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Transport coefficients of nucleon neutron star cores for various nuclear
interactions within the Brueckner-Hartree-Fock approach
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We consider the thermal conductivity, shear viscosity, and momentum relaxation rates in the nucleon
cores of the neutron stars. We study how the choice of the nuclear interaction and the model for three-body
forces may affect these transport coefficients calculated within the Brueckner-Hartree-Fock many-body
nuclear theory. We find that at relatively large densities the model dependence of the results is substantial.
In addition we provide the analytical approximations which allow to incorporate our results in practical

simulations.
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I. INTRODUCTION

Studies of matter at and beyond the nuclear density
(ng ~ 0.16 fm™3) attract constant interest as a way to test
fundamental physical theories such as theories of strong
interactions. One of a few ways to study matter at supra-
nuclear densities comes from the neutron star astrophysics.
Neutron stars (NSs), having masses of the order of the Solar
mass M and radii of the order of tens of kilometers, are
largely composed of the superdense matter in their liquid
cores, although the exact composition and equation of state
(EOS) of this matter are unknown [1]. In particular, the
properties of the superdense matter inside NS cores affect
the flow of various nonequilibrium processes that have
observational consequences. Confronting the results of
modeling of such processes with the astrophysical obser-
vations potentially allows one to infer the underlying
physical properties deep in NS interiors. The important
microphysical input to such a modeling are the transport
properties of the NS matter.

Transport properties of NS interiors were studied inten-
sively in the last decades; see Ref. [2] for a review. Most of
the results were obtained for a simplest nucleon compo-
sition of NS cores, where the matter constituents are
neutrons (n), protons (p), electrons (e), and muons (u).
The matter inside NSs is thought to be at, or close to the
equilibrium with respect to the weak reactions, the
so-called beta-stable matter. In this case the proton (and
lepton) fraction x,, is small, x, < 0.2-0.3 [1]. Depending
on the transport problem considered, the largest contribu-
tion to transport coefficients comes from neutrons or
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leptons, with the protons giving the least important con-
tribution. The first detailed studies of the diffusive transport
coefficients of NS cores were performed by Flowers and
Itoh [3]. Their consideration of nucleon transport coeffi-
cients was based on the free-space scattering cross sections.
However, since nucleons inside NS cores form dense
nonideal strongly interacting Fermi liquid, the appropriate
nuclear many-body theory needs to be incorporated. The
approaches to this problem included the in-medium per-
turbation theory based on the Brueckner G-matrix [4—7] or
thermodynamical 7-matrix [8], variational approach within
the correlated basis function formalism [4,9,10], and the
medium-modified one-pion exchange model [11,12] in the
framework of Landau-Migdal Fermi-liquid theory [13]; see
Ref. [2] for the more detailed review.

In the present study we continue our previous work [6]
and investigate the transport coefficients of the NS cores
within the Brueckner-Hartree-Fock (BHF) framework. We
limit ourselves to the simplest npeu composition of the NS
cores and focus on the nucleon contribution to the trans-
port. For the up-to-date results on the lepton contribution;
see Refs. [2,14—17]. Previously [6] we obtained the nucleon
thermal conductivity x and shear viscosity # within this
model in the beta-stable matter of NS core for one
particular nuclear interaction, namely the Argonne vI18
two-body potential supplemented with the Urbana IX
three-body force. Here we explore the dependence of
our results on the choice of the nuclear interaction follow-
ing Ref. [18] where similar analysis was performed for the
nucleon effective masses. In addition, we also consider the
momentum relaxation rate in the neutron-proton collisions,
an important transport coefficient in studies of the magnetic
field evolution in NS cores [2,19-21].

© 2020 American Physical Society
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Preliminary results of the present studies were reported in
Ref. [7]. We find that the dependence of the transport
coefficients on the model of the interaction can be substantial
at high baryon densities. The main difference seems to come
from the model for three-body forces. While at low densities,
np ~ ng, all calculations agree, at higher densities values of
thermal conductivity, shear viscosity, and momentum relax-
ation rate can differ by an order of magnitude depending on
the selected nucleon-nucleon (NN) interaction.

The paper is organized as follows. In Sec. II we outline
the formalism used to calculate the kinetic coefficients and
introduce the effective mean free paths of the transport
theory. In Sec. III we shortly review the BHF approach and
we present our results in Sec. I'V. Specifically, in Sec. IVA
we analyse the dependence of the effective mean free paths
on the selection of the nuclear interaction. In Sec. IV B
we discuss the simplifications that can be used in calcu-
lations of the shear viscosity and thermal conductivity. In
Sec. IVC we try to isolate main partial waves of the
nucleon interaction that are responsible for the difference in
the results. Finally in Sec. IV D we provide the practical
expressions for calculating the transport coefficients in our
model. We conclude in Sec. V.

In what follows, we set 7 = kz = ¢ = 1, except for the
practical expressions in Sec. IV D. Effects of nucleon
pairing are outside the scope of the present paper and
are not included.

II. FORMALISM

The calculation of the transport coefficients in NS cores
is based on the transport theory of multicomponent Fermi
liquids [3,22,23]. We consider here the thermal conduc-
tivity coefficient k;, shear viscosity coefficient #;, and
momentum relaxation rate J;;, where indices i and j
numerate particle species. It is customary to express these
transport coefficients through the effective mean free paths
of the quasiparticles as

2

b3 n;
k=T, (1)
3 Dri
1 n
n = gnipFi/li’ (2)
Jij = nipp;(A0)7" (3)

where T is a temperature, n; is a number density of the
particle species i, pr; = (37°n;)!/? is the corresponding
Fermi momentum. In Eqs. (1)—(2), the quantities 2¥ and A7
are effective mean free paths of the particle species i for the
thermal conductivity and shear viscosity problems, respec-
tively, while /15. introduced in Eq. (3) is an effective mean
free path for the momentum relaxation in the collisions
between particle species i and j. Momentum relaxation

rates (3) describe friction between the mixture components.
They are related to the traditional diffusion coefficients
as D;; = nip;(Olog u;/0logn;)J;;, where y; is a chemical
potential of the particle species i. The effective mean free
paths in Egs. (1)—(3), in general, are not the same and
need to be determined from microscopic calculations for
the corresponding transport problem. Frequently, one
expresses the transport coefficients through the effective
relaxation times z; instead of 4; [2]. The relation between
these quantities is simply 4; = vp,7;, where v, is the Fermi
velocity of the particle species i.

In order to find effective mean free paths in the
degenerate matter of NS cores it is enough to employ
the simplest variational solution of the transport equation,
which for thermal conductivity and shear viscosity prob-
lems reduces to a solution of a system of linear equations;
see Ref. [2] for details. This system reads

1 :Z(njaul,—l-njaijﬂj), (4)

J

where the summation is carried over all components with
which the given species i collide, including j = i; 6;; and
o}, are the transport cross sections for these collisions to be
defined below, and we omitted for a moment the upper
indices at A’s for brevity. The primed cross sections aﬁ-j
describe the mutual influence of the nonequilibrium dis-
tributions of the different particle species. It is instructive to
introduce a partial mean free path for the collisions between
the particle species i and j

Aij = (njo; + &mjot) ™" (5)
where 9;; is the Kroenecker delta-symbol. The smaller
the partial mean free path is, the more important is the
corresponding scattering channel. We also define here
the primed partial mean free paths that correspond to the
nondiagonal terms in the system (4):

Ay = (o)~ (6)

In principle, all possible pair collisions in the mixture
should be included in Eq. (4). However, it turns out (e.g.,
[2,3]) that in the npepu NS cores, the system of equations (4)
decouples in two subsystems, one of which corresponds to
the nuclear sector and other to the electromagnetic one.
These sectors can be considered separately. Moreover, only
the neutrons as most abundant particles, dominate the
nuclear contribution to the transport coefficients. We will
discuss this statement in more details in Sec. IV B. In the
present study we focus on the nucleon sector. We closely
follow Refs. [6,7] and omit the details.

