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The electromagnetic form factors of octet baryons are investigated with the nonlocal chiral effective theory.
The nonlocal interaction generates both the regulator, which makes the loop integral convergent, and the Q2

dependence of form factors at tree level. Both octet and decuplet intermediate states are included in the one-
loop calculation. The momentum dependence of baryon form factors is studied up to 1 GeV2 with the same
number of parameters as for the nucleon form factors. The obtained magnetic moments of all the octet
baryons as well as the radii are in good agreement with the experimental data and/or lattice simulation.
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I. INTRODUCTION

The study of electromagnetic form factors of hadrons is
of crucial importance to understand their substructure. A lot
of theoretical and experimental efforts have been made in
this field. On the one hand, with the upgrade of exper-
imental facilities, the parton distribution functions (PDFs)
from the deep inelastic scattering as well as the form factors
at relatively large momentum transfer from the elastic
scattering can be extracted [1,2]. On the other hand, many
measurements on form factors have been carried out at very
small momentum transfer to get the information of the
nucleon radii as accurate as possible [3,4].
Theoretically, though QCD is the fundamental theory to

describe strong interactions, it is difficult to study hadron
physics using QCD directly. There are many phenomeno-
logical models, such as the cloudy bag model [5], the
constituent quark model [6], the 1/Nc expansion approach
[7], the Nambu-Jona-Lasino (NJL) model [8], the pertur-
bative chiral quark model (PCQM) [9], the extended vector
meson dominance model [10], the SU(3) chiral quark
model [11], the quark-diquark model [12], and so on.
These model calculations are helpful to provide the
physical scenario for the hadron structure.
Besides the phenomenological quark models, there

are two systematic methods in hadron physics. One is
the lattice simulation and the other is an effective field
theory (EFT) of QCD, chiral perturbation theory (ChPT).

Historically, most formulations of ChPT are based on
dimensional or infrared regularization (IR). Alhough
ChPT is a successful approach, for the nucleon electro-
magnetic form factors, it is only valid for Q2 < 0.1 GeV2

[13]. When vector mesons are included, the result is close
to the experiments when Q2 is less than 0.4 GeV2 [14]. An
alternative regularization method, namely finite-range
regularization (FRR) has been proposed. Inspired by quark
models that account for the finite-size of the nucleon as the
source of the pion cloud, effective field theory with FRR
has been widely applied to extrapolate lattice data of vector
meson mass, magnetic moments, magnetic form factors,
strange form factors, charge radii, first moments of GPDs,
nucleon spin, etc., [15–24].
Recently, we proposed a nonlocal chiral effective

Lagrangian which makes it possible to study the hadron
properties at relatively large Q2 [25,26]. The nonlocal
interaction generates both the regulator which makes the
loop integral convergent and the Q2 dependence of form
factors at tree level. The obtained electromagnetic form
factors and strange form factors of the nucleon are very close
to the experimental data [25,26]. This nonlocal chiral
effective theory was also applied to study the parton
distribution functions and Sivers functions of the sea quarks
in nucleons [27,28]. In addition, the nonlocal behavior is
further assumed to be a general property for all the inter-
actions and an example of this assumption is the application
to the lepton anomalous magnetic moments [29].
Since the nonlocal effective theory provides good descrip-

tions of the nucleon form factors up to relatively large
momentum transfer, in this paper, we will extend our study
from nucleon to all the octet baryons. While the nucleon
form factors are precisely determined experimentally, those
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of the other octet baryons are significantly more challenging
to measure and as a result are poorly known from
nature. Compared with the experiments, for the lattice gauge
theory, it is not very difficult to extend the simulation of the
nucleon form factors to the other octet form factors.
Some lattice simulations on octet form factors have been
reported [30–32].
The form factors of octet baryons were also studied in

heavy baryon and relativistic chiral perturbation theory
with different regularization schemes. In Ref. [33], the
magnetic moments and electromagnetic radii of octet
baryons were calculated in relativistic ChPT with infrared
regularization. The electromagnetic form factors up to
0.4 GeV2 were further studied with the inclusion of vector
mesons. The magnetic moments of octet baryons were also
studied in relativistic ChPT with an extendend-on-mass-
shell (EOMS) renormalization scheme, where the inter-
mediate decuplet states were not included [34]. In

Refs. [35,36], the decuplet states were included in the
calculation of octet-baryon form factors with the EOMS
scheme. In particular, vector mesons were included explic-
itly to improve the final results in Ref. [36].
Here, we will apply the nonlocal chiral effective theory

to investigate the electromagnetic form factors of all the
octet baryons up to 1 GeV2 as well as the magnetic
moments and radii. The paper is organized as follows.
In Sec. II, we will introduce the nonlocal chiral Lagrangian
and the expressions for the form factors are written in the
Appendix. Numerical results are presented in Sec. III and
finally, Sec. IV gives a short summary.

II. FORMALISM

The lowest order chiral Lagrangian for baryons, pseu-
doscalar mesons and their interactions can be written as
[25,27,37,38]

L ¼ iTrðB̄γμ=DμBÞ −mBTrðB̄BÞ þ T̄abc
μ ðiγμναDα −mTγ

μνÞTabc
ν þ f2

4
Trð∂μU∂μU†Þ

þDTrðB̄γμγ5fAμ; BgÞ þ FTrðB̄γμγ5½Aμ; B�Þ þ C
f
ϵabcT̄μ;a

deðgμν þ zγμγνÞBce∂νϕbd þH:C; ð1Þ

where D, F, and C are the coupling constants. z is the off-
shell parameter. The chiral covariant derivative Dμ is
defined as DμB ¼ ∂μBþ ½Vμ; B�. The pseudoscalar meson
octet couples to the baryon field via the vector and axial-
vector combinations as

Vμ ¼
1

2
ðζ∂μζ

† þ ζ†∂μζÞ þ
1

2
ieAμðζ†Qcζ þ ζQcζ

†Þ;

