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We propose an improved quark coalescence model for spin alignment of vector mesons and polarization
of baryons by spin density matrix with phase space dependence. The spin density matrix is defined through
Wigner functions. Within the model we propose an understanding of spin alignments of vector mesons ¢

and K*0 (including K*0) in the static limit: a large positive deviation of py, for ¢ mesons from 1/3 may

come from the electric part of the vector ¢ field, while a negative deviation of py, for K** may come from

the electric part of vorticity tensor fields. Such a negative contribution to py, for K** mesons, in comparison

with the same contribution to p, for ¢» mesons which is less important, is amplified by a factor of the mass
ratio of strange to light quark times the ratio of (p2) on the wave function of K*° to ¢ (p,, is the relative
momentum of two constituent quarks of K* and ¢). These results should be tested by a detailed and

comprehensive simulation of vorticity tensor fields and vector meson fields in heavy ion collisions.
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I. INTRODUCTION

The Barnett effect [1] and the Einstein-de Haas effect [2]
are two well-known effects in materials to connect rotation
and spin polarization which can be converted from one
to another. Similar effects also exist in ultrarelativistic
heavy-ion collisions (HIC), in which a huge orbital angular
momentum (OAM) can be generated in the direction
perpendicular to the reaction plane and is transferred to
the hot and dense medium in the form of the global
polarization of hadrons [3-8] (see, e.g., [9—12], for recent
reviews). In microscopic scenarios the transfer of OAM to
spin polarization of hadrons is through the spin-orbit
coupling in particle scatterings [3,8,13,14], while in macro-
scopic approaches it is through the spin-vorticity coupling
in the fluid [15-22]. The global polarization can be
measured through the polarization of hyperons such as
A (including A hereafter) since they have weak decay
channels [3]. The STAR collaboration has recently mea-
sured a nonvanishing global polarization of A hyperons in
Au + Au collisions at /syy = 7.7-200 GeV [23,24].

In principle vector mesons can also be polarized in
heavy ion collisions, but the polarization of vector mesons
cannot be measured since they mainly decay through strong
interaction. Instead, pg,, the 00-element of the vector
meson’s spin density matrix, can be measured through
the angular distribution of its decay daughters [4,25]. If
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poo # 1/3, the distribution is anisotropic and the spin of the
vector meson is aligned to the spin quantization direction.
In 2008, the STAR collaboration measured pg, for the
vector meson ¢(1020) in Au + Au collisions at 200 GeV,
but the result is consistent to 1/3, indicating no spin
alignment within errors [26]. Recent preliminary data of
STAR for the ¢ meson’s py, (denoted as pﬁ’o hereafter) at
lower energies show a significant positive deviation from
1/3, which is beyond conventional understanding of the
polarization [27]. In Ref. [28], some of us proposed that

such a large positive deviation of pg’o from 1/3 may
possibly be explained by the ¢ field. In such a proposal
[28], a quark coalescence model is employed which is
based on spin density operators in momentum space [25].
As the quark polarization comes mainly from vorticity and
vector meson fields which are functions of space-time, the
space dependence of the quark polarization in Ref. [28] is
put in a phenomenological way. The purpose of this paper
is to improve the quark coalescence model of Ref. [25] by
defining and using spin density operators in phase space
with the help of spin Wigner functions. In such an
improved quark coalescence model, the quark polarization
as a function of space-time can be treated in a rigorous and
systematic way. So one can then naturally describe spin
alignments of vector mesons such as ¢ and K*° (including
K0 if not stated explicitly) as functions of space-time. It is
expected to implement the improved coalescence model in
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real time simulations and to provide insights in spin
alignments of vector mesons.

The paper is organized as follows. In Sec. II, we
formulate the improved coalescence model through the
spin density matrix in phase space with coordinate depend-
ence. In Sec. III, we give spin polarization of quarks in
phase space from vorticity and vector meson fields. In
Sec. IV, we analyze global and local polarization of A
(including A if not stated explicitly) using the improved
coalescence model. In Sec. V, using the improved coa-
lescence model we formulate spin alignments of vector
mesons ¢ and K*. In Sec. VI, we solve the Klein-Gordon
equation to give vector meson fields generated by point
charge sources. Finally we make a summary of the results.

Notations and conventions. We adopt the sign conven-
tion for the metric tensor ¢** = (1,—1,—-1,—-1). A four-
vector is represented by Greek indices, e.g, x* or p* with
u=0,1,2,3. A three-vector is represented in a boldfaced
symbol, e.g., x or p. The components of a three-vector is
represented by the Latin index, but we do not distinguish
the superscript and subscript, for example, we do not
distinguish x’ and x; with i = 1, 2, 3. We use the shorthand
notation [d°p] = d*p/(2x)3.

II. SPIN DENSITY MATRIX AND QUARK
COALESCENCE MODEL IN PHASE SPACE

In Ref. [25], a quark coalescence model is constructed
based on the spin density matrix in momentum represen-
tation. In order to describe space-time dependence of spin
polarization, we need to formulate an improved coales-
cence model through the spin density matrix in phase space
with coordinate dependence. We work at the formation time
t of a hadron, for simplicity of notation, throughout the
paper we suppress the time dependence of all quantities
unless it is necessary to show it explicitly.

In momentum representation, the spin density operator
for single particle states is defined as [25]

QZ/”P -P)

where w(s, p) is the weight function corresponding to the
particle state with spin s and momentum p, € is the space
volume, and the spin-momentum state |s,p) is the direct
product of the spin state and the momentum state,
|s, p) = |s)|p). The weight function is given by

s.p){s.pl.  (2.1)

w(s.p) = (s.plpls. p). (2.2)
which satisfies the normalization condition Trp = 1 equiv-

alent to

(2.3)

;/mem=

The definition and convention of single particle states in
nonrelativistic quantum mechanics are given in the
Appendix A.

For the quark and antiquark with spin 1/2, the weight
functions have the form

wlals.p) = 3 fo(B)[1 + 5Py(p)]

w(d]s. )=—fq(p)[ + sP5(p)l. (2.4)
where s = =+ label two spin states with s, = £1/2 in the
spin quantization direction z, and fq/5(p) and Pg/5(p)
denote the distribution and polarization of the quark/
antiquark respectively. Here the quark polarization is
normalized to 1 and given by

w(q|+,p) —w(q|-,p)
w(q|+,p) +w(q|—,p)

Py(p) = (2.5)

The polarization for antiquark Py(p) has the same form as
above. We note that generally the weight functions (2.4) are
2 x 2 matrices in spin space. Throughout this paper we
assume that they are diagonalized in the spin quantization
direction.

