macroscopic stress energy tensor matching
procedure is described in full detail in Appendix B 3.
The resulting ΛEMþV is

ΛEMþV ¼ −
Fμν
L FL

μν

16π
−
X
x̄

N x̄Ev;x̄; ð151Þ

or in terms of the scalars XF, Xx̄, Yx̄ and Z and using

Fμρ
L FL

μρ ¼ 4XF þ 4

e2
Xp̄ þ

4Y2
np

e2Y2
pp

Xn̄ −
4

e
Yp̄ −

4Ynp

eYpp
Yn̄

þ 4Ynp

e2Ypp
Z; ð152Þ

plus Eq. (142), (144), we can write

ΛEMþV ¼ −
1

4π
XF −

Ynp

4πe2Ypp
Z

−
X
x̄

� ffiffiffiffiffiffiffiffi
2Xx̄

p
Φp̄e

Ev;x̄ þ
Φx̄

4πeΦp̄

�
Φx̄

Φp̄
Xx̄ − Yx̄

��
:

ð153Þ
The final term on the fourth line of Eq. (148) does not

have a corresponding term in the macroscopic effective
theory for reasons which we discuss in Appendix B 3,
and is thus not included in the averaged mesoscopic-
macroscopic stress energy tensor matching procedure.
We also exclude the final term in Eq. (148) from the
matching procedure, which is certainly legitimate in the
strong type-II limit where the kinetic energy associated
with flux tubes ≈Ev;x̄ is much larger than the flux tube/
vortex line magnetic field energy per unit length
Φ2

x̄=ð32π2Λ2�Þ. If this term is not removed, there would
be an inconsistency between (a) the ΛEMþV found by
comparing the terms proportional to the metric in Eq. (148)
to those in Eq. (51), and (b) the partial derivatives ofΛEMþV
found by comparing the rest of the terms in Eq. (148) and
Eq. (51). For consistency we also must ignore the derivative
of Ev;n̄ with respect to Xn̄ ∝ N 2

n̄, which is justified since
����N n̄

∂Ev;n̄

N n̄

���� ¼ πℏ2

8Bn̄ ≪ Ev;n̄ ∼
πℏ2

4Bn̄ ln

�
dn
ξn

�
ð154Þ

since dn ≫ ξn. That some terms in either the averaged
mesoscopic stress-energy tensor or the partial derivatives
of ΛEMþV must be ignored to obtain a consistent ΛEMþV is
not unexpected, as there was no guarantee that an exact
macroscopic effective action could be found to reproduce
the averaged mesoscopic action and stress-energy tensor.
That this procedure works so well suggests that we could
simply use the averaging method as a motivation for an
effective theory, for which we would use Eq. (151) as the
macroscopic master function, and then use this to derive the
macroscopic stress-energy tensor.
Equation (151) agrees with the vortex line-flux tube-

electromagnetic energy density obtained in [28–30],
including in the lack of terms coupling the London field
to the flux tube/magnetized vortex line fields. Such terms
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were eliminated in the references by the rotation energy
cancellation lemma. In our paper this lemma is used to
eliminate the London field–flux tube/magnetized vortex
line field cross terms that are proportional to the metric as
discussed Appendix B 2. However, this lemma requires
making additional approximations to those used in the rest
of the averaging procedure. First, the velocity differences
between the normal fluid and superconducting protons vμp̄
is negligible. Second, that vμn̄ is negligible or there is zero
entrainment and hence no electromagnetic field associated
with neutron vortex lines. These conditions are true in
the fully pinned, lines comoving with superfluid case
uμL;n̄ ¼ uμL;p̄ ¼ uμp̄ as long as Eq. (147) is true, but are
not necessarily true otherwise.
As the final result of this section, we calculate Kμν and

the λμνx̄ . Using Eq. (153) and the argument in Eq. (154),
Eqs. (132)–(134) gives

Kμν ¼ Fμν
L ; ð155Þ

λμνp̄ ¼ Ev;p̄

N p̄Φ2
p̄e

2
wμν
p̄ −

1

4πe2
Fμν
L ; ð156Þ

λμνn̄ ¼ Ev;n̄

N n̄Φ2
p̄e

2
wμν
n̄ −

Ynp

4πe2Ypp
Fμν
L : ð157Þ

B. Magnetic H-field and Maxwell equations
in a neutron star

There is disagreement in the literature about what the
electromagnetic displacement field tensor Hμν, or equiv-
alently the magnetic H-field (and electric displacement
field D if we were concerned about electric fields) is inside
a superconducting neutron star core. One of the early
studies of neutron star MHD by Mendell [73] found
H ¼ B. This result was contradicted by later studies, the
first of which appears to be Carter and Langlois [17], who
argued that H ¼ BL, where BL is the London field which
has approximate nonrelativistic, zero entrainment form
BL ≈ −2mpΩ=e for proton mass mp and uniform stellar
rotation rate Ω. This result has been the standard since then
[24,28,29]. However, H ¼ BL disagrees with the accepted
value for a type–II superconductor in the condensed matter
literature: in the nonrotating case it suggests H ¼ 0, while
in the low flux tube density limit the standard electronic
superconductivity result is [74] H ¼ Hp̄

c1 where H
p̄
c1 is the

first critical field for proton superconductivity. We clarify
this disagreement below, and further discuss its implica-
tions for the Maxwell equations inside a neutron star.
According to [75], the thermodynamic definition of the

magnetic H-field is

HT ¼ 4π
∂u
∂B

����
s;ni

; ð158Þ

for internal energy density u, average magnetic field B,
entropy density s, and number density ni. The subscript T is
used to denote the thermodynamic definition. In our
formulation, the analog to the internal energy density is
the master function Λ, and the analog to the entropy and
number densities are the currents nμx, including the entropy
current sμ. This means that the electromagnetic displace-
ment tensorHμν, whose components in the fluid rest frame
are the electric displacement field D and magnetic H-field,
is not equal to the electromagnetic auxiliary tensor defined
in Eq. (17), but is instead defined through the variation

Hμν ¼ −8π
∂Λ
∂Fμν

����
nμx

¼ −8π
� ∂Λ
∂Fμν

����
nμx;wx̄

μν

þ
X
x̄

∂Λ
∂wx̄

μν

����
nμx;Fμν

∂wx̄
μν

∂Fμν

����
nμx

�

¼ Kμν þ 4πeλμνp̄ ; ð159Þ

where we use Eq. (18), (41), (45) in computing
∂wx̄

μν=∂Fμνjnμx . Hμν can then be related to Fμν by defining
a magnetization-polarization tensor Mμν and writing