Aμ ¼
i
2
ðζ∂μζ

† − ζ†∂μζÞ −
1

2
eAμðζQcζ

† − ζ†QcζÞ; ð2Þ

where

ζ2 ¼ U ¼ ei2ϕ=f; f ¼ 93 MeV: ð3Þ

Qc is the real charge matrix diagð2=3;−1=3;−1=3Þ.
ϕ and B are the matrices of pseudoscalar fields and
octet baryons. Aμ is the photon field. The covariant
derivative Dμ in the decuplet sector is defined as
DνTabc

μ ¼ ∂νTabc
μ þ ðΓν; TμÞabc, where Γν is the chiral

connection defined as ðX;TμÞabc¼ðXÞadTdbc
μ þðXÞbdTadc

μ þ
ðXÞcdTabd

μ . γμνα, γμν are the antisymmetric matrices ex-
pressed as

γμν ¼ 1

2
½γμ; γν� and γμνρ ¼ 1

4
f½γμ; γν�; γρg: ð4Þ

The octet, decuplet, and octet-decuplet transition oper-
ators for magnetic moment are needed in the one-loop

calculations. The anomalous magnetic Lagrangian of octet
baryons is written as

Loct ¼
e

4mB
ðc1TrðB̄σμνfFþ

μν; BgÞ þ c2TrðB̄σμν½Fþ
μν; B�Þ

þ c3TrðB̄σμνBÞTrðFþ
μνÞÞ; ð5Þ

where

F†
μν ¼ −

1

2
ðζ†FμνQcζ þ ζFμνQcζ

†Þ: ð6Þ

The above Lagrangian will contribute to the Pauli form
factor F2 which is defined in Eq. (19). At the lowest
order, the contribution of quark q with unit charge to the
octet magnetic moments can be obtained by replacing the
charge matrix Qc with the corresponding diagonal quark
matrices λq ¼ diagðδqu; δqd; δqsÞ. Let us take the nucleon as
an example. After expansion of the above equation, it is
found that

Fp;u
2 ¼ c1þ c2þ c3; Fp;d

2 ¼ c3; Fp;s
2 ¼ c1− c2þ c3;

Fn;u
2 ¼ c3; Fn;d

2 ¼ c1þ c2þ c3; Fn;s
2 ¼ c1− c2þ c3:

ð7Þ

Comparing with the results of the constituent quark
model where
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Fp;s
2 ¼ 0 and Fn;s

2 ¼ 0; ð8Þ

we get

c3 ¼ c2 − c1: ð9Þ

The decuplet anomalous magnetic moment operator is
expressed as

Ldec ¼ −
ieFT

2

4MT
T̄μ;abcσρλFρλTμ;abc: ð10Þ

The transition magnetic operator is written as

Ltrans ¼ i
e

4mB
μTFμνðϵijkQc;ilB̄jmγ

μγ5Tν;klm

þ ϵijkQc;liT̄μ;klmγνγ5BmjÞ: ð11Þ

The anomalous magnetic moments of baryons can also be
expressed in terms of quark magnetic moments μq. For
example, μp ¼ 4

3
μu − 1

3
μd, μn ¼ 4

3
μd − 1

3
μu, μΔþþ ¼ 3μu.

Using the SU(3) symmetry, μu ¼ −2μd ¼ −2μs, μT and
FT
2 as well as μq can be written in terms of c1 or c2. For

example, μu ¼ 2
3
c1, μT ¼4c1, FΔþþ

2 ¼ μΔþþ − 2 ¼ 2c1 − 2.
The gauge invariant nonlocal Lagrangian can be

obtained using the method in [25,26,39]. For instance,
the local interaction between hyperons and K− meson can
be written as

Llocal
K ¼ Dþ Fffiffiffi

2
p

f
Ξ̄0ðxÞγμγ5ΣþðxÞð∂μ þ ieAμðxÞÞK−ðxÞ:

ð12Þ

The corresponding nonlocal Lagrangian is expressed as

Lnl
K ¼

Z
d4y

Dþ Fffiffiffi
2

p
f

Ξ̄0ðxÞγμγ5ΣþðxÞ
�
∂x;μ þ ie

Z
d4aAμðx − aÞ

�
FðaÞ

× Fðx − yÞ exp
�
ie
Z

y

x
dzν

Z
d4aAνðz − aÞFðaÞ

�
K−ðyÞ; ð13Þ

where FðxÞ is the correlation function. From the Lagran-
gian, one can see that the meson and photon fields are
displaced, while the baryon fields are still at the same point.
In principle, we can also displace the baryon fields. As a
result, the free baryon Lagrangian has to be nonlocal in
order to make the total Lagrangian gauge invariant. There-
fore the baryon propagator and quantization will be
modified. The general version of this nonlocal chiral
Lagrangian is much more complicated. In this paper, we
do not change the free Lagrangian and only the interacting
Lagrangian is nonlocal. To guarantee gauge invariance, the
gauge link exp ðie R y

x dzν
R
d4aAνðz − aÞFðaÞÞK−ðyÞ is

introduced to the above Lagrangian. The photon can be
emitted or annihilated from the minimal substitution term
or gauge link term. The correlation function is associated
with each photon field or meson field. With the correlation
function, the regulator and form factors at tree level can be
generated automatically. In the numerical calculation, the
correlation function is chosen to be a dipole form in
momentum space.
The nonlocal baryon-photon interaction can also be

obtained in the same procedure. For example, the local
interaction between Σþ and the photon is written as

Llocal
EM ¼ −eΣ̄þðxÞγμΣþðxÞAμðxÞ

þ ðc1 þ 3c2Þe
12mΣ

Σ̄þðxÞσμνΣðxÞþFμνðxÞ: ð14Þ

The corresponding nonlocal Lagrangian is expressed as

Lnl
EM ¼ −e

Z
d4aΣ̄þðxÞγμΣðxÞþAμðx − aÞF1ðaÞ

þ ðc1 þ 3c2Þe
12mΣ

×
Z

d4aΣ̄þðxÞσμνΣðxÞþFμνðx − aÞF2ðaÞ; ð15Þ

where F1ðaÞ and F2ðaÞ are the correlation functions for the
nonlocal electric and magnetic interactions.
The momentum dependence of the form factors at tree

level can be easily obtained with the Fourier transformation
of the correlation function. As in our previous work
[25,26], the correlation function is chosen such that the
charge and magnetic form factors at tree level have the
same momentum dependence as the baryon-meson vertex,
i.e., GB;tree

