
 

Radiation reaction friction: Resistive material medium
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We explore a novel method of describing the radiation friction of particles traveling through a
mechanically resistive medium. We introduce a particle motion induced matter warping along the path in a
manner assuring that charged particle dynamics occurs subject to radiative energy loss described by the
Larmor formula. We compare our description with the Landau-Lifshitz-like model for the radiation friction
and show that the established model exhibits nonphysical behavior. Our approach predicts in the presence
of large mechanical friction an upper limit on radiative energy loss being equal to the energy loss due to the
mechanical medium resistance. We demonstrate that mechanical friction due to strong interactions, for
example of quarks in quark-gluon plasma, can induce significant soft photon radiation.
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I. INTRODUCTION

We study the motion of particles subject to a covariant
mechanical friction force (MFF) caused by the presence of
a material medium. In general, in the presence of any force,
a charged particle emits radiation, a result obtained by
Larmor considering properties of Maxwell’s equations.
Emitted radiation complements the MFF as an induced
radiation friction force (RFF). MFF will be used as an
insightful model to learn how to accommodate the dynam-
ics of radiation reaction force, i.e., radiation reaction (RR).
To the best of our knowledge, all prior covariant studies

of RR employed the Lorentz force (LF) due to externally
prescribed electromagnetic (EM) fields. Considered in the
context of a Lorentz-Maxwell system of dynamical equa-
tions, it is well known that RR is an unsolved problem. The
advantage of our approach is that we can focus on a better
understanding of the effect of the radiation reaction on the
mechanically accelerated particle, without need to recon-
cile the LF with Maxwell field dynamics.
We choose a MFF force which reduces to the familiar

form of Newton’s friction force in the nonrelativistic limit
in the case of linear relativistic motion. In Sec. II we find
that the relativistic generalization of Newtonian friction has
a unique form used also in the study of Brownian motion
[1]. For constant MFF we evaluate stopping distance,
rapidity shift, and stopping power, which provide back-
ground for the later study of motion including RFF.

In this work we introduce, as a mathematical tool for
making RR consistent with special relativity, a matter
warping model along the particle path by particle accel-
eration and parametrized by the proper time of the particle.
Matter warping is not a field as it is known only along
the path of an accelerated particle. When borrowing tools
of differential geometry we therefore prefer to speak of a
warped matter metric rather than a curved space-time
metric. There have been earlier efforts to modify the
space-time metric for accelerated particles spearheaded
by Caianiello [2], whose work was driven by the postulate
of a maximal proper acceleration. For a recent review see
[3]. Our objective is clearly very different even though
some of the methods are similar as we explore the physical
environment of a resistive medium and in particular its
warping due to accelerated motion.
To summarize the theoretical advantages of using the

material medium:
(1) Unlike in the space-time empty of matter (vacuum)

case, the presence of a material medium provides a
reference frame against which we measure particle
motion. Hence the covariant form of MFF depends
on the particle 4-velocity as well as the 4-velocity of
the medium.

(2) When a particle experiences energy loss due to RFF,
this occurs in the model always at the expense of the
well-defined relative motion with respect to the
medium.

(3) The specific form of the LF does not enter and thus
the inconsistency between the EM field equations
and the description of charged particle motion
subject to EM-force, see discussion on p. 745 in
Jackson [4], is not introduced. We tacitly employ the
Maxwell field equations when characterizing the
magnitude of radiative energy loss for an accelerated
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charged particle as it is well known from Larmor’s
work.

(4) A metric warped by particle acceleration within a
material medium can have the simple interpretation
as being due to local material response to particle
motion.

This study is constrained to exploring RR for accelerated
charged particle motion within matter only. Our exploration
is limited to warping along the particle worldline due to
acceleration. Although we use similar mathematical meth-
ods as in the case of curved space-time we don’t actually
claim that the space-time is curved. We expect that path
warping method can help advance the generalization of our
approach to the case of accelerated charged particle motion
in vacuum, which motivates the introduction of this method
in this work. However, understanding of space-time geom-
etry warping outside the particle worldline maybe also
required. Such a new theoretical framework is beyond our
current scope, has not yet ben formulated and is not needed
here to advance the understanding of RR we develop.
The path-warped method description of RR avoids the

introduction of higher order derivatives into the equations of
motion, see discussion on p. 393 in Panofsky-Phillips [5].
The Lorentz-Abraham-Dirac (LAD) equation’s higher order
derivative termwas introduced to assure orthogonality of the
equation of motion with respect to 4-velocity. This term
leads to causality challenges and runaway solutions. There
are different interpretations of this term: In some derivations
of RR this term is introduced ad hoc as necessary to assure
constancy of the speed of light u2 ¼ const [6,7]; There is
an effort to derive it based on the Lorentz-force of the
regularized self-field, see for example the work in Ref. [8]
which is further developing Dirac’s derivation of LAD [9],
we return to this issue below in Sec. III A. This controversial
term does not appear in our formulation.
In view of these difficulties, Landau-Lifshitz [10] pro-

posed an iterative scheme using dynamical equations to
eliminate higher derivatives. We show in Sec. III that for a
particle decelerated in the medium the Landau-Lifshitz-like
model of radiation friction predicts nonphysical behavior
for particle motion. This alone demonstrates the need to
find another method to incorporate RR into in-medium
particle dynamics. The validity for both LAD and LL
description is restricted to the classical domain of particle
behavior [11].
In Sec. IV we show that the “pure” Larmor-RR term