In order to find the transport cross sections that appear in
Eq. (4), one needs to multiply the quasiparticle collision
probabilities with certain angular factors depending on the
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transport problem in question and average the results over
the allowed phasespace; see, e.g., Ref. [6]. The collision
probability depends on the incoming pair particle state |ij),
and the final sate of the particles after the collisions (i';’|.
Since the particles are degenerate, only the excitations close
to the Fermi surface contribute to the transport. Therefore,
the magnitudes of all four particle momenta participating in
the collision (p;, p;, py» Pj) are fixed to the respective Fermi
momenta. Taking into account the conservation of the total
momentum P = p; + p; = p; + p;, only two angular var-
iables determine the relative position of the scattering
quasiparticle momenta in space. For the nuclear scattering,
it is convenient to use the absolute value of the total
momentum, P, and the value of the transferred momentum,
q, where q = py — p; = p; — p;. The latter is connected to
the center of mass (c.m.) scattering angle 6., as

cosf., =1— a (7)

where p is the absolute value of the colliding pair relative
momentum p = (p; — p;)/2. Since all quasiparticles are
placed on the Fermi surface, the relation 4p* + P> =
2(p%; + pE;) holds. Notice, that sometimes the other set
of variables (e.g., the traditional Abikosov-Khalatnikov
angles [22]) can be more convenient depending on the
investigated problem. For instance, for the electromagnetic
collisions it is more convenient to use the angle between
(p;py) and (p;p;) planes instead of P (see, e.g., Ref. [17]).

Let (i'j'|G|ij) be the scattering transition matrix element,
where G is the scattering operator. We define

Q4(P.0) = gy 5y SITIGHDE. (9

spins

where the summation is carried over the initial and final
spin states. The factor (1 +5,»j)‘1 is included to avoid
double counting of the same collision events in the final
expressions.1 We also introduce the phase-space angular
brackets for an arbitrary quantity F(P,g) as

PritPFj qm(P) F(P, q)
gy = [ ap [ ag S g0)
\PF:'—PF]\ 0 V q%n - qz

where ¢,,(P) is the maximal possible transferred momen-
tum for a given value of P. It can be expressed as [24]

_Apiipt; — (P + PE — PP

qi(P) P2

(10)

"Notice that this differs from the definition in Refs. [6,24],
where this factor is included at the later stage.

Using the definitions (8)—(9), the transport cross sections
for the thermal conductivity problem can be written as [7]

= k). (1)
Oij = 0.4 3 \=ij\%PFri T 47))
Y IOPL}WP%j Y l
3mPmi?T?
0 = ——=7—(Q;;(2p}; + 2p}, - 2P* — ¢%)), (12
ij 1Op?7,p‘]‘?j <Q]( PFi ij q )> ( )
where m;; are the particle effective masses at the Fermi

surface, so that vyp; = pp;/m?. Similar expressions for
the shear viscosity problem, albeit different angular factors,
read

*2 %272
g dmitm T

ij = T g6 3

(Qi;q*(4p¥i — %)), (13)
FPF;j

3m}*2m;2T2

(Qi;q*(2p7; +2p%; — 2P — ¢)).
8p?7ip‘1‘7j ! g &

(14)

The effective mean free path for the momentum relaxation
rate (3) can also be expressed via the corresponding
transport cross section

m2mAT?

(/’{Dn )_1 = GD =
217?01'1913%‘

ij'tj ij <Qijq2>' (15)
Notice that Egs. (3) and (15) imply that the momentum
relaxation rates are symmetric, J;; = Jj;. If the forward
scattering, ¢ — 0, dominates, Eqgs. (13) and (15) lead to the
relation a'l.’j = 363 [25]. In the traditional Fermi-liquids,
the squared transition amplitude (8) does not depend on the
energy transferred in the collisions. In this case the transport
cross sections in Egs. (11)=(15) obey the standard o T2
temperature dependence. As a consequence, the effective
mean free paths are inversely proportional to the temperature
squared. This is the case for the nucleon collisions which are
the main focus of the present study. For the long-range
electromagnetic collisions in relativistic matter, this is no
longer the case (see. e.g., Ref. [2] for the review).

Thus, to calculate the nucleon transport cross sections
one needs the squared matrix elements Q;; and the effective
masses m; ; which should be provided by the nuclear many-
body theory. Nuclear potentials and hence the scattering
amplitudes are conveniently given in a partial wave basis
for the interacting pair states in the c.m. frame,
|P, p; JESM), where S is the pair total spin, ¢ is the pair
orbital momentum, J is its total angular momentum, and M
is the total angular momentum projection. Then the
quantity Q;; can be expanded in the series in Legendre
polynomials P, (cos 0, ):
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Q,i(q.P) =

1+5 u P)P;(cosB.y,), (16)

where the coefficients of expansion are related to the matrix
elements of the transition amplitude in the partial wave
basis as [6]

(L) £ 01 L'0 L0
Q;; (P)= 167: Z T Tz 0055.CL00 Clozg

S J S J
SV
x (146;(=1)**)(1 + 51’/(_1)”?)
x GI5,(P, p, p)(GL,(P, p, p))". (17)

Here CLO. is the Clebsch-Gordan coefficient, terms in

£020
curly brackets are 6j-symbols of the quantum angular

momentum theory [26], II;, =+/(2f +1)(29+ 1),
G%(P, p, p) is the matrix element of the operator G. In

Eq. (17), the total angular momentum J, total nucleon pair
spin S, and total momentum P are conserved, and summa-
tion is carried over all angular momenta and spin variables,
except L. The collision type index, nn, np, or pp, of the
G-matrix is omitted for brevity. Terms in brackets con-
taining 6;; account for the contribution of exchange terms in
case when the collisions between the same species are
considered. Using the expansion (16), the integration over
q in Egs. (11)—=(15) can be performed analytically (see
Appendix A in Ref. [6]), and only a single integration over
P, that needs to be performed numerically, remains.

III. BRUECKNER-HARTREE-FOCK APPROACH

The nuclear many-body theory used in this study is the
nonrelativistic Brueckner-Hartree-Fock (BHF) theory [27].
In choice of this model we closely follow Refs. [6,7,18].
In this approach, the in-medium scattering matrix, or
G-matrix, is found from the solution of the Bethe-
Goldstone equation

*“(kaks|
ep(kp)

koK
Gng;z] = V“+ZV“Z [kaks) O G%[np: 2.

2 T ealky) -

(18)
where the index a = ab = nn, np, or pp, specifies the
scattering species, V* is the bare nucleon-nucleon (NN)

interaction, z is the starting energy, Q“ is the Pauli operator.
Single-particle energy of the species a, e,(k), in Eq. (18) is

ks
sz

+Re Z (kokp|G*[npieq(ky) +ep(ky)l[kakp) 4,

bk, <pry

ea (ka) =

(19)

where my is the bare nucleon mass and the subscript A
means antisymmetrization of the wave function. Since the
single-particle energy depends on the G-matrix, Bethe-
Goldstone equation needs to be solved self-consistently
in the iterative manner. In Egs. (18)—(19) the so-called
continuous choice of the single-particle potential is adopted
[27]. The total binding energy per nucleon is then

Z > < kaky|Go g eqlka) + ey (ky)][kakp > 4.

ab *a<ppa
kp<pFp

A 2}’13
(20)

To get the total energy, the free kinetic energy part has to
be added. In the partial wave basis, the expression for the
binding energy reads

B 1

PFa
— = 2J +1 dcosé K2dk
by f oo [ i

a,lJS

Prp p
< [ RGP p e + ). 21

where P =27k, + k|, p = |k, — k,| and @ is the angle
between k, and k,. The summation over a here includes
a =nn,np, pn, and pp. We do not show explicitly the
isospin index I in Eq. (21). It is fixed by the condition
¢+ S+ T being odd. For the nn and pp scattering only
I =1 channels contribute to the sum in Eq. (21), while
I =0, 1 contribute to the np G-matrix.