Fμν ¼ Hμν þ 4πMμν: ð160Þ

This subtle distinction between Kμν (which has often been
called Hμν) and Hμν as defined in Eq. (159), to be the
source of disagreement between neutron star MHD and
condensed matter superconductivity literature regarding the
magnetic H-field in a type–II proton superconducting
neutron star. Based on Eqs. (155)–(156), Hμν is

Hμν ¼ Hp̄
c1ŵ

μν
p̄ : ð161Þ

where the first critical field for proton superconductivity is

Hp̄
c1 ≡

4πEv;p̄

Φp̄
; ð162Þ

and ŵμν
p̄ ≡ wμν

p̄ =ðN p̄Φp̄eÞ. Equation (161) agrees with
the standard condensed matter result in the strong
type-II limit.
The distinction between Kμν and Hμν as we define them

here has implications on the interpretation of the Maxwell
equations. The variation of the Lagrangian with respect to
Aμ in Sec. II B gives Eq. (47), which by Eq. (155) gives as
the sourced Maxwell equations

∇νF
μν
L ¼ 4πjμe: ð163Þ

If the H-field is interpreted as the field whose curl is
proportional to the current density, this suggests that
H ¼ BL and agrees with the Maxwell equations in
[17,24,28]. Using Eq. (145) and working in the zero
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temperature approximation such that n�̄p ¼ Yppμ
�̄
p þ Ynpμ

�̄
n

[42], Eq. (163) then implies

nμe þ nμm − nμp ≈ nμp̄ þ Λ2�∂νð∂μnνp̄ − ∂μnνp̄Þ
≈ nμp̄ð1þ L−2Λ2�Þ; ð164Þ

where L is the hydrodynamic length scale ∼105 cm. Since
Λ� ∼ 10−12 cm, the right-hand side of Eq. (163) is very
close to nμp̄. So to a very good approximation, jμe ¼ 0 inside
a neutron star core, a conclusion drawn by Jones [76] and
which is a consequence of the proton superconductivity.
We can thus interpret Eq. (163) as telling us how to
compute jμe given Fμν

L . We note that the source term on
the right-hand side of Eq. (163) may need to be augmented
by surface currents as in the original derivation of the
London field by London [77]; as in London’s original
derivation, the surface currents are actually currents in a
boundary layer whose thickness is of order Λ�.
We conclude our discussion on electromagnetism in the

presence of vortex lines and flux tubes by finding the
Lorentz force acting on the charged fluids. Using Eq. (47),
(53), (54), (159), the combined force acting on the charged
fluids x ∈ fp; p̄; e; mg is

X
x¼p;p̄;e;m

fxμ ¼
X

x¼p;p̄;e;m

2nνx∇½νμxμ� þ 2∇½νμ
p̄
μ�∇ρλ

νρ
p̄

þ 1

4π
Fνμ∇ρHνρ: ð165Þ

This can be clearly separated into three parts: the sum of the
relativistic Euler equation for each fluid, the flux tube self-
tension force where the electromagnetic field contribution
is subtracted from the vorticity tensor, and the Lorentz
force. The last of these has the standard relativistic form in a
magnetizable medium and reduces to ð∇ ×HTÞ × B=4π
nonrelativistically.
As is suggested by our recovering the same Maxwell

equations as [17,24,28], the meaning of H is somewhat
subjective—we have discretion to choose between the field
which obeys the Maxwell equation Eq. (163), or (up to
proportionality constants) the free energy per length asso-
ciated with adding a flux tube. The first option is more
appropriate to electrodynamics problems e.g., “find H
given je.” However, in this case the solution may also
involve surface current densities, as in London’s original
derivation of his eponymous field. The second option, the
HT defined in Eq. (158), is more appropriate to (magneto)
hydrodynamics because the Lorentz force contains
ð∇ ×HTÞ × B=4π. It also corresponds more closely to
condensed matter literature where the systems are typically
nondynamical, but it is also consistent with the stress tensor
in Easson and Pethick [78], which does not refer to a
system in thermodynamic equilibrium and which leads to a
force equation [79]. Note that this “thermodynamic” field

HT has a curl that may be largely unrelated to the current
density. Given HT as a function of density and B, we can
compute equilibrium models (e.g., axisymmetric) and their
perturbations (i.e., using Faraday’s Law to compute
changes in B and conservation laws to compute changes
in density for given displacement field). The third option,
H ¼ B [73], only works if the curl of the magnetic field
due to the flux tubes/magnetized vortex lines is zero so that
it has no effect on the current.

VI. CONCLUSION

This article has extended the elegant convective varia-
tional principle first developed by Carter to a finite temper-
ature, fully general relativistic multifluid system including
neutron superfluidity and proton superconductivity that is
appropriate for use in studying the fluid dynamics of
neutron star cores. The hydrodynamics includes the proton
flux tubes and magnetized neutron vortex lines, with
mutual friction and vortex pinning incorporated cova-
riantly. Viscosity and heat conduction are also included
in the equations of the motion to further extend the scope of
the hydrodynamics. This is the first work to incorporate all
of these contributions to a relativistic, variational pro-
cedure-based hydrodynamics simultaneously, though we
note that there are other, equivalent relativistic formulations
based on the Landau–Khalatnikov hydrodynamics [23,24].
Our formulation has the practical advantage of using the
distinct fluid species as degrees of freedom, including
distinct currents for normal fluid and superfluid baryons
which were neglected in the zero temperature calculation of
[17]. One advantage of this choice is that it allows sources
of buoyancy among the different fluids to emerge naturally.
The averaging procedure used to determine the form

of the macroscopic action from the mesoscopic theory
allowed us to find an approximate effective macroscopic
theory, but not an exact term-by-term match. In particular,
we were forced to ignore certain terms in the averaged
mesoscopic stress-energy tensor, and to drop subdominant
terms in partial derivatives of the electromagnetism-
vorticity master function ΛEMþV, to obtain a consistent
macroscopic effective theory. In principle, one could use the
averaged mesoscopic theory to perform calculations instead
of the effective macroscopic theory based on it. Like
previous attempts at obtaining vortex energy contributions
starting from a mesoscopic theory, we made use of the
rotation energy cancellation lemma to eliminate cross terms
between the large-scale (but measurably small) London field
and the magnetic field of the flux tubes and magnetized
vortex lines. We verified this lemma’s applicability to the
energy density, but found that the averaged mesoscopic
stress-energy tensor as a whole does not satisfy the lemma.
Based on the effective macroscopic theory found by

