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The stochastic cosmological gravitational-wave background (CGWB) provides a direct window to study
early universe phenomena and fundamental physics. With the proposed third-generation ground-based
gravitational wave detectors, Einstein Telescope (ET) and Cosmic Explorer (CE), we might be able to
detect evidence of a CGWB. However, to dig out these prime signals would be a difficult quest as the
dominance of the astrophysical foreground from compact-binary coalescence (CBC) will mask this
CGWB. In this paper, we study a subtraction-noise projection method, making it possible to reduce the
residuals left after subtraction of the astrophysical foreground of CBCs, greatly improving our chances to
detect a cosmological background. We carried out our analysis based on simulations of ET and CE and
using posterior sampling for the parameter estimation of binary black-hole mergers. We demonstrate the
sensitivity improvement of stochastic gravitational-wave searches and conclude that the ultimate sensitivity
of these searches will not be limited by residuals left when subtracting the estimated BBH foreground,
but by the fraction of the astrophysical foreground that cannot be detected even with third-generation
instruments, or possibly by other signals not included in our analysis. We also resolve previous
misconceptions of residual noise in the context of Gaussian parameter estimation.
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I. INTRODUCTION

The accomplishment of detecting gravitational waves
(GWs) from the mergers of compact binaries with neutron
stars and black holes opened a new window to study
astrophysical and cosmological phenomena of the
Universe. The continuous improvement in the sensitivity
and multidetection of signals due to coalescence of a binary
neutron star (BNS) and various binary black-hole (BBH)
mergers during the first two observation runs of Advanced
LIGO [1] and Advanced Virgo [2] marks the beginning of a
cosmic catalog of sources so far reaching out to distances of
about 3 Gpc and only capturing a small fraction of all
compact binaries in this volume [3].
A major objective of modern cosmology is to detect

early-universe GW signals, which are crucial to test current
cosmological models and to further our understanding of
the evolution of the Universe [4,5]. The cosmic GW
background (CGWB) is predicted to arise from fundamen-
tal processes in the early universe [6,7]. Among these
are quantum vacuum fluctuations amplified by inflation
[8–10], phase transitions [11–14], and also cosmic strings
are prominent for CGWB searches with Einstein Telescope

(ET) and Cosmic Explorer (CE) [15–18]. On the theoretical
side, there is huge advancement to understand the concept
and generation of these cosmological signals and on the
observational and experimental side, to detect these signals
with GW detectors is also in advancement and provides us
with the capability to detect these signals in the future.
However, the detection of a CGWB is extremely chal-

lenging.Mission concepts that wouldmake the detection of a
primordial stochastic background probable, the space-borne
detectorsBig-BangObserver (BBO) [19] andDECIGO [20],
still require substantial advances in laser-interferometer
technology, and it is unknown when or if these experiments
will become operational. Two ground-based, third-genera-
tion GW detectors have been proposed, Einstein Telescope
(ET) [21] and Cosmic Explorer (CE) [22], which are
expected to be operational by 2035 and potentially with
the capacity to detect a CGWB. Primordial stochastic signals
are predicted to lie well below instrument noise of all
conceived future GW detectors. The stochastic searches
with GW detectors follow the cross-correlation method
betting on the assumption that fields of stochastic GWs
produce correlations between detectors, while the instrument
noises do not, or in a well-understood way with options to
mitigate correlated noise, e.g., by Schumann resonances
[23,24]. Optimal cross-correlation filters can be employed to
obtain the maximum signal-to-noise ratio (SNR) integrated
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over a band of frequencies and thus maximize chances to
detect a CGWB [25,26]. It is also possible to estimate
parameters of stochastic backgrounds such as spectral slopes
and possible anisotropies of the GW field [27,28].
With the proposed third-generation GW detectors ET and

