
 

Delta baryons and diquark formation in the cores of neutron stars
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We investigate the hadron-quark phase transition in cold neutron stars in light of (i) the observed limits on
the maximum-mass of heavy pulsars, (ii) constraints on the tidal properties inferred from the gravitational
waves emitted in binary neutron-star mergers, and (iii) mass and radius constraints derived from the
observation of hot spots on neutron star observed with the Neutron Star Interior Composition Explorer
instrument. Special attention is directed to the possible presence of Δð1232Þ baryons in neutron star matter.
Our results indicate that this particle could make up a large fraction of the baryons in neutron stars and thus
have a significant effect on the properties of such objects, particularly on their radii. This is partially caused by
the low density appearance of Δs for a wide range of theoretically defensible sets of meson-hyperon, SU(3)
ESC08 model, and meson-Δ coupling constants. The transition of hadronic matter to quark matter, treated in
the 2SCþ s condensation phase, is found to occur only in neutron stars very close to the mass peak.
Nevertheless, quark matter may still constitute an appreciable fraction of the stars’ total matter if the phase
transition is treated as Maxwell-like (sharp), in which case the neutron stars located beyond the gravitational
mass peak would remain stable against gravitational collapse. In this case, the instability against gravitational
collapse is shifted to a new (terminal) mass different from the maximum-mass of the stellar sequence, giving
rise to stable compact objects with the same gravitational masses as those of the neutron stars on the
traditional branch, but whose radii are smaller by up to 1 km. All models for the equation of state of our study
fall comfortably within the bound established very recently by Annala et al. [Nat. Phys., https://doi.org/
10.1038/s41567-020-0914-9 (2020)].
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I. INTRODUCTION

The observations of 2 M⊙ binary pulsars PSR J1614 −
2230 [1], PSR J0348þ 0432 [2], PSR J2215þ 5135 [3],
and PSR J0740þ 6620 [4] strongly constrains theoretical
models of the equation of state (EoS) of ultradense nuclear
matter (see, for example, Refs. [5–7], and references
therein). Moreover, the analysis of data from the binary
neutron star (BNS) merger events GW170817 [8] and
GW190425 [9] and from the Neutron Star Interior
Composition Explorer (NICER) instrument [10–16] made
it possible to put additional, tight constraints on the

behavior of matter at densities higher than nuclear satu-
ration density, n0.
One of the most important conclusions obtained from the

data of GW170817 is that the radius of a 1.4 M⊙ neutron
star (NS) is constrained to R1.4 < 13.6 km (see, for
example, Ref. [17]). Moreover, based on the data of
GW170817, it has been argued that a NS could not support
a mass larger than Mmax

NS ∼ 2.3 M⊙ [6]. Considering this
additional constraint it follows that R1.4 ¼ 11.0þ0.9

−0.6M⊙
[18]. An improved analysis of the GW170817 data has
restricted the originally determined tidal deformability
Λ1.4 < 800 of this NS to Λ1.4 ¼ 190þ390

−160 [19].
The second BNS merger, GW190425, was detected on

April 25th, 2019 with the LIGO Livingston interferometer.
To date, an electromagnetic counterpart associated with this
event has not been detected. The inferredmass of the primary
object is, under the low-spin (high-spin) assumption,
M1 ¼ 1.60–1.87 M⊙ ðM1 ¼ 1.61–2.52 M⊙Þ, and for the
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secondary objectM2¼1.46–1.69M⊙ ðM2¼1.12–1.68M⊙Þ.
With a total gravitational mass of Mtot ¼ 3.4þ0.4

−0.1 M⊙,
this is the most massive BNS system ever detected, differing
by 5 standard deviations from the Galactic BNS mean
value of ∼2.69 M⊙ (see, for example, Ref. [20]). The
fact that the signal of GW190425 was only detected by
one interferometer and that no electromagnetic counter-
part has been observed renders the constraints on the mass
and radius of this NS not as tight as those obtained
with GW170817. Nevertheless, there are indications that a
massive (M > 1.7 M⊙) NS would have a radius larger that
R ∼ 11 km [9].
Observations of the isolated pulsar PSR J0030þ 0451

made with the NICER instrument produced two indepen-
dent measurements of the pulsar’s mass and radius,
M ¼ 1.34þ0.15

−0.14 M⊙ and an equatorial radius of Req ¼
12.71þ1.14

−1.19 km [10], and M ¼ 1.44þ0.15
−0.14 M⊙ and Req ¼

13.02þ1.24
−1.06 km [13].

Last but not least we mention the very recent work [21]
where the limits on the maximum NS mass, gravitational-
wave data, and information about neutron star masses and
radii from x-ray emissions have been used to arrive at
R1.4 ¼ 12.32þ1.09

−1.47 km for the radius of a 1.4 M⊙ NS.
Both the existence of ∼2 M⊙ pulsars as well as the data

from gravitational-wave events of BNS mergers suggest
that the NS EoS needs to be relatively soft at low and
intermediate nuclear densities in order to achieve relatively
small radii for ∼1.4 M⊙ NSs, such as those quoted above,
but much stiffer at high densities to accommodate heavy
2 M⊙ NSs too. One possible theoretical scenario leading to
such a behavior of the EoS is obtained if NS matter
undergoes a phase transition from hadronic matter to
deconfined quark matter [22–26]. Neutron star models
containing such matter are referred to as hybrid stars (HSs).
At low and intermediate nuclear densities, the matter in the
cores of such stars is assumed to be composed of neutrons,
protons, and hyperons, while at higher densities these
particles give way to the formation of quark matter, made
of deconfined up (u), down (d), and strange (s) quarks. The
transition of one phase of matter to the other is generally
modeled as a Maxwell transition or a Gibbs transition
[27–29]. Depending on the hadron-quark surface tension
[30,31], the transition region is characterized either by a
jump from one phase to the other (Maxwell case), or the
existence of a mixed phase where pressure varies smoothly
with density (Gibbs case).
If quark matter exists in the interiors of NSs, it ought be

in a color superconducting state [32–34]. Such a state
would be energetically favored, since a system of weakly
interacting fermions at low temperatures is unstable with
respect to the formation of diquarks, similarly to the
formation of Cooper pairs in ordinary superconductors.
(For recent studies of quark matter in NSs, see [26,35–37],
and references therein.) One possible condensation pattern
of color superconducting quark matter, which is studied in

this paper, is the so-called 2SCþ s phase [32,38], which is
expected to occur when the strange quark is too massive to
participate in the formation of pairs with u and d quarks. In
this case, only green and red u and d quarks can form
diquark condensates due the symmetry breaking of the
SUð3Þcolor group.
The possible existence of hyperons in the cores of NSs

has been investigated by numerous authors using either
phenomenological or microscopic approaches for the
neutron star matter EoS with hyperons (see Refs. [39,40]
for comprehensive lists of references). Depending on the
microscopic many-body theory, it has been found that such
particles may appear rather abundantly in NS matter at
densities just a few times higher than the nuclear saturation
density n0 [41,42]. The situation is different for the charged
states of theΔ baryons. In fact, the possible presence of this
particle in NSs has long been ignored because early studies
carried out with the relativistic mean-field theory suggested
that Δs would only appear at densities greater than ∼10n0,
too high to be reached in the cores of NSs [43]. Updated
microscopic models and tighter constraints on the model
parameters, however, paint a different picture [44–50].
These studies show that Δs could in fact make up a large
fraction of the baryons in neutron star matter and thus have
a significant effect on the properties of NSs. In particular,
the radii of NSs are sensitive to the Δ population
[45,51,52]. The relevance of Δs for heavy ion collisions
and different nuclear physics processes has been empha-
sized in [53–55].
In this work, we investigate the hadron-quark phase

transition in cold neutron stars in light of the observed
limits on the maximum-mass of heavy pulsars, constraints
on the tidal properties inferred from the gravitational waves
emitted in binary neutron-star mergers, and mass and radius
constraints derived from the observation of hot spots on
neutron star observed with NICER. The details of the
construction of the hybrid EoS as well as the equilibrium
and charge neutrality conditions are given in Sec. II. For the
description of the hadronic matter, presented in Sec. III, we
use a density dependent relativistic mean-field model
which includes the strange mesons σ� and ϕ. All members
of the baryon octet as well as the Δ baryons are included in
our model. In Sec. IV, we provide the details of the nonlocal
quark model used to describe the quark phase inside of
HSs, including the possibility of 2SCþ s color super-
conductivity. Section V is devoted to the presentation and
discussion of the results. The conclusions are given in
Sec. VI. Finally, details of the 2SCþ s phase calculations
are provided in the Appendix.