M ðqÞ ¼ μBG
B;tree
E ðqÞ ¼ μBF̃ðqÞ, where F̃ðqÞ is the

Fourier transformation of the correlation function FðaÞ.
Therefore, the corresponding functions F̃1ðqÞ and F̃2ðqÞ of
Σþ, for example, are expressed as

F̃Σþ
1 ðqÞ ¼ F̃ðqÞ 12mΣ

2 þ ð3þ c1 þ 3c2ÞQ2

3ð4mΣ
2 þQ2Þ ;

F̃Σþ
2 ðqÞ ¼ F̃ðqÞ 4ðc1 þ 3c2ÞmΣ

2

3ð4m2
Σ þQ2Þ ; ð16Þ
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where Q2 ¼ −q2 is the momentum transfer. From Eq. (13),
two kinds of couplings between hadrons and photons can
be obtained. One is the normal coupling, expressed as

Lnorm ¼ ie
Z

d4y
Dþ Fffiffiffi

2
p

f
Ξ̄0ðxÞγμγ5ΣþðxÞ

×
Z

d4aAμðx − aÞFðaÞFðx − yÞK−ðyÞ: ð17Þ

This interaction is similar to the traditional local
Lagrangian except for the correlation function. The other
is the additional interaction obtained by the expansion of
the gauge link, expressed as

Ladd ¼ ie
Z

d4y
Dþ Fffiffiffi

2
p

f
Ξ̄0ðxÞγμγ5ΣþðxÞ∂x;μ

�
Fðx − yÞ

×
Z

y

x
dzν

Z
d4aAνðz − aÞFðaÞK−ðyÞ

�
: ð18Þ

The additional interaction guarantees the charge
conservation.
The Dirac and Pauli form factors of octet baryons are

defined as

hBðp0ÞjJμjBðpÞi

¼ ūðp0Þ
�
γμFB

1 ðQ2Þ þ iσμνqν
2mB

FB
2 ðQ2Þ

�
uðpÞ; ð19Þ

where q ¼ p0 − p. The electromagnetic form factors are
defined as the combinations of the above form factors as

GB
EðQ2Þ ¼ FB

1 ðQ2Þ − Q2

4m2
B
FB
2 ðQ2Þ;

GB
MðQ2Þ ¼ FB

1 ðQ2Þ þ FB
2 ðQ2Þ: ð20Þ

With the electromagnetic form factors, the magnetic and
electric (charge) radii can be obtained. The magnetic radii
of octet baryons are defined as

hr2MiB ¼ −6
GB

Mð0Þ
dGB

MðQ2Þ
dQ2

����
Q2¼0

: ð21Þ

The electric radii of charged and neutral baryons are
defined as

hr2EiB ¼ −6
GB

Eð0Þ
dGB

EðQ2Þ
dQ2

����
Q2¼0

and

hr2EiB ¼ −6
dGB

EðQ2Þ
dQ2

����
Q2¼0

; ð22Þ

respectively.

According to the Lagrangian, the one-loop Feynman
diagrams which contribute to the octet electromagnetic
form factors are shown in Fig. 1. From the Lagrangian, we
can get the matrix element of Eq. (19). The π meson loops
have the dominant contributions, while the contributions
from K meson loops are much smaller due to the large K
meson mass. The contributions from η and η0 loops are
even smaller which are neglected in our calculation. The
inclusion of these mesons does not affect the main con-
clusion. The expressions for the intermediate octet and
decuplet baryons are written in the Appendix. In the next
section, we will discuss the numerical results.

III. NUMERICAL RESULTS

The coupling constants between octet baryons and
mesons are determined by the two parameters D and F.
In the numerical calculations, the parameters are chosen as
D ¼ 0.76 and F ¼ 0.50 (gA ¼ Dþ F ¼ 1.26) [40]. The
coupling constant C is chosen to be 2Dwhich is the same as
in Refs. [40,41]. The off-shell parameter z is −1 [42]. The
physical masses are taken for mesons, octet, and decuplet
baryons. The covariant regulator is chosen to be the dipole
form [25–27]

F̃ðkÞ ¼ Λ4

ðk2 −m2
j − Λ2Þ2 ; ð23Þ

where mj is the meson mass for the baryon-meson
interaction and it is zero for the hadron-photon interaction.
It was found that when Λ was around 0.90 GeV, the
obtained nucleon form factors were very close to the
experimental data. Therefore, all of the above parameters
are predetermined. There are only two free parameters
which are the low-energy constants (LECs) c1 and c2. In
our previous calculation for the nucleon form factors, they
were fitted to the experimental nucleon magnetic moments
[25]. Here, c1 and c2 are determined to be 1.288 and 0.420,
which give the minimal χ2 of the octet magnetic moments.
In Table I, the tree, loop, and total contributions to the

baryon magnetic moments obtained from the nonlocal
chiral effective theory are listed. The wave-function
renormalization constant Z is included in the calculation,
i.e., the tree-level contribution has been multiplied by Z.
The error bar in our calculation is determined by varying Λ
from 0.8 to 1.0 GeV. The results from two lattice simu-
lations [30,31], ChPTwith IR [33] and EOMS scheme [36],
NJL and PCQMmodels [43,44] as well as the experimental
data are also listed for comparison. From the table, one can
see that all the magnetic moments of octet baryons are
reasonably reproduced. The largest deviation from the
experiments is for Ξs, where the calculated central values
of magnetic moments of μΞ0 and μΞ− are about 10%
larger than experimental ones. For the other baryons,
the deviation from the experiments is less than 5%.
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Considering the error bar, the calculated magnetic moments
of octet baryons are in very good agreement with the
experimental values. It is interesting that all the tree and
loop contributions have the same signs except for Ξ−,
where the loop diagrams give the opposite contribution to
the tree diagram. The data from lattice simulations are
somewhat smaller which is partially due to the large pion
mass and/or the neglecting of the disconnected contribu-
tion. The results at order of Oðp3Þ in ChPT with IR are
listed for comparison, where the calculated moments of
most baryons are comparable with the experimental data.
The magnetic moment of Ξ− is about 40%–50% larger
which could be decreased by the inclusion of intermediate
decuplet states. At order of Oðp4Þ, with the additional five

low-energy constants, the seven experimental magnetic
moments can be exactly reproduced [33]. For the ChPT
with EOMS scheme, the results with the inclusion of
intermediate decuplet states and vector mesons are listed.
It was found that the inclusion of intermediate decuplet
states improves the results, especially for Ξ− and makes the
results at Oðp3Þ as good as those at Oðp4Þ [36]. Our
calculation in nonlocal EFT confirms that the results at one-
loop level with the inclusion of decuplet states are good
enough to reproduce the experimental values.
The magnetic form factors of charged octet baryons

versus momentum transfer Q2 are plotted in Fig. 2. The
solid, dashed, dotted, and dash-dotted lines are for proton,
Σþ, Σ−, and Ξ−, respectively. The magnetic form factor of