We solved the Bethe-Goldstone equation in the partial-
wave basis up to total momentum J = 12 on a grid of total
baryon number densities spanning from ng = 0.05 to
0.6 fm™3 and proton fractions from x, =010 05.

Here we analyze the same NN interaction interactions as
in our previous studies [7,18]. Namely, we use two realistic
two-body potentials: the Argonne v18 (Avl8 for short)
potential [28] and the charge-dependent Bonn (CD-Bonn for
short) potential [29]. It is well known that the nonrelativistic
two-body interactions fail to reproduce the saturation point
of the symmetric nuclear matter. To this end it is necessary to
introduce three-body nuclear forces (tbf). Here, as in the
Ref. [18], we include three-body forces as an effective two-
body interaction. This effective two-body interaction is
obtained from the three-body one by averaging over the
third particle; see Refs. [30,31] for details.

We investigate two models for the tbf. The first one is the
phenomenological Urbana IX (UIX for short) model [32].
This model contains adjustable parameters that were tuned
to approach the correct saturation point with the Av1l8 or
CD-Bonn two-body potentials. The second tbf model in our
study is the microscopic three-body force (TBFmic for
short) model based on the meson-nucleon theory of the
nucleon interaction [33,34]. The TBFmic model investi-
gated here is based on the same meson-nucleon coupling
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Effective inverse mean free paths for the thermal conductivity problem as functions of density for the proton fraction

x, = 0.15. The coefficients that couple to 15 in Eq. (4) are shown in the panel (a), while coefficients which couple to 4/, in Eq. (4) are
shown in the right panel. Different symbols correspond to different nuclear interactions as detailed in the legend in the left panel. Solid,
dashed, and dotted lines show partial contributions from the collisions between the species of same kind, different kinds, and the primed
terms, respectively. With the dash-dotted lines in the panel (b) we show the effective inverse mean free paths for the electromagnetic
collisions of protons (with e, y, and p) for three values of temperature, as indicated in the plot. The temperatures are (from the top dash-

dotted line to the bottom one) 7 = 107, 108, and 10° K.

parameters as the Av18 potential, so we use it only in
combination with this two-body potential; see Ref. [18] for
more details. In total, we show below the results for five
different NN interactions: Av18, CD-Bonn, Av18+UIX,
CD-Bonn+UIX, and Av18+TBFmic.

The G-matrices calculated from the solution of
Eq. (18) are taken on-shell and on the Fermi surface [so
that the starting energy omitted in Eq. (17) for brevity
is z=e;(pr;) +e;(pr;)] and are substituted into
Egs. (16)—(17). The effective masses in the Brueckner-
Hartree-Fock approach for the interactions studied here
were obtained in Ref. [18] that provided the convenient
analytical approximations for these quantities. Having Q;;
and m7* ; in hand, we can calculate the effective mean free

i.j
paths and transport coefficients of nucleons in NS cores.

IV. RESULTS AND DISCUSSION

A. Effective mean free paths

In Fig. 1 we plot the partial inverse effective mean free
paths [Eq. (5)] for the thermal conductivity problem for
neutrons [Fig. 1(a)] and protons [Fig. 1(b)] as a function of
baryon density np for a fixed value of the proton fraction
x, = 0.15. As detailed in Sec. II, the partial mean free paths
mediated by NN interactions scale as 772, so we plot
combinations (4%)~'Tg?, where Tg=T/(10%K). Solid,
dashed, and dotted lines correspond to (A5,)~", (45,)7",

and 1'%, |7! in the left panel, respectively, and to (45,)",
(A%,)", and X% ,|7!, respectively, in the right panel. Notice
that we plot |'%,,|~" in the left, neutron, panel, while in the
right, proton, panel we show |V’ ,|~!. This is because these
primed quantities couple with the neutron or proton
effective mean free paths, respectively, in the system of
equations (4). Different symbols correspond to different
interactions considered in this paper, as indicated in the
legends. The prominent discontinuities in (45,)”" and
(X5,)~" at ngp ~0.45 fm™> for the Av18+TBFmic inter-
action (dotted lines with open triangles) are manifestations
of the change of sign of these quantities around this density.
Notice, that these nondiagonal elements of the scattering
matrix in Eq. (4) can have any sign. In the conditions of
Fig. 1 these coefficients are negative except for AvI8
+TBFmic case at ng > 0.45 fm~>. We could not isolate the
specific physical reason for the sign change for the
particular Av18+TBFmic interaction. In Fig. 1(b) we also
plot with dash-dotted lines the partial inverse mean free
path for protons (A5°")~! due to the electromagnetic
interaction with all charged particles, leptons (electrons
and muons) and also the protons themselves.” The mean
free paths mediated by electromagnetic interactions are

’In the latter case we neglect for simplicity the interference
term between the strong and electromagnetic parts of the proton-
proton interaction.
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calculated following Refs. [14,15] and obey non-Fermi
liquid temperature dependence due to dynamical character
of the plasma screening in the relativistic degenerate
plasma [2,25,35]. Therefore, (A;°")~! is given for three
temperatures, 7 = 107,108, and 10° K. In the leading
order, 25 o« T~! instead of the standard Fermi-liquid
dependence. Notice, that A,“" depends on the proton
effective mass and hence on the NN interaction. In order
to not overcrowd the plot even more, in Fig. 1 (4;*™)7! is
shown for the Av18+UIX NN interaction only.

The total effective mean free path is limited by the most
frequent collisions. In Fig. 1 this corresponds to largest
partial inverse mean free paths. Despite differences
between the interactions used, one can conclude that at
lower densities, ng < 0.3 fm™, the neutron-proton scatter-
ing [dashed lines in Fig. 1(a)] dominates the neutron mean
free path for the thermal conductivity problem. The reason
for this originates in a larger np cross section due to
inclusion of the / = 0 isospin channel and smaller char-
acteristic c.m. energy for the np scattering in comparison to
the nn one [3,6,24].

The similar situation is observed for protons [Fig. 1(b)],
where the np contribution is always larger than the pp one
among the strong interaction scattering channels. The
strong interaction part of the proton-proton scattering
contributes less to the total proton friction in comparison
to how the neutron-neutron scattering contributes to the
neutron mean free path because of the small proton
fraction. In the case of protons, however, the electromag-
netic interaction can play an important role, especially at
low temperatures; see Fig. 1(b).

logio A1)t T2 [ecm™!]

—.—
.-
{ 4
——
[ —=— CDBONN
=
——
.
1

CDBONN+UIX
AV18+UIX o
AV18+TBFmic !
a0k : —— :
0. 0.2 0.3 0.4 0.5 0.6

ng [fm~3]

The dependence on the choice of the NN interaction in
Fig. 1 is clearly seen [7]. At low densities, ng < 0.2 fm=3,
inverse mean free paths calculated for different NN
interactions are close, however at higher np, the results
can diverge by an order of magnitude. The most prominent
difference results from the selection of three-body forces.