Now we generalize (2.1) by introducing the space
variable into the density operator as

p=3 [ [idptsxp)
x/[d%ﬂ e x5 p+3) (5.0 -3

We see that the momenta of state bases differ by q with x
being its conjugate position. The weight function w(s, X, p)
is actually the Wigner function which can be obtained by
projecting the above density operator onto two states with
the same spin and different momenta

wisoxp) = [ldalen(s.p+ o

5.p — %> (2.7)

By an integration over x for w(s, X, p) one can recover the
weight function (2.2), therefore the normalization condition
for w(s, x,p) reads

¥/d3X/[d3p]W(s,xyp) = 1.

From above condition one can see that w(s,X,p) is
dimensionless. For the quark and antiquark, with new
) we have similar formula
to Egs. (2.4), (2.5) with the distribution f/(x,p) and
polarization Pg/5(x,p) as functions in phase space.

(2.8)
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A. Mesons

To describe the formation of mesons from a quark and an
antiquark, we define the spin density operator for a quark-
antiquark pair

=2 [ [

51,52 41,02

p]l@p,] / Pl

X w(q|s1, X1, P1)w(Go| 52, Xa, Pp) e/ X1 g7 X2
~ q; q
S LIRSS SR S 22>
= (l
X <Q1’Q2251»S2;P1 “Lp -2 (2.9)

where q; =u,d,s and G, = 4, d, s denote the quark and
antiquark respectively, the sum over quark and antiquark
flavors have been taken, the quark-antiquark state is the
direct product of the quark state and the antiquark state

2 2

_ q q
d1,925 81, 52;P1 + P2 + 2>

ai\ |- q
= |91 51 P1 +71> Q2» 52, P2 +72>
q
= la1.G2)s1. 52) [P + 3 ) Lpyt 22> (2.10)
where |q1,c'12> |q1)|q>) is the flavor state for the quark-

antiquark pair, and s, s, = £1/2 denote spins of the quark
and the antiquark in the quantization direction. All quan-
tities with index “1”” and “2” in (2.9) and (2.10) are those of
the quark and antiquark respectively. The Wigner functions
have similar forms to (2.4),

5x.0) = 5 fy(x. D)1 + Py (x. D)

w(

w@lsxp) = 3 fax. P +sPo(xp) (211)
The polarization Pg/5(x,p) can be determined from the
Wigner function w(q/q|s, X, p) in a similar way to (2.5).
Note that we do not include color wave functions for
hadrons since they are totally decoupled from other parts of
wave functions. As we have mentioned, the spin Wigner
functions in (2.11) are generally 2 x 2 matrices in spin
space, but throughout the paper we assume that they are
diagonalized in the spin quantization direction.

To obtain spin density matrix elements of mesons, we
put pgg between two meson states

pl‘;{fl *S:’l (X’p)

:/[d3q]eiq'x<M;S,Sz1;p+g’pqq‘M;S,Sﬁ;p—g>,

(2.12)

P1

FIG. 1.
frame.

Quark positions and momenta inside a meson in its rest

where M labels the type of the meson, S and S, denote spin
states which are the total spin and spin in a quantization
direction (chosen to be +z or any direction) respectively,
and p + q/2 and p — q/2 label two momentum states. The
details of the evaluation of (2.12) are given in Appendix B.
The result is

A (x.p) = / 3, [y ][y exp (—igy - X5)

« q q
X Py (Pb + 7b> Pm <Pb - 7b>

X p
XZW(Q1|S1’X+ ! ) P)

S1,82

_ X, P
XW<Q2S27X—7}’75—P17)
x (S, 8, $2) (815 . S2), (2.13)

where ¢y, is the meson wave function in relative momen-
tum between the quark and the antiquark, and x,, p, and q,
are relative position and momenta which are related to
positions and momenta of the quark and the antiquark in
(B4). Equation (2.13) is one of the main results in
this paper.

For convenience of notation, hereafter we use x; =
X+x,/2, p1=P/2+Py, Xa=X-Xp/2, and p, =
p/2 — p,, see Fig. 1 for illustration. These relations can
be obtained from (B4) by setting x, = x and p, = p

A simple choice of the meson wave function gy (k) is
the Gaussian distribution [29,30]

o) = (25 e (- 5). 219

2
2ay,

where ay; is the momentum width parameter of the meson.
If we use the above Gaussian form of the wave function we
can complete the integral over q; in (2.13) to obtain the
most simple form
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1 p?
Py s, (X, p) = ;/ d*x,d°p,, exp <—a_2” - a%ﬂ,@)

M
X ZW(Q1|51,X17P1)W(Q2|S2, X3, P2)

S1,82

X (S, S:1ls1,52) (51, 52[S, S2)- (2.15)
We see that the Gaussian wave packet form appears in the
integral which depends on the relative position and relative
momentum between the quark and the antiquark.

Now we apply (2.15) to the vector meson ¢ with S = 1
and S, = —1, 0, 1. The diagonal elements of the spin
density matrix for ¢» mesons are given in Eq. (B5). With
spin Wigner functions (2.11), the normalization condition

(2.8) reads
/ &’x / [d@pfyq(x.p) =1

Since we are concerned mainly with polarization functions
that are small P ;(x,p) < 1, without loss of generality,
we can assume fq(x,p) = fq and f;(x,p)=f; are
constants. Under these assumptions, with (B5) we obtain

(2.16)

—p Pgo(X’P)
Poo = 4 P P
Poo(X»P) +p11(x.p) +pZ; _; (X, P)
1
3 9< s(x1,p1)P (Xz,P2)>¢v (2.17)
where the average (---)y is taken on the meson wave
packet
1 3¢ 73 |
(m== | Expdppexp | = —ayx; | ().
bis ay

(2.18)

If P,/; are independent of positions, we can recover the
result of Ref. [25]. In the remainder of this paper we will
reuse pN to denote the normalized pYy for simplicity of
notation.

