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We explore the conditions for chiral symmetry breaking in reduced (or pseudo)quantum electrodynamics
at finite temperature in connection with graphene and other 2D materials with an underlying Dirac behavior
of the charge carriers. By solving the corresponding Schwinger-Dyson equation in a suitable truncation
(either the nonlocal Nash gauge including vacuum polarization effects in the large fermion family number
nf limit or the quenched rainbow approximation, in a Landau-like gauge) and neglecting wave function
renormalization effects, we find the need of the effective coupling to exceed a critical value αc in order for
chiral symmetry to be broken, in agreement with known results from other groups. In this supercritical
regime, we add the effects of a thermal bath at temperature T and find the critical values of this parameter
that lead to chiral symmetry restoration.
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I. INTRODUCTION

Gauge symmetry lies at the cornerstone of modern
physics [1]. Apart from gravity, fundamental interactions
are described by quantum field theories in which the gauge
principle describes precisely the manner in which matter
fields interact through the exchange of gauge bosons.
Electroweak and strong interactions, for instance, are
described based on the observation that both matter and
gauge fields live in a four-dimensional Poincaré space-time
(see, for instance, [2]). Of course, these models can be
formulated in space-times of different dimensionality. The
Schwinger model [3] is the incarnation of quantum electro-
dynamics (QED) in (1þ 1) dimensions, whereas the
t’ Hooft model [4] is the analog of quantum chromody-
namics (QCD) in the same dimensionality. Adding gravity
to the set of fundamental interactions, in order to avoid
anomalies in space-time of larger dimensionality, brane-
world scenarios (see, for instance, Refs. [5–9] and references

within) require that the matter and gauge fields of the
standard model of particle physics live in the four-dimen-
sional space-time corresponding to a brane, whereas gravity
fields can propagate in extra (bulk) dimensions. This
analogy has been put forward to describe the low-energy
behavior of graphene and other Dirac matter systems.
Graphene has been theoretically studied for over seven

decades [10]. Nevertheless, the experimental isolation of
graphene flakes [11–13] has boosted, in addition to the
search of technological applications, the interest in explor-
ing the connection of the full family of 2D Dirac matter
systems and the phenomenology of high energy physics,
basically because the low-energy quasiparticle excitations
in these materials are described by a 2D massless Dirac
equation. The long-range Coulomb interactions in gra-
phene are introduced via minimal coupling. Nevertheless,
the electromagnetic field is not restricted to the graphene
plane, and therefore a mere dimensional reduction of QED
to a plane to account for these interactions is inappropriate.
An alternative has been proposed in terms of a gauge theory
of electromagnetic interactions where the gauge and matter
fields have dynamics in different space-time dimensions.
Pseudo [14] or reduced QED [15,16] (we adopt the
latter name and refer to the theory as RQED) is a gauge
theory which for graphene allows the dynamics of electrons
in (2þ 1) dimensions, but the electromagnetic field is
described in ð3þ 1ÞD. Then, by coupling a current defined
in the plane of motion of electrons, the Lagrangian of the
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theory develops fractional powers of the d’Alembertian
operator, describing interesting features as compared
with ordinary QED in (3þ 1) and (2þ 1) dimensions.
Photons remain transverse on the plane, but the infrared
divergence in the pole of its propagator is softened from
1=q2 → 1=ð2

ffiffiffiffiffi
q2

p
Þ [14–16].

Perturbation theory aspects of the theory have beenwidely
explored by several groups [16–23] up to two loops.
Nonperturbative aspects of the theory have been already
addressed (see, for instance, Refs. [15,24–26]). In particular,
the Schwinger-Dyson equation (SDE) for the fermion
propagator has been explored in [15] incorporating vacuum
polarization effects at the leading order of the 1=nf (nf
representing fermion family number, in the large nf limits)
approximation. The authors of that work find that using the
nonlocal Nash gauge, it is possible to break the chiral
symmetry of the massless theory if the effective coupling
of the model exceeds a critical value. This corresponds to
consider the number of fermion families nf below a critical
value for fixing the electromagnetic coupling e2 and vice
versa. At the critical ncf, the electromagnetic coupling
diverges. The dynamically generated mass in this case
follows a Miransky scaling law and the full critical line in
the plane ðnf; e2Þ is explored in detail. On different grounds,
the SDE has also been considered in [27] by quenching the
theory truncating the said equation in the rainbow approxi-
mation. Working in Landau gauge and neglecting wave
function renormalization effects. The resulting gap equation
has a similar form as in the unquenched case of [15], but the
effective coupling has a rather different physical interpreta-
tion, as it corresponds to the bare electromagnetic coupling.
This scenario has been also considered at finite temper-