We plot similar inverse effective mean free paths for shear
viscosity in Fig. 2. The design of this figure is the same as in
Fig. 1. As for the case of thermal conductivity, prominent
divergence of the curves representing the results for different
interactions can be observed at high ng. In general, the
behavior of (47)~! is similar to (1¥)~'. The qualitative
difference is in the electromagnetic sector. Comparing
Figs. 2(b) and 1(b) one can notice, that for the shear
viscosity problem electromagnetic part of the proton inter-
action (dashed-dotted lines) does not contribute to the total
mean free path for the protons, while for the thermal
conductivity, this interaction channel can be dominant.
Notice that 2™ scales as T75/3 (cf. 25" o« T71) [2].

In the momentum relaxation problem, only the collisions
between unlike particle species contribute to the respective
relaxation process. In Fig. 3, we plot the effective inverse
mean free path (A2,)~! for neutron-proton collisions which
sets the momentum relaxation rate and the ambipolar
diffusion timescale in the NS cores [21,36].

In Figs. 4-6 we show the effective inverse mean free paths
as functions of x, for a baryon density ng=0.35 fm™3.
Actually these values at large x, 2 0.3 are not relevant in
practice, since the matter inside the neutron stars is highly
asymmetric. Figures 4-6 show that the dependence of the
neutron-neutron mean free paths on the proton fraction is

7.5

X, =0.15 " (b)

—-£F
N R
P

2 [em™!]

8

logio (A)7' T

3.0

01 02 03 04 05 06
ng [fm~3]

FIG. 2. Effective inverse mean free paths for the shear viscosity problem as functions of density for the proton fraction x, = 0.15.

Curves and notations are the same as in Fig. 1.
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FIG. 3. Effective inverse mean free path for the neutron-proton

scattering in the momentum relaxation problem as function of
density for the proton fraction x, = 0.15. Different symbols
correspond to different NN interactions as detailed in the legend.

modest even at large x,, while the neutron-proton scattering
show considerable x,, dependence. This is especially clear in
Fig. 6 which shows (17,)7".

B. Approximation to the exact solution

Having calculated the various partial contributions to
inverse mean free paths, we are now in position to calculate
the transport coefficients in NS cores, i.e., thermal con-
ductivity «, shear viscosity #, and the momentum relaxation
rate J,,.

The calculation of the latter is straightforward from the
Eq. (3). In order to calculate the former two, one needs to
solve the linear system of Eq. (4). For the npeu case
considered here this is, in general, 4 x 4 system (or 3 x 3
system if muons are absent). The electromagnetic and
nucleon sectors are coupled via protons which participate
both in strong and electromagnetic interactions.” However,
it turns out that in practice the protons can be treated as
the passive scatterers both for neutrons and for leptons [3].
As a result, the lepton and neutron transport problems
can be considered separately. This is a consequence of a
low proton fraction in the beta-stable matter of neutron
star cores.

Let us illustrate this point by considering the specific
example of the Av18+UIX results at ng = 0.35 fm™,
x, =0.15, and T = 10® K. Let us write the linear system

Small Zn collisions due to neutron magnetic moment can be
neglected [3,16].

in Eq. (4) as AA = 1, where A is a vector of mean free paths,
1 is the right hand side vector with all components equal to
1, and A is the corresponding inverse mean free paths
matrix. We can write A = Ay @ A.,, where Ay is the
2x2 (n and p) nuclear matrix which corresponds to
collisions mediated by strong forces and A, is the
3x 3 (e, u, p; or 2 x 2 if the muons are absent) “electro-
magnetic” matrix which corresponds to collisions mediated
by electromagnetic forces. For the thermal conductivity
problem, these matrices read

n P
A’“N_<1.67 —0.18>x106 em™, (22
—057 42
e u P
[ 235 0009 0.04 o
Aew =1 0013 235 o005 | <10 em (23)

0.033 0.028 2.56

The nondiagonal matrix elements in A%, are much smaller
than the diagonal ones, so they can be ignored. This means
that the proton mean free path does not affect the equations
for the lepton mean free paths (and vice versa). The proton-
proton scattering due to nuclear forces is comparable with
the proton-scattering due to electromagnetic forces [see
Figs. 1(b) and 4(b)] at the selected temperature. At larger
(smaller) temperatures the nuclear (electromagnetic) inter-
actions will be limiting proton mean free path. In any case,
A, is smaller, and at 7' < 10® K significantly smaller, than
one calculated from the inversion of the A}, matrix alone.
Moreover |45 ,| 7' 25 is always small, as Figs. 1(b) and 4(b)
show. Thus the protons have a little effect on the equation
for 4,. In contrast, especially at low densities, |4, | 712X can
be large; see Figs. 1(a) and 4(a), and 4} can be strongly
affected by the nondiagonal neutron term. Notice, that
when important, this term |'%, |~' 5 is found to be negative,
which leads to further suppression of 47,. The solution of the
full system (4) with matrices (22)—(23) is compared in
Table I with the simplified solution where protons are taken
as passive scatterers. That is, the off-diagonal elements in
matrices (23) and (22) that are related to protons are set to
zero. Since proton fractions are small, and their mean free
path is also small, protons always give a small contribution
which is not included in the simplified solution. We also
show in Table I values of «; for different particle species and
the total thermal conductivity . In the case shown in Table I
neglecting proton contribution and selecting the simplified
solution lead to error of only 10%.

For the shear viscosity problem, electromagnetic inter-
action does not affect the proton mean free path at any
temperature; see Figs. 2(b) and 5(b). Indeed, the matrices
AJ and A%, read
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FIG. 4. Effective inverse mean free paths for the thermal conductivity problem as functions of the proton fraction for the baryon
density ng = 0.35 fm~3. Curve styles and symbols are same as in Fig. 1.

n p Notice a different normalization in Eq. (25). The proton
AL =1(077 -0.03 | x 106 cm™!, (24) mean free path due to nuclear scattering is much smaller
03 19 than corresponding lepton mean free paths; therefore when
the lepton shear viscosity is calculated, protons can be
e U p treated as passive scatterers. The difference of temperature
25 005 03 scaling for A/, and ’17\/ is modest; therefore this conclusion
Adn = 011 37 047 x 10° em™.  (25) holds at any temperatures. According to Eq. (24) and
0'15 0'12 5'45 Figs. 2(b) and 5(b), |1'%,| =} is always very small, so that
8.0 , , , 9 ' ' *
ng=0.35fm=3 —e— 2
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FIG. 5.

Effective inverse mean free paths for the shear viscosity problem as functions of the proton fraction for density
ng = 0.35 fm™3. Curves and notations are the same as in Fig. 1.
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FIG. 6. Effective inverse mean free path for the neutron-proton
scattering in the momentum relaxation problem as function of the
proton fraction for the baryon density nz; = 0.35 fm™>. Curves
and notations are the same as in Fig. 3.

the proton influence on the neutron mean free path
calculation is negligible. The solution of the full system
of equations in comparison to the simplified solution is also
shown in Table I. The relative proton contribution to the
shear viscosity is much smaller than the relative proton
contribution to the thermal conductivity since 7, in Eq. (2)

is proportional to x?,/ 3, while « » in Eq. (1) is proportional to

x%,/ 3. Therefore it is always an excellent approximation to
neglect the proton contribution to the shear viscosity.