In the same way, we can also obtain the normalized p,
for the vector meson K* with the flavor content (ds)

1

oy N§_§<Pd(xl’pl)

o~

5(X2,P2)) k- (2.19)

The result for K** with the flavor content (sd) can be
obtained similarly.

B. Baryons

In this subsection we will derive the spin density matrix
for baryons in phase space. The starting point is the spin
density operator for three quarks. The spin, flavor, and
momentum part of the wave function for three quarks is the
direct product of that for each single quark,

91, 92- 935 51, 52, 533 D1, P2. P3)
= |qy. 51.P1)]92. 52 P2)[d3. 53. P3)

= 11, 92. 435 51 52, 53)[P1. P2, P3), (2.20)
where §;,3 = +1/2 denote spins in the quantization
direction and q;,3 = u,d,s denote the spin states in the
z-direction and quark flavors respectively. The second
equality implies that the spin and flavor part of the wave
function for three quarks is independent of the momentum
part. The spin density operator for three quarks has the form

3
Paqq = z Z /Hd3 3Pi]H[d3q}

51552553 41,4293 i=1 i=1

3

3
X H w(qi|si9 X;, pi)e_iqi'xi
i=1

X 141,92, 935 51582, 535 P1 + =~ 5 > 5

4 > P2 +2,P% +q3>

q: q> q3
5 P2 D »P3 7|
(2.21)

X <Q1,Q27Q3§S1,82,S3;P1

The spin density matrix element for baryons with spin S is
given by putting p,qq between two baryon states

pl;zlﬁszz(x’p)
iq-x . . q . . q
B /[d3q]e ! <B’S’ S::p +§‘pqqq’B’S7 S25P —§>

(2.22)

For ground state (spin-1/2 octet and spin-3/2 decuplet)
baryons, the spin-flavor part of the wave function is
decoupled from the momentum or spatial part, but for
excited states of baryons, they are generally entangled. In
this paper we only consider ground state baryons so the
momentum or spatial part of the baryon wave function is
disentangled from the spin-flavor part. Using the Gaussian
form of the baryon momentum wave function, we obtain

1
P];zl,522<x7p) = ;/d3xbd3xcd3pbd3pc

2 2

P, Pc 242 2 o2

XEXp | =~ — 5 — ap X}, — dpyX¢
ag; dmp

XD D v

$1.52.83 41,0203
X w(qa|$2, X2, P2)W(d3]s3, X3, P3)
X (B;S,8.11d1, 925 d35 S1, 525 53)
X (q1. 92, 935 51, 52, .Sn),  (2.23)

(qi]s1. X1, p1)
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where p; and x; (i =1, 2, 3) are expressed in terms of
Jacobi variables p; and x; (j = a, b, ¢) defined in Eq. (C3)
and (C6) respectively and finally by setting x, = x and
pP. = P, see Fig. 2 for illustration of positions of three
quarks inside a baryon. The detailed derivation of (2.23) is
given in Appendix C. We see that the wave packet form of
the baryon emerges as a function of relative coordinates and
relative momenta of three quarks.

As an example, we can apply (2.23) to the octet baryon A
with its SU(6) spin-flavor wave function. The spin-flavor
wave function of A tells that its spin in the quantization
direction is carried by the s-quark while spins of u- and
d-quark cancel. Similar to mesons, we also assume the
polarization is small, Pq/;4(x,p) <1 and f,(x,p) = fq
and f5(x,p) = f4 are constants. The result for the diagonal

element of the spin density matrix p?, = p is then
22

1
Px.p) = 53 o fuf [ Exdxdpdp,

2 2

P, P 2 2 o2

XEXP | =5 — 5~ AnXp — dpXe
apa1r Ax2

X Aw(s|+. X1, p1)[2 = Py(X2. p2) Pa(X3. P3) — Pu(X3.P3)Pa(X2. P2)]
+w(s|+. X2, P2)[2 = Py(X3,P3)Pa(X1. P1) — Pu(X1. P1)Pa(X3. P3)]

+w(s|+, X3, P3)[2 = Py(X1, P1)Pa(X2, P2) — Pu(X2, P2) Pa(X1, P1)]}- (2.24)

Another diagonal element p*_ = p” | can be obtained

from p}, =p) by flipping the s-quark’s spin, i.e.,
22

w(s|+, x;,p;) = w(s|—-. x;,p;) with i =1, 2, 3. Finally

we can read out the polarization of A from spin density

matrix elements

PA(X p) — p¢+(x7 p) —p/_\_(X, p)
phi(x,p) +p2_(x,p)

1
%§<Ps(xl’pl) + PS(XZv p2) + PS(XB’ p3)>/\’
(2.25)

where the average (O(x;, p;))g With i = 1, 2, 3 are taken on
the wave packet function of baryons

FIG. 2. Positions of three quarks inside a baryon. The momenta
conjugate to Jacobi coordinates X, = X, X, and X, are p,, p; and
p. respectively, see Eq. (C3) and (C6).

[
1
0.0y = 5 [ Exidxd'pid’p.0(x;.p)

(2.26)

Note that the integral in the average is normalized to 1, i.e.,

1) =1.

III. SPIN POLARIZATION OF QUARKS

In the last section we have constructed an improved quark
coalescence modelin phase space. The modelis based on the spin
density operator for quarks with spin dependent Wigner func-
tions as weights, from which one can obtain spin density matrix
elements in phase space for mesons and baryons. Once spin
polarization functions for quarks in phase space (or equivalently
spin Wigner functions) are known, one can calculate a vector
meson’s spin alignment and a hyperon’s polarization.

There are different sources of spin polarization for massive
fermions: vorticity fields, electromagnetic fields, and mean
fields of vector mesons. The first two sources, vorticity and
electromagnetic fields, have been extensively studied in
quantum kinetic approach through Wigner functions
[18,19,31-35]. The polarization effect by vector meson fields
was first proposed in Ref. [36] in the study of A polarization.
It was generalized to the spin alignment of vector mesons in
Ref. [28]. For each kind of field, one can distinguish the
electric and magnetic part. It is believed that the contribution
from electromagnetic fields is negligible [28,36]. Therefore in
the remainder of this paper we consider vorticity and vector
meson fields as main sources of spin polarization.