II. THE HYBRID EOS

We model the matter in the inner cores of NSs under the
hypothesis of a hadron-quark phase transition. We use the
SW4L parametrization to model the matter at low nuclear
densities and use a nonlocal chiral quark model to describe
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the matter at high nuclear densities. For the construction of
the corresponding hybrid EoS, there are some general
characteristics and considerations to be taken into account,
as discussed below.
The phase transition of hadronic to quark matter is

modeled by using both the Maxwell and the Gibbs
formalism. The systematics of the phase transition is
intimately related to the unknown value of the hadron-
quark surface tension, σHQ. If this value is greater than a
critical value, estimated to be around 70 MeV=fm2, a sharp
phase transition will be favored, where matter changes from
hadronic matter to pure quark matter at a certain radial
location inside a HS [56,57]. This situation is described by
the Maxwell formalism. For this type of phase transition,
the pressure is isobaric in the transition region, and the EoS
is characterized by an energy gap at the interface between
hadronic and quark matter. In this scenario, the electric
chemical potential might not always be continuous along
the interface (for a more detailed discussion, see Ref. [39]).
On the other hand, if σHQ is lower than the critical value,

the favored scenario is the one in which a mixed phase is
formed where hadrons and quarks coexists. This type of
phase transition is described by the bulk Gibbs formalism,
where the electric charge is conserved globally. For
intermediate cases of σHQ, where one has to take into
account both Coulomb and surface energy contributions, a
series of geometrical structures (blobs, rods, and slabs),
also called the pasta phase, might appear (see [23,58], and
references therein). The nature and characteristics of this
phase are strongly dependent on the value of σHQ.
The hope is that NS data will help to shed light on the

possible hadron-quark phase transition in the inner cores of
NSs. Neutron star masses and radii are generally considered
to be possible the primary indicators, but clues may be
provide by other pointers as well. One such pointer could
be the speed at which the conversion of hadronic matter to
quark matter proceeds. As it has been shown recently [59],
if the phase transition is sharp and the conversion rate slow
(with respect to the characteristic oscillation frequency time
scale), then compact stars located beyond the gravitational
mass peak will remain stable. In this case, the instability
against gravitational collapse is then shifted to a new
terminal mass different from the maximum-mass of a
compact-star sequence. On the contrary, if the conversion
is fast, the traditional stability criteria for stellar configu-
rations against radial oscillations is recovered. This phe-
nomena could give rise to a new family of twinlike stars,
stars with the same gravitational masses as ordinary
compact stars but different radii. The standard twinlike
stars scenario has been studied for several different hybrid
EoSs [60–62].

A. Equilibrium conditions

Equilibrium conditions for the hybrid EoS implies
thermal, chemical and mechanical equilibrium. Since we

are considering cold hybrid matter, thermal equilibrium
between the hadronic and quark phase is automatically
satisfied.
Chemical equilibrium of nucleons, hyperons and quarks

in the cores of hybrid stars depends not only on the
chemical reactions occurring between them, but also on
the local density. For the low nuclear density phase, we
consider the chemical equilibrium given by

μB ¼ μn þ qBμe; ð1Þ

where qB is the baryon electric charge and μn and μe are the
neutron and electron chemical potentials, respectively.
In the case of quark matter, we need to deal with quark

flavors and quark colors, which, in principle, should lead to
six different chemical potentials. In particular, the presence
of color superconductivity breaks down the color gauge
symmetry SUð3Þcolor into the subgroups Uð1Þ3 and Uð1Þ8
leading to two independent chemical potentials, μ3 and μ8
respectively, associated with the color charges. In the
2SCþ s phase, strange quark decouples from the super-
conducting system of up and down quarks (see the
Appendix for details). Red and green quarks are degener-
ate, and diquarks condense in the blue direction, as it
happens for two-flavor color superconductors (2SC)
[63,64]. Thus, we can take μ3 ¼ 0 so that μ8 remains as
the only chemical potential related to the color charges.
Therefore, chemical equilibrium of the quark phase is
given by

μur ¼ μug ¼ μ −
2

3
μe þ

1

2
ffiffiffi
3

p μ8;

μub ¼ μ −
2

3
μe −

1ffiffiffi
3

p μ8;

μdr ¼ μdg ¼ μþ 1

3
μe þ

1

2
ffiffiffi
3

p μ8;

μdb ¼ μþ 1

3
μe −

1ffiffiffi
3

p μ8;

μsr ¼ μsg ¼ μdr;

μsb ¼ μdb; ð2Þ

where μ≡ μn=3.
Electrons and muons satisfy the condition,

νμ þ ν̄e þ e− ↔ μ−; ð3Þ

which implies for the chemical potentials of these particles,

μμ ¼ μe þ μν̄e þ μνμ : ð4Þ

For cold NSs, as considered in this work, the neutrino
chemical potentials are zero and μμ ¼ μe.
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Mechanical equilibrium of hybrid matter is guaranteed
through the condition,

PHðμHB ; μHe ; fαjgÞ ¼ Pqðμq; μqe; fκkgÞ; ð5Þ

where the quantities fαjg and fκkg in Eq. (5) represent the
field variables characterizing the solutions to the field
equations of the hadronic and quark phases, respectively.
As it was mentioned before, due the uncertainty of the
surface tension σHQ, one has to assume a priori the nature
of the first-order phase transition, to be either sharp
(Maxwell-like) or smooth (Gibbs-like). For both cases,
the transition from the low density (hadronic phase) to the
high density (quark phase) is possible as long as the Gibbs
free energy of the quark phase is lower than the Gibbs free
energy of the hadronic phase. The Gibbs free energy, at
zero temperature, is given by

GE ¼
X
i

μini
nB

; ð6Þ

where nB is the baryon number density and μi denotes the
chemical potential of each particle species i present in the
system. The quantity,

ni ¼ −
∂Ω
∂μi ; ð7Þ

represents the number density of a particle of type i, which
is obtained from the corresponding thermodynamic poten-
tial (see Sec. II B for the leptonic contributions and Secs. III
and IV for details related to the hadronic and quark phases,
respectively). Once the grand canonical potential of the
system is obtained, the pressure is obtained from P ¼ −Ω
and the energy density of the system follows from

ϵ ¼ −Pþ
X
i

μini: ð8Þ

Assuming a sharp Maxwell phase transition, the con-
dition of chemical equilibrium given by GH

E ¼ Gq
E must be

satisfied together with Eq. (5). In this case, there is a jump
in the energy density between the hadronic and quark
phases, and the pressure is constant during the transition.
In the case of a smooth Gibbs phase transition, a mixed

phase of hadrons and quarks is formed and the pressure
grows monotonically in the transition region. Therefore,
not only Eq. (5) must be taken into account, but the
following equations:

nmix
B ¼ ð1 − χÞnHB þ χnqB;

ϵmix ¼ ð1 − χÞϵH þ χϵq; ð9Þ

are to be taken into account as well. Here nHB (ϵH) and nqB
(ϵq) are the baryon number (energy) densities of each

phase. The quantity χ ≡ Vq=V denotes the volume pro-
portion of quark matter, Vq, in the unknown volume V.
Therefore, 0 ≤ χ ≤ 1 by definition, depending on how
much hadronic matter has been converted into quark
matter [39].

