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After a quantum phase transition, the quantum vacuum can break up to form classical topological
defects. We examine this process for scalar field models with Z2 symmetry for different quench rates for the
phase transition. We find that the number density of kinks at late times universally scales as Cm1=2t−1=2,
where m is a mass scale in the model and C ≈ 0.22; it does not depend on the quench timescale in contrast
to the Kibble-Zurek scaling for thermal phase transitions. A subleading correction ∝ t−3=2 to the kink
density depends on the details of the phase transition.
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I. INTRODUCTION

Quantum field theories generally contain small quantum
excitations around a true vacuum that we call particles and
large classical structures called solitons that interpolate
between different degenerate vacua. Often the solitons have
a topological character and are then also known as topo-
logical defects of which kinks, domain walls, strings, and
magnetic monopoles are all examples. As first proposed by
Kibble [1], these structures can be formed during a phase
transition. A more quantitative estimate of their number
density formed after a thermal phase transition is given by
the Kibble-Zurek proposal [2–8] that has been tested in
various systems such as liquid crystals [9,10], superfluids
[11–15], superconductors [16–18], and other systems
involving liquid crystal light valves [19] and ultracold
quantum gases [20], with conflicting conclusions. The
Kibble-Zurek proposal is based on imposing a physically
motivated cutoff on the growing correlation length prior to
the thermal phase transition and then matching the prephase
transition correlation length to the postphase transition
correlation length. In this paper, we will be concerned with
a quantum phase transition and we will solve for the full
quantum dynamics relevant to defect formation.
To describe our approach we start with the λϕ4 model for

a real, scalar field ϕ,

L ¼ 1

2
ð∂μϕÞ2 −

1

2
m2ðtÞϕ2 −

λ

4
ϕ4: ð1Þ

To study the production of kinks in this model, we imagine
that the mass parameter m2ðtÞ has an externally controlled
time dependence,

m2ðtÞ ¼ −m2 tanh

�
t
τ

�
; ð2Þ

where τ is the “quench timescale.” For t < 0, the model has
a unique vacuum at ϕ ¼ 0, while for t > 0, there are two
degenerate vacua ϕ ¼ �m=

ffiffiffi
λ

p ≡�η. In the t → ∞ limit,
where m2 ¼ −m2, the model has a double well potential
and it admits static classical kink and antikink solutions

ϕ�ðxÞ ¼ �η tanh

�
mxffiffiffi
2

p
�
: ð3Þ

These nonperturbative solutions interpolate between the
two degenerate vacua of the model over a spatial width
∼1=m. They are topological defects characterized by a
topological charge, positive for a kink and negative for an
antikink. In fact, the topological charge classifies kinks and
antikinks according to the nature of the sign change
occurring in the field profile: negative to positive for a
kink, and vice versa for an antikink.
Since all we are interested in is changes in the sign of the

field, we can simplify our model to eliminate the λϕ4 term
in (1) (see Fig. 1). Then the free field model

L ¼ 1

2
ð∂μϕÞ2 −

1

2
m2ðtÞϕ2 ð4Þ

also has Z2 symmetry that is spontaneously broken after the
quench and thus has topological kinks. Without the λϕ4

term, the kink height is not stabilized and becomes larger
with time. We expect that, for a small enough value of λ, the
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interaction term does not significantly affect the kink
number density. Hence, the model in (4) captures the
essential physics of defect formation.1 It can serve as the
zeroth-order approximation in a perturbative expansion in
powers of λ.
In Sec. II we will solve the quantum field theory problem

for the model in (4) in the Schrödinger picture, which is
more convenient for the kink number density calculation in
Sec. III. Our numerical results for the kink number density
and its dependence on various parameters are given in
Sec. IV. We conclude and qualitatively describe expect-
ations when λ ≠ 0 in Sec. V. Some technical results are
included in the Appendixes.