The spin polarization distribution in phase space for
quarks (upper sign) and antiquarks (lower sign) is in the
form [25,28]
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1 B gy =
Pilx.p) =5 (wﬁf + EVTF@”>19U[1 — fro(E, F w)),
P

(3.1)

where p# = (E,, =p) are on-shell momenta of quarks and

antiquarks with E, = |/p* + m, @l =" Pal, is the

dual of the thermal vorticity tensor defined by a)g}, =
110,(Bu,) — 0, (Bu,)] with = 1/T being the temperature
inverse (note that there is a sign difference in the definition
of o, from Ref. [15]), F}/ =L1emo’FY is the dual of the
field strength tensor of vector mesons, and fgp is the
Fermi-Dirac distribution. The electric and magnetic part of
vector meson fields as three-vectors are defined as Ei, =
E/ = F and Bi = B! = —l¢; F} respectively with
i,j,k=2x, y, z. In a similar way, one can define the
three-vector of thermal vorticity as ®' = ®; = @} which is
the magnetic part of the thermal vorticity tensor, while the
electric part of the thermal vorticity tensor is &' = &; = wil.
Written explicitly in three-vector forms, they are

1
®=7 V x (Bu),
1
e == [0,(pu) + V(pu'). (32)
We take xz plane as the reaction plane with one nucleus

moving along +z direction at x = —b/2 while the other
|

~
~

Q| = W =

1
6m

9o
6m,T

9y .
6m2T

+

+

where we have taken nonrelativistic limit E, ~ m;. We
can take an average over a space volume at the formation
time of A. If all fields change slowly inside A, we can
approximate O(x;)~ O(x) for i =1, 2, 3. Then we
obtain

1
(,(x)) + -

b
2m

[(e(x)) xpl,

9y
6m?

N[ =

(P (x.p))

S

H_

(BY (x)) +

[(BE,(x)) x p],.
(4.2)

Y- (Ey(x1) x p1 + Ey(x2) X pa + Ey(X3) X P3) o -

nucleus moving along —z direction at x = b/2. The global
OAM is along +y direction. Therefore we assume that the
spin quantization direction is +y, and that the Wigner
functions in (2.11) are diagonalized in +y direction. Then
the polarization distribution for q and g along +y direction
can be written as [28]

1 1
Plq(x.p) = 50, %5 —(exp),

2mgy
v 9gv
+ B/ E . (33
2m,T y+2qupT( v Py (33)

where gy is the coupling constant of quarks and antiquarks
to vector meson fields, and we have taken the Boltzmann
limit I — frp(E, F u) ~ 1. The last term of Eq. (3.3) is the
spin-orbit term for quarks and antiquarks involving the
electric part of vector meson fields, the similar term is the
key to the nuclear shell structure if applying to nucleons in
meson fields [37,38]. For q=s and q =S5, the vector
meson field should be the ¢ field, i.e., V = ¢.

IV. GLOBAL AND LOCAL POLARIZATION OF A

In this section we look at the polarization of A (including A if
not stated explicitly) in Eq. (2.25) with the polarization of s and §
givenin Eq. (3.3). In this case the vector meson field is the ¢ field,
ie., V = ¢. By choosing +y as the spin quantization direction,
the spin polarization of A and A in phase space is now

(PYs(x1,p1) + Ps(x2.2) + Pz/g(x3,P3)>A/;\
(@y(x1) + 0,(x2) + ®,(X3)) /5
Y- (e(x1) X p1 + &(X2) X Py + €(X3) X P3)p/a

(BY(x) + BY(x,) + B$<X3)>A//_\

(4.1)

|

where (-) represents the volume average at the formation
time of A. Note that the spin-orbit term E;, x p has the
same sign for A and A.

For static A with p = 0, the terms involving € and E ; are
vanishing [28], but for nonstatic A with nonvanishing
momenta, they are generally present. However, for the
global spin polarization in the direction of +y (direction of
the global OAM) with all A and A in momentum spectra
being included, these terms of € and E, are vanishing. So
the global polarization for A and A measured in STAR
experiments [23,24] comes mainly from ®, and B‘f. Note

that the Bj’? term for A has an opposite sign to A. This
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provides a possible explanation of the difference between
magnitudes of P} and Pf-\, similar to the scenario of

Ref. [36]. The fact P} > P} shown in experimental data
indicates g¢<ﬂB§’?(x)) < 0.

Recent STAR measurements [39] of the longitudinal
spin polarization of A as functions show a positive
sin (2¢p — 2¥,) behavior with ¢ and ¥, being the azimuthal
angle of A and the second-order event plane respectively,
while theoretical results of relativistic hydrodynamics
model [40] and transport models [41-43] show an opposite
sign. The simulation from chiral kinetic theory in Ref. [44]
and results from a simple phenomenological model in
Ref. [45] gives the correct sign as the data. The sign
problem in local polarization may indicate the assumption
of global equilibrium of spin may not be justified, so the
thermal vorticity may not be the right quantity for the spin
chemical potential [46]. The azimuthal angle dependence

of Pf\ A has been measured by the STAR collaboration with
the trend that P’ . in the reaction plane is larger than that

A/A
out of the reaction plane. This phenomenon has not been
well understood [46].

The spin-orbit term may provide an additional contri-
bution to the polarization along the beam direction P 1 in
heavy ion collisions [39]. To this end, we split the whole
space into four parts corresponding to four quadrants of the
transverse plane which we denote as ++, —+, ——, and +—
respectively. Let us look at (P ) ) in the first and second

quadrant
(PLa(x.P),, ~5 5 [(PE;)  prsin(dhy)
— (PE}) . preos(,)].
9p

<P§\/[\(Xv p)>_+ ~ 2m3 [<ﬂE2>_+pT Sin(¢p>

— (PE})_, preos(g,)]. (4.3)
If (BE,) is dominated by the x component in the first and
second quadrant and if g(/,<ﬂEi;)>++ = —g¢<ﬁEﬁ/i>_+ > 0,

then we can obtain the patterns observed in experiments
[39]: (Pj\/A(x,p)>++ > 0 and (Pf\/;\(x,p)>_+ < 0.