proportional to particle 4-velocity can be a natural conse-
quence of a suitable matter warping along the particle path.
To achieve this we characterize matter warping by an
explicit dependence of the metric on the particle path and
its acceleration. This naturally satisfies the requirement
discussed by Langevin [12] that “being accelerated” marks
the body in a distinct way in that the magnitude of time
dilation depends on the history of acceleration. We note that
Langevin’s remarks do not depend on the particle moving

only in vacuum, they retain in full their meaning for motion
in resistive material medium as well. We will return to the
more difficult case of motion in vacuum in the follow-
up work.
The present reformulation of RR contributes as well to a

better understanding of LAD, which has been interpreted as
the interaction of the charged particle with its own radiation
field [8]. However, both classical and quantum particles do
not move within their own Coulomb fields. With this in
mind, we posit that such particles should not be allowed to
move under the influence of their own radiation fields as
well. It is a textbook exercise, see Sec. 29.4 in Ref. [13], to
show that a charged accelerated particle in its instantaneous
comoving frame generates both the Coulomb field and the
radiative field and there is no relative motion with an
observer required to establish this. This is because, unlike
velocity, acceleration has an absolute meaning, and only in
the instantaneous comoving frame does the acceleration
4-vector have the pure spacelike format aμ ¼ ð0; a⃗Þ. Use of
matter warping naturally prevents the particle from being
accelerated by its own radiation field.
In Sec. V we implement the numerical solution for the

equations of motion and compare it to the motion without
radiation friction. We show that in the limit of high rapidity
and/or mechanical friction strength the radiation friction
loss is at most matching the mechanical friction energy
loss. We briefly consider application of such a model for
high energy particle collisions.

II. FRICTION FORCE IN MEDIUM

In this section we describe motion of a particle under the
influence of a covariant friction force in a resistive medium.
The form of the force is such that it reduces to the
Newtonian friction in the non-relativistic limit. We derive
the expressions for stopping distance, rapidity shift and loss
of energy and momentum. This force is present for both
neutral and charged particles, and the energy loss manifests
itself in general as heat dissipation.

A. Covariant equation of motion

The covariant equation of motion and the friction force
are given by

_uμ ¼ 1

m
F μ; F μ ¼ r

c
Pμ

νη
ν; ð1Þ

where r is the strength of the friction and Pμ
ν is the

projector on the orthogonal direction to 4-velocity uμ of the
particle

Pμ
ν ¼ δμν −

uμuν
c2

: ð2Þ

This ensures that our friction force is automatically
orthogonal to the 4-velocity. Finally, we denote the
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4-velocity of the medium as ην. For general choice of the
4-velocities

ημ ¼ ðγMc; γMvMÞ; uμ ¼ ðγc; γvÞ; ð3Þ

η · u ¼ γMγc2ð1 − βM · βÞ; ð4Þ

the zeroth and spatial components of the equation of the
motion Eq. (1) read

γ
dγ
dt

¼ r
mc

γMð1 − γ2ð1 − βM · βÞÞ; ð5Þ

γ
dγβ
dt

¼ r
mc

γMðβM − γ2ð1 − βM · βÞβÞ: ð6Þ

The energy balance, given by Eq. (5), is overall negative
when

βM · β < β2; ð7Þ

which means the particle loses energy due to friction. In the
opposite case the medium is moving faster than the particle
and the particle is being accelerated to match the velocity of
the medium. When βM ¼ β the particle reaches an equi-
librium state of rest with respect to the medium and the
friction force completely disappears.
Let us explore further the behavior of the friction force in

the rest frame of the medium when βM ¼ 0, γM ¼ 1 or in
4-vector notation

ημ ¼ ðc; 0; 0; 0Þ; η · u ¼ γc2: ð8Þ

In this case the components of Eq. (1) are

γ
dγ
dt

¼ r
mc

ð1 − γ2Þ; ð9Þ

d
dt

ðγβÞ ¼ −
r
mc

γβ: ð10Þ

We can always orient our coordinate system so that the
initial velocity of the particle coincides with one of
the coordinate axes. Consider that the particle enters the
medium in the x-direction. The perpendicular velocity then
remains zero for the duration of the particle’s travel and the
motion is entirely one-dimensional. In terms of rapidity y
satisfying

γ ¼ cosh y; γβ ¼ sinh y; β ¼ tanh y; ð11Þ

we can rewrite both equations Eqs. (9) and (10) as

dyðtÞ
dt

¼ −
r
mc

tanh yðtÞ; ð12Þ

which has a solution for initial rapidity yð0Þ ¼ y0

yðtÞ ¼ Arcsinh

�
sinhðy0Þ exp

�
−

r
mc

t

��
: ð13Þ

Note that if the velocity of the particle with respect to the
medium is small, β ≪ 1, the equation of motion Eq. (10)
becomes

m
dv
dt

¼ −
r
c
v; ð14Þ

which is a familiar Newtonian friction force linearly
proportional to velocity. In order to account for friction
with more complicated behavior than linear dependence on
velocity we need to replace the constant rwith a function of
relative velocity rðη · uÞ, which is manifestly a Lorentz
scalar. In such case the solution Eq. (13) would have to be
replaced by a numerical solution of Eq. (12) with a specific
function rðyÞ. The friction strength r is also in general a
function of the medium density.