B. Charge neutrality condition

In addition to the pressure condition given by Eq. (5),
one needs to impose on the field equations either local or
global electric and color charge neutrality, depending on
the nature of the phase transition. For a Maxwell transition,
the local electric charge conservation reads

X
i;l

qHðqÞ
i;l nHðqÞ

i;l ¼ 0; ð10Þ

where qi is the electric charge of all particles in the
hadronic (H) or quark (q) phases. The quantity ql is the
corresponding expression for the electric charges of lep-
tons. The particle number densities ni;l are obtained by
making use of Eq. (7) for each type of particle.
Regarding the color charge neutrality condition, it is

known that strange quark matter is color neutral. However,
for the 2SCþ s phase, due to the SUð3Þcolor symmetry
breaking, diquarks are not color neutral. Thus, we require

∂Ω
∂μ8 ¼

1ffiffiffi
3

p ðnr þ ng − 2nbÞ ¼ 0; ð11Þ

where r, g, b stand for red, green, and blue colors,
respectively. Note that the condition μ3 ¼ 0, mentioned
in Sec. II A, implies that nr ¼ ng.
In the case of a Gibbs phase transition, the condition of

global electric charge neutrality is given by

X
i;l

½ð1 − χÞqHi;lnHi;l þ χqqi;ln
q
i;l� ¼ 0: ð12Þ

In contrast to local electric charge neutrality, the global
charge neutrality condition allows for a positive net electric
charge in the hadronic phase, which makes matter more
isospin symmetric, and a net negative electric charge in the
quark matter phase. In other words, the concept of global
charge conservation involves only the mixed phase but not
the pure hadronic matter phase or pure quark matter phase.
In this work we consider, for both the hadronic and quark

phases, that the leptonic contribution comes from electrons
and muons treated as free Dirac particles. The thermody-
namic potential is thus given by

Ωl ¼ −
1

π2
X
B

Z
pFl

0

dp
p4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
l

q ; ð13Þ
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where pFl
are the Fermi momenta of leptons of mass ml.

We use me ¼ 0.5 MeV and mμ ¼ 105.66 MeV.

III. THE HADRONIC PHASE

For the description of hadronic matter, we use the density
dependent nonlinear relativistic mean-field model with the
SW4L parametrization [46,65]. This model accounts for
medium effects by making the meson-baryon coupling of
the ρ-meson dependent on the local baryon number density.
Models that consider a density dependence for all mesons
have first been introduced in [66]. The ρ-meson coupling
used in our paper has the same density dependence as the

one in [66]. One of the advantages of this model is that by
choosing proper Gaussian or Lorentzian functional forms
for the density dependence, the slope of the symmetry
energy can be fixed without affecting other nuclear proper-
ties or the stiffness of the nuclear EoS. The slope of the
symmetry energy has become very important for NS matter
calculations due to its effect on the composition and
properties of neutron stars [67].
The interactions among the baryons are described by the

exchange of σ, ω, ρ, σ�, and ϕ mesons. The Lagrangian of
this model is given by

L ¼
X
B

ψ̄B

�
γμ

�
i∂μ − gωBωμ − gϕBϕμ −

1

2
gρBðnÞτ · ρμ

�
− ðmB − gσBσ − gσ�Bσ�Þ

�
ψB

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

3
bσmnðgσNσÞ3 −

1

4
cσðgσNσÞ4 −

1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ

−
1

4
ρμν · ρμν þ

1

2
m2

ρρμ · ρμ −
1

4
ϕμνϕμν þ

1

2
m2

ϕϕμϕ
μ þ 1

2
ð∂μσ

�∂μσ� −m2
σ�σ

�2Þ; ð14Þ

where the sum over B is over all the baryons in the baryon
octet as well as the four electrically charged states of the Δ
resonance. Baryon-baryon interactions are modeled in
terms of scalar (σ; σ�), vector (ω;ϕ), and isovector (ρ)
meson fields. The quantities gρBðnÞ denote density depen-
dent isovector meson-baryon coupling constants given by

gρBðnÞ ¼ gρBðn0Þ exp
�
−aρ

�
n
n0

− 1

��
; ð15Þ

where n ¼ P
B nB is the total baryon number density. Once

the field equations for the baryons and mesons are obtained
by solving the equations of motion that follow from
Eq. (14), we use the relativistic mean-field approximation
in which the meson field operators are replaced by their
mean-field values. By virtue of this procedure, we obtain a
coupled, nonlinear algebraic system of meson mean-field
equations,

m2
σσ̄ ¼

X
B

gσBnsB − b̃σmNgσNðgσN σ̄Þ2 − c̃σgσNðgσN σ̄Þ3

m2
σ�σ

� ¼
X
B

gσ�BnsB;

m2
ωω̄ ¼

X
B

gωBnB;

m2
ρρ̄ ¼

X
B

gρBðnÞI3BnB;

m2
ϕϕ̄ ¼

X
B

gϕBnB; ð16Þ

where I3B is the three-component of isospin, and nsB and nB
are the scalar and particle number densities for each baryon
B, which are given by

nsB ¼ 1

4π2

Z
pFB

0

d3p
ð2πÞ3

m�
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm�2
B

p ; ð17Þ

nB ¼ p3
FB

3π2
: ð18Þ

Here pFB
is the Fermi momentum and m�

B ¼ mB − gσBσ̄ −
gσ�Bσ� is the effective baryon mass.
The chemical equilibrium condition μn þ μe ¼ μB of NS

matter was already defined in Eq. (1). Since μB ¼ ωBðpFB
Þ,

where ωBðpFB
Þ is the single-baryon energy,

ωBðpÞ ¼ gωBω̄þ gρBðnÞρ̄I3B
þ gϕBϕ̄þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
FB

þm�2
B

q
þ R̃; ð19Þ

at the Fermi surface, the Δ− state becomes populated in NS
matter once the density is high enough so that μn þ μe ¼
ωΔ−ð0Þ is fulfilled. The situation is graphically illustrated in
Fig. 1 where we compare the density dependences of μn þ
μe and ωΔ−ð0Þ with each other, computed for the hadronic
model (SWL4) of this work. As can been seen from this
figure, equality between μn þ μe and ωΔ−ð0Þ is already
reached at densities of just around twice nuclear saturation
density [we will come back to this issue in Sec. V (see
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Fig. 6) there], which are easily reached in the cores of
neutron stars.
The term R̃ ¼ ½∂gρBðnÞ=∂n�I3BnBρ̄ in Eq. (19) is the

rearrangement term necessary to guarantee thermodynamic
consistency [68]. This term also affects the pressure of
hadronic matter, which is given by

Ph ¼
1

π2
X
B

Z
pFB

0

dp
p4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm�2
B

p −
1

2
m2

σσ̄
2

−
1

2
m2

σ�σ
�2 þ 1

2
m2

ωω̄
2 þ 1

2
m2

ρρ̄
2 þ 1

2
m2

ϕϕ̄
2

−
1

3
b̃σmNðgσN σ̄Þ3 −

1

4
c̃σðgσN σ̄Þ4 þ nR̃: ð20Þ

In this work we use the parameter set SW4L shown in
Table I. The coupling constants as well as the parameters
b̃σ, c̃σ , and aρ were adjusted according to the properties of
nuclear matter at saturation density listed in Table II.
The scalar meson-hyperon coupling constants gσY and

gσ�Y are fit to hyperon (Y) single-particle potentials and
self-potentials derived from the available empirical data on
hypernuclei, once the vector meson-hyperon couplings gωY
and gϕY have been specified. In SU(3) symmetry the vector
couplings are given in terms of the vector mixing angle θV ,
the vector coupling ratio αV , and the meson singlet-to-octet
coupling ratio z [69] (see also [46,65,67,70]). The values of
these parameters are θV ¼ 37.50°, αV ¼ 1, and z ¼ 0.1949,
corresponding to the SU(3) ESC08 model [71].
Once the vector meson-hyperon coupling constants are

specified, the scalar meson-hyperon couplings are set to
reproduce empirical hyperon single-particle potentials in
symmetric nuclear matter at nuclear saturation, UðNÞ