Furthermore the spin-orbit term E,4 x p in Pf\ /& Mmay
also provide a possible additional contribution to the
azimuthal angle dependence of the polarization along
+y in heavy ion collisions [47], if there is a correlation
between E; and p in a certain region. In order to look at the
relevant observable, we choose the region for taking the
average to be x >0,y > 0 corresponding to the first
quadrant of the transverse plane in collisions, the average
quantity is denoted as (BE,)_  which may not be vanish-
ing (the average of SE, over the full space should be
vanishing). Then the azimuthal angle part of Pi\ A in the
first quadrant of the transverse plane is

(PZ\/Z\(X, P)>+Jr ~ % (BEG) ., preos(¢,).  (4.4)

where ¢, is the azimuthal angle relative to that of the
reaction plane, and pr = |py| is the scalar transverse
momentum. We see that the spin-orbit term may provide
an additional contribution to the azimuthal angle depend-

y
ence of PA//-\.

V. SPIN ALIGNMENTS OF ¢ AND K*°

We now investigate spin alignments of vector mesons ¢
and K*°. In the remainder of this paper, when we say K*°
we imply to include K*° if there is no ambiguity.

Let us first look at the spin alignment of ¢. Substituting
Eq. (3.3) for g = s and q = S into Eq. (2.17) and taking an
average on a space volume, we obtain the spin density
matrix element for ¢» mesons

J 1 4 ,
<ﬂ(€o<X7P)> “§—§<P§ (x1.p1) P} <X2’p2)>¢.\/01
1 1
S5m0 (0D) 45 (€ X R, (X P2), )y v,
9
2
5,05 ((4BY))
S
2 2
- ——(E;xp1) . (Egz xXPpa), ,
(5.1)

where the spin quantization direction is chosen as +y, (-)
denotes the volume average at the formation time of ¢
mesons, and we have put index “Vol” to distinguish the
volume average from the average on the ¢ meson wave
function if both averages are taken. In deriving Eq. (5.1) we
have made approximations: (a) The size of the vector
meson is much smaller than the hydrodynamic scale, so we
put X; =~ X, ~ X for vorticity fields and the ¢ fields; (b) We
neglect correlation in the volume between different fields
except between themselves [28], for example, no correla-
tion between E¢ and B¢, between € and E¢, or between ®
and B, etc.. We also neglect correlation in the volume
between different components of the same field, for
example, between Ej and E; or between €, and g, etc..

We now simplify terms involving € and E in (5.1). The
€ term is evaluated as

((expy),(ex p2)y>¢,vOl

~ 4 (€07 + 4 (€02 — (B30, — ()93,
= (P (Ep2 S () + @Ry (52)

and the E; term is evaluated as
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1

1 1 1
~ o (PE; <7> P+ (FEG, <7> p:
AN, ’ sV ENE 8, .

2 2
pb,x pb,z

_ 2E2 _ 2E2 ,
» "”Z><E,,IE,,2>¢ (s ¢,x><EmEp2>¢

where we have used p;, = p/2 £ p,, and dropped terms with mixture of different fields or different components of the
same field. Inserting (5.2) and (5.3) into (5.1) we obtain

(5.3)

(5. 2)) 5 =5 (03 = 555 ((€2) + (€2) (B3,
2 2

g(/) pix pl%,z

ny 9o
* om ((BBY)) + O [<ﬂ2Eﬁs,z> < E, E,,2>¢ + (P°E3 ) < EplE,,2> qj

+pp(€2)P3 + p,(£1)P7 — 9, (. B )PZ — (. EG,)PZ, (5:4)
where we have used following positive coefficients
ppleh) = 1o (€]
PR 36m2 Y
95 1
P B3 = 5o PR () 59
p( /’) 36m§ (/’> EplEp2 ) ( )

with i = x, y, z. For nearly static ¢ mesons with |p| < |p,,| the terms proportional to p2 and p? in (5.4) are very small and
can be neglected compared with the (p?) » term, in this case we recover the result of Ref. [28] in nonrelativistic limit with

Epl zEpz X Mg

1 1 1
(Poo(x,p=~0)) Ng ) <(')§> - 2Im?
9
2
+W<(ﬁBf€) )+

In Egs. (5.4) and (5.6) there are averages of squares of
relative momenta of two quarks on the wave function of ¢
mesons and there are also space volume averages of field
squares.

Equation (5.4) with (5.6) as its static limit is part of our
main results in the paper. A few remarks are in order about
Eq. (5.4): (a) All contributions appear independently as
positive or negative quantities. This is the main feature of
Poo for ¢ mesons. (b) The second term is from the vorticity
vector (magnetic part of the vorticity tensor), while the
third term is from the electric part of the vorticity tensor.
Both terms are negative definite. (c) The fourth term is
from the magnetic part of the ¢ field, while the fifth term
is from the electric part of the ¢ field. Both terms are
positive definite. (d) The last line collects contributions
proportional to momentum squares of the ¢» meson, where

(5.6)

|
the contribution from the electric part of the vorticity
tensor is always positive while that from the electric part
of the ¢ field is always negative. (¢) We have argued in
Ref. [28] that the dominant contribution to Pgo may
possibly be from the electric part of the ¢ field which
is positive definite.

Let us turn to the spin alignment of another vector
meson K*C. Different from the ¢ meson with flavor
content (s5), K** has flavor (ds). Vector meson (p or )
fields that can polarize light quarks are different from
the ¢ field which mainly polarize s and 5. We will see
that such a difference has significant consequences on
pKX. Following the same procedure and taking the same
approximations as in deriving (5.1), we obtain the spin

density matrix element for K*°, a counterpart of
Eq. (5.4),

056013-8



IMPROVED QUARK COALESCENCE MODEL FOR SPIN ...