ature by the same group [28]. Provided the coupling
exceeds the critical value in vacuum, these authors estimate
the ratio of the dynamical mass in vacuum and the critical
temperature to be of order 2π. In this article, we revisit the
calculations in [15,27,28] within the static or constant mass
approximation [29]. We first confirm the critical value for
the effective coupling above which chiral symmetry is
broken in vacuum. We then explore the behavior of the
dynamical mass and critical temperature for symmetry
restoration. We present our findings in the following
manner. In Sec. II we describe the Lagrangian and
Feynman rules of the theory. We also discuss the conditions
for chiral symmetry breaking by solving the corresponding
SDE. We promote this equation at finite temperature in
Sec. III. We introduce the so-called constant mass approxi-
mation (CMA) in Sec. IV and conclude in Sec. V.

II. CHIRAL SYMMETRY BREAKING IN VACUUM

Feynman rules for RQED follow from the Lagrangian,

L ¼ −
1

4
Fμν 2

ð−□Þ1=2 Fμν þ ψ̄ðiγμ∂μ þ eγμAμÞψ ; ð1Þ

where Fμν is the electromagnetic field tensor and Aμ the
corresponding gauge field, e is the electric charge and ψ the
four-component fermion field. Dirac matrices are repre-
sented by the 4 × 4matrices γμ. Greek indices run from 0 to
2 and (−□) is the corresponding d’Alembertian operator,
which appears in the Lagrangian with fractional power.
The bare two-point functions derived from (1) are

[14–16]

Δð0Þ
μν ðqÞ ¼ 1

2q

�
δμν −

qμqν
q2

�
; ð2Þ

which corresponds to the Landau-like gauge bare photon
propagator. Notice the softening of the infrared divergence
of the propagator, resulting from the nonperturbative
integration of the third component of the stress tensor of
the ordinary electromagnetic field coupled to the matter
field in the plane of motion of electrons. The massless
fermion propagator remains

S−10 ðpÞ ¼ −γμpμ: ð3Þ

Nonperturbatively, the Schwinger-Dyson equation (SDE)
for the latter is expressed as

S−1ðpÞ ¼ S−10 ðpÞ − ΞðpÞ; ð4Þ

where the electron self-energy is

ΞðpÞ ¼ −e2
Z

d3k
ð2πÞ3 γ

μSðkÞΓνðk; pÞΔμνðqÞ; ð5Þ

where q ¼ k − p and Γνðk; pÞ and ΔμνðqÞ represent to the
full electron-photon vertex and full photon propagator.
Given a particular form of these Green functions, the
general solution to Eq. (4) is

S−1ðpÞ ¼ −AðpÞγμpμ þ ΣðpÞ: ð6Þ

Following the conventions of Refs. [27,28], we search for
the corresponding solution within the so-called rainbow-
ladder truncation, where we replace Γνðk; pÞ → γν and

ΔμνðqÞ → Δð0Þ
μν ðqÞ given in (2). As a further simplification,

we neglect wave function renormalization effects by setting
AðpÞ ¼ 1, such that from (5), the mass function ΣðpÞ
verifies the gap equation,

ΣðpÞ ¼ 4πα

Z
d3k
ð2πÞ3

ΣðkÞ
k2 þ ΣðkÞ2

1

jp − kj ; ð7Þ

where α ¼ e2=ð4πÞ. It has been discussed in Ref. [27] that
in order to have a nontrivial solution to Eq. (7), which
would correspond to a chiral symmetry breaking solution,
the coupling should exceed the critical value αc ¼ π=8.
Moreover, the dynamical mass follows a Miransky scaling
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law. This expression is identical to Eq. (22) of Ref. [15] if
we identify

πλ ¼ α λ ¼ e2

2π2
�
1þ nfe2

16

� : ð8Þ

In the remainder of this article we review this scenario in a
hot medium characterized by a temperature T.