II. WAVE FUNCTIONAL

Setting λ ¼ 0, the problem now is that of a quantum field
interacting with a classical background. As discussed in
[21–23], the solution to the quantum problem can be
written in terms of the solution of a classical problem
but in higher dimensions. More specifically, let us dis-
cretize a compactified space of size L by N lattice points
i ¼ 1;…; N, with lattice spacing a ¼ L=N. The resulting
lattice-point-dependent Heisenberg picture field operators
ϕ̂i describe a set of N quadratically coupled, simple
harmonic oscillators, and we can write

ϕ̂i ¼ Z�
ijâj þ Zijâ

†
j ; ð5Þ

where âj and â
†
j are the annihilation and creation operators

associated with the quantum variable ϕ̂i at t ¼ −∞ when

the potential is upright and time independent. The N × N
complex matrix Z satisfies the classical equation

Z̈ þ Ω2ðtÞZ ¼ 0; ð6Þ

where the matrix Ω2 is given by

½Ω2�ij ¼

8>><
>>:

þ2=a2 þm2ðtÞ; i ¼ j

−1=a2; i ¼ j� 1 ðmod NÞ
0; otherwise:

ð7Þ

In our particular application, since m2ðtÞ does not depend
on the lattice point, all matrices are circulant [i.e., their
ði; jÞ element only depends on i − jðmod NÞ] and the
problem is translationally invariant. We can thus diago-
nalize Z to work in momentum space. This leads to

Zjl ¼
1ffiffiffiffi
N

p
XN
n¼1

cnðtÞe−iðj−lÞ2πn=N; ð8Þ

where the mode coefficients cn satisfy

c̈n þ
�
4

a2
sin2

�
πn
N

�
þm2ðtÞ

�
cn ¼ 0: ð9Þ

The quantum state (in the Heisenberg picture) will be
chosen to be the vacuum state long before the phase
transition, i.e., at t ¼ −∞ when m2ðtÞ ¼ þm2. In practice,
this is achieved by choosing an initial time t0 ≪ −τ and
setting up the following initial conditions for the mode
coefficients:

cnðt0Þ ¼
−iffiffiffiffiffiffiffiffiffi
2aN

p
�
4

a2
sin2

�
πn
N

�
þm2ðt0Þ

�
−1=4

; ð10Þ

_cnðt0Þ ¼
1ffiffiffiffiffiffiffiffiffi
2aN

p
�
4

a2
sin2

�
πn
N

�
þm2ðt0Þ

�
1=4

: ð11Þ

While it may be easier to solve for the quantum
dynamics in momentum space by computing the cn mode
coefficients, the kinks are defined as zeros of the field in
physical space. It is therefore useful to determine the
physical space wave functional Ψ½fϕig; t� for the model
in Eq. (4) by solving the corresponding Schrödinger
equation,

i
∂Ψ
∂t ¼ −

1

2a

XN
i¼1

∂2Ψ
∂ϕ2

i
þ a

2
ϕTΩ2ðtÞϕΨ: ð12Þ

We find

FIG. 1. The field theory potential is an upright quadratic at early
times when m2 > 0 and becomes an inverted quadratic after the
quench when m2 < 0. The model has a Z2 symmetry that is
spontaneously broken and hence has kinks.

1One can think of this model as the λ → 0, η → ∞ limit of the
λϕ4 model with m ¼ η

ffiffiffi
λ

p
held fixed at some chosen finite value.
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Ψ½fϕig; t� ¼
�
a
π

�
N=4

det ðΩ2ðt0ÞÞ1=8

× exp

�
−
1

2

Z
t

0

dt0TrMðt0Þ þ ia
2
ϕTMðtÞϕ

�
;

ð13Þ

where M≡ _ZZ−1 and we have introduced the column
vector ϕ such that ϕT ≡ ðϕ1;…;ϕNÞ. Using the constraint
Z† _Z − _Z†Z ¼ i=a [21], this gives a probability distribution
for the field

P½fϕig; t� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πKp Þ e
−ϕTK−1ϕ=2; ð14Þ

where K ¼ ZZ† is the covariance matrix of the field ϕ.
Notice that K is real and symmetric [21] [as can be verified
by using (6) and the initial conditions].