TABLE I. The tree, loop and total contributions to the octet magnetic moments μB (in units of the nucleon magneton μN). The results
from two lattice simulations, ChPTwith IR and EOMS scheme, NJL and PCQMmodels as well as the experimental data are also listed.

Tree Loop Total Lattice [45] Lattice [31] ChPT[33] ChPT[36] NJL [43] PCQM [44] Experimental [46]

μp 1.850 0.795 2.644� 0.159 2.4(2) 2.3(3) 2.61 2.79 2.78 2.735� 0.121 2.793
μn −0.859 −1.126 −1.984� 0.216 −1.59ð17Þ −1.45ð17Þ −1.69 −1.913 −1.81 −1.956� 0.103 −1.913
μΣþ 1.850 0.572 2.421� 0.147 2.27(16) 2.12(18) 2.53 2.1(4) 2.62 2.537� 0.201 2.458� 0.010
μΣ0 0.429 0.155 0.584� 0.077 … … 0.76 0.5(2) … 0.838� 0.091 …
μΣ− −0.991 −0.262 −1.253� 0.008 −0.88ð8Þ −0.85ð10Þ −1.00 −1.1ð1Þ −1.62 −0.861� 0.040 −1.160� 0.025
μΛ −0.429 −0.165 −0.594� 0.057 … … −0.76 −0.5ð2Þ … −0.867� 0.074 −0.613� 0.004
μΞ0 −0.859 −0.521 −1.380� 0.169 −1.32ð4Þ −1.07ð7Þ −1.51 −1.0ð4Þ −1.14 −1.690� 0.142 −1.250� 0.014
μΞ− −0.991 0.266 −0.725� 0.077 −0.71ð3Þ −0.57ð5Þ −0.93 −0.7ð1Þ −0.67 −0.840� 0.087 −0.651� 0.080

(a) (b) (i) (j)

(c) (d) (k) (l)

(e) (f) (m) (n)

(g) (h) (o) (p)

FIG. 1. One-loop Feynman diagrams for the octet electromagnetic form factors. The solid, double-solid, dashed, and wave lines are for
the octet baryons, decuplet baryons, pseudoscalar mesons, and photons, respectively. The rectangle and black dot represent magnetic
and additional interacting vertex.
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the proton with Λ varying from 0.8 to 1 GeV is also plotted
at the corner of the figure. Considering the error bar, it is
clear the proton magnetic form factor is comparable with
the experimental data up to 1 GeV2. This is the advantage
of the nonlocal chiral effective theory. The correlation
function in the nonlocal Lagrangian makes the loop integral
convergent. In the mean time, it provides the momentum
dependence of the form factors at tree level, and as a result,
the total form factors can be close to the experimental data
up to relatively large Q2. The normalized magnetic form
factors of the nucleon were studied in the chiral perturba-
tion theory including ρ and ω mesons as well as the Δ
resonance [47]. Two of the undetermined low-energy
coupling constants were adjusted to the nucleon magnetic
moments while the remaining six LECs were fitted simul-
taneously to the experimental data up toQ2 ¼ 0.4 GeV2. It
was found that the results incorporating vector mesons
agree well with experimental data in a momentum transfer
region 0 ≤ Q2 ≤ 0.4 GeV2. The other form factors of
charged baryons have a similar momentum dependence
as the proton. Among them, Ξ− decreases a little slower
with increasing Q2. The magnetic radii are determined by
the slopes of the form factors at zero momentum transfer
which will be discussed later.
The normalized magnetic form factors for the charge

neutral baryons are plotted in Fig. 3. The solid, dashed,
dotted, and dash-dotted lines are for neutron, Σ0, Λ, and Ξ0,
respectively. The band in the small figure is for the
magnetic form factor of the neutron with Λ varying from
0.8 to 1 GeV. The magnetic from factors of Σ0, Λ, and Ξ0

are close to each other. The normalized neutron magnetic
form factor is a little smaller than the experimental data and
it drops faster than the other three neutral baryons. Taking
the error bar into account, the calculated neutron magnetic
form factor is still close to the experiments. The smaller
normalized magnetic form factor of the neutron is partially
because of its larger calculated moment. All of the form
factors of octet baryons have a dipolelike momentum
dependence.
The tree, loop, and total contributions to the magnetic

radii of octet baryons are listed in Table II. The data

FIG. 3. The normalized magnetic form factors of neutral octet
baryons GB

M=μB versus momentum transfer Q2. The solid,
dashed, dotted, and dash-dotted lines are for neutron, Σ0, Λ,
and Ξ0, respectively. The magnetic form factor of the neutron
with Λ varying from 0.8 to 1 GeV is also plotted at the corner of
the figure. The experimental form factor of the neutron is from
Refs. [51,53,56–63].

TABLE II. The tree, loop, and total contributions to the octet magnetic radii hr2MiB (in units of fm2). The results from two lattice
simulations, ChPT with IR and EOMS scheme, NJL and PCQM models as well as the experimental data are also listed.