Y ðn0Þ,
using the relation [65],

UðNÞ
Y ðn0Þ ¼ gωYω̄þ gϕYϕ̄ − gσY σ̄: ð21Þ

The following hyperon potentials have been employed:

UðNÞ
Λ ðn0Þ ¼ −28 MeV, UðNÞ

Σ ðn0Þ ¼ þ30 MeV, and

UðNÞ
Ξ ðn0Þ ¼ −14 MeV. The strange-scalar meson-Λ cou-

pling constant gσ�Λ has been set to reproduce a saturation

self-potential ofUðΛÞ
Λ ðn0Þ ¼ −1 MeV in isospin-symmetric

Λ-matter, a value close to that suggested by the Nagara
event [72], using the following:

UðΛÞ
Λ ðn0Þ ¼ gωΛω̄0 þ gϕΛϕ̄0 − gσΛσ̄0 − gσ�Λσ̄�0:

From this event, the ΛΛ binding energy was originally
determined to be 1.01� 0.20 MeV. This value has sub-
sequently been revised to 0.67� 0.17 MeV [72] due to the
change of the Ξ− mass by the particle data group. Both
values consistently suggest a weak attractive ΛΛ interac-

tion. We note that values of UðΛÞ
Λ ðn0Þ ¼ −1 or −5 MeV

have been employed in the literature in the past, while
phenomenological relativistic mean-field approaches

TABLE I. Parameters of the SW4L parametrization that lead to
the properties of symmetric nuclear matter at saturation density
given in Table II.

Quantity SW4L parameters

mσ (GeV) 0.5500
mω (GeV) 0.7826
mρ (GeV) 0.7753
mσ� (GeV) 0.9900
mϕ (GeV) 1.0195
gσN 9.8100
gωN 10.3906
gρN 7.8184
gσ�N 1.0000
gϕN 1.0000
b̃σ 0.0041
c̃σ −0.0038
aρ 0.4703

TABLE II. Properties of nuclear matter at saturation density, n0,
obtained for the SW4L parametrization. The entries are energy
per nucleon E0, nuclear incompressibility K0, effective nucleon
mass m�, symmetry energy J0, and slope of the symmetry
energy L0.

Saturation properties SW4L

n0 (fm−3) 0.150
E0 (MeV) −16.0
K0 (MeV) 250.0
m�

N=mN 0.7
J0 (MeV) 30.3
L0 (MeV) 46.5
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FIG. 1. Comparison of the neutron-plus-electron effective
chemical potential, μn þ μe, with the lowest single-particle
energy state of the Δ−, ωΔ−ð0Þ, in NS matter. The presence of
Δ− particles is triggered at the density where the two curves cross,
at around 2n0.
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suggest values between approximately −14 and þ9 MeV,
depending on how tight SU(6) constraints are imposed on
the approaches [42].
The other strange-scalar meson-hyperon couplings are

determined relative to that of the Λ using UðΞÞ
Ξ ðn0Þ ¼

2UðΛÞ
Λ ðn0=2Þ, so that gσ�Σ ¼ gσ�Λ ¼ 1.9242 [73]. The iso-

vector-vector meson-hyperon coupling constants gρY are
given by gρΛ ¼ 0 and gρΣ ¼ gρΞ ¼ gρN .
To adjust the SW4L parametrization to the nuclear

properties of Table II we define xϕB ¼ gϕB=gωN . With this
definition, the ϕ-Y coupling ratios are given by xϕΛ ¼
xϕΣ ¼ 1.7855 and xϕΞ ¼ 7.7247.
Most studies ofΔs in densematter have been conducted in

the standard relativistic mean-field (RMF) approach [52–
54,74–76], the density-dependent RMF approach [46,48,
49], or the (density-dependent) relativistic Hartree-Fock
approach [44,45], all indicating at the abundant existence
of Δs in NS matter. We note, however, that a recent study
performed for the quark-meson coupling model has sug-
gested that Δ isobars are absent in NSs [77]. The reason for
that are the many-body forces generated by the change in the
internal quark structure of the baryons in the scalar mean
fields generated in dense nuclear matter.
All of these studies suffer from the problem that the

meson-Δ couplings are only poorly constrained so that
particular coupling sets must be chosen with which to
conduct the analysis. The meson-Δ coupling space has
been systematically investigated in Refs. [46,47] and will
be further explored and constrained in this work.
To include Δs in the study of dense NSs matter, we

follow a two-pronged approach. First we shall consider a
quasiuniversal meson-Δ coupling scheme,

xσΔ ¼ xωΔ ¼ 1.1xρΔ ¼ xϕΔ ¼ 1.0xσ�Δ ¼ 0.0; ð22Þ

where xσ�B ≡ gσ�B=gσ�Λ and gσ�Λ ¼ 1.9242. Next, we
explore the parameter space of the σ-Δ coupling constant,
related with the effective Δ mass, m�

Δ, considering the
constraint imposed by the event GW170817 on NSs radii.
We study coupling ratios in the interval 1.1 ≤ xσΔ ≤ 1.258.
The lower bound xσΔ ¼ 1.1 (together with xωΔ ¼ 1.1,
xρΔ ¼ 1.0) satisfied the constraints on the potential of
Δs in symmetric nuclear matter at saturation density
[46,48,49,78]. The upper bound xσΔ ¼ 1.258 is determined
by the microscopic stability of matter, that is, for values
xσΔ > 1.258 pressure is no longer monotonously increas-
ing with density so that the matter becomes microscopically
unstable.

IV. THE QUARK PHASE

For the description of quark matter, including diquarks in
the SU(3) nonlocal model, we use the Lagrangian given by

L ¼ ψ̄ðxÞð−i∂ þ m̂ÞψðxÞ −Gs

2
½jsaðxÞjsaðxÞ

þ jpaðxÞjpaðxÞ� þ Gv

2
jμaðxÞjμaðxÞ

−
H
4
Aabc½jsaðxÞjsbðxÞjscðxÞ − 3jsaðxÞjpbðxÞjpc ðxÞ�; ð23Þ

where Aabc are constants given in terms of the Gell-Mann
matrices and jsaðxÞ, jpaðxÞ and jμaðxÞ are interaction currents.
The current quarks masses and the coupling constants Gs,
H, and Λ are taken from Ref. [35]. The vector interaction
coupling constant, Gv, is expressed in terms of the scalar
coupling constant, Gs, and is treated as a free parameter.
To include diquark channels in the model, an additional

term of the form,

LD ¼ −
GD

2
½jDðxÞ�†jDðxÞ; ð24Þ

needs to be added to Eq. (23). Here GD is the diquark
coupling constant expressed in multiples of Gs. The
diquarks currents are given by

jDðxÞ ¼
Z

d4zgðzÞψ̄C

�
xþ z

2

�
iγ5λAλA0ψ

�
x −

z
2

�
; ð25Þ

where ψC ¼ γ2γ4ψ̄
TðxÞ. The matrices λA and λA0 operate in

the color and flavor spaces, respectively, and take on values
2,5,7 (see the Appendix for details). The nonlocal regulator
gðx − yÞ is related to its momentum space representation,
gðpÞ, via

gðx − yÞ ¼
Z

d4p
ð2πÞ4 e

iðx−yÞpgðpÞ: ð26Þ

The inclusion of color superconductivity leads to a
matrix for the diquark condensates that can be written as

sAA0 ¼ hψ̄Cγ5λAλA0ψi; ð27Þ

where C ¼ γ2γ4 is the operator of charge conjugation. This
matrix can be simplified by a color rotation,

s ¼

0
B@

s22 0 0

s52 s55 0

s72 s75 s77

1
CA: ð28Þ

The nondiagonal matrix components are negligible in the
one-gluon exchange regime [79,80], so that one only needs
to keep the elements s22, s55, and s77. In this work, we
consider the formation of ður; dgÞ and ðug; drÞ diquark
pairs. Therefore,
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s22 ¼ hψ̄γ5λ2λ02ψi; s55 ¼ s77 ¼ 0: ð29Þ