CE, we will step into a new era of GW physics, and we will
overcome the scarcity of GW sources, such that we will be
able to detect binary signals up to high redshifts z ≥ 10.
Analyses of data from the first and second observation runs of
LIGO and VIRGO constrain the local BBH merger rate to
about 10–100 Gpc−3 y−1 [3]. The BBH merger rate as a
function of redshift is estimated from the star-formation rate
[29], distribution of time-delays between formation and
merger [30], and by normalizing to the local merger rate
[31]. It predicts about 105–106 BBH mergers per year and a
large fraction of them detectable with ET or CE. Since the
correlation between detectors is predicted to be dominated by
the astrophysical foreground of compact-binary coalescences
(CBCs), detection of a cosmological background is strongly
impeded and mitigation of the foreground is required.
As a first step, the foreground can be reduced by

subtracting the estimated waveforms of all detected sig-
nals. Previous work has shown that a combination of
unresolved sources, i.e., signals lying below the detection
threshold, and residuals left in the data after subtraction
can still limit the sensitivity of CGWB searches with
future GW detector networks [32,33]. Both publications
neglected the possibility to reduce subtraction residuals as
proposed in earlier work for space-borne detectors [34,35].
Furthermore, a full-Bayesian analysis of primordial and
astrophysical signals is expected to lower the impact of
subthreshold signals [36]. In this paper, we deal with the
problem of reducing the subtraction residuals of the
astrophysical foreground in third-generation detectors
ET and CE, and for this goal we test the subtraction-noise
projection method for BBHs [34,35]. As was pointed out
in a recent publication [33], the foreground of binary
neutron stars (BNS) is expected to be more challenging to
reduce, but we have no means yet to simulate this problem
beyond what has already been done in previous work, as it
requires an effective posterior sampler for parameter
estimation in ET, which is a major challenge due to the
length of BNS waveforms in ET (around a day), and it
needs to account for the rotation of Earth during obser-
vation time.
The paper is organized as follows. Details of the

simulation of the detector network and its astrophysical
foreground are presented in Sec. II. Section III reviews the
geometrical interpretation of matched filtering, and pro-
vides an estimate of residual noise from an astrophysical
foreground. In Sec. IV, we explain the projection method
that reduces residuals of the astrophysical foreground. The
cross-correlation measurement between CE and ET is
detailed in Sec. V. Results of the foreground-mitigation
procedure are discussed in Sec. VI.

II. SIMULATION OVERVIEW

The second-generation detectors Advanced LIGO and
Advanced Virgo, after gradual updates, already observed
several tens of binary-merger signals including the candi-
dates of the last observing run [3]. There is still a huge
spectrum of GW physics unexplored both in astrophysics
and cosmology. In future, the main focus will be to exploit
this vast spectrum. To progress in this direction, we need
next-generation GW detectors with much better sensitivity
than current GWdetector. Two ground-based detectors have
been proposed so far: the European Einstein Telescope and
the US Cosmic Explorer [21,37]. Individually and as a
detector network together with developed versions of
current-generation detectors (including KAGRA [38] and
LIGO India [39]), these third-generation detectors have a
rich science case covering topics in fundamental physics,
cosmology, astrophysics, and nuclear physics [40,41]. Their
projected sensitivities are shown in Fig. 1.
ET: ET is a proposed European third-generation, under-

groundGWobservatory in the shapeof an equilateral triangle
with 10 km side length. ETwill provide an improvement in
sensitivity by a factor of 10 with respect to current GW
detectors, extending the observation band down to about
3 Hz [42]. The Einstein Telescope will be placed under-
ground to reduce the environmental noise coming from
seismic and atmospheric fields. The infrastructure will host
three interferometer pairs, each pair consisting of a low-
frequency and a high-frequency interferometer forming a so-
called xylophone configuration [43].
CE: CE is a proposed US third-generation, surface GW

observatory with the traditional L-shape and arm length of
40 km. Its design also foresees a sensitivity improvement
by about a factor 10 compared to current GW detectors.
The sensitivity model employed in this study corresponds
to the first phase of CE development (CE1 in [22]). Its
ultimate sensitivity target is about a factor 2 better than this.

FIG. 1. Design sensitivities of current and future GW detectors.

ASHISH SHARMA and JAN HARMS PHYS. REV. D 102, 063009 (2020)

063009-2



The basis of our simulation is the calculation of a
1.3-year-long stretch of GW data for ET (three individual
data streams) and CE. The subtraction of best-fit waveforms
is carried out in time domain, while the residual-noise
projection is easiest to perform in the domain of the
waveform model (frequency domain in our case) as
explained in Sec. IV. The projection requires Fisher matri-
ces, which in turn require the derivatives of waveforms with
respect to their parameters. We carry out the differentiation
numerically so that in future, we can use this simulation also
to study systematics related to waveform modeling without
requiring analytic waveforms. Cross-spectral densities
(CSDs) of time series between all four detectors are
calculated after each of the following steps,
(1) creation of time series only with instrument noise,
(2) injection of GW signals in all four detectors