III. SDE AT FINITE T

At finite temperature, within the Matsubara formalism,
we replace any integral over the temporal component of any
four-vector p ¼ ðp0;pÞ by the summationZ

dp0fðp0Þ → T
X∞
n¼−∞

fðiωnÞ; ð9Þ

where the fermionic Matsubara frequencies are ωn ¼
ð2nþ 1ÞπT. In this formalism, the gap equation reads [28]

ΣmðpÞ ¼
X∞
n¼−∞

Z
Λ

d2k
ð2πÞ2

ð4παTÞΣnðkÞ
ð2nþ 1Þ2π2T2 þ k2 þ ΣnðkÞ2

1

½4ðm − nÞ2π2T2 þ ðp − kÞ2�1=2 ; ð10Þ

where we have used the shorthand notation ΣnðpÞ ¼ Σðωn;pÞ and the symbol
R
Λ refers to the fact that divergent integrals

are to be regularized with an ultraviolet cutoff Λ.
Introducing the dimensionless quantities,

p ¼ Λσ; k ¼ Λρ; T ¼ ΛeT; ΣmðkÞ ¼ ΛΣ̃mðρÞ; ð11Þ

the gap equation becomes

Σ̃mðσÞ ¼ αeT XNf

n¼−Nf−1

Z
1

0

dρ
π
ρdθ

Σ̃nðρÞ
ð2nþ 1Þ2π2eT2 þ ρ2 þ Σ̃2

nðρÞ
1

½4ðm − nÞ2π2eT2 þ ðσ − ρÞ2�1=2 ; ð12Þ

where θ is the angle between the vectors σ, ρ with
magnitudes ρ ¼ jρj and σ ¼ jσj, respectively. In this ex-
pression, the cutoff does not appear in the momentum
integrations, but in the number of Matsubara frequencies
Nf that are summed up. We solve Eq. (12) fixing α and T
appropriately and then recursively search for the solution
starting from a given numerical seed. The double numerical

integration is performed using Gaussian quadratures, after
rescaling the radial component of momentum. In Fig. 1 we
show, for the sake of illustration, the solution of the gap
equation as a function of the momentum with Nf ¼ 7

Matsubara frequencies at two different temperatures and
the same fixed value of α > αc. We observe that when T is
close to zero (left panel), every mass function ΣmðσÞ has

FIG. 1. Mass function as a function of σ for α ¼ 14αc with Nf ¼ 7 Matsubara frequencies. Left panel: T̃ ¼ 0.005; right panel:
T̃ ¼ 0.95. Symbols correspond to different Matsubara numbers for which the functions ΣmðσÞ are identically equal.

CHIRAL SYMMETRY RESTORATION IN REDUCED QED AT … PHYS. REV. D 102, 056020 (2020)

056020-3



almost the same height as σ → 0, but the larger the
temperature, the height of all ΣmðσÞ diminishes, except
for the corresponding to m ¼ 0 (right panel).
Once we are able to identify a stable solution for each T̃,

we explore the behavior of the chiral condensate, which
is the order parameter for the chiral transition and is
defined as

hψ̄ψi¼TriSð0Þ

¼ T̃
2π

XNf

m¼−Nf−1

Z
1

0

dρρ
Σ̃mðρÞ

ð2mþ1Þ2π2T̃2þρ2þ Σ̃2
mðρÞ

:

ð13Þ

This condensate is finite when chiral symmetry is broken,
and vanishes when this symmetry is restored. The value of
T̃ at which this happens is T̃c, the critical temperature for
the chiral symmetry restoration.