Including the new diquark bosonic field Δ̄ and its
associated auxiliary field D̄, we bosonize the Euclidean
effective action, SE, which follows from Eq. (23). Then, in
the mean-field approximation,

SMFA
E

Vð4Þ ¼ −2Tr
Z

d4p
ð2πÞ4 lnAðpÞ

−
1

2

��
σ̄aS̄a þ

Gs

2
S̄aS̄a þ θ̄aV̄a −

Gv

2
V̄aV̄a

�

þH
2
AabcS̄aS̄bS̄c þ 2Δ̄ D̄þGDD̄ D̄

�
; ð30Þ

where AðpÞ is the inverse of the quark propagator with
interactions and S̄a and V̄a are the mean-field values of the
auxiliary fields corresponding to σ̄a and θ̄a, respectively.
After some algebra in the first term of Eq. (30) (see the
Appendix for details) the regularized thermodynamic
potential for the 2SCþ s phase reads

Ω ¼ −2
X
c

Z
d4p
ð2πÞ4

�
ln

�
qþsc2 þM2

sc

p2
sc þm2

s

�
−
1

2
ln jAcj2

− ln½ðpþ
uc

2 þm2
uÞðpþ

dc
2 þm2

dÞ�
�

−
1

2

X
f

��
σ̄fS̄f þ

GS

2
S̄2f þ θ̄fV̄f −

GV

2
V̄2
f

�

þH
2
S̄uS̄dS̄s þ 2Δ̄ D̄þGDD̄2

�
−ΩReg

free : ð31Þ

All the quantities in Eq. (31) including the expression for
ΩReg

free are given in Sec. A. From the following set of (seven)
coupled equations:

∂Ω
∂σ̄f ¼ 0;

∂Ω
∂θ̄f ¼ 0;

∂Ω
∂Δ̄ ¼ 0; ð32Þ

it is possible to determine the mean-field values of σ̄f, θ̄f,
and Δ̄.

V. RESULTS AND DISCUSSION

In Fig. 2 we compare the EoSs of this work with bounds
on the EoS recently established in Ref. [26]. The bands
cover a large number of EoSs generated with the speed-of-
sound interpolation method. As can be seen, all our models
lie comfortably within the bounds on the neutron star
matter EoS shown in Fig. 2.
In Fig. 3, we show the mass-radius relationships of

stellar configurations, computed for the hadronic SW4L
EoS of this work, for different values of the σ-Δ coupling
ratio xσΔ. All the three mass-radius relationships obey the

gravitational-mass constraint set by 2 M⊙ pulsars as well as
the radius constraints extracted from NICER observations
[10,13] and the gravitational-wave event GW170817 [18].
As can be seen in Fig. 3, the impact of Δ baryons on the
mass-radius relationship is strong for σ-Δ coupling ratios in
the range of 1.1 ≤ xσΔ ≤ 1.258. The mass-radius relation-
ships of this figure are computed for a ω-Δ coupling
constant ratio of xωΔ ¼ 1.1. We found that if we set
xσΔ ¼ xωΔ, the minimum coupling value for the EoS to
remain microscopically stable (cs > 0) is xσΔ ¼ 1.1.
Varying xσΔ while keeping xωΔ at 1.1 changes the maxi-
mum NS mass insignificantly, but the radii of all stars

FIG. 2. Comparison of the EoSs of this work with bounds on
the EoS recently established in Ref. [26].

FIG. 3. Mass-radius relationships of compact stars computed
for purely hadronic matter, based on the SW4L parametrization
introduced in Sec. III. The observed radius constraints are taken
from Refs. [10,13] (orange and green horizontal lines, respec-
tively) and Ref. [18] (purple horizontal line). The gray horizontal
line shows the minimum gravitational mass established for PSR
J0740þ 6620 [4].
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decrease if xσΔ > xωΔ and increase significantly if
xσΔ < xωΔ, where xσΔ ¼ 1.258 sets the upper limit for
which cs > 0 holds for xωΔ ¼ 1.1. Finally, the mass-radius
relationships are virtually the same if xσΔ ¼ xωΔ regardless
whether xσΔ ¼ 1.1 or 1.258. As can be seen in Fig. 3,
current observational constrains on the radius of a ∼1.5 M⊙
NS are reproduced by our models for 1.1 ≤ xσΔ ≤ 1.258.
The hope is that future observational constraints will allow
one to narrow down this range and to draw firm conclusions
on the possible existence of Δs in NSs.
In summary, we note that the presence of Δs in NS

matter strongly modifies the radii of NSs. The 2 M⊙ mass
constraint can nevertheless be fulfilled comfortably. This is
in agreement with what has been found in other studies
[47,49–51]. The radii of NSs with canonical masses
between 1.4 to 1.5 M⊙ turn out to be particularly sensitive
to the presence of Δs. They may change by up to ∼1.5 km
for the theoretically defensible sets of meson-hyperon
[SU(3) ESC08 model] and meson-Δ coupling constants
of this work.
In Fig. 4, we show the results for the hybrid EoS

computed for the models introduced in Secs. III and IV.
The solid lines mark the region where matter exists solely
in the hadronic matter phase and the dashed lines mark the
region where the matter exists in the form of quark matter in
the 2SCþ s color superconducting phase. Also shown in
this figure is the impact of Δ baryons on the EoS, which
depends on the xσΔ coupling ratio as discussed just above,
and the role of the quark vector interaction value, ηv
(≡Gv=Gs), whose value determines the pressure at which
the hadron-quark phase transition takes place. The 2SCþ s
phase is always energetically favored relative to normal
(i.e., nonsuperconducting) quark matter, as shown in Fig. 5.
Moreover, this result is independent of the vector

interaction value considered. We therefore find that a direct
transition from hadronic matter to 2SCþ s color super-
conducting quark matter for our model, bypassing ordinary
quark matter. The inset figure shows the pressures of the
different phase of matter in the phase transition zone. We
can see that when the xσΔ coupling constant ratio is
increased, the transition pressure increases as well.
Moreover, larger values of the vector interaction lead to
a stiffer EoS.
In Fig. 6, we show the particle populations of neutron

star matter computed for the hadronic EoSs of this work. In
the top panel we show how the composition looks like if the
Δ baryon is not taken into account in the calculation. The
other two panels show the hadronic populations if all states
of the Δ baryon (Δþþ, Δþ, Δ0, Δ−) are taken into account
in the calculation. Naively, one would assumeΔs would not
be favored in NS matter for several reasons [46]. First, their
rest mass is greater than the rest masses of both the Λ and Σ
hyperons. Second, negatively charged baryons are gener-
ally favored as their presence reduces the high Fermi
momenta of the leptons, but the Δ− has triple the negative
isospin of the neutron (I3Δ− ¼ −3=2), and thus its presence
should be accompanied by a substantial increase in the
isospin asymmetry of the system. These arguments, how-
ever appear to be largely invalid for the following reasons.
Incorporating the repulsive saturation potential of the Σ
hyperon into the determination of the meson-Σ coupling
constants greatly reduces the Σ’s favorability (it is totally
absent in the compositions shown in Fig. 6), and thus it is
not likely to compete with the Δ− state. More importantly
the overall effect of the asymmetry energy on the system is
significantly reduced when one employs a parametrization
with a density-dependent isovector meson-baryon coupling

FIG. 4. Illustration of the hybrid EoSs computed in this work.
Quark matter is treated as a 2SCþ s color superconductor. The
inset figure shows the pressures of the different phases of matter
in the phase transition region.