TABLE I. Mean free paths for different particles for thermal
conductivity and shear viscosity problems calculated from the
full solution of Eq. (4) or the simplified solution (protons act only
as scatterers); see text for details. The numbers are calculated for
ng = 0.35 fm™, x, = 0.15, and Av18+UIX nuclear interaction.
Thermal conductivity (x) and shear viscosity (1) coefficients are
also given.

n p e u  Total

Full solution

A% (107 cm) 0.62 020 042 042

k (102 ergcm™'s7'K™1) 532 053 0.83 0.58 7.26

A1 (107 cm) 1.33 0.69 394 256

7 (10" g em™'s7h) 0.17 0.009 2.71 0.88 3.77
simplified solution

A% (1076 cm) 0.60 --- 042 042

k(102 ergecm™'s g™y 514 .. 0.84 0.59 6.56

A1 (107 cm) 1.30 - 394 256

7 (10" g em™'s7h) 017 --- 2.71 0.88 3.76

The system of equations (4) corresponds to the simplest
variational approximation to the full system of kinetic
equations. In principle, for Fermi systems it is possible to
construct exact solutions of these transport equations in
form of the rapidly converging series (e.g., [3,22,23] ). The
closed expressions are obtained for the Fermi-liquid limit
where the transition rates are energy-independent. Since
the electromagnetic rates are energy-dependent due to the
dynamical character of the plasma screening in the dom-
inant interaction channel, it is not straightforward to obtain
the exact solution for the full 4 x 4 problem. However, the
decoupling of the variational solutions discussed above
allows on the same grounds to decouple the lepton and
neutron sectors in the exact system of transport equations.
In the lepton sector it turns out that the variational solution
is a very good approximation to the exact solution [14,15].
For the neutron transport coefficients, the calculations show
that the correction to the shear viscosity coefficient do not
exceed 5% and can be always neglected [6,7,15], while for
the thermal conductivity this correction can be accounted
for by including a factor C, = 1.2 in Eq. (1) valid for all
practical situations.

To summarize, in order to calculate thermal conductivity
and shear viscosity coefficients from Egs. (1)-(2) in
beta-stable matter of NS cores, one needs to solve 2 x 2
system (4) for eu problem, however including the Zp
scattering channel. For nucleon sector it is enough to
consider only neutrons scattering off neutrons and protons.
The system of equations (4) then reduces to only one
equation for 4, (different for x and # problems).

C. Partial wave analysis

The results of the Sec. IVA showed considerable
differences in mean free paths for different nuclear inter-
actions. It is instructive to try to understand this difference
by considering different partial wave contributions.
Generally speaking, it is not easy to isolate contributions
of specific partial waves, since the expression (17) couples
the matrix elements from the different partial waves. Still,
it turns out that the dominant contribution comes from
the isotropic (L = 0) part of the scattering probability in
Eq. (17), with L > 0 terms giving less than 20% contri-
bution to the final transport cross sections. This greatly
simplifies an analysis. Indeed, the L = O term in Eq. (17) is

1

0

Q,(-j):@Z(2J+1)(1+5,»j(—1)s+'f)2|G§§,,|2, (26)
JSete!

being just a weighted sum of squared transition amplitudes
for all available transitions between the partial wave states.
The integration over ¢ in Egs. (11)—(15) is now trivial. Save
for the normalization factor, Qg)) in Eq. (16) is a total

scattering cross section on the Fermi surface (see, e.g., the
discussion in Ref. [6]). Thus, in this approximation,
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transport coefficients are determined by the total cross
section averaged over total momentum P with certain
weighting factor (see Appendix B in Ref. [6] for more
details). There are several differences in how the G-matrix
elements enter the expression for scattering versus how they
contribute to the binding energy, Eq. (21). First of all, in
Eq. (21), only the diagonal G-matrix elements are involved,
while the nondiagonal # # ¢’ elements from the coupled
partial waves also equally contribute to Eq. (26).
Importantly, in Eq. (26) all partial wave amplitudes add
in squares, so both the repulsive and attractive components
increase the total scattering cross section, while they can
compensate each other when combined in the total energy.
Finally, the transport scattering occurs at the Fermi surface,
while the whole Fermi sea of nucleons contributes to the
total binding energy. In particular, this leads to appearance of
the effective masses (that represent densities of states on the
Fermi surface [22]) in the expressions for the transport cross
sections in Egs. (11)—(15).

Figures 1-6 show that when the two-body potential is
changed from Av18 to CD-Bonn one, the difference in
mean free path calculations is relatively small. This is
reasonable, since both these potentials are from the family
of so-called “realistic” potentials designed to reproduce the
wealth of the experimental data. On the other hand,
different three-body forces lead to considerably different
results. Therefore in the rest of this subsection we explore
the effects of the three-body forces using only the Av18
potential on the two-body level for brevity. In additions we
discuss only nn and np partial mean free paths as practi-
cally relevant ones following the arguments in Sec. IV B.

First, in Fig. 7 we show the total binding energy per
nucleon, B/A, as a function of density for the same proton
fraction x, = 0.15 as in Figs. 1-3 and three NN interactions,
Av18, Av18+UIX, and Av18+TBFmic. The microscopic
three-body force (TBFmic) is more repulsive than the UIX
three-body force and its effect on the total binding energy is
more prominent. However, the situation is different for
scattering, as Figs. 1-6 show. Generally, UIX tbf (open
circles in Figs. 1-6) has larger effect on scattering than the
TBFmic one (open triangles in Figs. 1-6).

Equations (11)—(15) show that the many-body effects
enter the expressions for scattering through the squared
scattering matrix elements Q;; and through the effective
The neutron-neutron and neutron-proton
transport cross sections contain different effective mass
prefactors which can be commonly written as

masses m; ;.

My, = miFm:. (27)

These are the same factors as introduced for the neutrino
emission processes in Ref. [18]. Specifically, the neutron-
neutron transport cross sections contain My, prefactor,
similarly to the neutron-neutron bremsstrahlung [18],
while the neutron-proton transport cross sections, like

60 — -
—o— Av18
o avigrux  Xp=0.15
40| —&— Av18+TBFmic
— 207
>
Q
Z
< °f
2}
=20
_40 E
01 02 03 04 05 06
ng [fm=3]
FIG. 7. Binding energy per nucleon as a function of the baryon

density ny for the fixed proton fraction x, = 0.15. The results are
shown for Av18 potential at two-body level and for two three-
body interaction models as indicated in the legend.

the neutron-proton bremsstrahlung rate, contain the M,,
prefactor [18]. It is not clear how to isolate the contribution
of different partial waves to the nucleon effective masses.
Therefore we only consider the overall M, effect. For the
Av18+UIX interaction the effective masses are larger than
for Av18 or Av18+TBFmic interactions [18] contributing
partly to the differences in the results shown in Figs. 1-6. In
Fig. 8 we plot the factor M, appropriate for the neutron-
neutron scattering with solid lines. These results show that
the effective masses are responsible for about 0.2dex
difference between the Av18+TBFmic and AvI18+UIX
results and 0.5dex between Av18 and Av18+UIX results.
Similar results are found for the factor M,, appropriate for
the neutron-proton scattering. These factors are shown
for three different NN interactions in Fig. 8 with dashed
lines. At large densities, effective masses are responsible
for a factor of 3 difference between the Av18+UIX results
and Av18 results for np scattering, and for a factor of 2
difference between Av18+UIX results and Av18+TBFmic
results.

Effective masses are only partially responsible for the
differences between the results obtained for different NN
interactions. Another part of the difference comes from the
scattering matrix elements. Below we discuss this second
contribution for neutron-neutron and neutron-proton scat-
tering, taking the effective mass prefactors M, out.