(3ETþ 1CE),
(3) subtraction of best-fit waveforms,
(4) residual-noise projection,

to demonstrate the impact of each step on the CSD. Finally,
optimal filters are applied for an evaluation of the ultimate
sensitivity of the network to a CGWB.
Whenever possible, our analysis uses functions of the

PYTHON parameter-estimation software package Bilby [44].
The calculation of noise time series is done by built-in
functions of Bilby using instrument noise models of ET and
CE in the form of spectral densities. Also injection of GW
signals in the data, and posterior sampling are done with
Bilby. Subtraction of the best-fit waveforms is done using
the injection algorithm with a change of the sign of the
waveform. The projection of residual noise is mostly based
on original code. The optimal filters used in the final step
for the detection of a CGWB depend on the overlap-
reduction function between detectors [25,26], which can be
calculated straight-forwardly using antenna patterns pro-
vided by Bilby.
The astrophysical foreground is formed by the mergers

of compact binaries with black holes and neutron stars. The
lowest-mass members of these binaries, especially the
binary neutron stars, take a special role (from today’s
perspective) since it is still prohibitively expensive to
simulate parameter estimation accurately for ET given that
these signals can last for more than a day in the ET
observation band and generally require high sampling
frequencies to study the merger physics. A multi-band
analysis of individual signals might provide a solution
[45,46], but there is no parameter-estimation package yet
based on posterior sampling and implementing all required
effects such as the impact of Earth’s rotation on the GW
signal. For this reason, we chose to focus on BBH mergers
in this paper. It allows us to use state-of-the-art parameter
estimation software for posterior sampling.
However, even when focusing on BBH mergers, provid-

ing parameter estimations of 105–106 signals by posterior
sampling, which is an important new ingredient in this

work compared to previous studies of the projection
method, is computationally prohibitively expensive. As a
way forward, we adopted the following scheme. Only for
100 BBH signals, posterior sampling is performed. The
complete stretch of data is divided into 10000 segments of
length 4096 s. In each of the segments, all 100 waveforms
are injected with random time shifts so that the merger
occurs in the respective time segment. In this way, phase
relations between all signals are randomized and the CSD
between detectors has the properties of a stochastic fore-
ground. Its overall amplitude is stronger than it would be in

FIG. 2. Mass range for individual BBH mass used in our study.

FIG. 3. Distribution of total mass M and redshift z of the 100
BBH signals used in our analysis. High-SNR signals are chosen
for clearest possible demonstration of the projection method to
mitigate the astrophysical foreground.
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a more realistic simulation since we deliberately chose
highest-SNR members of the cosmological distribution to
have the clearest demonstration of the effect of residual-
noise projection. We employ a redshift independent power-
law distribution for both intrinsic masses with a power law
index α ¼ −1.6 [47] constraining the individual masses to
lie within the range 5M⊙ ≤ m2 < m1 ≤ 60M⊙. This leads
to the sample of 100 BBH masses shown in Fig. 2. The
sampled redshifts and total masses of the signals used in
this paper are shown in Fig. 3 together with smoothed
distributions derived from these samples (which explains
why there is no low-mass bound of the mass distribution).

III. MATCHED FILTERING AND THE
RESIDUAL OF AN ASTROPHYSICAL

FOREGROUND

The probability of two BBH signals to overlap in time in
ET data is relatively high, but depends on details of the
mass distribution [32]. Lower-mass signals last longer (up
to a few minutes) and if present in greater number would
lead to more frequent overlap. However, it is unlikely that
the number of detectable BBH signals with 3G detectors
will be impacted significantly by the presence of other
signals, which is in contrast to the situation described for
future space-borne GW detectors where the foreground acts
as excess noise [34,48]. It is therefore enough to consider
the impact of the astrophysical foreground on the correla-
tion measurements between detectors, which is addressed
by the subtraction-projection method discussed in the
following using results from Cutler and Harms [34].
The basis of the subtraction-projection method is the

expansion of parameter errors or likelihood functions with
respect to the inverse of the SNR of signals, which means
that this approach works better for high-SNR signals. An
important quantity is the Fisher matrix, whose components
take the form