B. Distance traveled and rapidity shift

Rewriting the solution yðtÞ in Eq. (13) as

sinh yðtÞ ¼ sinh y0 exp

�
−

r
mc

t

�
; ð15Þ

and using sinh y ¼ γβ, we can find solution for βðtÞ as

βðtÞ ¼ γ0β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ð 2rmc tÞ þ γ20β

2
0

q : ð16Þ

The distance traveled in the rest frame of the medium is
given by the integral

xðtÞ ¼ x0 þ
Z

t

0

βðt0Þcdt0

¼ x0 þ
Z

t

0

γ0β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ð 2rmc t

0Þ þ γ20β
2
0

q cdt0; ð17Þ

which can be evaluated as

xðtÞ ¼ x0 þ
mc2

r
ðArctanhðβ0Þ − ArctanhðβðtÞÞÞ

¼ x0 þ
mc2

r
ðy0 − yðtÞÞ: ð18Þ

The total distance traveled D until the particle comes to a
stop yðtsÞ ¼ 0 at time ts is simply

D ¼ ðxðtÞ − x0ÞjyðtsÞ¼0 ¼
mc2

r
y0: ð19Þ

By inverting Eq. (18) we can obtain y as a function
of x
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yðxÞ ¼ y0 −
r

mc2
ðx − x0Þ: ð20Þ

The rapidity shift per change in distance dy=dx is therefore
a constant

dy
dx

¼ −
r

mc2
: ð21Þ

This is the mechanical rapidity shift caused by the
medium’s resistance. In the case of charged particle motion
we also need to account for the additional radiation rapidity
shift effect. The description of this contribution is the main
focus of Secs. III and IV.

C. Energy and momentum loss

We now can consider the stopping power in terms of the
change of energy E ¼ mc2γ per unit of distance

dy
dx

¼ dArccoshðγÞ
dx

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p dγ
dx

¼ 1

mc2 sinh y
dE
dx

: ð22Þ

Therefore by substituting Eq. (22) into Eq. (21), we obtain

dE
dx

¼ −r sinh yðxÞ: ð23Þ

Clearly, when rapidity reaches zero in the rest frame of the
medium, the particle energy stops changing as expected.
Another way to write this expression uses

sinh y ¼ γβ ¼ p
mc

; ð24Þ

where p ¼ mγv is particle’s momentum. Then

dE
dx

¼ −
r
mc

p; ð25Þ

and conversely using the relativistic expression for energy
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2c2

p
dp
dx

¼ −
r

mc3
E: ð26Þ

Finally, energy and momentum can be expressed as

E ¼ mc2γ ¼ mc2 cosh y; ð27Þ

p ¼ mcγβ ¼ mc sinh y; ð28Þ

which we can evaluate either as a function of laboratory
time or position, using the solutions for rapidity yðtÞ
Eq. (13) and yðxÞ Eq. (20), respectively.

III. RADIATION FRICTION

This section introduces: (a) the “standard model” of RFF,
the Lorentz-Abraham-Dirac (LAD) equations of motion for
description of RR; and (b) Landau-Lifshitz reduction of
LAD differential order. We apply this procedure to our
problem of the charged particle moving in a resistive
medium. We present Landau-Lifshitz-like (LLL) equations
of motion for both Newtonian friction and friction with
strength generally dependent on η · u and discuss their
behavior. We show that the LLL model leads to nonphysi-
cal behavior for the particle motion.

A. LAD radiation friction in vacuum

The unresolved question of the consistent description of
accelerated charged particle motion including its radiation
and radiation friction is now well over a century old.
Indeed, the power radiated by such particle was first
described by Larmor at the end of the 19th century [14].
In a covariant form

P ¼ mτ0 _u2; ð29Þ

where the characteristic time τ0 reads

τ0 ¼
2

3

e2

4πε0εrmc3
¼ 2

3

αℏ
mc2εr

≈ 6.26 × 10−24 s; ð30Þ

for an electron in vacuum, where α ≈ 1=137.036, εr ¼ 1. If
we add a corresponding momentum change to Eq. (1) the
equation of motion reads

_uμ ¼? 1

m
F μ þ τ0 _u2

uμ

c2
: ð31Þ

We see that this expression does not preserve u2 ¼ c2

because _u · u ≠ 0. Further work by Abraham [15], Dirac
[9], and Lorentz [16] resulted in the formulation of the
LAD equation for accelerated charged particle motion

_uμ ¼ 1

m
F μ þ τ0

�
üμ þ _u2

uμ

c2

�
; ð32Þ

where the term proportional to the second derivative of
4-velocity is the so-called Schott term.
We consider this term controversial as briefly outlined in

the Introduction. In some very well-known LAD deriva-
tions it is added ad hoc to ensure u2 ¼ const [6,7].
However, search to justify this terms presence is offered
in derivations based on the Lorentz-force of the regularized
self-field [8]. This derivation clarifies that to justify the
Schott term one must posit that a particle can experience its
own self-force. This cannot be the case if classical
dynamics arises in a limiting process of quantum physics,
where such a self-force for matter particles (fermions) is not
possible (see [17], p. 533).
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The Shott term is the origin of the theoretically unwel-
come second order proper-time derivative of the 4-velocity.
This leads to a number of unresolved issues with initial
conditions, causality, runaway and preaccelerated solutions
[18,19]. This field of study remains very active till this day,
with recent publications exploring particles of finite extent
and their point limit [20] and improving as noted the
methods explored in [8]. Lastly, and of fundamental
importance, the Schott term is the critical obstacle in many
failed efforts to find a variational principle formulation of
RR—in absence of such a formulation the charged particle
dynamics with RR lacks conservation laws required in a
complete and consistent description.
Currently there are two main approaches aiming to