FIG. 5. Comparison of hybrid EoSs. NQM refers to ordinary
nonsuperconducting quark matter, 2SC refers to quark matter in
the 2SCþ s superconducting phase. The latter turns out to be
energetically favored at high chemical potentials. The inset figure
shows the pressures in the phase transition region.
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constant as done in this work (SW4L), which is necessary
to satisfy the constraints on the slope of the asymmetry
energy at saturation density [46].
The values of the σ-Δ coupling ratio are xσΔ ¼ 1.1 and

xσΔ ¼ 1.258. As a reminder, the latter value constitutes the
maximum possible value allowed by microscopic stability
of the matter. We see that the appearance of the charged
states of the Δ baryon is sequential, beginning with the Δ−

at less than twice nuclear saturation density and ending
with the Δþþ at densities as low as around 4 times nuclear
saturation density, depending on the value of xσΔ. Based on
these populations, Δ baryons are abundantly present in NS
matter already at densities that are markedly smaller than
the densities of the maximum-mass neutron stars (solid
vertical lines) associated with these compositions. Even
NSs with a masses in the range between 1.4 to 1.5 M⊙
would possess significant populations of Δs, which, as was
shown in Fig. 3, significantly modifies the radii of these

objects. We also note that the Δ population sets in at
densities that are less than the density at which the hadron-
quark phase transition would set in (vertical dashed lines in
Fig. 6) for this parametrization. This is most evident for the
maximum possible value of the σ-Δ coupling ratio,
xσΔ ¼ 1.258, in which case all charged Δ states are present
well before the threshold density at which quark deconfine-
ment sets in. It is interesting to note that, at over certain
density ranges, the Δ− abundances are comparable to those
of protons and Λs. Given the impact Δs may have on the
masses and radii of NSs, one might hope that future
astrophysical observations of these and other NS quantities
(e.g., moment of inertia) will help to elucidate the relevance
of Δs for dense nuclear matter studies.

A. Extended branch of stable hybrid stars

The confinement/deconfinement process is not solely
ruled by the strong interaction, whose time scale is
∼10−23 s. Other physical phenomena like Coulomb screen-
ing and surface and curvature effects play important roles
(see Ref. [81], and references therein). Moreover, it is
important to stress that the strong interaction operates on
time scales that are shorter (by several orders of magnitude)
than those related to the weak interactions. For this reason,
the weak interaction cannot operate during the deconfine-
ment process. In view of that, newly deconfined quark
matter is transitorily out of chemical equilibrium and the
abundances per baryon of each particle need to be the same
in both phases. Several model-dependent calculations show
that if quark matter is to be produced preserving flavor,
its final equilibrium state is not accessible directly and a
two-step transition between hadronic and quark matter
must take place, firstly to a flavor preserving out of
β-equilibrium quark state, followed by a second weak
decay to the final equilibrium quark state in ∼10−8 s (see,
for example, Ref. [82], and references therein).
Since there is no high-density EoS constructed from first-

principles, it is not clear whether a fluid element that
oscillates around the transition pressure will suffer a slow
or rapid direct conversion. Several works have shown that
the probability of a hadron-quark phase transition is
related to a model-dependent time scale (see, for example,
Refs. [82–84], and references therein). In addition, there are
some results that indicate this time scale is around ∼10−3 s
[85] or even larger (see, for example, Refs. [86–88]). These
theoretical studies indicate that the hadron-quark phase
transition should be considered to be slow. Because of these
theoretical uncertainties, we consider both the slow and rapid
conversion scenarios between hadronic and quark matter and
analyze their astrophysical implications.
In Fig. 7, we show the mass-radius relationship of HSs

for a fixed value of xσΔ but different values of the vector
repulsion parameter ηv. The onset of quark matter in the
cores of these stars is marked with hollow circles. It can be
seen that quark deconfinement occurs only for stars very

FIG. 6. Baryon-lepton populations of the neutron stars shown
in Fig. 3. The solid vertical lines mark the central densities of the
maximum-mass stars associated with these compositions. The
dashed vertical lines mark the densities at which phase equilib-
rium with 2SCþ s quark matter would set in.
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close to the maximum-mass peak of each stellar sequence.
This is in agreement with results reported in the literature
previously (see, for example,
Refs. [35,61,89], and references therein), where it was

shown that the rapid conversion of hadronic matter to quark
matter in HSs tends to destabilize such objects. For a rapid
conversion, the time scale associated with transforming
hadronic matter to quark matter in a star is much shorter
than the time scale set by the stellar perturbations oscil-
lations [59,89]. The situation is dramatically different if the
conversion proceeds slowly, that is, if the time scale
associated with transforming hadronic matter to quark
matter is much larger than the time scale set by the stellar
perturbations. In the latter case, a new (extended) branch of
stable HSs can exist, ranging from the maximum-mass star
of a sequence to a new terminal-mass configuration
[59,89]. They are marked with crosses in Fig. 7. As shown
in Refs. [59,89] the usual static stability condition against
gravitational collapse, ∂M=∂ϵc ≥ 0 (where ϵc is the central
energy density of a star) always holds for a rapid hadron-to-
quark conversion, but does not determine stability against
gravitational collapse if the conversion is slow.
The stellar configurations in the extended stability

branch are stable against all radial perturbations (consid-
ering linear perturbations). For this reason, their lifetimes
are the same as those of the “traditional” stable branch. In
all the models we have considered, the central density of
the terminal-mass configuration object is less than
3000 MeV=fm3 (see, Fig. 12 for more details).
As can be seem from Fig. 7, the radii of HSs in the

extended stellar branch may differ from the radii of stars
made entirely of hadronic matter by up to ∼1 km. This
property, therefore, could serve as a distinguishing features
between both types of stars.

Another observation to be made from Fig. 7 concerns the
role of the strength of the vector interaction among quarks,
ηv. As can be seen, increasing the value of ηv leads greater
maximum stellar masses, while, at the same time, the
extended branches of the HSs shrink. The upper limit on the
value of ηv is obtained when the extended branch has
shrunk to zero, in which case stability ends at the
maximum-mass star of the stellar sequence. In what
follows, we will study two limiting cases for ηv, one where
its value is determined by the conventional maximum-mass
stability criteria mentioned just above (denoted ηv;max). The
other case corresponds to the minimum value of ηv
(denoted ηv;min) determined by the requirement that at least
2.05 M⊙ be obtained with our models. These cases are
shown in Fig. 8 for stellar populations with and without
Δð1232Þ isobars. If no Δs are taken into account, the
minimum and maximum values for ηv are ηv;min ¼ 0.358
and ηv;max ¼ 0.471. If Δs are taken into account in the
calculation, we have ηv;min ¼ 0.370 and ηv;max ¼ 0.483 for
a relative σ-Δ coupling of xσΔ ¼ 1.1, and ηv;min ¼ 0.335
and ηv;max ¼ 0.470 for xσΔ ¼ 1.258.
In Fig. 9 we show the square of the speed of sound, c2s , as

a function of baryon number density for the hybrid star EoS

FIG. 7. Mass-radius relationships obtained with the hybrid EoS
for different vector repulsion parametrizations. The hollow circles
indicate the onset of quark matter and the crosses mark the
terminal mass model of each stellar sequence.

FIG. 8. Mass-radius relationships obtained with the hybrid EoS
of this work (xωΔ ¼ 1.1). The constraints on M and R are the
same as in Fig. 3. The hollow circles mark the onset of quark
deconfinement. The extended branches of stable HSs terminate at
the crossed locations.
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with color superconductivity. The locations of the maximum-
mass stars are marked with vertical bars and the crosses show
the stellar models at the end points of stability. The erratic
behavior of c2s below around 4n0 has its origin in the Δ
population (see Fig. 6), which depends on the σ-Δ coupling
ratio xσΔ. A case in point is xσΔ ¼ 1.258, for which the Δ−

population sets in at densities even less than 2n0, leading to a
sharp drop in c2s . The zigzag behavior of c2s , therefore, is the
more prominent the larger the value of xσΔ. The speed of
sound in the quark phase, which is present at densities greater
than∼5n0, violates the so-called conformal limit of c2s ≤ 1=3
(a discussion if this limit can be found it Refs. [90,91]) and
reaches values of up to 0.8 in the cores of HSs at the terminal
mass (Mterm). The actual value of cs depends, like it is the
case for hadronic matter, on the stiffness of the hybrid EoS
which, in turn, is determined by the value of the strength of
the vector interaction, ηv. We note that in order to obtain
heavy (∼2 M⊙) NSs combined with relatively small radii in
the 10 to 12 km range (Fig. 3), a rapid increase in pressure in
the core of a NS is required. This implies a nonmonotonic
behavior of the speed of sound in dense NS matter, which is
obtained naturally if the matter in the cores of NSs is no
longer described in terms of nucleons only [91].