Γαβ ¼ h∂αhðλ⃗Þj∂βhðλ⃗Þi

¼ 4

Z
∞

0

df
ℜð∂αhðfÞ∂βh�ðfÞÞ

SnðfÞ ; ð1Þ

where λ⃗ is the vector of model parameters. The scalar
product requires an estimate of the instrument-noise spec-
tral density SnðfÞ. We expressed the Fisher matrix as a
scalar product h·j·i between derivatives of the waveform
model with respect to model parameters ∂α ¼ ∂=∂λα. The
Fisher matrix can be interpreted as a metric on the curved
template manifold defined by the waveform model hðλ⃗Þ.
The template manifold is a submanifold of the sampling
space whose points describe realizations of detector data
including instrument noise and signals not described
by hðλ⃗Þ.
If the best-fit waveform ĥ maximizes the likelihood

(standard parameter estimation maximizes the posterior

that includes priors), i.e., if it minimizes hs − ĥjs − ĥi, then
for signals with sufficiently high SNR, ĥ fulfills the
following equation

hs − ĥj∂αĥi ¼ hnþ ðh − ĥÞj∂αĥi ¼ 0 ð2Þ

for all derivatives ∂α, with n being the instrument noise and
h the GW signal contributing to the data s. The vanishing of
the first scalar product in this equation means that the line in
sampling space connecting the point s with the best-fit
waveform ĥ is perpendicular to the template manifold, i.e.,
the best-fit waveform is obtained by determining the
template on the manifold with minimal distance to s.
The vanishing of the second scalar product means that
the residual noise δh ¼ ĥ − h is equal to the component
of the instrument noise tangent to the manifold at the point
of the best-fit ĥ.
The scalar product can also be used to define the SNR of

a signal:

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
ð3Þ

The leading order term of a SNR−1 expansion of the
covariances of parameter-estimation errors δλα is given by

δλαδλβ ¼ Γαβ; ð4Þ

where Γαβ are the components of the inverse of the Fisher
matrix. This relation is sometimes used to define an
approximate Gaussian distribution of the likelihood func-
tion expð−Γαβδλ

αδλβ=2Þ, and parameter-estimation errors
can be drawn from this distribution to substitute a computa-
tionally costly posterior sampling [33,35].
It is also possible to express the leading-order, parameter-

estimation errors δλα in terms of a specific instrumental-
noise realization n as:

δλα ≡ λ̂α − λα ≈ Γαβhnj∂βĥi: ð5Þ

Here, λ̂α are the parameter estimates determining the best-fit
waveform ĥ. By using Eq. (4), we can calculate the norm-
squared of the average subtraction residuals

hδhjδhi ¼ h∂αĥj∂βĥiδλαδλβ ¼ ΓαβΓαβ ¼ Np; ð6Þ

where Np is the total number of parameters going into the
waveform model h. Together with Eq. (3) it tells us that in
average, the amplitude of a signal after subtraction of its
best-fit waveform is reduced by δh=h ∼ N1=2

p =SNR, which
also means that the residual is independent of the SNR of the
signal (again, in the approximation of large SNR).
With the future GW detectors ET and CE we will be

able to detect almost all the BBHs emitting within their
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observation bands, and the entire astrophysical foreground
coming from NS sources is

HðtÞ ¼
XNS

k¼1

hkðtÞ: ð7Þ

With each BBH signal hkðtÞ being described by Np

parameters, the parameter space of the complete astro-
physical foreground has dimension Np × NS. Therefore the
norm-squared of the residual of this foreground is

hδHjδHi ¼ Np × NS: ð8Þ

It is easy to show that in average

δH=H ≈ δh=h; ð9Þ

which means that the fractional reduction of the amplitude
of a single BBH is about the same of the entire astro-
physical foreground assuming that (almost) all signals can
be detected with sufficiently high SNR.