Tree Loop Total Lattice [30] Lattice [31] ChPT[33] ChPT[36] NJL [43] PCQM [44] Experimental [46]

hr2Mip 0.403 0.382 0.785� 0.132 0.470(48) 0.71(8) 0.699 0.9(2) 0.76 0.909� 0.084 0.72� 0.04
hr2Min 0.250 0.596 0.845� 0.148 0.478(50) 0.86(9) 0.790 0.8(2) 0.83 0.922� 0.079 0.75� 0.02
hr2MiΣþ 0.441 0.324 0.765� 0.131 0.466(42) 0.66(5) 0.80� 0.05 1.2(2) 0.77 0.885� 0.094 � � �
hr2MiΣ0 0.424 0.194 0.618� 0.124 0.432(38) … 0.45� 0.08 1.1(2) … 0.851� 0.102 …

hr2MiΣ− 0.456 0.445 0.901� 0.119 0.483(49) 1.05(9) 1.20� 0.13 1.2(2) 0.92 0.951� 0.083 …

hr2MiΛ 0.417 0.203 0.620� 0.126 0.347(24) … 0.48� 0.09 0.6(2) … 0.852� 0.103 …

hr2MiΞ0 0.359 0.298 0.657� 0.128 0.384(22) 0.53(5) 0.61� 0.12 0.7(3) 0.44 0.871� 0.099 …

hr2MiΞ− 0.789 −0.255 0.534� 0.135 0.336(18) 0.44(5) 0.50� 0.16 0.8(1) 0.26 0.840� 0.109 …

FIG. 2. The normalized magnetic form factors of charged octet
baryonsGB

M=μB versus momentum transferQ2. The solid, dashed,
dotted, and dash-dotted lines are for proton, Σþ, Σ−, and Ξ−,
respectively. The magnetic form factor of proton with Λ varying
from 0.8 to 1 GeV is also plotted at the corner of the figure. The
experimental form factor of the proton is from Refs. [48–55].
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from lattice simulation, chiral perturbation theory, and
phenomenological quark models are also listed for com-
parison. Although our central values for protons and
neutrons are a little larger than experiments, the results
are still reasonable. The magnetic radii of octet baryons
vary from 0.5 fm2 to 0.9 fm2, but show no simple

dependence on baryon/quark mass. Ξ− has the largest
contribution at tree level. Because of the opposite con-
tribution from the loop diagrams, its total radius is the
smallest one. The amazing thing is although the values
from different methods are quite different, the order of the
values from the largest to smallest is almost the same. For
example, Σ− and Ξ− have the largest and smallest magnetic
radii, respectively. The neutron magnetic radius is the
second largest one. Our results also show the tree and loop
contributions are strongly baryon dependent. The loop
contribution to hr2MiΣ0 is less than one half of the tree
contribution. However, for neutron, the loop contribution is
twice as big as the tree contribution.
We now discuss the electric form factors. Similar as

for magnetic form factors, the bands are also shown for
nucleon electric form factors with 0.8 GeV ≤ Λ ≤ 1 GeV.
In Fig. 4, we plot the electric form factors of the charged
baryons. Because of the additional interaction which makes
the nonlocal Lagrangian locally gauge invariant, the elec-
tric form factors start from their charge at Q2 ¼ 0. The
proton charge form factor is close to the experimental data.
The absolute values of the electric form factors of charged
baryons have a similar momentum dependence. This could
be examined by the further experiments and/or accurate
lattice simulation.
The electric form factors for the neutral baryons are

plotted in Fig. 5. Again due to the charge conservation, the
form factors start from 0 at zero momentum transfer. The
calculated electric form factor of the neutron is consistent
with the experimental data. The form factors of the other
neutral baryons are very small. There is no tree level
contribution to the electric form factors of neutral baryons
and all the contributions are from the loop diagrams.
Among them, the neutron has the largest contribution from
π-loop diagrams. The corresponding π-loop diagrams for
the other neutral baryons are fairy small due to the small
coupling constants.
The charge radii of octet baryons are listed in Table III.

Our results are comparable with the experimental data in
PDG for nucleon and Σ−. A small proton charge radius
hrEip¼0.831�0.007�0.012, i.e., hr2Eip¼0.691�0.032

FIG. 4. Same as Fig. 2 but for electric form factors. The
experimental form factor of the proton is from Refs. [48–
50,52,54,55,64–66].

FIG. 5. Same as Fig. 3 but for electric form factors. The
experimental form factor of the neutron is from
Refs. [56,58,62,67–73].

TABLE III. The tree, loop, and total contributions to the octet charge radii hr2EiB (in units of fm2). The results from two lattice
simulations, ChPT with IR and EOMS scheme, NJL and PCQM models as well as the experimental data are also listed.

Tree Loop Total Lattice[24] Lattice[32] ChPT[33] ChPT[36] NJL[43] PCQM [44] Experimental [46]

hr2Eip 0.577 0.152 0.729� 0.112 0.685(66) 0.76(10) 0.717 0.878 0.76 0.767� 0.113 0.707� 0.0007
hr2Ein 0 −0.146 −0.146� 0.018 −0.158ð33Þ … −0.113 0.03(7) −0.14 −0.014� 0.001 −0.116� 0.0022
hr2EiΣþ 0.577 0.142 0.719� 0.116 0.749(72) 0.61(8) 0.60� 0.02 0.99(3) 0.92 0.781� 0.108 � � �
hr2EiΣ0 0 0.010 0.010� 0.004 … … −0.03� 0.01 0.10(2) … 0 …

hr2EiΣ− 0.577 0.123 0.700� 0.124 0.657(58) 0.45(3) 0.67� 0.03 0.780 0.74 0.781� 0.063 0.61� 0.16
hr2EiΛ 0 −0.015 −0.015� 0.004 0.010(9) … 0.11� 0.02 0.18(1) … 0 …

hr2EiΞ0 0 −0.015 −0.015� 0.007 0.082(29) … 0.13� 0.03 0.36(2) 0.24 0.014� 0.008 …

hr2EiΞ− 0.577 0.025 0.601� 0.127 0.502(47) 0.37(2) 0.49� 0.05 0.61(1) 0.58 0.767� 0.113 …
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was reported recently [3] which is also close to our value
hr2Eip ¼ 0.729� 0.112. For the neutral baryons, the loop
contribution is very small except that of the neutron. For
the charged baryons, the tree level contributions are the
same which are also dominant for all of them. The loop
contribution has the same order of magnitude except for
Ξ−, where the loop contribution is small. Different from the
magnetic radii, the total charge radii vary around 0.6 and
0.7 fm2 for the charged baryons. Although the charge radii
of charged baryons from different models are comparable,
the predictions for neutral baryons (both sign and size) are
quite different.