resolve the issue of the LAD formulation. The first is to
impose appropriate boundary and asymptotic conditions on
the solution so that the nonphysical solutions are discarded
[21]. This approach is difficult to implement for problems
which require numerical solutions. Instead wewill compare
our results with a second approach of the Landau-Lifshitz
(LL) model [10] which approximates the LAD equation by
iterating the acceleration due to external force and expand-
ing into powers of the parameter τ0. This approach reduces
the order of the equation of motion and thus resolves the
known issues of the LAD formulation at the expense of
approximation of the full radiation reaction.
Spohn [22] showed that LAD restricted onto a physical

manifold produces the LL series, so both approaches lead
in certain environment to the same dynamics. However, this
is not the case in the study of electron stopping by a frontal
light plane wave, see Ref. [23]. This occurs because a
traveling light wave front creates a quasimaterial edge for
an incoming particle. This resembles, but is not exactly the
same as, the case of the material medium we look at next.

B. Landau-Lifshitz-like RR in medium

1. Constant material friction

For our system in the zeroth order in τ0, the acceleration
is given by the external force

_uμð0Þ ¼
r
mc

Pμ
νη

ν: ð33Þ

By substituting this expression to the radiation friction term
in Eq. (32) we obtain for the second derivative of 4-velocity

üμð0Þ ¼
r
mc

_Pμ
νη

ν ¼ r
mc

�
−
_uμð0Þðη · uÞ

c2
−
uμð _uð0Þ · ηÞ

c2

�

¼ −
r2

m2c4
ðPμ

νη
νðη · uÞ þ uμðη · P · ηÞÞ;

ð34Þ

and for the square of acceleration in the zeroth order in τ0

_u2ð0Þ ¼
r2

m2c2
ðη · P · P · ηÞ ¼ r2

m2c2
ðη · P · ηÞ; ð35Þ

because of the property of the projector P2 ¼ P. We see
that the Larmor term cancels with one of the two terms
arising from the Schott term and the final Landau-Lifsthitz-
like (LLL) equation of motion reads

_uμð1Þ ¼
r
mc

Pμ
νη

ν − τ0
r2

m2c4
ðη · uÞPμ

νη
ν: ð36Þ

The zeroth component of this equation in the rest frame of
the medium is

γ
dγ
dt

¼ r
mc

ð1 − γ2Þ − τ0
r2

m2c2
γð1 − γ2Þ; ð37Þ

and in terms of rapidity Eq. (11) we have

dy
dt

¼ −
r
mc

tanh yþ τ0
r2

m2c2
sinh y: ð38Þ

In the second term of Eq. (38) we see a reversal in the sign.
The effect of radiation friction is then, up to the first power
in τ0, to increase the energy of the particle experiencing
deceleration in a medium. Moreover, the rapidity has to
satisfy

y < arccosh

�
mc
τ0r

�
; ð39Þ

otherwise the radiation friction overpowers the mechanical
friction. Teitelboim et al. [24] argue that both, LAD
equation and its LLL reduction are unjustified when the
radiation friction force is comparable to the driving external
force. Violation of this condition in the medium results in a
runaway solution which is clearly an unacceptable behav-
ior. As the Lorentz force is not relevant in the material
friction case, the incompatibility must originate more
fundamentally with the LAD extension.

2. Variable material friction in LLL approach

The derivation above assumes that the radiation friction r
is constant. If we evaluate LLL model for nonconstant r as
a function of η · u, then the covariant equation of motion up
to first order in τ0 is

_uμð1Þ ¼
r
mc

Pμ
νη

ν

þ τ0
r

m2c2

�
−r

η · u
c2

þ dr
dðη · uÞ ðη · P · ηÞ

�
Pμ

νη
ν;

ð40Þ

and the zeroth component in the rest frame of the
medium is
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γ
dγ
dt

¼ r
mc

ð1 − γ2Þ

þ τ0
r

m2c2

�
−rγ þ dr

dγ
ð1 − γ2Þ

�
ð1 − γ2Þ: ð41Þ

Such LLL friction term has a chance of having negative
contribution to energy if

dr
dγ

< −
rγ

γ2 − 1
: ð42Þ

This cannot happen in the nonrelativistic limit, because
dr=dγ would have to go to minus infinity. The terms
exactly cancel when

r ∝
1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ¼ 1

γβ
¼ mc

p
: ð43Þ

In such a case there is no radiation friction according to the
LLL approach. We introduce this example of mechanical
friction with the friction coefficient r depending inversely
on momentum to present the singular case when radiation
friction force disappears completely. For more realistic
models of mechanical friction, when the coefficient r grows
with momentum, the inequality in Eq. (42) shows that the
LLL terms add energy to the system. We conclude that
the conventional LAD radiation reaction combined with
LLL reduction of the order of differentiation produces an
unacceptable description of radiation friction in a material
medium, even when the friction strength is an arbitrary
function of relative velocity.