averaging the mesoscopic theory, we have clarified the
interpretation of the magnetic field in a type-II super-
conducting neutron star core. Using the thermodynamic
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definition of the H-field provided by Eq. (158), our result
matches that found in the condensed matter literature;
that is, in the low flux tube density limit, H is the first
critical field Hc1 for proton superconductivity. The sourced
Maxwell equations found using the effective macroscopic
theory only involve the London field, which is why it has
previously, and alternatively, been identified with the
magneticH-field in the MHD of [17,24,28]. We emphasize
that the MHD based on both of these options is
equivalent—the difference is a matter of how terms are
grouped together in the equations of motion. We are able to
combine the charged fluid equations of motions into a
single equation and show that the Lorentz force is the
relativistic analog of ð∇ ×HÞ ×B=4π, whereas in previous
versions of relativistic MHD the same forces would be

distributed among different terms where such an identi-
fication would be obscured.
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APPENDIX A: ALTERNATIVE FORM OF
STRESS-ENERGY TENSOR

Starting from Eq. (112), insert the forms of nμx, μxν, sμ and
Θν as given in Sec. IVA and κΣμν as given by Eq. (126) to
obtain

Tμν ¼ ðnnμn þ npμp þ neμe þ nmμm þ n�̄nμ�̄n þ n�̄pμ�̄p þ s�T�Þuμuν þ Ψgμν þ 2uðμqνÞ þ 2n�̄nμ�̄nuðμv
νÞ
n̄ þ 2n�̄pμ�̄puðμv

νÞ
p̄

þ 2An̄ p̄n�̄nn�̄pv
ðμ
n̄ v

νÞ
p̄ þ Bs

T� q
μqν þ Bn̄ðn�̄nÞ2vμn̄vνn̄ þ Bp̄ðn�̄pÞ2vμp̄vνp̄ þ

1

4π
KμρFν

ρ þ
X
x̄

λμρx̄ wν
x̄ρ þ

X
Σ
τμνΣ

¼ ðΨ − ΛÞuμuν þΨgμν þ
�
Bs

T� q
μqν þ 2uðμqνÞ

�
þ 1

4π
KμρFν

ρ þ
X
x̄¼n̄;p̄

λμρx̄ wν
x̄ρ þ

X
Σ
τμνΣ

þ ð½Bn̄n�̄nv
μ
n̄ þAn̄ p̄n�̄pv

μ
p̄�n�̄nvνn̄ þ 2μ�̄nuðμn�̄nv

νÞ
n̄ Þ þ ð½Bp̄n�̄pv

μ
p̄ þAn̄ p̄n�̄nv

μ
n̄�n�̄pvνp̄ þ 2μ�̄puðμn�̄pv

νÞ
p̄ Þ

þ
�
Bs

T� q
2 þ Bn̄ðn�̄nÞ2v2n̄ þ Bp̄ðn�̄pÞ2v2p̄ þ 2An̄ p̄n�̄nn�̄pv

ρ
n̄v

p̄
ρ

�
uμuν: ðA1Þ

The first term proportional to uμuν is found by rewriting Ψ,
given by Eq. (113), as

Ψ ¼ Λþ nnμn þ npμp þ neμe þ nmμm þ nn̄μn̄ þ np̄μp̄

þ s�T� −
Bs

T� q
2 −

1

2

X
Σ
τρΣρ: ðA2Þ

The similarity of this form of Tμν to that of a single perfect
fluid [44] is now evident; this form is effectively the same
as that for such a fluid, plus electromagnetism, vorticity and
viscosity, with differences depending on the relative motion
of heat and the superfluids separated out.

APPENDIX B: FULL DETAILS OF MESOSCOPIC
STRESS-ENERGY TENSOR AND AVERAGING

PROCEDURE

We continue from the main text immediately following
the introduction of the mesoscopic Lagrangian and stress-
energy tensor Eq. (136). On the mesoscopic scale, currents
around vortex lines/flux tubes are represented within the
currents ñμx̄, not by using the vorticity tensors wμν

x̄ as is the
case in the macroscopic dynamics. We incorporate these
purely “mesoscale” currents δvμx̄ by defining ñμx̄ as

ñμx̄ ≡ ñx̄γðδv2x̄Þðuμx̄ þ δvμx̄Þ; x̄ ¼ n̄; p̄; ðB1Þ

where uμx̄ is defined as in Eq. (57). ñμx̄ satisfies the
normalization condition −ñμx̄ ñx̄μ ¼ ñ2x̄, since uμx̄δv

x̄
μ ¼ 0 as

a result of the approximation that the vortex lines/flux tubes
move with their respective superfluid. We enforce that the
δvμx̄ average to zero over scales larger than the typical cross
section of a vortex line/flux tube, and that any large-scale
average part of a relative velocity between the normal fluid
and superfluids is included in uμx̄. ñx̄ is the number density
of species x̄ measured in the frame comoving with the total
current of that species, and it is related to the number
density nx̄ in the frame of the bulk flow (the frame of uμx̄) by

nx̄ ¼ −uμx̄ ñx̄μ ¼ ñx̄γðδv2x̄Þ: ðB2Þ

Note that the for the normal fluid species, ñμx ¼ nμx.
We first expand out the terms in Eq. (136), removing any

dependence on the vortex line/flux tube mesoscale currents
from the master function Λ̃ and replace it with Λ̃0, which
represents only the internal energy of the fluid and the
kinetic energy of macroscopic currents. Following [30],
we write
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Λ̃ðñ2x; α̃2xyÞ ¼ Λ̃0ðn2x;α2xyÞþ
X
x;y

�∂Λ̃0

∂n2x dðn
2
xÞþ

∂Λ̃0

∂α2xy dðα
2
xyÞ

�

ðB3Þ

where the “0” subscript denotes the master function with
the δvμx̄ removed, and where

dðn2xÞ ¼ ñ2x − n2x ¼
�
−n2x̄δv2x̄; x ¼ n̄; p̄;