IV. PROJECTING OUT THE RESIDUAL NOISE

The results of section III form the basis of the residual-
noise projection, which we discuss in the following. As
shown in equation (2), the residual noise is tangent to the
waveform manifold. The strategy of the projection method
is to apply a projection operator to the residual data r ¼
s − ĥ removing all of its components lying in the mani-
fold’s tangent space at the best-fit waveform. This projec-
tion needs to be done for all the signals in the data. The
projection operator can be written

P≡ 1 − Γαβj∂αĥih∂βĥj: ð10Þ

When applying the projection to the residual data of a
detector i, one obtains

P½ri�ðtÞ ¼ riðtÞ − Γαβ
i h∂βĥijrii∂αĥiðtÞ; ð11Þ

which we wrote here for the time domain, but it can also be
applied in Fourier domain. The residual P½ri� after projec-
tion corresponds to the instrument noise perpendicular to
the template manifold plus a potential component of the
true signal hi that does not lie in the tangent space of the
best-fit ĥi. This residual of the signal is nonvanishing only
for curved manifolds and is suppressed by SNR−2 relative
to the original signal. Comparing with Eq. (2), it seems that
the projection operator should not have any effect on the
residual data ri ¼ si − ĥi since the vector jrii is normal to
the tangent space of the template manifold at the best fit.
However, this is not necessarily correct for various reasons.

First, the maximum-likelihood parameter estimates λ̂α

are obtained using data from all detectors in the network.
These parameter values determine the best-fit waveforms
ĥi ¼ hiðλ̂αÞ of each detector i in the network. These
waveforms however are not the results of a normal
projection of data vectors jsii onto the respective template
manifolds. This would only be the case if maximum-
likelihood estimates λ̂αi are calculated for each detector
separately. This means that subtracting hiðλ̂αÞ from the data
of all detectors leaves residuals in the tangent spaces, which
can be projected out. This also means that one needs to
distinguish between the Fisher matrices Γi;αβðλ̂μi Þ and
Γi;αβðλ̂μÞ, where the latter is obtained using the parameter
estimates from a coherent network analysis.
Let us consider the case where the maximum-likelihood

estimations are done for each detector separately producing
different best-fit parameters λ̂αi for each detector i. Then,
subtracting ĥi ¼ hiðλ̂αi Þ for all signals in the data reduces
the astrophysical foreground by 1=SNR2 instead of 1/SNR.
One might wonder where the subtraction residuals at order
1/SNRare, since clearly themisfit δhi is still only suppressed
by 1=SNR compared to the true signal hiðλα0Þ. Here, the
important point is thatwhen subtracting a signal, the residual
δhi is already exactly canceled by the component nk of the
instrument noise that lies in the tangent space, which can be
understood from Eq. (2) when using n ¼ n⊥ þ nk and
therefore r ¼ n⊥ plus residual noise from the astrophysical
foreground suppressed by 1=SNR2 and higher.
Another reason why best-fit residuals can be in tangent

spaces of a template manifold, even if the best-fits are
calculated for each detector individually, is that they are
typically not the result of a likelihood maximization, but of
a maximization of the posterior distribution, which depends
on priors. In this case, the residual δh does not fulfill
Eq. (2), and residuals in tangent spaces remain to be
projected out.
Finally, technical choices of a simulation can lead to

additional residuals in tangent spaces. Often, parameter
estimation by posterior sampling is computationally too
expensive for studies with a large population of signals.
In this case, past work made use of Eq. (4) to define a
Gaussian error distribution, from which parameter errors
are drawn and added to the true signal parameters to obtain
the maximum-likelihood parameters [33,35]. The issue
here is that the parameter errors are not consistent with
a specific realization of the instrument noise. The best-fit
waveforms obtained in this way would not maximize the
likelihood, and this leads to excess residual noise in tangent
spaces, which is projected out [35]. This artifact can be
avoided by using Eq. (5) to obtain parameter errors, which
is still under the assumption of a Gaussian likelihood, but at
least consistent with a specific noise realization.
As a first demonstration, we show the root power-

spectral density of the astrophysical foreground averaged
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over 1.3 years, its subtraction residual, and the spectrum
after projection in Fig. 4 without instrument noise for an ET
detector. For this plot, time series were simulated without
instrument noise just to demonstrate the full potential of the
projection method. The posterior sampling was of course
done including instrument noise, and included data from
CE and the full ET triangle. The simulated astrophysical
foreground is artificially enhanced to make sure that all
signals have sufficiently high SNR to be able to neglect
residuals at order 1=SNR2. Furthermore, one needs to
consider the possibility that some low-SNR signals are
not detected by ET, which gives rise to additional con-
tributions to residual noise that we do not consider in this
study (see instead [32,33]). It is interesting to observe that
the spectra change their shape after applying the subtraction
and projection, for which we cannot provide an explanation
since our equations only predict residuals integrated over
all frequencies.