IV. MATTER WARPING

Here we propose an alternative radiation friction model
for the case of motion in matter medium. We show that
formally we can introduce radiation friction in medium
through matter warping while keeping the form of the
covariant Larmor formula. This allows us to formulate the
dynamics without higher order derivatives and with self-
consistent formula for the magnitude of acceleration. As the
driving force we take the covariant mechanical friction
force. We establish equations of motion for such a system
in the warped matter model and evaluate stopping power.

A. General considerations

As already noted in the introduction, our warped path
formulation is not requiring exploration of space-time
beyond the particle path: We start with the equation of
motion with only the Larmor term present

_uμ ¼ 1

m
F μ þ τ0 _u2

uμ

c2
: ð44Þ

This specific form of the equation of motion is our choice
of collective medium response model to accelerated

charged particle motion, guided by the visual similarity
with Eq. (31), mathematical tractability, and interpretability
of the results i.e., mathematical simplicity and beauty.
Instead of adding a second order derivative Schott term we
assume path-warped metric allowing us to impose the
condition

u2 ≡ gμνuμuν ¼ c2 ð45Þ
i.e., the 4-force remains orthogonal to 4-velocity. To see
this we multiply Eq. (44) by gμνuν to obtain

_u · u ¼ τ0 _u2: ð46Þ
If we use this identity in Eq. (44) we derive an expression
which is explicitly orthogonal to uμ

_uμ − ð _u · uÞ u
μ

c2
¼ 1

m
F μ; ð47Þ

suggesting that the covariant friction is proportional to the
product of 4-velocity and 4-acceleration _u · u, which is
normally zero. Upon differentiating the condition u2 ¼ c2

Eq. (45) with respect to proper time we obtain

_u · u ¼ −
1

2

dgμν
dτ

uμuν; ð48Þ

which is a condition for components of the metric.
Equations (44)–(48) provide a consistent characterization
of the magnitude of acceleration _u2. The square of this
expression reads

_u2 ¼ 1

m2
F 2 þ τ20

_u4

c2
; ð49Þ

which is a quadratic equation for _u2 with solutions

_u2 ¼ c2

2τ20

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

τ20
c2

F 2

m2

s !
: ð50Þ

We take the minus sign as the physical solution, because it
reduces in the limit τ0 → 0 to the usual expression
_u2 ¼ F 2=m2. This expression can be further simplified to

_u2 ¼ 2F 2=m2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

τ2
0

c2
F 2

m2

q : ð51Þ

It is worth noting that as F 2 → 0 then also _u2 → 0 and
conversely as F 2 → −∞ the growth of _u2 is damped.

B. Specific warped matter model

In order to avoid mixing the spatial and time components
we will assume that the metric is diagonal and in our 1D
situation we choose a parametrization
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gμν ¼ diagðf20;−f2;−1;−1Þ: ð52Þ

In the following we will suppress the two trivial degrees of
freedom. The proper time of the particle is by definition

dτ ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

dxμ

dt
dxν

dt

r
dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f20 −

f2

c2

�
dx
dt

�
2

s
dt; ð53Þ

where we took the position 4-vector as xμ ¼ ðct; xÞ. We can
then perform a coordinate transformation from dt and dx to
measurable quantities

dtlab ¼ f0dt; dxlab ¼ fdx; ð54Þ

which simplifies the increment of proper time to

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

c2

�
dxlab
dtlab

�
2

s
dtlab: ð55Þ

If we define the true physical velocity of the particle as

v≡ dxlab
dtlab

¼ f
f0

dx
dt

; ð56Þ

we can write the gamma factor in the usual form

γ ¼ dtlab
dτ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p : ð57Þ

Note that the transformation Eq. (54) is a transformation to
flat space coordinates, as can be seen by evaluating

ds2 ¼ gμνdxμdxν ¼ c2dt2lab − dx2lab: ð58Þ

The coordinate 4-velocity uμ that enters our equation of
motion is given by

uμ ≡ dxμ

dτ
¼ γ

�
dct
dtlab

;
dx
dtlab

�
¼ γ

�
c
f0

;
v
f

�
: ð59Þ

Here uμ is the quantity in terms of which the equation of
motion is formulated, thus it is tempting to look at it as
the actual 4-velocity. However, a more robust theoretical
framework is needed to give uμ a physical meaning and this
will be required for the solution of the vacuum case. This
expression satisfies u2 ¼ c2 Eq. (45) as expected and
energy of the particle is given by the usual expression

E ¼ γmc2: ð60Þ

For the 4-velocity of the medium we can write analogically

ημ ¼ γM

�
c
f0

;
vM
f

�
; ð61Þ

preserving η2 ¼ c2. Therefore the right-hand side (rhs) of
the equation of motion Eq. (47) in the rest frame of the
medium reads

1

m
F μ ¼ r

mc
Pμ

νη
ν ¼ r

mc

�
ημ −

uμ

c2
ðη · uÞ

�

¼ r
mc

�
c
f0

ð1 − γ2Þ;− γ2

f
v

�
; ð62Þ

which is equivalent to rescaling the zeroth component of
the force by f0 and spatial component by f. Note that r can
be in general a function of η · u to account for more
complicated mechanical friction than Newtonian friction,
but this fact does not modify our derivation and holds true
throughout the current section (Sec. IV). Finally, we can
evaluate the dot product _u · u using Eq. (48)

_u ·u¼−
1

2

df20
dτ

γ2c2

f20
þ1

2

df2

dτ
γ2v2

f2
≡−Aγ2c2þBγ2v2; ð63Þ

where we denoted

A≡ d
dτ

ln f0; B≡ d
dτ

ln f: ð64Þ

Now we are prepared to establish the equations of motion.