IV. CHIRAL SYMMETRY BREAKING
AT FINITE T AND CONSTANT

MASS APPROXIMATION

Because chiral symmetry breaking is an infrared phe-
nomenon, it basically is encoded in the behavior of Σmð0Þ.
Therefore, in the constant mass approximation [29], we
replace all mass functions involved in the SDE with their
values at zero momentum. Denoting Σ̃mðσÞ → Sm, the gap
equation becomes

Sm ¼ 2αeT XNf

n¼−Nf−1

Z
1

0

dρρ
Sn

ð2nþ 1Þ2π2T̃2 þ ρ2 þ S2n

×
1

½4ðm − nÞ2π2T̃2 þ ρ2�1=2 : ð14Þ

In what follows, we select the cutoff Nf such that

ð2Nf þ 1ÞπT0 ¼ Λ

⇒ ð2Nf þ 1ÞπT̃0 ¼ 1 → T̃0 ¼
1

ð2Nf þ 1Þπ ; ð15Þ

and write all temperature scales proportional to multiples of
T̃0, namely, T ¼ kT̃0, k ∈ N. Performing momentum
integration analytically, we have that

Sm ¼ 2αeT XNf

n¼−Nf−1

Snffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2eT2ð−4m2 þ 8mnþ 4nþ 1Þ þ S2n

q
×

"
tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2eT2ðm− nÞ2 þ 1

π2eT2ð−4m2 þ 8mnþ 4nþ 1Þ þ S2n

s

−tan−1
2πeTjm− njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2eT2ð−4m2 þ 8mnþ 4nþ 1Þ þ S2n

q #
: ð16Þ

This transcendental equation can be solved self-consistently,
giving the behavior of each Sm as a function of temperature.
Near the critical point, we expect Sm to approach zero.
Assuming a linear behavior of Sm ≈ γmðT − TcÞ near
criticality, we have that

Sm ≈ 2αeT XNf

n¼−Nf−1

Snffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2eT2ð−4m2 þ 8mnþ 4nþ 1Þ

q
×

�
tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2eT2ðm − nÞ2 þ 1

π2eT2ð−4m2 þ 8mnþ 4nþ 1Þ

s

− tan−1
2jm − njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð−4m2 þ 8mnþ 4nþ 1Þ
p �

: ð17Þ

For the zeroth Matsubara frequency m ¼ 0, the above
relation simplifies to

1

2αceTc

¼
XNf

n¼−Nf−1

Sn=S0
πeTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþ 1Þp "
tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2eT2

cn2 þ 1

π2eT2
cð4nþ 1Þ

s

− tan−1
2jnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþ 1Þp #

: ð18Þ

Now, because Sn=S0 ≤ 1, it follows that

1

αc
¼

XNf

n¼−Nf−1

2Sn=S0
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþ 1Þp "
tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2eT2

cn2 þ 1

π2eT2
cð4nþ 1Þ

s
− tan−1

2jnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþ 1Þp #

≤
X
n

2

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþ 1Þp "

tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2eT2

cn2 þ 1

π2eT2
cð4nþ 1Þ

s
− tan−1

2jnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþ 1Þp #
: ð19Þ

Because of our assumption that near the critical point the temperature-dependent SmðT̃Þ approaches to zero point
perpendicularly, in consistency with the Clausius-Clapeyron criterion, we reach to the equality (Sn=S0 → 1):
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1

αc
¼

XNf

n¼−Nf−1

2

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþ 1Þp �

tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2eT2

cn2 þ 1

π2eT2
cð4nþ 1Þ

s
− tan−1

2jnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþ 1Þp �
: ð20Þ

Summation over n is finite for every value of temperature,
which allow us to obtain the behavior of the critical
coupling for each T̃. Considering a cutoff Nf ¼ 7, the
behavior of the critical coupling as a function of T̃ can be
observed in Fig. 2.
The critical coupling αc can also be obtained from the

chiral condensate, which in this approximation reads

hψ̄ψi ¼ T̃
2π

XNf

m¼−Nf−1

Z
1

0

dρρ
Sm

ð2mþ 1Þ2π2T̃2 þ ρ2 þ S2m

ð21Þ

¼ T̃
4π

XNf

m¼−Nf−1
ln

�
1þ 1

ð2mþ 1Þ2π2T̃2 þ S2m

�
. ð22Þ

In the same Fig. 2, a comparison is shown between the
values of αc derived from Eqs. (20) and (21), with a
qualitative agreement. A fit to this behavior is of the form