PHYS. REV. D 102, 056013 (2020)

(0 (x.p)) M2 — & (@) —

((&2) + (e2)(P3) -

39 " 27Tmmy
999V ppdpv
207V (BB
+9mgmd <ﬂ Yy y>
2
949y { 2¢V<pb,x>
+ —— | (F°EJE s
9msmd < Z> E‘,jylE;ﬂ K*
@ p127
cmten( 2 ) |
ESE/

m, m,
o Lo (€T ()02
~pp(K* ELEY)p} — p, (K" EYEY)p2,
(5.7)
where Bf’ and E? with i=x, y, z are from the

polarization of §, while B) and E} are vector meson
fields (p or @ mesons) that polarize the d-quark, and

pp(K*,E’EY) are defined as

* 9p9v P 1
K*, E’EY) = 227V _(REIEY _ . (5.8
oK BFED) = S0 RPN () 68)

In (5.7) we have shown terms of volume averages of
different fields, (#*BYBY) and (FE’EY), for the
purpose of illustration and comparison, since they should
have been neglected in accordance with the approxima-
tion that different fields do not have large correlation in
space as compared with the correlation between the
same fields. After implementing this approximation, we
obtain

1
- 2Tmgmy

. 1 1
<ﬂgo (x,p)) ~ 379 <(0§>

((e2) + (e)(P}) -

+%m@w+wﬁwy (5.9)

We can see that the slope of p(’)((; with respect to p? is
positive. For nearly static K*° mesons with |p| < [p,|,
the terms proportional to p? and p? in (5.4) are very
small and can be neglected, then we have

(o (x.p~0)) ~

((e2) + (&) (P3)g- (5.10)

2Tmgmy

We see in (5.9) and (5.10) the absence of the contribution
from vector meson fields. Therefore the spin alignment of
K*0 is dominated by the vorticity contribution which must
be negative for nearly static K*°. This is the significant
difference from the spin alignment of ¢» mesons which may

possibly be dominated by ¢ fields whose contribution is
positive definite for nearly static ¢» mesons. Another feature
of p(’fg in (5.9) and (5.10) is that the contribution from the
electric part of the vorticity tensor is amplified by a factor
(ms/mq)((P}) -/ (P}),) compared with pl.. Note that the
ratio (pj)-/(pj), is about 1.4-1.5 in the quark model.
This may provide a sizable magnitude of the negative
contribution to p& as shown in ALICE experiments [48].

We note that the above arguments are only valid for
primary K*°. The lifetime of K*° is much shorter and the
interaction of K** with the surrounding matter is much
stronger than the ¢ meson. This may bring other contri-
butions to p¥ from the interaction of K*° with medium.
A caveat is that the above arguments are based on the
approximation that different fields do not have large
correlation in space as compared with the correlation

between the same fields. This seems to work for Pgo since
there are squares of the same vector meson field. However
itis not the case for pX) that all terms of vector meson fields
are mixture of different fields which are thought to be
equally small. In this case, in order to justify the approxi-
mation, we may need to evaluate these terms and compare
their magnitudes with the negative contribution from
vorticity tensor fields. This is beyond the scope of this
paper and will be studied in the future.

To summarize, in the picture of the coalescence model,
we propose that a large positive contribution to the spin
matrix element pg’o should be from the ¢ field [28]. This is
due to the correlation between the ¢ field that polarizes the
s-quark and that polarizes s, see Fig. 3 for illustration.

S ’ ® S o
E, *0
== O e -~ K e )

[Os @5 ou 0a o

FIG. 3. An example for the effects of vector meson fields on the
spin density matrices of ¢ and K*° mesons in their rest frame.
There is large correlation between vector meson fields acting on s
and § in the ¢ meson but almost no correlation between vector
meson fields acting on d and § in K*°. Due to the short distance
nature of vector meson fields, the dominant contribution to the
fields at the position of a constituent quark of ¢ or K*° is from
the quark of its nearest neighbor. The relative momentum of the
quark and antiquark inside the meson is shown as 2p (instead of
2p, in the text).
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However thisis not the case for p(If(; : the ¢ field that polarizes s
does not correlate much with vector meson fields (p or @
mesons) that polarize the d-quark, the former is from other
strange quarks not belonging to K*°, while the latter come
from other light quarks surrounding d, see Fig. 3. Therefore
p& is dominated by the contribution from vorticity fields
which is negative definite for static K*°. Such a negative
contribution from vorticity fields in p&; is amplified relative

to Pgo by the mass ratio of strange to light quark and by the
ratio of (p7) on K*’s to ¢’s wave function.

VI. SOLVING VECTOR MESON FIELDS
GENERATED BY SOURCES

In this section we solve the mean vector field which
satisfies the Klein-Gordon equation [36]
O, FYy +my V¥ = gyJ”, (6.1)
where Fi/ = 0*VY — 9"V# is the field strength tensor, the
source of the field J* is the current density associated with a
conserved quantum number, my, is the vector meson mass,
and gy is the coupling constant. We can write V# and J#
explicitly as V¥ = (¢, A) and J* = (p, j). We can also
define the electric and magnetic part of F%; as three-vectors
asin Sec. III. If my, is very large compared with the derivative
term, we can just neglectlatter in Eq. (6.1). In this case V¥ can
be approximately proportional to the current density [36],
VK~ (gy/m?%)J*, known as the current-field identity [49,50]
in the vector dominance model [51,52].

We can use the Green’s function method to solve the
Klein-Gordon equation (6.1) as to solve Maxwell’s equa-
tions in Ref. [53]. The only difference is the presence of the
vector meson mass which brings a little more complexity.
We consider a point charge Q located at the original point at
t = 0 moves with velocity » in 4z direction. The charge Q
corresponds to a quantum number such as the baryon
number for quarks or the strangeness number for s and S.
Finally we obtain the electric and magnetic parts of vector
meson fields as

Ey(1.x) = ng%xe"m,
Ey(1.x) = ng% e,
Ey(1.x) = QVQ% (z — vt)e ™A,
By (1.x) = —ng%W‘va,

By (1, x) = QVQ%M"”VA,

Bi(1,x) =0, (6.2)

where A = /x? +y? +y?(vt — 2)? with y = 1/V1 —2?
being the Lorentz contraction factor. We see that an
exponential decay factor e™"v2 appears in vector meson
fields produced by a point charge, which reflects the finite
distance nature of vector meson fields. Such a factor is
absent in electromagnetic fields produced by -electric
charges [53,54]. The detailed derivation of (6.2) is given
in Appendix D.

If we can determine the strangeness current, we can
apply Eq. (6.2) to obtain the ¢ field with Q being the
strangeness number. Due to the short distance nature of
the vector meson field, the ¢ field that can polarize the
constituent s-quark in a ¢ meson is dominated by the
field produced by its constituent partner S in the same ¢
meson which is in its nearest neighborhood in space, and
vice versa.