B. Notes on the mixed hadron-quark phase

Even for the smaller values of ηv studied in this paper, we
obtain hybrid stars with only a modest amounts of matter in
the mixed hadron-quark phase. This feature can be inferred
graphically from Fig. 10, where we show the pressure in the
quark-hadron transition region obtained for the Gibbs and
the Maxwell treatment. For the Gibbs phase transition
(dashed line) we find that the mixed phase exists only for
baryon chemical potentials in the small range of
1563 MeV≲ μB ≲ 1568 MeV. It can also be seen that

the phase transition occurs not until relatively high pressure
values are reached. We note that we have assumed a surface
tension between the confined and deconfined phases of
σHQ ¼ 0 when constructing the mixed phase and have not
taken into account the possibility of structure formation in
the mixed phase [92–94]. A comparison of our results for
the EoS shown in Fig. 11 with those of Ref. [58] leads us to
conclude that the formation of a Gibbs mixed phase is not
favored by our models and that the phase transition ought to
be Maxwell-like. Moreover, it can be seen from Fig. 10 that
we obtain a narrow mixed phase region for the Gibbs
construction of the phase transition. The situation is the
same for all the hybrid EoS parameters: the result is a short
mixed phase region of constant pressure inside the star with
a sharp interface boundary between hadronic and quark
matter. If σQH ≠ 0, this would suggest that the formation of

FIG. 9. Square of the speed of sound, c2s , as a function of
normalized baryonic number density, nB=n0, for different values
of the vector repulsion parameter ηv.

FIG. 10. Pressure as a function of baryon chemical
potential, for the Maxwell (solid lines) and Gibbs (dashed line)
construction.

FIG. 11. Pressure as a function of baryon number density, in
units of the nuclear saturation. The phase transition is modeled as
both a Maxwell and a Gibbs transition.
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geometrical structures due to charge rearrangement in the
mixed phase is energetically disfavored, and that the Gibbs
phase transition becomes a Maxwell phase transition [58].
The mass-radius relationships obtained for the Gibbs and

the Maxwell treatments are however very similar to each
other, except that the Gibbs stellar sequence terminates
at the maximum-mass configuration of this sequence,
while the Maxwell sequence extends stably beyond the
maximum-mass configuration, ending at the terminal mass
(see Sec. VA). This can be seen also in Fig. 12. From the
enlarged region in this plot, one sees that no mixed phase
formation is possible if Δ baryons are absent (stellar
configurations marked with blue horizontal bars). Both
Maxwell and Gibbs constructions are possible for the two
limiting values of xσΔ ¼ 1.1 (red crosses and continuous
red line) and xσΔ ¼ 1.258 (black hollow circles and
black line).

C. Tidal deformability

A new observational window on the inner workings of
NSs is provided by the gravitational-wave peak frequency
and the stellar tidal deformability of NSs in binary NS
mergers [95]. The binary tidal deformability is given by

Λ̃ ¼ 16

13

ð12qþ 1ÞΛ1 þ ð12þ qÞq4Λ2

ð1þ qÞ5 ; ð33Þ

where q ¼ M2=M1 is the ratio of the masses of the
merging neutron stars and Λ1;2 their dimensionless tidal
deformabilities, which can be calculated by solving an
additional differential equation together with the Tolman-
Oppenheimer-Volkoff stellar structure equations [29,96].

The tidal deformabilities of the two binary components
of GW170817 has been estimated by the LIGO-VIRGO
Collaboration [8]. Although some concerns regarding an
apparent discrepancy between data coming from Handford
and Livingstong LIGO detectors has been recently raised
[97], there is agreement on the validity and strength of the
general results obtained by both collaborations. The tidal
deformability has been used to eliminate several EoS that
have been used in the past to describe the matter in the cores
of NSs (see Ref. [23], and references therein).
In Fig. 13 we present the tidal deformabilities Λ1 and Λ2

computed for the NSs shown in Fig. 3. The black (gray)
curve in this figure denotes the 50% (90%) confidence level
curve obtained in Ref. [8] for the low-spin scenario. One
sees that the presence ofΔs leads to a better agreement with
the observed data of GW170817. It is not possible to extract
any information related to the appearance of quark matter
from the tidal deformability data of GW170817 as the
masses of the objects in this BNS are lower than the masses
at which our models predict the existence of quark matter in
NSs. Event GW190425 involved more massive NSs [9].
But this event was only observed by the LIGO Livingston
detector, and no electromagnetic counterpart was detected
either so that the data from this merger are less constraining
and informative than those of GW170817.

VI. CONCLUSIONS

In this work we have presented a hybrid EoS which leads
to masses which satisfy the latest constraints established by
massive pulsars and a hadronic EoS satisfying the restric-
tions on radii set by gravitational-wave data and NICER
data. To describe matter in the stellar cores of NSs, we have
included (in addition to hyperons) all charged states
of the Δð1232Þ baryon in a nonlinear density dependent

FIG. 12. Gravitational mass as a function of central energy
density for the hybrid EoS of this work. The enlarged region
shows the results obtained for the Maxwell (dotted lines) or Gibbs
(continuous line) constructions.

FIG. 13. Dimensionless tidal deformabilities Λ1 and Λ2 for the
hadronic configurations of Fig. 3. The orange (cyan) dashed lines
represents the 50% (90%) confidence limit of the probability
contour of GW170817.
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mean-field treatment based on the SW4L parametrization
and studied the impact of these particles on the masses
and radii of NSs. Specifically the latter depend rather
sensitively on the value of the σ-Δ coupling ratio,
xσΔ ¼ gσΔ=gσN , which has been taken to be between 1.1
and its maximum-possible value of 1.258 set by the
microscopic stability of the matter. We found that varying
xσΔ in this range changes the radii of NSs by up to
∼1.5 km, depending on gravitational mass. The speed of
sound, cs, of hadronic matter remains always less than the
speed of light for 1.1 ≤ xσΔ ≤ 1.258, so that the hadronic
EoSs are causal at all densities. Depending on the value of
xσΔ, we find that the presence ofΔs in NS matter drastically
alters the speed of sound, which then would no longer be a
monotonically increasing with density, which allows one to
accommodate heavy NSs with relatively small radii in the
10 to 12 km range.
Quark matter is modeled in the framework of the SU(3)

nonlocal NJL model. The effects of color superconductivity
on the EoS has been taken into account by considering the
2SCþ s diquark condensation pattern, for the first time, in a
nonlocal NJL model. Compared to normal quark matter, the
2SCþ s phase is generally energetically favoredover normal
quark matter at all densities. A sequential phase transition
from hadronic matter, to normal quark matter, to 2SCþ s
quark matter would only be possible if the hadron-quark
phase transition were to occur at the same density at which
normal quark matter turns into 2SCþ s matter. Compared to
the noncolor superconducting case, the inclusion of 2SCþ s
color superconductivity softens theEoSmildly,which in turn
decrease of the maximum HS mass. Nevertheless, it is still
possible to satisfy the 2 M⊙ constraint set by the most
massive NSs observed to date.
We have constructed the phase transition to quark matter