V. STOCHASTIC BACKGROUND
AND DETECTION

The fractional energy-density spectrum of an isotropic
stochastic background is defined as

ΩGWðfÞ ¼
1

ρc
·
dρGW
d ln f

; ð12Þ

where ρc ¼ 3H2
0c

2=ð8πGÞ is the critical energy density
required for a flat universe, H0 is the Hubble constant
(H0 ¼ 67.9 km s−1Mpc−1 [49]) and dρGW is the energy
density of GWs contained in the frequency band f to
f þ df [26]. The current limit on the gravitational-wave
energy density spectrum is ΩGW < 4.8 × 10−8 with 95%
confidence, in the band 20–100 Hz [50]. In this work, we
simulate searches optimized for an unpolarized, isotropic,

stationary and Gaussian stochastic background. In reality,
stochastic signals do not necessarily have these properties
[26] except for stationarity, which is simply a consequence
of short observation time compared to timescales character-
istic for the evolution of GW distributions.

A. Cross-correlation between detectors

Cross-correlating the output of two or more GW
detectors is the optimal strategy to detect a Gaussian,
stationary stochastic GW background [25,26]. Since we
prefer to work in frequency domain, the cross-correlation is
expressed as cross power-spectral density (CPSD) CijðfÞ
between two detectors i, j. We briefly review the steps to
calculate the contribution of an isotropic, stochastic GW
background to CijðfÞ and how to calculate the statistical
error due to instrument noise.
A stochastic GW background can be described as a

plane-wave expansion of a metric perturbation

hμνðx⃗;tÞ

¼
X

A¼þ;×

Z
s2
dΩ̂

Z
∞

−∞
dfhAðf;Ω̂Þei2πfðt−Ω̂·x⃗=cÞeAμνðΩ̂Þ: ð13Þ

Here, Ω̂ is a unit vector pointing along the propagation
direction of a GW, c is the speed of light, A is the wave
polarization, eAμνðΩ̂Þ the polarization tensor, and hAðf; Ω̂Þ
the amplitudes of the plane waves.
The CPSD can now be calculated between two detectors

at locations x⃗i; x⃗j and antenna patterns

FA
i ðΩ̂Þ ¼ eAμνd

μν
i ¼ eAμν

1

2
ðX̂μ

i X̂
ν
i − Ŷμ

i Ŷ
ν
i Þ; ð14Þ

where Xμ
i ; Y

μ
i are components of the unit vectors along the

two arms of detector i, which define the components of
the response tensor dμνi of the detector. Even though the
notation X, Y suggests that arms are perpendicular to each
other, this does not need to be the case (as for ET).
Assuming that plane-wave contributions to the metric in
Eq. (13) at different frequencies, from different directions,
and different polarization are uncorrelated, the CPSD can
be calculated in a straight-forward manner. The dependence
of the CPSD on detector positions and orientations is
summarized in the so-called overlap-reduction function
(ORF) [25,26,51]

γijðfÞ ¼
5

8π

X
A

Z
S2
dΩ̂ei2πfΩ̂·Δx⃗ij=cFA

i ðΩ̂ÞFA
j ðΩ̂Þ: ð15Þ

Since the stochastic background is assumed to be homo-
geneous, γij only depends on the relative position vector
Δx⃗ij ¼ x⃗j − x⃗i between the two detectors. The numerical
constant 5=ð8πÞ is chosen such that γij ¼ 1 for two
detectors that are collocated, co-aligned and both having

FIG. 4. Simulated astrophysical foreground, subtraction resid-
uals, and residual spectrum after projection for ETwithout instru-
ment noise (except for the max-posterior parameter estimation).
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perpendicular arms. Even for GW detectors with non-
perpendicular arms like ET, it is convenient to adopt the
same normalization of the ORF.
The ORFs between CE and ET are shown in Fig. 5.