VII. SUMMARY

We have constructed an improved quark coalescence
model based on the spin density matrix in phase space
with coordinate dependence. The spin density matrices for
mesons and ground state baryons depend on spin Wigner
functions of quark systems. The quark spin polarization
functions in phase space are encoded in spin Wigner
functions. The spin polarization of baryons can be obtained
from spin density matrices for hadrons. As an example we
obtain the spin polarization of A which is determined by
that of strange quarks. The spin polarization of quarks
comes mainly from vorticity tensor fields and vector meson
fields. We discussed a possible role that the electric part of
the vector meson field may play in understanding exper-
imental observations in local polarization of A. Most
importantly we propose an understanding of spin align-
ments of vector mesons ¢ and K** (including K*°) in the
static limit: a large positive deviation of pg, for ¢ mesons
from 1/3 may come from the electric part of the vector ¢
field, while a large magnitude of negative deviation of py
for K** may come from the electric part of vorticity tensor
fields. Such a large negative contribution to py, for K*°, in
contrast to the same contribution to that for ¢ which is less
important, may be due to a large mass ratio of strange
quarks to light quarks. These results should be tested by a
detailed and comprehensive simulation of vorticity tensor
fields and vector meson fields in heavy ion collisions.
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APPENDIX A: SINGLE PARTICLE
STATE IN COORDINATE AND
MOMENTUM SPACE

In this Appendix, we give definition and convention for
single particle states in coordinate and momentum repre-
sentation in nonrelativistic quantum mechanics.

A position eigenstate is denoted as |x) and satisfies
following orthogonality and completeness conditions

(x'[x) = 69 (x' —x),

1:/d3x|x><x|.

The normalization of the state |x) is then

(A1)

xh) =57 x—x) = [epl =53 (A2

P

where Q is the space volume and [d°p] = &°p/(2x)>.
A momentum eigenstate is denoted as |p) and satisfies
following orthogonality and completeness conditions

(p'lp) = (27)°5° (p — p').

1= [evlp)ol (A3)
The normalization of |p) is then
(plp) = (27)°59(p —p) = . (A4)

From Eq. (A1) and (A3) we can define the inner product
(x|p) as

(x|p) = . (AS)
With the above relation we can check
3 (x=x) = (Xx) = [ [@*pl(xIp) (o}
_/w%wﬂ““, (A6)

where we have inserted the completeness relation (A3). We
can express |X) in terms of |p) and vice versa,

|@=/Wmmww=/wmw”m,

)= [ @xixxip) = [ @xer ), (A7)

APPENDIX B: DERIVATION OF DENSITY
MATRIX ELEMENTS FOR MESONS

In this Appendix, we evaluate (2.12), the spin density
matrix element on two meson states,

pg/fl’Sa(X’p) = /[d3q]eiQ'X/d3X1d3X2

x/wmwmwmw%wmwﬂm

q q; q>
M; = et =
><< ,p+2p1+2,p2+2>

X <p1 —ql,pz—sz;p—g>

2 2
X ZW(%‘S],Xl,Pl)W(EI2|Sz,X27P2)

51,52

X (S, 8,151, 52)(51,52[S.52). (B1)

where (S.S.1|s1,s,) denotes the Clebsch-Gordan coeffi-
cient for spin states, > o [(q;.G[M)|> =1 with [M)
being the flavor part of the meson’s wave function,
(q1,>/M) denotes the Clebsch-Gordan coefficient for
the flavor state (here we have used the fact that the flavor
part is decoupled from its spin part in a meson’s wave
function), and the amplitudes between the meson’s and
quark-antiquark’s momentum states are

_ q
Mlq.q) = <M;p +5

q; q:
P1+27P2+ 2>

+ —
= (22)%0) <P1 +P2—P +w>
« (P1—P2 41 —q2
X‘pM( > g )
_ q q> q
’ M: P __M; - A
(q,q/M) <p1 5 P2—— M:p 2>
+ —
= (22)%60) <P1 +P2—P T hd (212 q>

X(pM<p1 —P2 q —‘12>’

2 4 (B2)

where the meson wave function in relative momentum of
two quarks is normalized as [[d°Kk]|py(K)[*> =1 with
pm(Kk) being related to the wave function in relative
position, ¢y (k) = [d®ye ™ Yy (y). Here we have used
the same symbol ¢y, to denote the meson wave function in
coordinate and momentum without ambiguity.
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Equation (B1) can be simplified as

k) = [ Exdx, [I@plidada) e (ia, x,) expl-ig, - (x, = X)

” q, q, X, P _ Xp P
X¢M<pb+—)(pm<pb——> W<q1|s1,x +—,—+pb>W(qzls2,x ——,——pb>
2 2 Z «aT ) “T 0

X (S, S1]s1,52)(s1,

+S2), (B3)

where we have used

pu:pl+p25pv
1

Py = E(pl - P2).
q, = qi + q>,

1
q, = 5(‘11 - qa),

1
Xqg = E(Xl +X2)’
Xp = X1 — X, (B4)

Note that q, and q, are conjugate momenta of x, and x, respectively. Completing integrals in (B3) over q, and x,, we
obtain Eq. (2.13).

Using the Gaussian form of the meson wave function in Eq. (2.14), we can further simplify Eq. (2.13) to obtain the most
simple form in Eq. (2.15) for the spin matrix elements. Applying Eq. (2.15) to the vector meson ¢ with S = 1 and S, = —1,
0, 1, we obtain diagonal elements of the spin density matrix for ¢,

! P X, P . X, P
Pl (x,p) = 53 /d3xbd3pbexp (——g—aéx%,)[ ( ‘4— X Eb,z—i-pb)w(s‘—,x—?b,z—pb
ag

_ X P ‘ X, P
+w<s\ ,X+2,2+p> (+x P )}
1 p2 X p
[ —— | Bx.d Py 20 ‘ b ’ ¥ _
pll(xﬁp) ;7;3/ Xp Pbexp< aé a{/)xh> < +, X+ = 2 ,2+pb> < +,Xx — 2 Py |

b P
2
1 P; X, P X, P
& _ & b b Xp
p_l’_l(x,p) = ;/ d%deBPb exp (—a—i - aix%)w(s‘— X 77§+pb) ( ‘—,X 2 2 =Py (BS)

APPENDIX C: DERIVATION OF DENSITY MATRIX ELEMENTS FOR BARYONS

In this Appendix we will evaluate Eq. (2.22) for ground state baryons to give Eq. (2.23). The spatial or momentum parts
of wave functions for these baryons are independent of spin-flavor parts. Inserting (2.21) into (2.22) we obtain

3 3 3
%, 5., (X.p) :/ qu/H H[d3pz H q;|exp [=i(q; - X; + g2 - X5 + q3 - X3)]
=1 j i=1

><<B;pvLg ;p—%>

2
3
X Z Z HW(‘]i|5i,XnPi)<B§S7Sz1|(h,‘h’Q3251’52,S3><Q1,Q2,Q3§51’52,53|B§S7Szz>- (C1)

51.52,83 q1,92.93 i=1

q> q3 q q3
P1+2,P2+2,P%+2><p1 Z,Pz 2,P3 5
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The amplitudes between momentum states of the baryon and three quarks are given by

(a.4.