Consider first the neutron-neutron scattering. We will
show the specific results for the thermal conductivity
problem only. The results for the shear viscosity problem
are similar. As follows from Egs. (5), (11), (12), and (16),
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FIG. 8. The factors M, (solid lines) and M, (dashed lines)

defined in Eq. (27) as functions of np for the proton fraction
x, = 0.15. Different symbols correspond to different NN inter-
actions as shown in the legend.

the contribution from the isotropic part of the transport

. 0 . .
Cross section, Qﬁm), to the inverse nn mean free path is

T2
(O (4p%, — P2)),

(500" = (MuMa0)y' = ——5—
IOﬂZpFn

(28)

where M, factor gets rid of the effective masses and the
subscript index 0 indicates that only L = O contribution is
included. Our analysis shows that the dominant contribu-
tions to this quantity comes from three partial wave
channels, namely *P;, *P,, and 'S,. Figure 9 shows the
relative contributions of these partial wave channels to
(A%,)5" as function of ny for x, = 0.15. For concreteness,
the Fig. 9 is plotted for the Av18+UIX interaction. For other
interactions one observes qualitatively similar situation,
although the proportion between different channels can
vary. Still, these three channels are dominant for any NN
interaction analyzed in this paper. The dominant channel is
the 3P1 one, which relative contribution is shown with the
solid line in Fig. 9. At very small densities, the 'S, channel
dominates (dash-dotted line in Fig. 9), but its contribution
at intermediate densities decreases, and the 3P, channel
(dashed line) is more important. The 'S, channel, which
matrix element increases considerably at small p, is
additionally suppressed by the angular weighting factor
4p2 — P2 =4p? in Eq. (28). Al large densities, the 'S,
channel for the UIX tbf becomes important again. At the
two-body level, both 'S, and 3P, contributions are actually
less important at high density. The rest of the contribution

1.0 : : :
N 3/::1
K, nn Av18+UIX
Xp=0.15 - °P,
0.8} —=- 15
......... other
c 0.6}
i)
)
O
O
| -
= 0.4}
0.21 &

0.0

FIG. 9. Relative contributions of different partial wave chan-
nels to the L = 0 part of the nn scattering inverse mean free
path (7%,);" for the thermal conductivity problem defined in
Eq. (28) as functions of ng for x, = 0.15. Results for the Av18
+UIX interaction are shown. Solid, dashed, and dash-dotted
lines correspond to the 3Py, 3P,, and 'S, channels, respectively.
Dotted line shows the cumulative contribution from all other
channels.

to (45,)y! comes from other partial waves as shown with
the dotted line in Fig. 9. Their individual contributions are
small and can not be resolved. In total, they are of the same
order of magnitude as the contribution form the higher,
L > 0, multipole moments in Egs. (16)—(17).

In Fig. 10 we compare the contributions to (4%, )5 from
three dominant partial waves in absolute values for the
Av18 (filled circles), Av18+UIX (open circles), and Av18
+TBFmic (open triangles) NN interactions. In addition,
with dotted lines we plot the total inverse mean free path
(A5,)5". As before, the results are plotted for x, = 0.15.
The UIX tbf contains more repulsion in the *P; channel
(solid lines) than the microscopic three-body force, which
translates to somewhat larger values for the inverse mean
free path in this channel for the Av18+UIX case.
Additionally, TBFmic is much less attractive in the 3P,
channel than UIX tbf, so the absolute value of the
contribution is larger for UIX force and it gives larger
contribution to scattering. In general, the UIX tbf has larger
(in magnitude) contributions both in the repulsive and
attractive low-angular momenta interaction channels.
When summing up to the total energy, the positive and
negative contributions partially cancel and the TBFmic
force have larger binding energy (Fig. 7). However in
scattering the squared absolute values of the partial wave
matrix elements are important and the AvI8+UIX
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FIG. 10. Partial contributions of different partial wave chan-
nels to the L = 0 part of the nn scattering inverse mean free
path (45,)5" for the thermal conductivity problem as functions
of ng for x, = 0.15. Effective mass prefactor is not included;
see Eq. (28). Solid, dashed, and dash-dotted lines correspond to
the 3Py, 3P,, and 'S, channels, respectively. Dotted line is the
total contribution to L = 0 part, including the partial waves not
shown in the figure. Different symbols correspond to different
interactions.

interaction results in largest scattering cross sections among
the NN interactions considered here.

The analysis of the neutron-proton scattering is less
transparent. Here we chose the momentum relaxation
problem as an example on np scattering, Eq. (15). The
analysis of the neutron-proton scattering for the thermal
conductivity or shear viscosity shows the same results.* In
analogy with Eq. (28), using Egs. (15) and (16) we define

T2 0)
(Q0g?).  (29)
672 ph, "

(15]))61 = (/InDpM22)al =

The dominant contribution to (12,

s-wave 3S; channel. However at larger densities many
channels give comparable contributions and it is hard to
isolate a single or a few dominant terms. Nevertheless, in
Fig. 11 we show, in analogy to Fig. 9, the relative
contributions of a few partial waves to (15,);". The next

), at low densities is the

important contribution after 3S; channel comes from the
nondiagonal term ¢’ = ¢ + 2 in Eq. (26) representing the
3§, — 3D, coupling. The fractional contribution of this
channel is shown with dash-dotted line in Fig. 11.

*The difference is in the angular factors in Egs. (11), (13), and
(15) which do not change qualitatively the relative contributions
from different partial waves.

1.0 :
3
D, np AV18+UIX NG
Xp=0.15 D
35, -3D,

fraction

FIG. 11. Relative contributions of different partial wave chan-
nels to the L = 0 part of the np scattering inverse mean free path
(A2)! for the momentum relaxation problem defined in Eq. (29)
as functions of np for x, = 0.15. Results for the Av18+UIX
interaction are shown. Solid, dashed, dash-dotted, and dash-
double dotted lines correspond to the 35, 3D,, 3§, — 3D, and °P,
channels, respectively. Dotted line shows the cumulative con-
tribution from all other channels.

Remember that the nondiagonal terms do not contribute
to the total energy. Also important contribution at high
density comes from the 3D, channel (dashed line in Fig. 11)
and, less significantly, 3P, channel (double-dot-dashed line
in Fig. 11) that was dominant in the nn scattering. We do
not separate the rest of the partial waves, and show their
total contribution by dotted line in Fig. 11. At high densities
it is as much as about 30%; however individual contribu-
tions are less than 5%, thus, it is not relevant to discuss
them separately. Among them, the next channels in order of
importance are 'P; and 3D,, although this is density- and
interaction-dependent.

In Fig. 12 we plot four main partial wave contributions to
(pr)o‘ !. One can see that the main contribution, which
results in stronger scattering by the Av18+UIX interaction
in comparison to Av18+TBFmic interaction at large np,
comes from the 3D, partial wave (dashed lines). The
scattering of the microscopic three-body force in this
channel (dashed line with open triangles) is much smaller
than both the Av18+UIX (dashed line with open circles)
and bare two-body Av18 result (dashed line with filled
circles). For instance, the 3S; —3D; contributions for
Av18+UIX and Av18+TBFmic are similar. We can con-
clude that the main difference between the UIX and
TBFmic results for np scattering prominent at high
densities in Figs. 1-6 is partially due to difference in
scattering in 3D, channels and partially due to larger
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FIG. 12. Partial contributions of different partial wave channels
to the L = 0 part of the np scattering inverse mean free path
(Z,,Dp)al for the thermal conductivity problem as functions of np
for x = 0.15. Solid, dashed, and dash-dotted lines correspond to
the 3P1, 3P2, and 1SO channels, respectively. Different symbols

correspond to different interactions.

effective masses for the UIX tbf in comparison to the
microscopic tbf [18].

D. Practical expressions

According to the results of the previous subsection, the
mean free paths in the nucleon sector depend considerably
on the selected nuclear interaction. Ideally, to perform
the consistent study, the transport coefficients should be
calculated based on the same microscopic model as the
EOS. In practice this is rarely possible. On the other hand,

the variations in the results of the microscopic calculations
show that it is not possible to obtain the universal
expression for the transport coefficients equally applicable
for any nucleon EOS of the NS core.