III. NUMBER DENSITY OF KINKS

The number density of zeros (nZ) is obtained by counting
the number of sign changes of ϕ. To compute an explicit
formula, we first define the quantum operator

n̂Z ≡ 1

L

XN
j¼1

1

4
½sgnðϕ̂jÞ − sgnðϕ̂jþ1Þ�2; ð15Þ

where, because of the periodicity of the lattice, ϕ̂Nþ1 ¼ ϕ̂1.
The number density of zeros is then simply given by the
quantum average of this operator. After using translational
invariance and, in particular, the fact that K−1 is circulant, it
reads (see Appendix A for details),

nZ ¼ hn̂Zi ¼
N
2L

½1 − hsgnðϕ̂1ϕ̂2Þi�: ð16Þ

The expectation value in (16) can now be written as

hsgnðϕ̂1ϕ̂2Þi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πKp Þ
×

X
quads

Z
dϕ1…dϕN sgnðϕ1ϕ2Þe−ϕTK−1ϕ=2;

ð17Þ

where the sum is over the four quadrants in the ðϕ1;ϕ2Þ
plane. The coefficient sgnðϕ1ϕ2Þ is þ1 for quadrants with
ϕ1ϕ2 > 0 and −1 for quadrants with ϕ1ϕ2 < 0.
Consider the integral in the first quadrant,

I1 ¼
Z

∞

0

dϕ1

Z
∞

0

dϕ2

Z
∞

−∞
dϕ3…dϕN e−ϕ

†K−1ϕ=2: ð18Þ

To perform the integration, we write

K−1 ¼
�

A B

BT C

�
; ð19Þ

where A is a 2 × 2 matrix, B is a 2 × ðN − 2Þ matrix, and C
is an ðN − 2Þ × ðN − 2Þ matrix. (The matrices A and C are
symmetric.) Next, we also introduce the vectors χ and ξ
such that χT ¼ ðϕ1;ϕ2Þ and ξT ¼ ðϕ3;…;ϕNÞ. Then,

ϕTK−1ϕ ¼ ðξþ C−1BTχÞTCðξþ C−1BTχÞ
þ χTðA − BC−1BTÞχ; ð20Þ

and we can perform the integration over ξ first using

Z
dN−2 ξ e−ðξþC−1BTχÞTCðξþC−1BTχÞ=2 ¼ ð2πÞðN−2Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðCÞp :

As detailed in Appendix B, we obtain

I1 ¼
ð2πÞðN−2Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðCÞp
Z

∞

0

dϕ1

Z
∞

0

dϕ2 e−χ
TA0χ=2

¼ ð2πÞðN−2Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ detðA0Þp

�
π

2
− tan−1

�
A0
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðA0Þp
��

; ð21Þ

where A0, the Schur complement of C, is defined by
A0 ≡ A − BC−1BT .
The integral over the third quadrant in the ϕ1ϕ2 plane, I3,

is seen to be equal to I1 after the change of variables
χ → −χ. The integrals over the second and fourth quad-
rants, I2 and I4, are similarly equal and are related to I1. To
see this we note that the integral over the second quadrant
reduces to the one over the first quadrant by the trans-
formation ϕ1 → −ϕ1. This transformation is alternatively
implemented by changing A0