While correlation measurements between detectors of the
ET triangle are sensitive to stochastic backgrounds over
ET’s entire observation band, correlation measurements
between CE and ET are most sensitive only up to about
20 Hz. However, correlating between ET detectors bears a
much greater risk that other than GW signals, e.g., local
magnetic and seismic disturbances, cause additional corre-
lated contributions, which might limit ET’s sensitivity as
stand-alone observatory of stochastic GW backgrounds.
The ET-only sensitivity will greatly depend on cancellation
techniques for environmental noise as proposed in [52,53],
or the inclusion of ET’s GW null-stream [54].
With the definition of the ORF in equation (15), the

CPSD between two detectors due to the stochastic GW
background can be written [55]

CijðfÞ¼SGWðfÞγijðfÞ; SGWðfÞ¼
3H2

0

10π2
·
ΩGWðfÞ

f3
: ð16Þ

This value needs to be confronted with the average
statistical error of the CPSD from uncorrelated instrument
noise,

σijðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SiðfÞSjðfÞ

N

r
; ð17Þ

where SiðfÞ is the instrument noise spectral density, and N
is the total number of averages going into the estimate of
the CPSD. For example, if the total time-stretch of data is T,
and the CPSD is calculated using segments of length τ
for the fast Fourier transforms (FFTs), and the CPSD
calculation foresees the application of spectral windows

(antileakage), which means that something like 50%
overlap between FFT segments is recommended to make
full use of all the information in the data, then we have
N ≈ 2T=τ.

B. Optimal filter

The optimal search for a stochastic background with
known or modeled spectral shape involves the integral of
CPSDs over frequency. However, since the relative con-
tributions of the stochastic signal and instrument noise to
the CPSD vary over frequency, the optimal integration
should use a filter Q̃ijðfÞ, which emphasizes some parts of
the spectrum over others.
The signal-to-noise ratio (SNR) of a filtered search is

determined by the mean value of the integrated CPSD
signals [26]

hCiji ¼
Z

∞

0

dfhCijðfÞiQ̃ijðfÞ

¼
Z

∞

0

dfγijðfÞSGWðfÞQ̃ijðfÞ; ð18Þ

and their variances

hðCijÞ2i ¼
1

2T

Z
∞

0

dfSiðfÞSjðfÞjQ̃ijðfÞj2: ð19Þ

The averages are over many independent estimates of
CPSDs. It is straightforward to show that the optimal filter
function is given by

Q̃ijðfÞ ¼ N
γ�ijðfÞSGWðfÞ
SiðfÞSjðfÞ

; ð20Þ

where N is a normalization factor, which has no influence
on the SNR. The form of the optimal filters (in arbitrary, but
consistent normalization) is shown in Fig. 6. In all cases,

FIG. 5. ORF γðfÞ between Cosmic Explorer (CE) and Einstein
Telescope (ET). The ORFs are shown over a logarithmic (top)
and linear (bottom) frequency axis. Note that the ORF between
different detectors of the ET triangle is constant with a value of
about −0.38.

FIG. 6. Optimal filter function Q̃ðfÞ between CE and ET
plotted over a logarithmic (top) and linear (bottom) frequency
axis. The optimal filters between detectors of the ET triangle are
all identical.
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the optimal filter emphasizes contributions from low
frequencies near the lower bound of the observation band
of the GW detectors.
Inserting the filter into the previous two equations, we

obtain

SNR2 ¼ hCiji2
hðCijÞ2i

¼ 2T
Z

∞

0

df
jγijðfÞj2S2GWðfÞ
S1ðfÞS2ðfÞ

ð21Þ

Note that in a discrete version of this equation, the integral
becomes a sum over all positive frequency bins, and the df
needs to be replaced by 1=τ. Figure 7 shows the SNR of a
flat-Ω ¼ 2 × 10−12 stochastic background observed over
1.3 years with CE and ET. The curves represent the SNRs
accumulated from high to low frequencies, such that the
lowest frequency values shown in the plot correspond to the

FIG. 7. Signal-to-noise ratio of a flat ΩGW ¼ 2 × 10−12 sto-
chastic background. The curves are the SNRs accumulated from
high to low frequencies. Total observation time is 1.3 years.

FIG. 8. Plots of residual CSDs averaged over all ET detector pairs with BBH foreground (top, left), after best-fit subtraction (top,
right), and after noise projection (bottom). The CPSDs are 1.3-year averages and also averaged over all detector pairs of the ET triangle
with a total of 106 injected BBHs. The astrophysical reference model (red curves) is only an approximation valid below about 100 Hz
since it is predicted to fall more strongly above 100 Hz. The purple curve represents a CGWB with frequency independent
ΩGW ¼ 10−15. The blue curves are the simulated CPSD measurements. The green curves are the predicted instrument noise. The orange
curves show the CPSDs for simulations without instrument noise.
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SNR of the correlation measurements making use of all
three detectors of an ET triangle. In this way, it is possible
to see, at which frequencies most of the SNR is accumu-
lated. Cosmic Explorer correlated with ET is most sensitive
to a flat background between 8 Hz and 30 Hz, while ET by
itself accumulates its SNR over a slightly broader band.
The total SNR achieved by ET in this case is 5.2, while CE
correlated with ET achieves an SNR of 3.9.