0; otherwise;

dðα2xyÞ ¼ α̃2xy − α2xy ¼ −ñσxñ
y
σ þ nσxn

y
σ

¼

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

npnn̄vσn̄δv
n̄
σ ; x ¼ n̄; y ¼ p;

nnnn̄vσn̄δv
n̄
σ; x ¼ n̄; y ¼ n;

nnnp̄vσp̄δv
p̄
σ ; x ¼ p̄; y ¼ n;

npnp̄vσp̄δv
p̄
σ ; x ¼ p̄; y ¼ p;

nn̄np̄½γðv2n̄Þðvσp̄ − vσn̄Þδvp̄σ
þγðv2p̄Þðvσn̄ − vσp̄Þδvn̄σ
−δvn̄σδvσp̄�; x ¼ n̄; y ¼ p̄;

0; otherwise;

where uμδvx̄μ ¼ −vμx̄δvx̄μ was used. For the normal fluids, ñμx
simply equals nμx, since the normal fluid currents are
unchanged by the inclusion of the mesoscale currents.
We have kept only terms that are order δv2x̄ in the
mesoscopic-scale velocities.
The partial derivatives of Λ̃0 in Eq. (B3) are identified

with the entrainment coefficients as defined in the macro-
scopic theory [Eq. (6)]. We use the physical arguments
presented at the end of Sec. III to reduce the number of
entrainment coefficients i.e., Anp ¼ Anp̄ ¼ Apn̄ ¼ An̄p.
Hence Λ̃ðñ2x; α̃2xyÞ becomes

Λ̃ðñ2x; α̃2xyÞ ¼ Λ̃0 þ
1

2
Bn̄n2n̄δv

2
n̄ þ

1

2
Bp̄n2p̄δv

2
p̄

−An̄p½npnn̄vσn̄δvn̄σ þ nnnp̄vσp̄δv
p̄
σ

þ nn̄np̄ðγðv2n̄Þðvσp̄ − vσn̄Þδvp̄σ
þ γðv2p̄Þðvσn̄ − vσp̄Þδvn̄σ − δvn̄σδvσp̄Þ�
−Ann̄nnnn̄vσn̄δ

n̄
σ −App̄npnp̄vσp̄δ

p̄
σ : ðB4Þ

It is also convenient to define a mesoscale superfluid
neutron canonical momentum covector

δπn̄μ ≡ Bn̄nn̄δvn̄μ þAn̄pnp̄δv
p̄
μ ; ðB5Þ

which is simply the part of μ̃n̄μ that depends on the
mesoscale velocities δvx̄μ. Note that, because the neutron
superfluid is not coupled to the electromagnetic field, we
could also have called δπn̄μ simply δμn̄μ. The definition of δπn̄μ

will simply some terms of the stress-energy tensor
immensely by canceling terms which couple δvn̄μ and δvp̄μ .
Combining these definitions and results with Eq. (72)

and Eq. (61a)–(62g), the mesoscopic stress-energy tensor
resulting from Eq. (B3) is

T̃μν ¼
X
x

nμxμνx þ
1

Bn̄ δπ
μ
n̄δπ

ν
n̄ þ

1

Ypp
n2p̄δv

μ
p̄δv

ν
p̄

þ 2

Bn̄ μ
ðμ
n̄ δπ

νÞ
n̄ − 2enp̄A

ðμ
L δv

νÞ
p̄

þ
�
Λ̃0 þ

X
x

nxμx −
1

2Bn̄ δπ
2
n̄ −

1

2Ypp
n2p̄δv

2
p̄

−
1

Bn̄ μ
σ
n̄δπ

n̄
σ þ enp̄Aσ

Lδv
p̄
σ

�
gμν

þ 1

4π

�
F̃μρF̃ν

ρ −
1

4
F̃σρF̃σρgμν

�
; ðB6Þ

where nμx and μνx are the number current and conjugate
momenta as defined in terms of the macroscopic currents in
Sec. III. We have used Eq. (61a)–(62g) plus the definition
of the London four-potential

AL
μ ≡ −

1

e

��
μ�̄p þ

Ynp

Ypp
μ�̄n

�
uμ þ

n�̄p
Ypp

vp̄μ

�
; ðB7Þ

in writing T̃μν this way. The nonelectromagnetic part of this
stress-energy tensor has been separated into three parts:
those which only depend on large-scale flows, those which
depend on mixed large-scale–mesoscale flows, and those
which only depend on mesoscale flows. We now want to
make this separation for the electromagnetic part of T̃μν,
and also to determine the form of the mesoscale super-
conducting proton velocity δvμp̄ and the mesoscale super-
fluid neutron canonical momentum δπn̄μ.

1. Mesoscopic treatment of vortex lines,
flux tubes and magnetic fields

We first calculate δπn̄μ. In its rest frame, the canonical
3-momenta for a single quantized vortex line will have the
following form [28]

δπx̄ ¼
ℏ
2ϖ

êφ; ðB8Þ

where ϖ and φ are the cylindrical radius and azimuthal
angle in a coordinate system in which the vortex line lies
along the z-axis. For a single vortex line labeled a, this is
expressed in covariant form as

δπx̄;aμ ¼ ℏ
2ϖ2

x̄;a
εμναβuνL;x̄t̂

α
x̄;aϖ

β
x̄;a; ðB9Þ
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where ϖβ
x̄;a points radially outward from the vortex

line/flux tube and t̂αx̄;a is the unit tangent vector to the
vortex line/flux tube. This form is also consistent with
Eq. (139)–(141) and the definition of wx̄

μν, since for a single
vortex line/flux tube in its rest frame we have [80]

εσαμνuL;x̄σ ∇μδπ
x̄;a
ν ¼ h

2
δ2ðϖx̄;aÞt̂αx̄;a; ðB10Þ

where δ2ðϖaÞ is a two-dimensional delta function at the
position of the vortex line labeled “a”. So whenever δπn̄μ
appears in Eq. (B6), it is replaced with a sum of Eq. (B9)
over the line labels a and with uL;x̄σ ¼ ux̄σ since we work in
the approximation that the vortex lines move with the
superfluid.
We next find the form of the electromagnetic tensor and

δvμp̄. We use the splitting Eq. (146) for F̃μν. Along with the
split of F̃μν in Eq. (146), we split the Maxwell equation
Eq. (138) into large-scale and mesoscale parts, with the
mesoscale proton current ∝ δvμp̄ sourcing the mesoscale
fields and the other parts of the current sourcing the large-
scale field (the London field). Using Eq. (56), (57), (B1)
and assuming local charge neutrality

∇νF̃
μν
L ¼ 4πen�̄pv

μ
p̄; ∇νðF̃μν

p̄ þ F̃μν
n̄ Þ ¼ 4πenp̄δv

μ
p̄:

ðB11Þ

We can also split the four-potential Ãμ into large-scale and
mesoscale contributions AL