12 to −A0
12 and not changing

anything else. Hence, the integral over the second quadrant
is simply

I2 ¼
ð2πÞðN−2Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ detðA0Þp

�
π

2
þ tan−1

�
A0
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðA0Þp
��

: ð22Þ

Putting together the contributions of all the four quadrants,
we get

hsgnðϕ̂1ϕ̂2Þi ¼ −
2

π
tan−1

�
A0
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðA0Þp
�
; ð23Þ

where we made use of the fact that A0 is the Schur
complement of C, which implies

detðA0Þ detðCÞ ¼ detðK−1Þ ¼ 1

detðKÞ :
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This, in turn, gives us the number density of zeros as

nZ ¼ N
2L

�
1þ 2

π
tan−1

�
A0
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðA0Þp
��

: ð24Þ

We can make this formula more explicit by noticing that
ðA0Þ−1 is equal to the 2 × 2 upper left block of the matrix K.
This can be seen via a block LDU decomposition of K−1 as
described in Appendix C. Using (8) we can then write

ðA0Þ−1 ¼ K2×2 ¼ α1þ βσx; ð25Þ

where σx is the first Pauli spin matrix and

α ¼
XN
n¼1

jcnj2; β ¼
XN
n¼1

jcnj2 cosð2πn=NÞ: ð26Þ

Therefore,

A0 ¼ 1

α2 − β2
ðα1 − βσxÞ; ð27Þ

and

detðA0Þ ¼ 1

α2 − β2
; A0

12 ¼
−β

α2 − β2
: ð28Þ

We now have all the pieces needed to evaluate the
number density of zeros in (24), which can be written as

nZ ¼ N
2L

�
1 −

2

π
θ

�
; ð29Þ

where

sin θ≡ β

α
¼

P
N
n¼1 jcnj2 cosð2πn=NÞP

N
n¼1 jcnj2

: ð30Þ

Not all field zeros, however, correspond to kinks. Some
of the zeros simply correspond to field oscillations that
come in and out of existence. They are spurious or virtual
kinks and we eliminate them from our counting by
restricting the summations in (30) to modes that are not
oscillating.2 So the number density of kinks nK is

nK ¼ N
2L

�
1 −

2

π
sin−1

�P
jnj≤nc jcnj2 cosð2πn=NÞP

jnj≤nc jcnj2
��

; ð31Þ

where, as seen in (9), the time-dependent cutoff mode for
t > 0 is defined by

sin

�
πncðtÞ
N

�
¼ a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2ðtÞj

p
; ð32Þ

and c−n ≡ cN−n for 0 ≤ n ≤ N − 1.

IV. NUMERICAL RESULTS

We can now numerically solve (9) and use (31) to obtain
the number density of kinks as a function of time. The only
scale in the problem is the mass, so we work in units of
1=m by setting m ¼ 1. We also choose L ¼ 6400 and
N ¼ 12800, which are both large enough to accurately
describe the continuum, infinite space limit of the dis-
cretized model. Notice that, thanks to the physical cutoff we
placed on the mode sums, there are no UV divergences. In
Fig. 2 we show our results for several different values of the
quench parameter τ. The remarkable feature of this plot is
that all the curves have the same late time behavior, which
we can determine to be a t−1=2 power law. In fact, we can
take differences for different values of τ, ΔnKðt; τ1; τ2Þ≡
nKðt; τ1Þ − nKðt; τ2Þ (see Fig. 3), and these follow a t−3=2

power law. Thus, at late times we can write

nKðtÞ ¼ C

ffiffiffiffi
m
t

r
þOðt−3=2Þ; ð33Þ

where we get C ≈ 0.22 from our numerical solution. Note
that C is independent of τ. At early times (i.e., immediately
after the phase transition), nK increases from zero to a
maximum value ðnKÞmax within a time tmax, before decreas-
ing again. This is to be expected: the phase transition
triggers the creation of kinks with randomly distributed
positions and velocities, which later start annihilating with
each other. In Figs. 4 and 5 we plot ðnKÞmax and tmax,
respectively, as a function of the quench parameter τ. This
confirms the intuitive expectation according to which the

FIG. 2. Log-log plot of hnKi versus time for τ ¼ 0.1 (purple,
topmost curve), 0.5 (red), 1.0 (green), 5.0 (orange), 10.0 (blue).
The black dashed line shows the exhibited power law at late
times, i.e., t−1=2.