αcðT̃Þ ¼
π

8
þ 3.44T̃ þ 0.88T̃2: ð23Þ

This behavior is in disagreement with the finding of
Ref. [28], which establishes that

αcðT̃Þ ¼
1

1 − 2T̃
: ð24Þ

As T̃ → 0, the last expression is inconsistent with the zero
temperature value of the critical coupling αc ¼ π=8.
Next, maintaining the fixed value of Nf ¼ 7 and taking

α ¼ 3.0αc, in Fig. 3 we show the behavior of the normal-
ized condensate as a function of T̃. We also compare the
findings of the condensate including the full momentum
dependence of the mass functions. We observe that the
number of Matsubara frequencies taken into account is
enough to reproduce the correct physical behavior expected
for the condensate, namely, it approaches the vertical axis
roughly as a constant at small temperature, whereas it hits
the horizontal axis with a vertical line as approaches to the
critical temperature. The difference of the Tc for both
approximations is due to the static nature of the CMA.
Moreover, fixing the value of the temperature, the

condensate as a function of the coupling is depicted in
Fig. 4. Results from SDE and CMA are in qualitative
agreement, namely, in both cases the condensate starts
rising just above αc and saturate at large α. The difference
of the αc for this to happen is due to the nature of CMA.
We also depict the critical coupling as a function of T̃c

from these condensates in Fig. 5. The behavior is quali-
tatively the same and the error of the CMA does not exceed
a few percent in the range of temperatures of our framework
as compared with the full SDE prediction. The behavior
remains quadratic, of the form

αc ¼
π

8
þ 3.58T̃ þ 0.649T̃2; ð25Þ

for the CMA (dashed curve) and

Sm

m

FIG. 3. Chiral condensate hψ̄ψi as a function of T̃ for α ¼
3.0αc with Nf ¼ 7. Black squares correspond to the CMA,
whereas red stars to the full momentum dependent mass function.

FIG. 2. αc as a function of the critical temperature summing up
to Nf ¼ 7. Blue diamonds correspond to Eq. (20), whereas open
red circles correspond to the values extracted from the vanishing
of the chiral condensate in the constant mass approximation,
Eq. (21).
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αc ¼
π

8
þ 4.42T̃ þ 0.487T̃2; ð26Þ

for ΣnðpÞ (solid curve).
If we consider vacuum polarization effect [15], we show

the effective coupling as a function of temperature for
different fermion families nf in Fig. 6.

βc ¼
α

2 − αðπnf
4
Þ : ð27Þ

V. CONCLUSIONS

In this article, we have revisited the behavior of chiral
symmetry restoration in RQED in a heat bath. First, we
have computed the critical coupling for chiral symmetry
breaking by solving the SDE numerically. Then, the critical
temperature is obtained at the point in parameter space in
the supercritical regime where the chiral condensate van-
ishes. We have further approximated the solution to the gap
equation in the so-called constant mass approximation by
neglecting any momentum dependence of the mass func-
tion and taking into account only their IR value. Neither of
these numerical solutions agree with the behavior predicted
by [28]. Our numerical procedure shows that there is no
critical behavior for none of the values of the cutoff.
Instead, the behavior of the critical coupling behaves as
a second order polynomial of temperature. Furthermore, in
the limit T ¼ 0, the predicted critical coupling for the
momentum dependent mass coincides with the critical
coupling predicted within the CMA. Extensions to this
work are currently under consideration by adding vacuum
polarization effects and a chemical potential. Results shall
be reported elsewhere.
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Sm

m

FIG. 4. Chiral condensate as a function of the coupling for fixed
T̃ ¼ 0.3 with Nf ¼ 7. Black squares correspond to the CMA,
whereas red stars to the full momentum dependent mass function.

m

Sm

FIG. 5. αc as a function of T̃c with Nf ¼ 7 fixed. Red stars
correspond to the behavior derived from ΣnðpÞ and black squares
to Σn. Continuous curves are quadratic fits of Eqs. (25) (dashed)
and (26) (solid).

FIG. 6. Singular behavior for effective coupling βc taking
several numbers of families nf .
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