μ and δAμ ¼ δAp̄
μ þ δAn̄

μ respec-
tively where F̃x̄

μν ¼ 2∇½μδAx̄
ν�. Then, defining a mesoscale

canonical momentum covector for the protons analogously
to Eq. (B5)

δπp̄μ ≡ Bp̄np̄δv
p̄
μ þAnpnn̄δvn̄μ þ eδAμ; ðB12Þ

and combining it with Eq. (B5) to eliminate δvn̄μ, we obtain

1

Ypp
np̄δv

p̄
μ þ eδAμ ¼ δπp̄μ þ Ynp

Ypp
δπn̄μ; ðB13Þ

or, eliminating δvp̄μ with Eq. (B11) and using Φp̄ ¼ h=ð2eÞ
and Φn̄ ¼ YnpΦp̄=Ypp and Λ� ¼ ð4πe2YppÞ−1=2,

X
x̄

�
∇νF̃

μν
x̄ −

1

Λ2�
δAμ

x̄

�
¼ 2

hΛ2�

X
x̄

Φx̄δπ
μ
x̄ : ðB14Þ

Equation (B13) is used to obtain the London equation for
proton flux tubes or magnetized neutron vortex lines. We
will assume that the magnetic fields due to the flux tubes
or magnetized vortex lines will have negligible overlap,
and so we can fix x̄ to be either p̄ or n̄ and drop the other
contribution to Eq. (B14). As a consequence of Eq. (147)
with uL;x̄μ ¼ ux̄μ, we have

F̃μν
x̄ ¼ −εμναβux̄αδBx̄

β; ðB15Þ

where δBx̄
μ is the magnetic field due to the flux tubes/vortex

lines measured in their rest frame. Then contracting with
ερσημux̄σ∇η, ignoring spatial curvature (which is a very good
approximation for microscopic structures like vortex lines
and flux tubes), assuming the flux tubes/vortex lines move
with their respective superfluid and using Eq. (B10), we
obtain

∇2δBμ
x̄ −

δBμ
x̄

Λ2�
¼ −

Φx̄

Λ2�

X
a

t̂μx̄;aδ
2ðϖx̄;aÞ: ðB16Þ

This is the London equation in the comoving frame,
whose solutions are the magnetic fields for flux tubes/
magnetized vortex lines. ∇2 is the usual flat space
Laplacian, and Λ� is the London length. The right-hand
side of the equation is a sum over flux tubes/magnetized
vortex lines labeled by index a and represented as two-
dimensional delta functions. The solutions in the comov-
ing frame for single flux tubes/magnetized vortex lines
take the familiar form [30]

δBμ
x̄;a ¼ t̂μx̄;a

Φx̄K0ðϖx̄;a=Λ�Þ
2πΛ2�xx̄0K1ðxx̄0Þ

≡ δBx̄;aðϖx̄;aÞt̂μx̄;a; ðB17Þ

where KnðxÞ is the modified Bessel function of the
second kind of order n and xx̄0 ≡ ξx=Λ�. Flux in the core
of the flux tubes/vortex lines, included in e.g., [30], is
ignored here.
Using Eqs. (B15), (B17), the mesoscale electromagnetic

field tensors are

F̃x̄
μν ¼ −

X
a

εμναβuαx̄δB
β
x̄;a: ðB18Þ

Hence we can replace δvμp̄ in Eq. (B6) using the mesoscale
Maxwell equation Eq. (B11) with the gradient of Eq. (B18).

2. Averaging the mesoscopic stress-energy tensor

We now average the mesoscopic stress-energy tensor,
Eq. (B6). As noted before, the nonelectromagnetic part of
this equation consists of purely large-scale flow terms,
purely mesoscale flow terms, and mixed terms. Though δπn̄μ
does not average to zero, we will absorb any effect of the
large scale–small scale superfluid neutron momentum term

∝ μðμn̄ δπ
νÞ
n̄ or μσn̄δπ

n̄
σgμν in T̃μν into the purely small-scale

superfluid neutron momentum terms using a cutoff length.
We thus treat hδπn̄μi ¼ 0 and so both of the aforementioned
terms vanish upon averaging. The purely large-scale flow
terms

P
x n

μ
xμνx þ ðΛ̃0 þ

P
x nxμxÞgμν, do not change upon

averaging, and have exact matches in the macroscopic
stress-energy tensor as we will demonstrate in the next
section. We label the remaining terms ΔT̃μν:
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ΔT̃μν ¼ 1

Bn̄

�
δπμn̄δπ

ν
n̄ −

1

2
δπ2n̄g

μν

�
þ n2p̄
Ypp

�
δvμp̄δv

ν
p̄ −

1

2
δv2p̄g

μν

�
− 2eAðμ

L δv
νÞ
p̄ þ eAL

σ δvσp̄g
μν þ 1

4π

h
F̃μρ
p̄ F̃ν

p̄ρ þ F̃μρ
n̄ F̃ν

n̄ρ þ F̃μρ
L F̃ν

Lρ

þ 2F̃ðμ
p̄ρF̃

νÞρ
L þ 2F̃ðμ

n̄ρF̃
νÞρ
L þ 2F̃ðμ

p̄ρF̃
νÞρ
n̄

i
−

gμν

16π

h
F̃σρ
p̄ F̃p̄

σρ þ F̃σρ
n̄ F̃n̄

σρ þ F̃σρ
L F̃L

σρ þ 2F̃σρ
p̄ F̃L

σρ þ 2F̃σρ
n̄ F̃L

σρ þ 2F̃σρ
p̄ F̃n̄

σρ

i
:

ðB19Þ

We now integrate Eq. (B19) over a surface of size ∼l2,
then replace the quantities in the mesoscopic stress-energy
tensor with averaged quantities. First we consider

T̃μν
π ≡ 1

Bn̄

�
δπνn̄δπ

ν
n̄ −

1

2
δπ2n̄g

μν

�
: ðB20Þ

δπμn̄ is replaced by a sum over individual vortex lines. For
this purpose, we rewrite Eq. (B8) as