2This is similar to the situation in inflationary cosmology
where only nonoscillating superhorizon modes lead to density
perturbations.
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faster the phase transition (smaller τ), the more kinks are
produced and the quicker they start annihilating.

V. CONCLUSIONS

Our key result is Eq. (33). It tells us how the quantum
vacuum breaks up into classical solitons after a quench.
Further, it shows that the result at late times is universal and
does not depend on the quench timescale, even though
there is some dependence closer to the time of the phase
transition. In the Kibble-Zurek proposal for kinks produced
during a thermal phase transition, the kink density immedi-
ately after the phase transition depends on the quench
timescale and is proportional to τ−1=4 in certain systems
[24]. This is to be contrasted with the τ−1=3 falloff in Fig. 4.
We have also cross-checked our results by numerically

estimating nK as the inverse of the correlation length that is
extracted from the covariance matrix K, as well as
analytically by studying the limiting case of a sudden
phase transition with τ ¼ 0. We plan to present these cross-
checks in a separate publication [25]. Similar analyses for a
sudden (τ ¼ 0) thermal quench have been done in [26,27]
by different techniques; a t−1=2 scaling of defect density
was also observed, but the dependence on quench timescale
was not studied.
In our approach we have taken vanishing interaction

strength λ ¼ 0, and it is of interest to ask how the results
might change if λ is different from zero. As we have noted
in the Introduction, our result for the number density of
kinks can be thought of as the Oðλ0Þ term in a perturbation
expansion in λ. It should be possible to compute higher-
order corrections in λ using perturbation theory. In par-
ticular, there will be λ-dependent corrections to our wave
functional in (13). However the corrections to the number
density of kinks also depend on the parameter τ that
determines how quickly the potential for the field ϕ
changes. If τ is very small, the wave functional can be
computed in the “sudden approximation” [25], which will
be valid if the timescale for changes in the potential is much
shorter than the timescale set by the interaction term.
Our analysis also suggests that the interaction between

kinks is not important for sudden phase transitions. As can
be seen in Fig. 4, the maximum kink number density for
τ ¼ 0 is ðnKÞmax ≈ 0.175, and the average kink separation
n−1K is greater than at least ∼6 times the width of the kink.
Since the attractive kink-antikink force decreases exponen-
tially with distance in 1þ 1 dimensions, the effect of inter-
kink forces can be consistently disregarded.
The analysiswe have done in this paper can begeneralized

to higher dimensions to discuss global vortex formation in
two spatial dimensions and global monopole formation in
three spatial dimensions, since the models for these can be
truncated to free fields in time-dependent backgrounds [25].
The introduction of gauge fields, however, will lead to new
interactions that will be more difficult to analyze.

FIG. 4. Log-Log plot of the maximum average kink density
ðnKÞmax versus τ. For larger values of τ, the power law manifested
is ∼τ−0.33.

FIG. 5. Log-Log plot of the time at which maximum average
kink density ðnKÞmax occurs versus τ. For larger values of τ, the
power law exhibited is ∼τ0.34.

FIG. 3. Differences between the average kink density for
different values of τ, nKðt; τ1Þ − nKðt; τ2Þ versus time, for
τ1 ¼ 0.1; τ2 ¼ 0.5 (blue, bottom-most curve), 1.0 (red), 5.0
(purple), 10.0 (green). The black dashed line shows the exhibited
power law, i.e., t−3=2.
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Finally, it is worth mentioning that there is a deeper
foundational question in this problem that we have studied.
Our initial state is a translationally invariant quantum
vacuum, while the final state involves classical kinks with
definite positions and velocities. The translational sym-
metry is preserved when averages are taken over an
ensemble of kink realizations, but each realization of the
kinks breaks translational symmetry. As in Schrödinger’s
cat, the classical kinks materialize and break translational
symmetry only when there is a detector that detects them.
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APPENDIX A: SOME PROPERTIES OF
CIRCULANT MATRICES