C. Radiation energy loss in our model

If we substitute the 4-velocity Eq. (59), the force
Eq. (62), and the dot product Eq. (63) to the equation of
motion Eq. (47) we obtain for the zeroth component

d
dτ

�
γ

f0

�
þ ðAγ2c2 − Bγ2v2Þ γ

f0c2
¼ r

mcf0
ð1 − γ2Þ: ð65Þ

The first term can be further expanded

d
dτ

�
γ

f0

�
¼ γ

f0

dγ
dtlab

−
1

f20
γ
df0
dτ

¼ γ

f0

dγ
dtlab

−
γ

f0
A: ð66Þ

Finally, by substituting back to Eq. (65) and multiplying by
f0=γ we have an expression for the change in gamma factor

dγ
dtlab

¼ r
mcγ

ð1 − γ2Þ þ Að1 − γ2Þ þ Bγ2β2: ð67Þ

Similarly for the spatial component of Eq. (47)

d
dτ

�
γv
f

�
þ ðAγ2c2 − Bγ2v2Þ γv

fc2
¼ −

rγ2

mf
v: ð68Þ

For the first term in Eq. (68) we evaluate the derivative
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d
dτ

�
γv
f

�
¼ γ

dγ
dtlab

v
f
−

1

f2
df
dτ

γvþ γ2

f
dv
dtlab

¼ γ
dγ
dtlab

v
f
−
γ

f
Bvþ γ2

f
dv
dtlab

: ð69Þ

If we use Eq. (67) for change in γ and substitute back to
Eq. (68) then after several cancellations we obtain

γ2

f
dv
dtlab

¼ −
r
mc

v
f
− ðA − BÞ γv

f
; ð70Þ

which if we multiply by f=γ2c becomes

dβ
dtlab

¼ −
r
mc

β

γ2
− ðA − BÞ β

γ
: ð71Þ

We can use identity 1þ γ2β2 ¼ γ2 to further simplify the
zeroth part Eq. (67) and write the components of the
covariant equation of motion in a final form

dγ
dtlab

¼ r
mcγ

ð1 − γ2Þ þ ðA − BÞð1 − γ2Þ; ð72Þ

dβ
dtlab

¼ −
r
mc

β

γ2
− ðA − BÞ β

γ
; ð73Þ

which are mutually equivalent. Although the metric gμν is
specified by two unknowns, A and B, the dynamics of the
particle motion depends only on their difference

A − B ¼ d
dτ

ln
f0
f
; ð74Þ

which means that any arbitrary factor rescaling the whole
metric does not change the motion. Therefore we can set
either A or B to zero and evaluate the other without any loss
of generality.

D. Stopping power and limiting cases

We assume that the more general equation of motion
Eq. (47) is in the form of Eq. (44) where the friction term is
given by the Larmor formula. Combining expressions for
_u · u in Eqs. (46) and (48) we can equate

τ0 _u2 ¼ −
1

2

dgμν
dτ

uμuν; ð75Þ

where the self-consistent magnitude of acceleration _u2 was
evaluated in Eq. (51) and the right-hand side is given in our
metric as Eq. (63)

2τ0F 2=m2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

τ2
0

c2
F 2

m2

q ¼ −Aγ2c2 þ Bγ2v2: ð76Þ

The square of the external force can be computed using
equation Eq. (62)

1

m2
F 2 ¼ 1

m2
gμνF μF ν ¼ r2

m2
ð1 − γ2Þ: ð77Þ

Notice that this expression does not depend on the metric
and is equal to the square of the external force in the flat
space-time. As discussed above we can set A ¼ 0 and
evaluate B

B ¼ −2τ0 r2

m2c2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

τ2
0

c2
r2

m2 γ2β2
q ; ð78Þ

where we used the identity 1 − γ2 ¼ −γ2β2. Using this
solution in the equations of motion Eqs. (72) and (73)
yields

dγ
dtlab

¼ r
mcγ

ð1 − γ2Þ þ 2τ0
r2

m2c2 ð1 − γ2Þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

τ2
0

c2
r2

m2 γ2β2
q ; ð79Þ

dβ
dtlab

¼ −
r
mc

β

γ2
−

2τ0
r2

m2c2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

τ2
0

c2
r2

m2 γ2β2
q β

γ
: ð80Þ

From Eq. (79) we can calculate the radiation energy loss in
powers of τ0

dE
dtlab

����
RF

¼ mc2
dγ
dtlab

����
RF

¼ τ0
r2

m
ð1 − γ2Þ þOðτ30Þ; ð81Þ

which matches the covariant Larmor energy loss formula
Eq. (29) with 4-acceleration given purely by the exter-
nal force.
In terms of stopping power dE=dx we can convert

Eq. (79) to

dE
dxlab

¼ dE
dxlab

����
M
−

2τ0
mc ð dE

dxlab

���
M
Þ2 coth y

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

τ2
0

m2c2 ð dE
dxlab

���
M
Þ2

r ; ð82Þ

where the dE=dxlabjM is the stopping power caused by the
medium friction given by Eq. (23). The two important
limiting cases are determined by critical mechanical stop-
ping power

dE
dxlab

����
crit

≡mc2

cτ0
¼ 3

2

ðmc2Þ2
αℏc

≈ 0.27εr MeV=fm; ð83Þ

where the value given is for an electron in an environment
with relative permittivity εr.
If mechanical stopping power is much higher than the

critical stopping power the radiation friction part of the
stopping power is approximately
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dE
dxlab

����
RF

≈
dE
dxlab

����
M
coth y: ð84Þ

In the opposite case, when mechanical stopping power is
much less than the critical stopping power,

dE
dxlab

����
RF

≈
dE
dxlab

����
M

0
B@ dE

dxlab

���
M

dE
dxlab

���
crit

1
CA coth y: ð85Þ

Note that if y → 0 then the stopping power in medium also
goes to zero as sinh y, so the expression is well behaved.