δπμn̄;a ¼
ℏ

2ϖn̄;a
ð− sinφn̄;aζ̂

μ
x̄;a þ cosφn̄;aη̂

μ
x̄;aÞ ðB21Þ

where φn̄;a is an azimuthal angle measured around a vortex
line labeled a and ζ̂μn̄;a and ζ̂μn̄;a are mutually orthogonal
unit vectors which are also orthogonal to both uμn̄ and t̂μn̄;a.
When integrating over a surface area ∼l2 in the plane
perpendicular to the average vortex line tangent vector
t̂μx̄ ¼ ht̂μx̄;ai, the sum over different vortex lines is replaced
with a multiplication by the areal density of vortex lines
N n̄. We also replace the other vectors with their average
values over the area of integration ζ̂μn̄ ¼ hζ̂μn̄;ai, η̂μn̄ ¼ hη̂μn̄;ai.
This means we only need to consider the integral for a
single vortex line, integrating radially from the coherence
length (since we are ignoring the core) to a cutoff
radius rcutn :

hT̃μν
π i ¼ N n̄

ℏ2

4Bn̄

Z
2π

0

dφn̄

Z
rcutn

ξn

dϖn̄

ϖn̄

×

�
sin2φn̄ζ̂

μ
n̄ζ̂

ν
n̄ þ cos2φn̄η̂

μ
n̄η̂

ν
n̄

− 2 sinφn̄ cosφn̄ζ̂
ðμ
n̄ η̂

νÞ
n̄ −

1

2
gμν

�

¼ N n̄
πℏ2

8Bn̄ ln

�
rcutn

ξn

�
ðζ̂μn̄ζ̂νn̄ þ η̂μn̄η̂

ν
n̄ − gμνÞ: ðB22Þ

The neutron vortex line cutoff radius rcutn accounts for the
long-range nature of the vortex lines and incorporates the
effect of interactions between them. hT̃μν

π i thus absorbs
the ∝ δπn̄μn̄ terms in Eq. (B6) that we argued average to
zero earlier. Based on Tkachenko [81] and Sonin [82], we
expect rcutn ≈ 0.0712ðξnN n̄Þ−1. Additionally we have

gμν ¼ −uμx̄uνx̄ þ ζ̂μx̄ ζ̂
ν
x̄ þ η̂μx̄η̂

ν
x̄ þ t̂μx̄ t̂

ν
x̄; ðB23Þ

so we can write

hT̃μν
π i ¼ N n̄

πℏ2

8Bn̄ ln

�
0.0712
N n̄ξ

2
n

��
uμn̄u

ν
n̄ − t̂μn̄t̂

ν
n̄

	
; ðB24Þ

Eq. (B24) has the general form of the stress-energy tensor
for a single string along t̂μn̄ [83].
Next consider

T̃μν
v ≡ n2p̄

Ypp

�
δvμp̄δv

ν
p̄ −

1

2
δv2p̄g

μν

�
: ðB25Þ

At this point, we neglect the interactions between different
flux tubes/vortex lines and consider only their self-energy
contributions. This allows us to simplify in our averaging
integral and again integrate only over a surface locally
perpendicular to the flux lines/vortex tubes, then multiply
by the relevant areal number density N x̄. Using Eq. (B11),
(B15) and ignoring spatial curvature, we find an integral
very similar to Eq. (B22)

hT̃μν
v i ¼

X
x̄

N x̄Φ2
x̄

16π3Λ4�

Z
2π

0

dφx̄

Z
rcutx

ξx

dϖx̄ϖx̄K2
1ðϖx̄=Λ�Þ

½xx̄0K1ðxx̄0Þ�2

×

�
sin2φx̄ζ̂

μ
x̄ ζ̂

ν
x̄ þ cos2φx̄η̂

μ
x̄η̂

ν
x̄

− 2 sinφx̄ cosφx̄ζ̂
ðμ
x̄ η̂

νÞ
x̄ −

1

2
gμν

�

¼
X
x̄

N x̄Φ2
x̄

16π2Λ2�
ln

�
0.681Λ�

ξx

�
ðζ̂μx̄ ζ̂νx̄ þ η̂μx̄η̂

ν
x̄ − gμνÞ;

ðB26Þ

where we use the definition of the London length and an
identical coordinate system as was used to compute hT μ̂ ν̂

π i.
We take the large cutoff radius rcutx → ∞ limit and use the
approximation

K0ðxx̄0ÞK2ðxx̄0Þ
K2

1ðxx̄0Þ
− 1 ≈ 2

�
ln

�
1

xx̄0

�
− 0.384

�
; xx̄0 ≪ 1:

ðB27Þ

Now we consider the electromagnetic field tensor terms
in the mesoscopic stress-energy tensor. As we have
previously discussed, the overlap between the magnetic
fields due to different flux tubes and magnetized vortex
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lines is negligibly small, and hence we neglect the F̃p̄F̃n̄

terms in Eq. (B19). The London field is the same before and
after averaging, and so the F̃2

L terms are unchanged by
averaging other than removing the tilde. We combine the
London field-vortex line/flux tube field cross terms in
Eq. (B19) with the terms depending on the London four-
potential to give

T̃μν
B;cross ¼

X
x̄

�
−

1

2π
Aðμ
L ∇ρF̃

νÞρ
x̄ þ 1

2π
F̃ðμ
x̄ρF̃

νÞρ
L

þ 1

4π
AL
σ∇ρF̃

σρ
x̄ gμν −

1

8π
F̃σρ
x̄ F̃L

σρgμν
�
; ðB28Þ

where we use the second equation in Eq. (B11) to replace
δvμp̄. In taking the average of this term, we approximate that
the relative velocities vμx̄ are small so uμx̄ ≈ uμ, and we work
in the common rest frame of the fluids. We also assume that
the lines can be regarded as straight to lowest order.
First consider the first term on the right-hand side of

Eq. (B28). Our treatment is similar to that of Baym and
Chandler [58] for the terms in the energy per unit length

coupling large-scale rotation and the flow around super-
fluid vortex lines. From Eq. (B7), we approximate Aμ

L to be

Aμ
L ≈ KðnxÞuμ; ðB29Þ

where KðnxÞ is a function of the number densities and can
be approximated as constant over length scales l. To lowest
order uμ is pure rotation, so

uμ ≈ −δμ0 þ δμi ϵ
i
kmΩkrm; ðB30Þ

for radial position and rotational velocity three-vectors rm

and Ωk. Ignoring electric fields associated with the vortex
lines/flux tubes, the only nonzero components of the first
two terms of Eq. (B28) will be the spatial components
μ; ν ¼ i, j, since δμ0∇ρF̃

νρ
x̄ will average to zero. Expanding

rm ¼ rm0 þϖx̄ðζ̂mx̄ cosφx̄ þ η̂mx̄ sinφx̄Þ near a vortex line/
flux tube of species x̄, where ζ̂i and ζ̂i are the three-vector
versions of the spacelike four-vectors ζ̂μx̄ and ζ̂μx̄, we again
perform the averaging integral for a single line and then
multiply by the number density N x̄:



−

1

4π
Aμ
L∇ρF̃

νρ
x̄

�
≈ −

1

4π
hui∇ρF̃

jρ
x̄ iδμi δνj

¼ −
N x̄Φx̄KðnxÞ

8π2Λ3�
× δμi δ

ν
jϵ

i
kmΩk

Z
2π

0

dφx̄ðζ̂mx̄ cosφx̄ þ η̂mx̄ sinφx̄Þ

× ðsinφx̄ζ̂
j
x̄ − cosφx̄η̂

j
x̄Þ
Z

rcutx

ξx

dϖx̄ϖ
2
x̄
K1ðϖx̄=Λ�Þ
xx̄0K1ðxx̄0Þ

≈ −
N x̄Φx̄KðnxÞ

4π
ðt̂ix̄Ωj − δijΩkt̂x̄kÞδμi δνj; ðB31Þ

where we use t̂ix̄ ¼ ϵikmζ̂
k
x̄η̂

m
x̄ and again approximate xx̄0 ≪ 1, rcutx → ∞. So



−

1

2π
Aðμ
L ∇ρF̃

νÞρ
x̄

�
≈ −

N x̄Φx̄KðnxÞ
4π

δμi δ
ν
j × ððt̂ix̄Ωj þ t̂jx̄ΩiÞ − 2δijΩkt̂x̄kÞ: ðB32Þ

Ignoring electric fields, only the spatial components μ; ν ¼ i, j of the second term in Eq. (B28) survive,
so using Fμν

L ¼ F̃μν
L ≈ 2KðnxÞϵijk Ωkδμi δ

ν
j and F̃μν

x̄ ≈
P

a ϵ
ij
k δB

k
x̄;aδ

μ
i δ

ν
j , we find



1

4π
F̃μ
x̄ρF̃

νρ
L

�
≈
N x̄Φx̄KðnxÞ

4π2Λ2�
ðt̂ix̄Ωj − δijΩkt̂x̄kÞ

Z
2π

0

dφx̄

Z
rcutx

ξx

dϖx̄ϖx̄
K0ðϖx̄=Λ�Þ
xx̄0K1ðxx̄0Þ

δμi δ
ν
j

≈
N x̄Φx̄KðnxÞ

2π
ðt̂ix̄Ωj − δijΩkt̂x̄kÞδμi δνj; ðB33Þ

so



1

2π
F̃ðμ
x̄ρF̃

νÞρ
L

�
≈


1

π
Aðμ
L ∇ρF̃

νÞρ
x̄

�
: ðB34Þ

The first two terms in Eq. (B28) thus partially cancel each other upon averaging under these approximations. The remaining
terms in Eq. (B28), those proportional to gμν, entirely cancel each other, which is demonstrated by taking the trace of
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Eq. (B34). That these remaining two terms cancel is
consistent with the rotation energy cancellation lemma
applied in [28–30], since nonrelativistically the energy
density is simply the coefficient of the metric in the stress-
energy tensor. However, we do not find that there is a
tensorial version of the rotation energy cancellation lemma
that eliminates all such cross terms from hT̃μνi. Addition-
ally, higher order (in velocity over c) corrections to the
energy density will appear due to contractions between the
four-velocity of the reference frame in which the energy
density is measured and the noncanceled part of the first
two terms in Eq. (B28).
The final terms to average in ΔT̃μν are

T̃ μ̂ ν̂
B;x̄ ¼

1

4π

�
F̃μρ
x̄ F̃ν

x̄ρ −
1

4
F̃σρ
x̄ F̃x̄

σρgμν
�
: ðB35Þ

Using Eq. (B15) and again ignoring interactions between
different flux tubes and vortex lines, we can compute the
average of T̃ μ̂ ν̂

B analogously to Eqs. (B22), (B26), giving

hT̃μν
B;x̄i ¼

X
x̄

N x̄Φ2
x̄

16π3Λ4�

Z
2π

0

dφx̄

Z
rcutx

ξx

dϖx̄ϖx̄K2
0ðϖx̄=Λ�Þ

½xx̄0K1ðxx̄0Þ�2

×

�
uμx̄u

ν
x̄ þ

1

2
gμν − t̂μ̂x̄ t̂

ν
x̄

�

¼
X
x̄

N x̄Φ2
x̄

16π2Λ2�

�
uμx̄u

ν
x̄ þ

1

2
gμν − t̂μx̄ t̂

ν
x̄

�
; ðB36Þ

where we used the approximation K2
0ðxx̄0Þ=K2

1ðxx̄0Þ ≈ 0

for xx̄0 ≪ 1.
Using Eqs. (140), (141), (B23) we can rewrite the

following contractions of tensors as

wρσ
x̄ wx̄

ρσ ¼ 2Wσ
x̄W

x̄
σ ¼ 2ðN x̄Φp̄eÞ2 ¼ 4Xx̄; ðB37Þ

wμρ
x̄ wν

x̄ρ ¼ ðgμν þ uμx̄u
ν
x̄ÞWσ

x̄W
x̄
σ −Wμ

x̄W
ν
x̄

¼ ðN x̄Φp̄eÞ2½gμν þ uμx̄u
ν
x̄ − t̂μx̄ t̂

ν
x̄�

¼ ðN x̄Φp̄eÞ2½ζ̂μx̄ ζ̂νx̄ þ η̂μx̄η̂
ν
x̄�: ðB38Þ

Replacing terms in Eq. (B19) with their respective averages
and using Eq. (B38), we finally obtain

hT̃μνi ¼
X
x

nμxμνx þ
�
Λ̃0 þ

X
x

nxμx

�
gμν

þ
X
x̄



1

4π
F̃ðμ
x̄ρF̃

νÞρ
L

�

þ 1

4π

�
Fμρ
L Fν

Lρ −
1

4
Fσρ
L FL

σρgμν
�

þ
X
x̄

Ev;x̄

N x̄ðΦp̄eÞ2
�
wμρ
x̄ wν

x̄ρ −
1

2
wσρ
x̄ wx̄

σρgμν
�

þ
X
x̄

1

32π2N x̄Λ2�e2
wμρ
x̄ wν

x̄ρ; ðB39Þ

which is Eq. (148) in the main text, and where the Ev;x̄ are
defined in Eqs. (149)–(150).