Here we suggest a tradeoff approach between the
consistency and universality. That is, we will take mean
free paths obtained in the previous sections as a functions of
ng and x, and use them for any EOS in question. As an
example, we employ the popular BSk21 EOS based on the
Brussels-Skyrme nucleon interaction functional [37]. Its
significant advantage in practice is its fully analytical
parametrization. We consider the beta-stable matter in
BSk21 NS core. The proton fraction as a function of np
is of course different than one obtains for the beta-stable
matter with each of the five EOSs based on the microscopic
models considered here [18].

We illustrate this approach in the next few figures. In
Fig. 13 we show partial contribution of different particle
species in npeu NS cores to the total thermal conductivity.
The temperature-independent (in Fermi-liquid) combina-
tion x7Tg is shown. Three panels correspond to three
temperatures 7 = 107 K (left), 7 = 10" K (middle), and
T = 10° K (right). The nucleon mean free paths here are
calculated in the Av18+UIX model; taking the different
interactions changes the picture quantitatively, but not
qualitatively. Solid lines show the partial contributions
from neutrons (n), protons (p), electrons (e), and muons
(u), as labeled near the corresponding curves. These values
are calculated from the solution of the full 4 x 4 system of
variational equations (4). The curves marked “tot” in each
panel show the total contribution. The dashed lines barely
seen in the plots correspond to the simplified approxima-
tion discussed in the Sec. IV B. Here eu and n sectors are
decoupled and protons are treated as passive scatterers. We
see that this approximation is very good as expected. The
electromagnetic scattering does not obey the Fermi-liquid

24 24 24

_ BSk21 T=107K (@) _ BSk21 T=108K )| — BSk21 T=10°K (c)
n 23 tot i n

(%] n 9] %]
) T T

o 2 2
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2 50 = 20 - 20
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ng [fm=3] ng [fm=3] ng [fm™=3]
FIG. 13. Partial contributions to the thermal conductivity (variational solution) for the beta-stable NS core with the BSk21 equation of

state and three values of temperature, 7 = 107 K (a), 108 K (b), and 10° K (c). Particle species are labeled near the curves, the
uppermost curves “tot” show the total thermal conductivity. Nucleon mean free paths are calculated according to the Av18+UIX model.
Dashed lines corresponding to the “tot” and “n” curves show the results of the approximate treatment of «,,; see text for details.
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FIG. 14. Partial contributions to the shear viscosity (variational solution) for the beta-stable NS core with the BSk21 equation of state
and three values of temperature, 7 = 107 K (a), 10® K (b), and 10° K (c). The curves are the same as in Fig. 13. However the dashed

curves are too close to the solid ones and can not be resolved.

behavior due to the long range of the interaction; therefore
corresponding k,7s combinations are not temperature-
independent. In the leading order, x, is independent of
T [e.g., [2,14,25]]. Except for the highest temperatures
[T = 10° K, Fig. 13(c)], the neutron contribution is always
dominant over the lepton one and the proton contribution
can be always neglected.

Similar results for the shear viscosity are plotted in
Fig. 14. Here the combination 473 is shown which is
temperature-independent in Fermi liquids. Again, in the
electromagnetic sector the temperature dependence modi-
fies, 7, « T~/3 in the leading order, so the curves e and u
are different in the three panels of Fig. 14. As opposite to
the thermal conductivity case (Fig. 13), leptons dominate
the shear viscosity. Only at the lowest densities and
temperatures the neutrons give some contribution
[Fig. 14(a)]. The decoupled solution is shown with the
dashed lines which are unresolved in the figure. Therefore
this approximation for shear viscosity is even better than for
the thermal conductivity. This is especially so since the
leptons dominate and the study of the nucleon shear
viscosity is more of the academic interest.

According to previous discussion, among the various
partial contributions to mean free paths, in practice one
only needs 4,, and 4,,. We fitted these quantities by
analytical expressions valid in the range nz < 0.6 fm~ and
x, < 0.5. The fits has a form

/’{Té ¢ I’lB nB k
_ B B m 30
10°cm 7 no ;n;)akm ng) ? (30)
where { = 0 for A%, and 4, { = —1/3 for 45 ,, and { = —1

for A}, and A2,. Here and in the following fitting formulas
ny = 0.16 fm™3 is adopted. The polynomial coefficients
ay,, for five interactions considered in this paper are given
in the Table II in Appendix. Expression (30) allows one to

calculate the effective partial mean free paths for any EOS.
The similar fits for the effective masses are provided in
Ref. [18]. The total neutron mean free path is calculated
from the partial mean free paths as
An = Dt + Ap) ™" (31)
The neutron thermal conductivity k,, is then calculated
using Eq. (1). We also recommend to multiply Eq. (1) by a
factor C, = 1.2 to correct for the exact solution. The

practical expression for the neutron thermal conductivity
reads

2/3
K, = 6.8 x 102Tg (”—)
no

AK‘
710_6” ergs”!em™ K7,
cm
(32)

Thermal conductivity for the BSk21 EOS -calculated
according to Eq. (32) is shown in Fig. 15 for all interactions
considered in the paper (different symbols, as indicated in
the plot legend). As expected, at low densities ng <
0.3 fm™3 the results for various interactions are quite close.
However, at larger densities the curves diverge. With dash-
dotted lines we show the lepton contribution to the thermal
conductivity for three values of temperature as indicated
at the curves. As already anticipated, at 7 < 108 K the
neutron contribution dominates for any microscopic model
considered.

The neutron shear viscosity in natural units can be
written as

7, = 5.7 % 107 (@>4/3

no

A
107° cm

“Tem™!.

gs (33)

We show the shear viscosity calculated from Eq. (33) in
Fig. 16. The curves and notations are the same as in Fig. 15.
The difference between the different NN interaction models
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FIG. 15. Thermal conductivity for BSk21 EOS. Lines with

symbols show interpolated results for «,, according to practical
expressions for different NN interactions (as indicated in the
legend). Dash-dotted lines show «,,, calculated for three values of
temperature, whose logarithms are indicated near the curves.

is prominent, although somewhat smaller than in the case of
thermal conductivity. Despite the large model uncertainty,
11, seems to be negligible in comparison to 7,,, in all cases
of practical interest.
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FIG. 16. Shear viscosity for BSk21 EOS. Lines with symbols
show interpolated results for 7, according to practical expressions
for different NN interactions (as indicated in the legend). Dash-
dotted lines show 7,, calculated for three values of temperature,
whose logarithms are indicated near the curves.
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FIG. 17. Neutron-proton momentum transfer rate for BSk21
EOS. Lines with symbols show interpolated results for J,,
according to practical expressions for different NN interactions
(as indicated in the legend).

Finally, the similar practical expression for J,,, [Eq. (3)]
in natural units reads

cm™.  (34)

Jup = 2.8 % 10% (ﬁ)m 107 em i

no A.nDp £s
In Fig. 17, we show the relaxation rates. Let us stress that this
is an important quantity for the magnetic field evolution
modeling, since in high magnetic fields it sets the so-called
ambipolar diffusion timescale 3™ ~ J,,R* /8%, where R is
the typical scale of the magnetic field and B is the magnetic
field induction. According to Fig. 17, at large densities the
ambipolar diffusion timescale can vary by an order of
magnitude depending on the microscopic model used. We
do not compare here J,, with other (electromagnetic)
momentum transfer rates for simplicity. Their expressions
which include correct plasma screening can be found else-
where [16]. More detailed discussion can be also found
in Ref. [38].