V. MOTION EXAMPLES

With the dynamics developed in the previous section
(Sec. IV) we can evaluate the motion of the radiating
charged particles and compare to the LLL model (Sec. III)
and to the motion without any radiation friction (Sec. II).
This section presents numerical solutions for the particle
motion in each of the three situations with the underlying
Newtonian mechanical friction force. We show that our
model unlike the LLL model increases, as expected, the
energy loss due to radiation friction. This additional energy
loss can at most match the mechanical friction loss in the
medium in the limit of high rapidity or friction strength.
Finally, we discuss possible experimental applications of
our model for high energy particle collisions.

A. Solution of dynamical equations

Let us define a unitless friction strength

r̃≡ rτ0
mc

¼ r
dE=dxlabjcrit

; ð86Þ

then we can write the equation of motion Eq. (80) as

dβ
dtlab=τ0

¼ −r̃
β

γ2
−

2r̃2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γ2β2r̃2

p β

γ
: ð87Þ

Switching to rapidity Eq. (11) we obtain

dy
dtlab=τ0

¼ −r̃ tanh y −
2r̃2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r̃2sinh2y

p sinh y: ð88Þ

For comparison the LLL model Eq. (38) gives us an
equation for rapidity

dy
dtlab=τ0

¼ −r̃ tanh yþ 2r̃2 sinh y: ð89Þ

These expressions are suitable for numerical analysis. Let
us consider motion with initial rapidity y0 ¼ 7 and r̃ ¼
10−3 to demonstrate the character of the solution. Figure 1
shows rapidity as a function of time for both our model and

the LLL model as propagated by the RK4 integration
scheme. Note that the condition Eq. (39) is satisfied to
prevent runaway solutions in the LLL model. The dashed
line indicates the analytical solution without any radiation
friction Eq. (13). We see that in the LLL model, the particle
decelerates more slowly than without radiation friction and
in our model faster. The behavior of our model should
match our intuition as the “correct” physical behavior
where both sources of friction impede the particle’s motion.
Stopping power can be evaluated by diving the whole

expression Eq. (88) with β ¼ tanh y because dxlab ¼ βcdtlab

dy
dxlab=cτ0

¼ −r̃
�
1þ 2r̃ cosh y

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r̃2sinh2y

p �

≡ r̃ð1þ ΔÞ; ð90Þ

where distance ismeasured in units of cτ0 andΔ is the relative
change from the case without any radiation friction. Figure 2
shows possible values for Δ for selected unitless friction
strengths r̃ and range of rapidities y. We see that the radiation
friction at most doubles the stopping power dy=dxlab.
With our choice of parameters the stopping distanceD is

in the case without radiation friction given by Eq. (19),
which in unitless quantities reads

D
cτ0

¼ y0
r̃
¼ 7 × 103: ð91Þ

As can be seen from the trajectories in Fig. 3 with radiation
friction present, the particle in our model stops in a
significantly shorter distance and for the LLL model it
travels further. Figure 4 demonstrates that initially the
stopping power is doubled for high rapidities and as particle
slows down the radiation friction contributes less and less.

FIG. 1. Rapidity as a function of time for our model, LLL
model and analytical solution without radiation friction. Initial
condition yð0Þ ¼ 10−3 and r̃ ¼ 10−3.
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B. Experimental verification

From the expression for the critical stopping power
Eq. (83) we see that a very high energy loss is needed to
reach significant radiation friction. However, the typical
stopping power of proton beams in a material medium is on
the order of 1–100 MeV=cm [25] and this applies also to
many other particles. This value is many orders of magni-
tude too small to induce sizable radiation energy production.
This value is of course dependent on the density of the
medium and varies with the energy of the particle. But even
at the high end of the range, such stopping power is only a
10−11 fraction of the critical stopping power.
We conclude that in normal materials with atomic

structure, RR induced by the material stopping power is
negligible, hence RR induced by MFF is negligible too.