IV. SUMMARY

We applied the nonlocal chiral effective theory to study
the electromagnetic form factors of octet baryons. The
correlation function in the Lagrangian makes the loop
integral convergent. It also provides the momentum
dependence of the form factors at tree level. The additional
interaction generated from the expansion of the gauge link
guarantees the Lagrangian is locally gauge invariant. This
nonlocal Lagrangian makes it possible to study the physical
quantities at relatively large momentum transfer in the
framework of chiral effective theory. In the numerical
calculation, all the parameters are predetermined except
the two low-energy constants c1 an c2. They are fitted to
give the minimum of χ2 of the octet magnetic moments.
When extending the previous study of form factors of
nucleons to all the octet baryons, we do not add any new
parameter. The magnetic moments are well reproduced.
The deviation from the experiments is less than 5% except
Ξ0 and Ξ−, where the deviation of the central value is about
10%. For the radii, most experiments focus on the nucleon
and there is few data for the other baryons. Considering the
error bar, all our results on magnetic moments and
electromagnetic radii are in very good agreement with
the current experimental data. The calculated nucleon form
factors are close to the experiments up to Q2 ¼ 1 GeV2.
For the other octet baryons, since the method is the same,
we expect this nonlocal Lagrangian can also give good
descriptions. The difference between our results and those

of other theoretical methods could be examined by future
experiments and more accurate lattice simulations.
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APPENDIX: LOOP EXPRESSIONS

In this section, we show the expressions of loop integrals
for the intermediate octet and decuplet baryons. Let us take
the Σ hyperons as an example.
The contributions of Fig. 1(a) are written as

Γμ
aðΣ−Þ ¼ F2

f2
Iμ;Σπa þ D2

3f2
Iμ;Λπa þ ðD − FÞ2

2f2
Iμ;NK
a ; ðA1Þ

Γμ
aðΣ0Þ ¼ ðD − FÞ2

4f2
Iμ;NK
a −

ðDþ FÞ2
4f2

Iμ;ΞKa ; ðA2Þ

Γμ
aðΣþÞ ¼ −

F2

f2
Iμ;Σπa −

D2

3f2
Iμ;Λπa −

ðDþ FÞ2
2f2

Iμ;ΞKa ; ðA3Þ

where the integral Iμ;BMa is expressed as

Iμ;BMa ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðqþ kÞF̃ðkÞ
DMðkþ qÞ

−ð2kþ qÞμ
DMðkÞ

× ð=kþ =qÞγ5
1

=p − =k −mB
=kγ5uðpÞ: ðA4Þ

DMðkÞ is defined as

DMðkÞ ¼ k2 −m2
M þ iϵ: ðA5Þ

mB and mM are the masses of the intermediate B baryon
and M meson.
The contributions of Fig. 1(b) are expressed as

Γμ
bðΣ−Þ ¼ Fðc1DQ2 − Fðð−2c1 þ 3c2 þ 3ÞQ2 þ 12m2

ΣÞÞ
3f2ð4m2

Σ þQ2Þ Iμ;Σπb −
c1DQ2ðD − 3FÞ
9f2ð4m2

Λ þQ2Þ I
μ;Λπ
b

−
c1Q2ðD − FÞ2
3f2ð4m2

N þQ2Þ I
μ;NK
b −

ðDþ FÞ2ðð−c1 þ 3c2 þ 3ÞQ2 þ 12m2
ΞÞ

6f2ð4m2
Ξ þQ2Þ Iμ;ΞKb ; ðA6Þ

Γμ
bðΣ0Þ ¼ 2c1F2Q2

3f2ð4m2
Σ þQ2Þ I

μ;Σπ
b −

c1D2Q2

9f2ð4m2
Λ þQ2Þ I

μ;Λπ
b þ ðD − FÞ2ðð−c1 þ 3c2 þ 3ÞQ2 þ 12m2

NÞ
12f2ð4m2

N þQ2Þ Iμ;NK
b

−
ðDþ FÞ2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2

ΞÞ
12f2ð4m2

Ξ þQ2Þ Iμ;ΞKb ; ðA7Þ
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Γμ
bðΣþÞ ¼ Fðc1ð−DÞQ2 þ ð2c1 þ 3c2 þ 3ÞFQ2 þ 12Fm2

ΣÞ
3f2ð4m2

Σ þQ2Þ Iμ;Σπb −
c1DQ2ðDþ 3FÞ
9f2ð4m2

Λ þQ2Þ I
μ;Λπ
b

þ ðD − FÞ2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2
NÞ

6f2ð4m2
N þQ2Þ Iμ;NK

b −
c1Q2ðDþ FÞ2
3f2ð4m2

Ξ þQ2Þ I
μ;ΞK
b ; ðA8Þ

where the integral Iμ;BMb is written as

Iμ;BMb ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

=kγ5
1

p0 − =k −mB
γμ

1

=p − =k −mB
=kγ5uðpÞ: ðA9Þ

Figure 1(c) is similar to Fig. 1(b) except for the magnetic
interaction. The contributions of this diagram are written as