3. Matching to the macroscopic stress-energy tensor

We now match the macroscopic stress-energy tensor as
found in Eq. (51) with the averaged mesoscopic stress-
energy tensor Eq. (B39). To begin, expanding out theP

x n
ρ
xμxρ terms using the definitions of the currents and

conjugate momenta from Sec. III. This gives

Tμν ¼
X
x

nμxμνx þ
1

4π
KμρFν

ρ þ
X
x̄

λμρx̄ wν
x̄ρ

þ
�
Λþ

X
x

nxμx

�
gμν: ðB40Þ

The macroscopic current terms in Eq. (B40) and Eq. (B39)
match, so we now focus on matching the remaining terms.
We postulate the Lorentz-invariant form of the macro-

scopic master function Λ as in Eq. (131) and identify
Λ0 ¼ Λ̃0. Using Eq. (131)–(134) in Eq. (B40) and then
substituting Fμν using Eq. (144) gives

ΔTμν ¼ ΛEMþVgμν −
∂ΛEMþV

∂XF
Fμρ
L Fν

Lρ −
�
1

e2
∂ΛEMþV

∂XF
þ 2

e
∂ΛEMþV

∂Yp̄
þ ∂ΛEMþV

∂Xp̄

�
wμρ
p̄ wν

p̄ρ

−
�
Y2
np

e2Y2
pp

∂ΛEMþV

∂XF
þ 2Ynp

eYpp

∂ΛEMþV

∂Yn̄
þ ∂ΛEMþV

∂Xn̄

�
wμρ
n̄ wν

n̄ρ

þ 2

�
1

e
∂ΛEMþV

∂XF
þ ∂ΛEMþV

∂Yp̄

�
Fρðμ
L wνÞ

p̄ρ þ 2

�
Ynp

eYpp

∂ΛEMþV

∂XF
þ ∂ΛEMþV

∂Yn̄

�
Fρðμ
L wνÞ

n̄ρ

þ 2

�
Ynp

e2Ypp

∂ΛEMþV

∂XF
þ Ynp

eYpp

∂ΛEMþV

∂Yp̄
þ 1

e
∂ΛEMþV

∂Yn̄
þ ∂ΛEMþV

∂Z
�
wρðμ
p̄ wνÞ

n̄ρ; ðB41Þ
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where ΔTμν is defined to only include those terms in the
macroscopic stress-energy tensor which do not have an
exact matching term in the mesoscopic stress-energy
tensor, but including all of the electromagnetic terms.
We can now match terms by comparing Eq. (B41) to

hΔT̃μνi [the last four lines of Eq. (B39)]. We first note that

since the hF̃ðμ
x̄ρF̃

νÞρ
L i=4π terms in Eq. (B39) do not have a

corresponding term proportional to the metric (such a term
having been eliminated by the rotation energy cancellation
lemma), there is no way to incorporate such a term into the
macroscopic effective theory. If we try to include this term
in the theory, say by matching to the third line of Eq. (B41)

using hF̃ðμ
x̄ρF̃

νÞρ
L i ¼ Φx̄=ðeΦp̄Þwðμ

x̄ρF̃
νÞρ
L , we will find that the

partial derivatives of ΛEMþV will be inconsistent with the
definition of ΛEMþV found by matching the terms propor-
tional to gμν. We thus exclude these terms from the
matching procedure and from the resulting macroscopic
effective theory. For this reason, a reader might choose to
use the averaged mesoscopic theory rather than the effec-
tive theory for dynamical calculations, though the terms
missing from the macroscopic theory are relatively unim-
portant for dynamics.
Matching the London magnetic field squared terms

requires

∂ΛEMþV

∂XF
¼ −

1

4π
: ðB42Þ

Matching to the London field–flux tube/vortex line field
cross terms, which are all zero in the averaged mesoscopic

theory after dropping the hF̃ðμ
x̄ρF̃

νÞρ
L i=4π term, and using

Eq. (B42), we require

∂ΛEMþV

∂Yp̄
¼ 1

4πe
;

∂ΛEMþV

∂Yn̄
¼ Ynp

4πeYpp
: ðB43Þ

The flux tube/vortex line cross term in Eq. (B41) are zero as
a result of our ignoring their interactions in the averaged
mesoscopic theory. In accordance with Eqs. (B42)–(B43),
this requires

∂ΛEMþV

∂Z ¼ −
Ynp

4πe2Ypp
: ðB44Þ

Matching to terms proportional to wμρ
x̄ wν

x̄ρ gives

∂ΛEMþV

∂Xp̄
¼ −

1

4πe2
−

1

N p̄ðΦp̄eÞ2
�
Ev;p̄ þ

Φ2
p̄

32π2Λ2�

�
;

ðB45Þ

∂ΛEMþV

∂Xn̄
¼ −

Y2
np

Y2
pp

�
1

4πe2
þ 1

N n̄ðΦn̄eÞ2
�
Ev;n̄ þ

Φ2
n̄

32π2Λ2�

��
:

ðB46Þ

Matching terms proportional to gμν gives the same
ΛEMþV as Eq. (151). Rewriting this in terms of the scalars
XF, Xx̄, Yx̄, Z and taking the partial derivatives of ΛEMþV
with respect to each scalar, we obtain the same results as in
Eqs. (B42)–(B44). However, we do not completely recover
Eqs. (B45)–(B46) and miss additional vortex line/flux tube
magnetic field energy contributions ∝ Φ2

x̄=ð32π2Λ2�Þ (in
fact, one-half the magnetic field energy per unit length).
In the strong type-II superconductivity limit, the missing
terms would be irrelevant and so both ways to find ΛEMþV
would be consistent. We drop them regardless of the
physical limit, which is equivalent to dropping the last
line in Eq. (B39). We also gain an extra term in Eq. (B46)
because of the N x̄-dependence of the vortex line energy
cutoff radius in Ev;n̄. This contribution is argued to be small
in Eq. (154).
That we cannot obtain a completely consistent macro-

scopic master function and stress-energy tensor from
averaging the mesoscopic theory is not entirely surprising,
as we had no reason to believe this was possible before we
began. We can at least have an approximate effective
macroscopic theory by using theΛEMþV found by matching
terms proportional to gμν between the averaged mesoscopic
and macroscopic theories and then ignoring terms in
the stress-energy tensor inconsistent with this–fortunately
there are only three such terms, and in the strong type-II
superconductivity limit and for dn ≫ ξn only the

hF̃ðμ
x̄ρF̃

νÞρ
L i=4π term is not negligible.
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