However, microscopically the particle motion is also
experiencing Coulomb scattering off atomic nuclei of the
medium with high accelerations, which at each scattering
event contribute to the bremsstrahlung [26]. In this work we
do not consider these microscopic processes as we do not
want to deal with EM forces presently.
Our RR effect is highly relevant in the experimental

environment of quark-gluon plasma, particularly in appli-
cation to parton jet quenching processes. In the case of fast
moving quarks the continuous medium covariant friction
model is justified because quark-gluon plasma is success-
fully modeled as a fluid, beginning with the seminal work
of Bjorken [27]. The value for the critical stopping power
Eq. (83) for up- and down-quarks is

dE
dxlab

����
crit
ðuÞ ¼ 11.4εr MeV=fm; ð92Þ

dE
dxlab

����
crit
ðdÞ ¼ 204εr MeV=fm; ð93Þ

where we used for the mass of the up-quark mu ¼
2.2 MeV=c2, and of the down-quark md ¼ 4.7 MeV=c2,
respectively. Since the up-quark has a higher fractional
charge and a lower mass, the required critical mechanical
stopping power is significantly lower when compared to the
down-quark. Electrically charged quarks approaching criti-
cal mechanical friction would then emit significant amount
of (soft) electromagnetic radiation. In addition there is the
possibility of superluminal Cherenkov radiation, and a
further small contribution of acoustic wave production.
According to work of Baier et al. [28] collisional

stopping power of light quarks in a quark-gluon plasma
at T ¼ 0.25 GeV is on the order of 200–300 MeV=fm.
Additional contributions arise from gluon-emission friction

FIG. 3. Distance traveled by the particle as a function of time
for initial rapidity y0 ¼ 7 and friction strength r̃ ¼ 10−3. We
show results with and without radiation friction and for the LLL
model. Dotted line marks the stopping distance without radiation
friction.

FIG. 4. Relative change of the stopping power [see Eq. (90)] as
a function of distance for initial rapidity y0 ¼ 10 and friction
strength r̃ ¼ 10−3.

FIG. 2. Relative change of the stopping power [see Eq. (90)] if
we consider radiation friction for selected friction strengths r̃ and
range of rapidities y.
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and other strong field effects. Certainly, the up-quark
mechanical friction is supercritical leading to a significant
EM radiation energy emission according to Eq. (84). A full
study of EM emissivity by quark jets would require incor-
poration of electrical permittivity of quark-gluon plasma and
is well beyond our current scope. Excess soft photon
emission in QGP has already attracted attention of the
heavy-ion community. For a full discussion of relevant work
see Sec. 3.3 in Ref. [29], most recent experimental results are
found in Ref. [30]. Further effort to explore this effect in the
context of our theoretical framework is warranted.

VI. FUTURE WORK AND CONCLUSIONS

In the forthcoming work we hope to investigate other,
less material environments. A study of EM interaction has,
as we have mentioned, the challenge of reconciling the
form of the Lorentz force with that of Maxwell’s equations.
Therefore a training nonmaterial problem in study of RR is
an exploration of charged particle dynamics in presence of
an external scalar force field. In this case the field dynamics
providing the Larmor RR term is decoupled from the force
form, which is nonmaterial and thus reaching beyond the
case considered in this work. We plan to return to this
example after a short delay.
A further forthcoming training exercise is the study of

RR for particles under influence of an externally prescribed
constant electromagnetic field. There is in particular a very
good reason to take a second look at the constant field case:
The LAD or LL format of RR may not correctly describe
the physical reality of a constant EM field. For example, a
well known prediction of the LL model is that a particle
linearly accelerated by an electric field (so-called hyper-
bolic motion) does not feel any radiation friction and yet
produces radiation. This is due to the contribution of the
Schott term in the equation of motion, which in this special
case exactly balances out the Larmor term, a situation that
is subject to ongoing discussion [31,32].
Even though a novel RR force patterned after this work

requires establishment of consistency between the Maxwell
field equations and the equation governing the particle
motion we are optimistic that our proposed new ideas, the
warped path approach, may succeed. What encourages us to
pursue constant fields is that for an observer, for whom the
energy-momentum tensor Tμ

ν of the constant external
electromagnetic field is diagonal, we obtain the metric

gμνðτÞ ¼ ημα exp

�
2
τ0e2

m2
Tα

ντ

�
; ð94Þ

which exactly reproduces to the first order in τ0 the Landau-
Lifshitz format of the equations of motion.

Another particularly interesting RR study involves the
motion of particles in plane wave fields. The well-studied
case of electron interaction with a light wave edge is here of
particular interest [23]. This case was explored using the LL
approach, and critical acceleration effects were demon-
strated. A self-consistent warped path-metric formulation
of RR could lead to directly verifiable experimental out-
comes using present day experimental pulsed laser facilities.
Another possible extension we would like to pursue is

the development of a variational principle for RR force
using the here proposed warped path model. Unlike LAD
or LL models where a variational principle was never
established, the warped path formulation has a better
chance of arising from a specific covariant action since
the resultant equations of motion do not contain higher
order derivative terms.
To conclude: We have shown that it is possible to

describe mechanically decelerated particle energy loss
due to radiation friction without introducing the Schott
force term and instead we proposed warped matter modi-
fication along the particle’s path. Our approach resolves
well known contradictions: For example, the Landau-
Lifshitz-like procedure predicts that particles would gain
energy, presumably due to interaction with its own radi-
ation field [8]. The warped path approach does not
introduce such an interaction and the total energy loss
remains consistent with the Larmor radiation energy loss
formula. Therefore a conceptual advantage of our proposed
reformulation of RR is that we do not need to provide an
interpretation of the causality difficulties created by the
contorted derivation and implementation of LAD. There is
no self-acceleration without external force possible in our
approach.
We have shown that when solved consistently, radiative

fields are given by particle acceleration due to both external
force and radiation friction. The prediction of such a self-
consistent calculation is that the radiation friction at most
doubles the “mechanical” energy loss, see Fig. 2. This
result is intuitively and theoretically satisfactory and it can
have some interesting experimental consequences awaiting
study in parton jet quenching processes in quark-gluon
plasma.
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