A generic N × N matrix A ¼ ðaijÞ is circulant when its
entries aij only depend on j − iðmod NÞ. In other words,
aij ≡ aj−iðmod NÞ. It is useful to introduce the permutation
matrix

ðA1Þ

verifying P−1 ¼ PT ¼ PN−1. The matrix A is seen to be a
degree N − 1 polynomial in P,

A ¼ a0I þ a1Pþ a2P2 þ � � � þ aN−1PN−1: ðA2Þ

This immediately implies that sums, products, transposes,
and Hermitian conjugates of circulant matrices are also
circulant (and that circulant matrices commute with each
other). An additional consequence is that bilinears involv-
ing circulant matrices are unchanged under circular per-
mutations of vector elements. Indeed, given a positive
integer n ≤ N − 1 and two vectors X and Y, we have

ðPnXÞTAðPnYÞ ¼ XTP−nAPnY ¼ XTAY: ðA3Þ

Moreover the circulant matrix A can be diagonalized via the
unitary discrete Fourier transform matrix F ¼ ðfjkÞ, where
fjk ≡ 1ffiffiffi

N
p e−i2πjk=N ,

A ¼ F−1DF ¼ F†DF: ðA4Þ
This shows that if a circulant matrix is invertible, then its
inverse is also circulant. All these properties are often used
in the main text and, in particular, when using the fact that
hsgnðϕ̂iϕ̂iþ1Þi ¼ hsgnðϕ̂1ϕ̂2Þi in the lead up to Eq. (16).

APPENDIX B: TWO-DIMENSIONAL GAUSSIAN
INTEGRAL OVER THE FIRST QUADRANT

The derivation of the two-dimensional Gaussian integral
over the first quadrant x, y ≥ 0 follows from the change of
variables x ¼ sy,Z

∞

0

dx
Z

∞

0

dy e−
1
2
ðax2þ2bxyþcy2Þ

¼
Z

∞

0

ds
Z

∞

0

dy y e−
y2

2
ðas2þ2bsþcÞ

¼
Z

∞

0

ds
as2 þ 2bsþ c

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac − b2

p
�
π

2
− tan−1

�
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ac − b2
p

��
: ðB1Þ

Here we have assumed that a, b, and c are real numbers
such that a > 0 and ac − b2 > 0. This ensures that all
expressions in the above equations are well posed. This
identity is used in the main text in the lead up to Eq. (21).

APPENDIX C: SOME PROPERTIES
OF BLOCK MATRICES

Consider a square matrix M partitioned into four blocks
of arbitrary size as follows:

M ¼
�
A B

C D

�
: ðC1Þ

Performing the analog of a LDU decomposition on this
block matrix, we can write

M ¼
�
A B

C D

�

¼
�
I BD−1

0 I

��
A − BD−1C 0

0 D

��
I 0

D−1C I

�
:

ðC2Þ
Here we have assumed that A and D are square invertible
matrices. Note that the identity matrices can have different
sizes. This expression immediately implies that

det M ¼ det ðA − BD−1CÞ det D: ðC3Þ

The matrix A − BD−1C is called the Schur complement of
D. This formula is used in the main text in the lead up to
Eq. (23). Assuming invertibility of the Schur complement,
we can also write
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M−1 ¼
�

I 0

−D−1C I

�� ðA − BD−1CÞ−1 0

0 D−1

��
I −BD−1

0 I

�

¼
� ðA − BD−1CÞ−1 −ðA − BD−1CÞ−1BD−1

−D−1CðA − BD−1CÞ−1 D−1 þD−1CðA − BD−1CÞ−1BD−1

�
; ðC4Þ

which allows one to directly read off the inverse of the Schur complement of D on the block decomposition of M−1. This
identity is used in the main text in the lead up to Eq. (25).
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