Γμ
cðΣ−Þ ¼ 2FmΣðc1ðDþ 2FÞ − 3c2FÞ

3f2ð4m2
Σ þQ2Þ Iμ;Σπc

−
2c1DðD − 3FÞmΛ

9f2ð4m2
Λ þQ2Þ Iμ;Λπc

−
2c1ðD − FÞ2mN

3f2ð4m2
N þQ2Þ I

μ;NK
c

þ ðc1 − 3c2ÞðDþ FÞ2mΞ

3f2ð4m2
Ξ þQ2Þ Iμ;ΞKc ; ðA10Þ

Γμ
cðΣ0Þ ¼ 4c1F2mΣ

3f2ð4m2
Σ þQ2Þ I

μ;Σπ
c −

2c1D2mΛ

9f2ð4m2
Λ þQ2Þ I

μ;Λπ
c

−
ðc1 − 3c2ÞðD − FÞ2mN

6f2ð4m2
N þQ2Þ Iμ;NK

c

−
ðc1 þ 3c2ÞðDþ FÞ2mΞ

6f2ð4m2
Ξ þQ2Þ Iμ;ΞKc ; ðA11Þ

Γμ
cðΣþÞ ¼ 2FmΣðc1ð−DÞ þ 2c1F þ 3c2FÞ

3f2ð4m2
Σ þQ2Þ Iμ;Σπc

−
2c1DðDþ 3FÞmΛ

9f2ð4m2
Λ þQ2Þ Iμ;Λπc

þ ðc1 þ 3c2ÞðD − FÞ2mN

3f2ð4m2
N þQ2Þ Iμ;NK

c

−
2c1ðDþ FÞ2mΞ

3f2ð4m2
Ξ þQ2Þ I

μ;ΞK
c ; ðA12Þ

where Iμ;BMc is expressed as

Iμ;BMc ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

=kγ5
1

=p − =k −mB
iσμνqν

×
1

=p − =k −mB
=kγ5uðpÞ: ðA13Þ

Figures 1(d) and 1(e) are the Kroll-Ruderman diagrams.
The contributions of these two diagrams are written as

Γμ
dþeðΣ−Þ ¼ F2

f2
Iμ;Σπdþe þ D2

3f2
Iμ;Λπdþe þ ðD − FÞ2

2f2
Iμ;NK
dþe ;

ðA14Þ

Γμ
dþeðΣ0Þ ¼ ðD − FÞ2

4f2
Iμ;NK
dþe −

ðDþ FÞ2
4f2

Iμ;ΞKdþe ; ðA15Þ

Γμ
dþeðΣþÞ ¼ −

F2

f2
Iμ;Σπdþe −

D2

3f2
Iμ;Λπdþe −

ðDþ FÞ2
2f2

Iμ;ΞKdþe ;

ðA16Þ

where

Iμ;BMdþe ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

�
=kγ5

1

=p0 − =k −mB
γμγ5

þ γμγ5
1

=p − =k −mB
=kγ5

�
uðpÞ: ðA17Þ

Figures 1(f) and 1(g) are the additional diagrams which
are generated from the expansion of the gauge link terms.
The contributions of these two diagrams for intermediate
octet hyperons are expressed as

Γμ
fþgðΣ−Þ ¼ F2

f2
Iμ;Σπfþg þ

D2

3f2
Iμ;Λπfþg þ ðD − FÞ2

2f2
Iμ;NK
fþg ;

ðA18Þ

Γμ
fþgðΣ0Þ ¼ ðD − FÞ2

4f2
Iμ;NK
fþg −

ðDþ FÞ2
4f2

Iμ;ΞKfþg ; ðA19Þ

Γμ
fþgðΣþÞ ¼ −

F2

f2
Iμ;Σπfþg −

D2

3f2
Iμ;Λπfþg −

ðDþ FÞ2
2f2

Iμ;ΞKfþg ;

ðA20Þ

where
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Iμ;BMfþg ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ
DMðkÞ

�ð2k − qÞμ
2kq − q2

½F̃ðk − qÞ − F̃ðkÞ�=kγ5
1

=p0 − =k −mB
ð−=kþ =qÞγ5

þ ð2kþ qÞμ
2kqþ q2

½F̃ðkþ qÞ − F̃ðkÞ�ð=kþ =qÞγ5
1

=p − =k −mB
=kγ5

�
uðpÞ: ðA21Þ

Now we show the expressions of one-loop integrals for
decuplet intermediate states. The contribution for Fig. 1(h)
can be written as

Γμ
hðΣ−Þ ¼ C2

12f2
Iμ;Σ

�π
h þ C2

6f2
Iμ;ΔKh ; ðA22Þ

Γμ
hðΣ0Þ ¼ −

C2

12f2
Iμ;Σ

�π
h þ C2

3f2
Iμ;ΔKh ; ðA23Þ

Γμ
hðΣþÞ ¼ −

C2

12f2
Iμ;Σ

�π
h −

C2

6f2
Iμ;Ξ

�π
h þ C2

2f2
Iμ;ΔKh ; ðA24Þ

where the integral Iμ;TMh is expressed as

Iμ;TMh ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðqþ kÞF̃ðkÞ
DMðkÞ

2ðkþ qÞμ
DMðqþ kÞ

ðA25Þ

× ððkþ qÞσ þ zð=kþ =qÞγσÞ 1

=p − =k −mT

× Sσρðp − kÞð−kρ − zγρ=kÞuðpÞ: ðA26Þ

mT is the mass of the decuplet intermediate state and SσρðpÞ
is expressed as

SσρðpÞ ¼ −gσρ þ
γσγρ
3

þ pσpρ

3mT
2
þ γσpρ − γρpσ

3mT
: ðA27Þ

The contribution for Fig. 1(i) is written as

Γμ
i ðΣ−Þ ¼ −

C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2
Σ� Þ

36f2ð4m2
Σ� þQ2Þ Iμ;Σ

�π
i

−
C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2

ΔÞ
6f2ð4m2

Δ þQ2Þ Iμ;ΔKi

−
C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2

Ξ� Þ
18f2ð4m2

Ξ� þQ2Þ Iμ;Ξ
�K

i ;

ðA28Þ

Γμ
i ðΣ0Þ ¼ C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2

ΔÞ
9f2ð4m2

Δ þQ2Þ Iμ;ΔKi

−
C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2

Ξ�Þ
36f2ð4m2

Ξ� þQ2Þ Iμ;Ξ
�K

i ;

ðA29Þ

Γμ
i ðΣþÞ ¼ C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2

Σ�Þ
36f2ð4m2

Σ� þQ2Þ Iμ;Σ
�π

i

þ 7C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2
ΔÞ

18f2ð4m2
Δ þQ2Þ Iμ;ΔKi ;