V. CONCLUSIONS

We have analyzed the dependence of the transport
coefficients in nucleon cores of the neutron stars on the
selection of the nucleon interaction. We employed the
nonrelativistic Brueckner-Hartree-Fock approach as our
microscopic theory. Our results continue the previous
studies in Ref. [6] where only the Avl8 and Av18+UIX
NN interactions were considered. We provide (Sec. IV D)
the practical expressions which allow the transport coef-
ficients calculation for any EOS of the nucleon matter,
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although these expressions are not fully consistent since
one needs to rely on the specific NN interaction, which can
be different from the one on which the EOS is based. Our
general conclusions are as follows:

(i) The nucleon contribution to transport coefficients,
namely thermal conductivity, shear viscosity, and
momentum relaxation rate, strongly depends on the
nucleon interaction. At small densities, the differ-
ence is modest since all models are restricted by the
direct and indirect experimental data. At large
densities, ng~ 0.6 fm™>, the difference between
the models considered in this paper can reach an
order of magnitude.

(i) The inclusion of the three-body forces in Urbana IX
model leads to significant increase in the scattering
cross sections, and, as a result, in decrease in the
mean free paths for the quasiparticles and the
transport coefficients. The effect of the microscopic
three-body force is less prominent.

The changes in the effective masses on the Fermi
surface are equally important compared with the
changes in the scattering matrix elements in explan-
ation of the obtained difference between the results
of calculations for different interactions. Therefore
both effects need to be included in practice [6].
The main contribution to the nn scattering comes
from the 3P, partial wave channel, and to lesser
extent from the P, and 'S, channels. The difference
in the latter channels between the interactions
considered in the paper explains most of the ob-
served difference in final results. In case of the np
scattering, many channels equally contribute; how-
ever at high densities D, and the coupled 3S; — 3D,
partial wave channels are the most important ones.
(v) Despite the differences in the microscopic model,
the general conclusion is that the neutron (nucleon)
contribution to the thermal conductivity x dominates
at T > 10® K, while the lepton contribution to shear
viscosity 7 is always dominant. Notice that this
conclusion survives also in the case when the proton
pairing is taken into account [17].

(iii)

(iv)

In our study we did not consider the effects of nucleon
superfluidity/superconductivity. It is widely accepted that
nucleon and protons in a large part of the NS core can be in
the paired states, whose critical transition temperatures are
uncertain [39—41]. Microscopically, the effects of the
nucleon pairing on the calculation of transport coefficients
are twofold. First, the quasiparticle spectrum becomes
gapped which suppresses the collision probabilities. This
effect can be incorporated by inclusion of the certain
reduction factors [15,24]. Second, the transport equation
needs to be written for the Bogoluibov quasiparticles, so that
the scattering matrix element which defines the collision
integral also modifies (for instance it needs to include the
processes related to the nonconservation of such particles);
see, e.g., [42]. To the best of our knowledge, the modifi-
cation of the NN scattering matrix elements by pairing has
not been considered in NS context. Notice that the hydro-
dynamics equations in the superfluid/superconducting liquid
also change and the multifluid picture needs to be invoked.
The systematic study of the effects of nuclear pairing on the
transport coefficients deserves a separate study.
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APPENDIX: PARAMETERS OF THE
MEAN FREE PATH FIT

Here we give the coefficients a;,, in the fitting expression
Eq. (30) for the effective mean free paths. Table II contains
coefficients for calculating /l‘fl »» Where & =k, 5, or D and
b = n, p. In all cases, the mean squared relative error of the
fit is less than 5% and the maximal relative fit error does not
exceed 15%.

TABLE II. Parameters of the approximation Eq. (30)
b Ao aop am ao ary ap [50) asy (&%) asp asy asp
Av18
K n 0.64 -1.03 0.126 0.454 2.21 =296 -0.207 -0.665 1.65 0.0279 0.0612 —-0.225
p 0.0588 -0.0474 -0.19 0.0387 0.266 -0.14 0.112 0219 -0.809 -0.015 -0.0738 0.192
n n 2.03 -3.23 —0.582 -0.198 7.31 -4.09 —-0.048 -3.11 2.87 0.0189 0.401 —-0.454
p 0.0467 -0.114 -0.072 -0.0184 0.823 —-0.718 0.139 0.00265 —0.467 —0.0231 -0.0483 0.164
D P 0.139 -0.547 0.332 —0.0585 2.48 -3.51 0435 -0.855 —-0.0522 -0.0761 0.0566 0.18

(Table continued)
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TABLE II. (Continued)

b apo Aoy amn ajo ar ap aso as Aann asg asy asy
Av18+UIX
K n 0.889 —-0.892 —-1.28 —-0.00131 3.34 0208 -0.128 —1.7 0.198 0.0223 0.236 —-0.0414
p —0.00912 0.112 -0.614 0.275 0.152 0.276 -0.116 0.124 -=0.551 0.0127 -=0.0369 0.124
n n 2.44 0.256 —-6.84 —1.28 3.09 7.54 0.286 —-1.87 =2.76 —-0.0229 0.275 0.333
p —0.0216 0.0438 —-0.6 0.225 0.772 —0.0735 —-0.0924 —0.217 -0.267 0.00989 0.00768 0.0833
D p —0.0192 -0.577 0.454 0.593 2.73 —4.84 -0.233 -1.07 1.7 0.0227 0.116 -0.142
Av18+TBFmic
K n 0.648 —-1.66 0.112 0.752 53 —-4.47 -0.373 -2.53 2.87 0.0446 0.328 —0.428
P 0.091 —1.04 1.38  —0.0549 2.94 —-447 0244 -141 1.72 —-0.0544  0.192 —-0.184
n n 2.31 -2.84 =373 -0.417 9.2 1.28 —-0.0164 —4.62 0.428 0.0123 0.611 —0.0884
P 0.038 -0.439 046 0.00716 2.1 -2.83 0.157 -0.671 0.7 —0.0376  0.0481 -0.00242
D p 0.104 -1.3 1.8 0.0604 5.33 -9.15 0455 -=-2.35 2.87 —0.111 0.283 —0.189
CD-Bonn
K n 0.639 —1.33 0.743 0.371 2.71 -4.26 -0.193 -0.812 2.12 0.0262 0.0781 -0.271
p 0.01862 0.2252 —0.8008 0.1324 -0.3621 1.142 0.04245 0.2705 —0.9206 —0.005907 —0.05064 0.1553
n n 2.0 —4.51 1.87 —0.201 9.63 -9.67 —0.0631 -3.99 543 0.0164 0.516 —-0.782
p 0.01781 0.1886 —0.8278 0.06001 —4.601 x 107* 1.054 0.07307 0.2056 —0.9559 —0.01139 —0.05232 0.1836

D p  0.1381 —0.5184 0.03195 0.003832 1.741

CD-Bonn+UIX

K n 1.24 0.0805 -3.82 -0.473 1.91
p —0.0216 —0.333 0.364 0.376 0.324

n n 2.89 3.06 -9.13 -1.82 -0.539
p —0.0431 -0.517 0.611 0.33 1.17

D p —0.147 -1.06 1.86 0.997 2.03

—-1.962 0.319 -0.8182 0.07881 —0.05162 0.09196 0.05515
333 0.0356 -0.999 -1.1 0.00373  0.132 0.134
-0.548 -0.197 0.172 -0.314 0.027 -0.0582 0.11
9.66 0446 -0.264 -3.56 —0.0393 0.0545 0.44
-1.34 -0.168 —-0.285 0.172 0.023  0.00523 0.0383
-4.94 -0.497 -0375 1.26 0.0668  —0.019 —0.0294
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