VI. PROJECTION RESULTS

The goal is to demonstrate that subtraction residuals can
limit the sensitivity of 3G detectors to a CGWB and that the
noise-projection method can remove subtraction residuals.
In other words, we need to show that subtraction residuals
can lie above the instrument-noise contribution of Eq. (17),
and that projection suppresses residuals to a level signifi-
cantly below the instrument noise.
We focus this analysis on ET. The CPSDs are calculated

from τ ¼ 2 s discrete Fourier transforms using the Welch
method with 50% overlap between segments. As stated
before, the total simulated time is 1.3 years orT ¼ 4 × 107 s.
TheCPSDs are averaged over all three ETdetector pairs. The
results are shown in Fig. 8.
The plots contain reference models of the astrophysical

foreground with ΩGW ¼ 7 × 10−10 × ðf=10 HzÞ2=3, which
approximates past estimates [32], and a CGWB with
frequency independent ΩGW ¼ 10−15.
The upper, left plot shows the CPSDs before subtraction

of the foreground, the upper, right plot after subtraction,
and the bottom plot after projection. The instrument noise
of the CPSD (green curve) is calculated using Eq. (17). In
all three plots, the orange curves are the CPSDs from
simulations without instrument noise.
The astrophysical BBH foreground shown in the top, left

plot (blue curve, hidden behind orange curve) exceeds past
predictions (red curve). This is mostly due to the fact that
we selected higher-SNR members of the BBH population,
for which we expect a Fisher-matrix based projection
method to work efficiently. The subtraction residuals in
the top, right plot lie above the instrument noise below
10 Hz. It confirms that the sensitivity of ET to a CGWB can
be limited by subtraction residuals. This is true for 1.3 years
of observation time, and remains true for longer observa-
tion times (increasing observation time lowers the instru-
ment noise in these plots, and leaves all other curves the
same). Since the spectrum of subtraction residuals depends
weakly on the SNRs of the members of the astrophysical
foreground (as long as the BBHs can be detected), this
conclusion remains valid for more realistic models of the
astrophysical foreground. The impact of low-SNR signals,
of which only some are detected, or which are included as

subthreshold signal candidates in the subtraction, projec-
tion procedure needs to be investigated in future work.
The projected residuals (blue curve) in the bottom plot are
fully consistent with the instrument-noise model, which
means that subtraction residuals were successfully reduced.
The full potential of a CGWB search with ET is restored,
at least with respect to the higher-SNR signals of a BBH
population.

VII. CONCLUSION

In this paper, we presented an analysis of a noise-
projection method based on a higher-order geometrical
analysis of matched-filter GW searches to mitigate sub-
traction residuals of an astrophysical foreground in the
proposed third-generation detectors Einstein Telescope and
Cosmic Explorer. We showed that the projection method
can improve the sensitivity to a CGWB. We provided
insight into why the projection method is expected to work,
and we tested the method with a time-domain simulation of
a future detector network. The important first step of the
analyses, i.e., the estimation of BBH parameters, was
carried out with a state-of-the-art parameter-estimation
software (Bilby) by posterior sampling. The presented
results are a proof-of-principle since some simplifications
of the simulation of the astrophysical foreground had to
be done.
The results indicate that the projection method is able to

remove all influence of subtraction residuals from BBHs on
searches of a CGWB. However, two important aspects
need to be addressed in future work. First, the impact of
low-SNR signals in the astrophysical foreground on the
sensitivity of CGWB searches needs to be investigated.
Some of these signals will be visible as sub-threshold
signals, others complete hidden in instrumental noise. Their
contribution to the astrophysical foreground must be
sufficiently low to not pose a fundamental limit to the
capacity ET and CE have for CGWB observations. Second,
since the foreground removal requires signal models, the
dependence of the residuals on choices of waveform
models needs to be assessed. Since our implementation
of the projection method is fully numerical, we do not
require analytical expressions for the waveform models to
calculate the projection operators.
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