using both the Maxwell and Gibbs descriptions. If the
phase transition is treated as being sharp (Maxwell), so that
no mixed phase exists, two possible scenarios emerge:
either a rapid or a slow phase transition. As was found in
several previous works [35,61], assuming a slow phase
transition extends the region of stable stars beyond the
maximum-mass star of a given stellar sequence, leading to
new stellar configurations that are more compact than the
stars along the traditional branch. The stars on the extended
branch have the same mass as their counterparts on the
traditional branch, but their respective radii differs by up to
1 km leading to twinlike stellar configurations. When a
rapid phase transition is assumed to occur, on the other
hand, the extended branch vanishes, and one is left with
only the traditional branch of stable configurations. In this
case, the appearance of a quark matter in the cores of NSs
almost immediately destabilizes them (aside from a very
short portion on the traditional branch), in agreement with
the results of previous works (see, for example,
Refs. [35,61], and references therein).
As shown recently in Ref. [59], treating the hadron-quark

phase transition as a sharp Maxwell transition leads to
stable compact stars that, remarkably, lie beyond the

maximum-mass peak of a stellar sequence (the extended
branch). This extended branch exists only for the Maxwell
transition, but disappears if the phase transition is treated as
a smooth Gibbs transition. The stars on the extended branch
contain pure quark matter in their cores, in sharp contrast to
the stars on the conventional branch which, at best, contain
only small amounts of quark matter mixed with hadronic
matter. The surface tension is known to play a critical role
when modeling the hadron-quark phase transition in terms
of either a Maxwell or Gibbs transition. If either one of
them has its physical correspondence in the core of a
compact star, the discussion of this paragraph may help to
shed light on the unknown value of the surface tension σHQ
between the confined and deconfined phases [58,92–94].
Possible observable features that may allow one to

distinguish between stars on the conventional branch and
stars on the extended branch are differences in the stellar
radii, which could be as large as around 1 km, and the
nonradial quasinormal modes, such as g-modes. As shown,
for instance, in Refs. [23,98–101], g-modes are only
present in compact stars if the nuclear EoS contains a
sharp (i.e., constant pressure) density discontinuity.
We also calculated the individual tidal deformabilities Λ1

and Λ2 of merging NSs for our hadronic EoSs. The results
are consistent with the observational constraints from the
analysis of GW170817 data. This is very interesting as it
shows that a hadronic EoS which includes all particles of
the baryonic octet plus all charged states of the Δð1232Þ is
in agreement with present gravitational-wave data, as well
as the latest observed data on masses and radii of NSs.
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APPENDIX: DETAILS ON THE TREATMENT
OF THE 2SC+S PHASE

Working in SU(3), we can write the operator AðpÞ of
Eq. (30) in a compact form,

AðpÞ ¼

0
B@

−pþ M̂ þ iμ̂γ4 i
P
A
Δp

Aγ5λAλA

i
P
A
ðΔp

AÞ�γ5λAλA −pþ M̂ − iμ̂γ4

1
CA; ðA1Þ
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where Δp
A ¼ ΔAgðpÞ. This operator is a 72 × 72 matrix in

Dirac, flavor, color and Nambu-Gorkov spaces. However, it
is possible to evaluate the trace in Eq. (30). Note the matrix
of Eq. (A1) is the inverse fermion propagator, where M̂ ¼
diagðMu;Md;MsÞ [102]. Then, rearranging rows and
columns, and using the logarithm trace notation we can
write

Trfln½AðpÞ�g ¼ Tr½lnðMug;drÞ� þ Tr½lnðMur;dgÞ�
þ Tr½lnðMub;srÞ� þ Tr½lnðMur;sbÞ�
þ Tr½lnðMdb;sgÞ� þ Tr½lnðMdg;sbÞ�
þ Tr½lnðMur;dg;sbÞ�: ðA2Þ

In the framework of the 2SCþ s phase, Δ2 ≠ 0 and
Δ5 ¼ Δ7 ¼ 0. Thus, the matricesMf;f0 of Eq. (A2) involv-
ing the quark strange do not have diagonal components and
such quark decouples. Finally, the only matrix structure
involving diquarks in a compact form is given by

Mud ¼
�−pþ M̂ þ iμ̂γ4 iΔp

2 γ
5

iΔp
2 γ

5 −pþ M̂ − iμ̂γ4

�
; ðA3Þ

simplifying the problem to calculate now the determinant
of Mud. By adding the decoupled part due the presence of
the strange quark we obtain

Tr½lnAðpÞ� ¼
X
c

lnðqþ2
sc þM2

scÞ þ
1

2
ln jAcj2;

where

Ac ¼ ½qþuc2 þM2
uc�½q−dc2 þM�

dc
2�

× ð1 − δbcÞΔp2½Δp2 þ 2qþuc:q−dc þ 2MucM�
dc�;

q�fc ¼ ðp0 ∓ i½μfc − θ̄fgðp�
fc

2Þ�; pÞ;
p�
fc ¼ ðp0 ∓ iμfc; pÞ;

Mfc ¼ mf þ σ̄fgðpþ
fc

2Þ;
Δp ¼ Δ̄ g̃;

being

g̃ ¼ g

�½pþ
ur þ p−

dr�2
4

�
:

The potential of Eq. (31) is regularized to avoid divergences
for finite values of the current quark mass. The
regularization procedure can be expressed through the
relation,

Ω ¼ ΩMFA −Ωfree þΩReg
free ; ðA4Þ

which is equivalent to Eq. (31), and where Ωfree is obtained
by setting σ̄ ¼ θ̄ ¼ Δ̄ ¼ 0, and

ΩReg
free ¼

X
f;c

1

24π2

�
ð−5m2

f þ 2μ2fcÞμfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2fc −m2

f

q

þ3m4
f ln

�μfc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2fc −m2

f

q
mf

��
Θðμfc −mfÞ

is the regularized thermodynamic potential of a free
fermion gas.
To compute the auxiliary fields Sf, Vθ and D we use that

∂ ln jAcj2∂k ¼ ∂ ln jA�
cAcj∂k ¼ 2Reð 1

Ac

∂Ac∂k Þ. Thus, for quarks u and d
the auxiliary fields in Eq. (31) associated with the mean-
fields σ̄u and σ̄d can be written as

S̄f ¼ −4
X

c¼r;g;b

Z þ∞

0

dp0

Z þ∞

0

p2dp
π3

Re

�
Bfc

Ac

�
; ðA5Þ

where

Buc ¼Mucgðpþ2
uc Þ½q−2dc þM�2

dc�þgðpþ2
uc Þð1−δbcÞΔp2M�

dc;

Bdc ¼M�
dcg

�ðpþ2
dc Þ½qþ2

uc þM2
uc�þg�ðpþ2

dc Þð1−δbcÞΔp2Muc:

The auxiliary field associated to σ̄s reads

S̄s ¼ −4
X

c¼r;g;b

Z þ∞

0

dp0

Z þ∞

0

p2dp
π3

Re

�
Mscgðpþ2

sc Þ
qþ2
s þM2

sc

�
:

ðA6Þ

For the auxiliary field associated to θ̄u, θ̄d and θ̄s we have

V̄f ¼ −4
X

c¼r;g;b

Z þ∞

0

dp0

Z þ∞

0

p2dp
π3

Re

�
Cfc

Ac

�
; ðA7Þ

where

Cuc ¼ iq0ucgðpþ2
uc Þ½q−2dc þM�2

dc�
þ igðpþ2

uc Þð1 − δbcÞΔp2q−0dc;

Cdc ¼ −iq0dcgðp−2

dcÞ½qþ2
uc þM2

uc�;
− igðp−2

dc Þð1 − δbcÞΔp2qþ0uc; ðA8Þ

and

V̄s ¼ −8
X

c¼r;g;b

Z þ∞

0

dp0

Z þ∞

0

p2dp
π3

Re

�
iq0sgðpþ

s
2Þ

q2s þM2
s

�
;

ðA9Þ
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where q�0fc is the zeroth component of q�fc. Finally, the auxiliary field related with the mean-field Δ̄ is given by

D̄ ¼ −2
X
c¼r;g

Z þ∞

0

dp0

Z þ∞

0

p2dp
π3

Re

�
Dud

Ac

�
; ðA10Þ

where

Dud ¼ 2Δp3g̃þ Δpg̃ð2qþuc:q−dc þ 2MucM�
dcÞ:
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