ðA30Þ

where the integral Iμ;TMi is written as

Iμ;TMi ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

ðkσ þ z=kγσÞ ðA31Þ

×
1

=p0 − =k −mT
Sσαðp0 − kÞγαβμ 1

=p − =k −mT

× Sβρðp − kÞðkρ þ zγρ=kÞuðpÞ: ðA32Þ

The contribution for Fig. 1(j) is written as

Γμ
j ðΣ−Þ ¼ ðc1 þ 3c2ÞC2mΣ�

18f2ð4m2
Σ� þQ2Þ I

μ;Σ�π
j þ ðc1 þ 3c2ÞC2mΔ

3f2ð4m2
Δ þQ2Þ I

μ;ΔK
j

þ ðc1 þ 3c2ÞC2mΞ�

9f2ð4m2
Ξ� þQ2Þ I

μ;Ξ�K
j ; ðA33Þ

Γμ
j ðΣ0Þ ¼ −

2ðc1 þ 3c2ÞC2mΔ

9f2ð4m2
Δ þQ2Þ Iμ;ΔKj

þ ðc1 þ 3c2ÞC2mΞ�

18f2ð4m2
Ξ� þQ2Þ I

μ;Ξ�K
j ; ðA34Þ

Γμ
j ðΣþÞ ¼ −

ðc1 þ 3c2ÞC2mΣ�

18f2ð4m2
Σ� þQ2Þ I

μ;Σ�π
j

−
7ðc1 þ 3c2ÞC2mΔ

9f2ð4m2
Δ þQ2Þ Iμ;ΔKj ; ðA35Þ

where the integral Iμ;TMj is expressed as

Iμ;TMj ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

ðkσ þ z=kγσÞ ðA36Þ

×
1

=p0 − =k −mT
Sσνðp0 − kÞiσμλqλ

1

=p − =k −mT

× Sνρðp − kÞðkρ þ zγρ=kÞuðpÞ: ðA37Þ

The contribution for the intermediate octet-decuplet tran-
sition diagrams Figs. 1(k) and 1(l) is expressed as
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Γμ
kþlðΣ−Þ ¼ −

c1CF
12f2mΣ

Iμ;Σ
�Σπ

kþl þ c1CD
12f2mΛ

Iμ;Σ
�Λπ

kþl þ c1CðD − FÞ
6f2mN

Iμ;ΔNK
kþl ; ðA38Þ

Γμ
kþlðΣ0Þ ¼ −

c1CF
6f2mΣ

Iμ;Σ
�Σπ

kþl −
c1CðDþ FÞ
12f2mΞ

Iμ;Ξ
�ΞK

kþl ; ðA39Þ

Γμ
kþlðΣþÞ ¼ −

c1CF
4f2mΣ

Iμ;Σ
�Σπ

kþl −
c1CD

12f2mΛ
Iμ;Σ

�Λπ
kþl −

c1CðD − FÞ
6f2mN

Iμ;ΔNK
kþl −

c1CðDþ FÞ
6f2mΞ

Iμ;Ξ
�ΞK

kþl ; ðA40Þ

where the integral Iμ;TBMkþl is written as

Iμ;TBMkþl ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

�
=kγ5

1

=p0 − =k −mB
ð−=qÞγ5

1

=p − =k −mT
Sμρðp − kÞðkρ þ zγρ=kÞ

þ =kγ5
1

=p0 − =k −mB
γμγ5qν

1

=p − =k −mT
Sνρðp − kÞðkρ þ zγρ=kÞ

þ ðkν þ z=kγνÞ
1

=p0 − =k −mT
Sνρðp0 − kÞð−qρÞγμγ5

1

=p − =k −mB
=kγ5

þ ðkν þ z=kγνÞ
1

=p0 − =k −mT
Sνμðp0 − kÞ=qγ5

1

=p − =k −mB
=kγ5

�
uðpÞ: ðA41Þ

The contribution for the Kroll-Ruderman diagrams Figs. 1(m) and 1(n) is written as

Γμ
mþnðΣ−Þ ¼ C2

12f2
Iμ;Σ

�π
mþn þ C2

6f2
Iμ;ΔKmþn ; ðA42Þ

Γμ
mþnðΣ0Þ ¼ C2

3f2
Iμ;ΔKmþn −

C2

12f2
Iμ;Σ

�K
mþn ; ðA43Þ

Γμ
mþnðΣþÞ ¼ −

C2

12f2
Iμ;Σ

�π
mþn þ C2

2f2
Iμ;ΔKmþn −

C2

6f2
Iμ;Ξ

�K
mþn ; ðA44Þ

where the integral Iμ;TMmþn is written as

Iμ;TMmþn ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

�
ðkσ þ z=kγσÞ

1

=p0 − =k −mT
Sσρðp0 − kÞðgρμ þ zγργμÞ

þ ðgμσ þ zγμγσÞ
1

=p − =k −mT
Sσρðp − kÞðkρ þ zγρ=kÞ

�
uðpÞ: ðA45Þ

The contribution for the additional diagrams with intermediate decuplet states Figs. 1(o) and 1(p) is expressed as

Γμ
oþpðΣ−Þ ¼ C2

12f2
Iμ;Σ

�π
oþp þ C2

6f2
Iμ;ΔKoþp ; ðA46Þ

Γμ
oþpðΣ0Þ ¼ C2

3f2
Iμ;ΔKoþp −

C2

12f2
Iμ;Σ

�K
oþp ; ðA47Þ

Γμ
oþpðΣþÞ ¼ −

C2

12f2
Iμ;Σ

�π
oþp þ C2

2f2
Iμ;ΔKoþp −

C2

6f2
Iμ;Ξ

�K
oþp ; ðA48Þ

where the integral Iμ;TMoþp is written as
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Iμ;TMoþp ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ
DMðkÞ

×

�ð−2kþ qÞμ
−2kqþ q2

ðF̃ðk − qÞ − F̃ðkÞÞðkσ þ z=kγσÞ
1

=p0 − =k −mT
Sσρðp0 − kÞððk − qÞρ þ zγρð=k − =qÞÞ

þ ð2kþ qÞμ
2kqþ q2

ðF̃ðkþ qÞ − F̃ðkÞÞððkþ qÞσ þ zð=kþ =qÞγσÞ
1

=p − =k −mT
Sσρðp − kÞðkρ þ zγρ=kÞ

�
uðpÞ: ðA49Þ

Using Package-X [74] to simplify the loop integral, we can get the results for the Dirac and Pauli form factors.
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