= (27)%6%) <pa -P-

q
(Blg.q.q) = <B Pty

= (27)%%) (pa -p+

where ¢g(k,,Kk.) is wave function of the baryon in the
momentum representation to defined in (C5) and (C7), and
we have used momenta in Jacobi form

P. = P1 + P2 + P3.

1
Py :g(Pl + P2 — 2p3),
~Lp-p)
pc_2 P P2),

q. = 4q; +q2 +q3,

1
qy = g(‘h + q, — 2q3).
1
q. = 5(‘11 - q). (C3)

To obtain the amplitudes (C2), we have inserted the
completeness relation

3
/gcpxixiﬂx

between the baryon and three-quarks state. We have also
used

(C4)

(X1, %2, X3|B; p) = exp (ip - X )@p (X, X)), (C5)

where @g(X,,X.) is the spatial wave function of the
baryon depending on relative distance x; and x. of Jacobi
coordinates defined as

PS5, (x.p) = /Hd3

i=b,c i=b,c

DD

$1,52,53 q1,92,93

i=b,c

q‘ X+*1X +*1X *1
w S1, ¢
At 3 b 2 3

2 1
W(%‘S&X —gxb,gp - Pb) (B:;S.S.1]d1-92- G35 51. 52, 53)(q1. 9. 933 51, 52, 53| B3 S, S 0).

q q
): <q;P1 5 ,Pz——z,Ps

pil [ [a;]exp[-i(as - x;, + q. -

(l3
2

R
o)

4. —q qp q.
50,

q, q q
@GP+ P+ —.ps + 3>

2 2

q. —q % q, q.
) oi (o + 2oper ). )
[
1
X, = g(X1+X2+X3)
1
Xp = §(X1+X2)—X3’
X, = X| — X,. (Co)

The momentum state ¢g(k,,Kk,.) in (C2) can be obtained
from ¢g (X, X.) by Fourier transformation

v(ky, ko) = /d3xbd3xc exp (—ik, - x, — ik, - X.)

X @B (Xlw XC)’ (C7)
where k;, and k. are conjugate momenta to X, and X,
respectively. Note that we have used for simplicity of
notation the same symbol @p for the wave function
in both coordinate and momentum representation. We
assume normalization conditions for @g(x,,X.) and

(/)B(kh’ kc) as
/dSde3xc|(pB(Xb7Xc)|2 =1,
/ (K[ g (ki k)P = 1 (C8)

We insert (C2) into (C1) and complete integrals over (,
X, and p,, then we obtain

q, q. q q.
Xc)}GDB(Pb—?,Pc—?)fP (pb +7b,Pc+ 2)

1 1 1 1 1
p +§pb +P¢-)W<Q2‘527X +§Xb ‘5"0’51’ +§Pb —I’c>

(€9)
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The above equation is another main result in this paper.
Now we assume that the baryon’s momentum wave
function has the Gaussian form [29,30]

vp(k,. k) = /d3xbd3xc exp (—iky - x, — ik, - X,)

X @g(Xp, X.)

1 3/2 k2 k2
— (2 3 ——b _ ¢ )
(2vm) (aslaBz> exp( 2ag, 202132)
(C10)

where ap; and ap, are two width parameters in the
Gaussian wave function of the baryon. One can verify
the normalization condition (C8) holds for the above form
of ¢g(k,,k,.). Substituting (C10) into (C9), we can
complete integrals over q,, and q. to arrive at Eq. (2.23).

APPENDIX D: SOLVING KLEIN-GORDON
EQUATION FOR VECTOR MESON FIELDS

In this Appendix, we will solve the Klein-Gordon
equation (6.1) for vector meson fields using the Green’s
function method [53].

In terms of V¥ = (¢,A) and J* = (p, j), the Klein-
Gordon equation (6.1) can be put in a three-vector form

32¢ - at(at¢ +V. A) + m2¢ = gp,

O’A +V(0,90 +V-A) +m?A = gj. (D1)

For simple notations, in this Appendix we suppress the
index “V” of following quantities: m = my, g= gy,
E =Ey, and B = By,. The electric and magnetic vector
meson fields are given by

E=-0,A-Vgp,

B=VxA. (D2)

From the equations for ¢ and A we derive the following
equation for E and B,

(0* + m*)E = —g(0,j + Vp).

(0*> + m*)B = gV x j. (D3)

We can solve Eq. (D3) by taking Fourier transformation
flw.k) = /dtd3x exp(iot — ik - x)f (1, %),
d*k ) . ~
f(t,x) = Wexp(—za}t—i— ik -x)f(w, k), (D4)
b3

where f can be E, B, p, and j. Then in momentum
representation Eq. (D3) becomes

(—0* + k> + m?)E(w, k)
(—0* + k> + m?)B(w, k)

igkp(w. k),
(D5)

= igwj(o.k) -
= igk x j(w, k),
where we have suppressed tildes on all variables in

momentum representation for simple notations. The sol-
utions have the form

. wj(w. k) —kp(w. k)
E(w.k) = —
(@, k) W -
. kxj(wk)
Blok)=—ig 552 (D6)

The solutions in space-time can be obtained from their
momentum forms by Fourier transformation

dod’k . . j(@,k)
E(1,x) = g@,/Wexp(—lwt +iK - x) K
dod’k
+ gV/é)T)“exp(—ia)t + ik - x)
plw. k)
D — K2 —m2
dod’k
B(1,x) = —gV x /gTyexp(—iwt + ik - x)
j(o.k)
5 (D7)

0 -k*Z=—m

We consider a point charge located at the original point at
t = 0 and moves with velocity v in +z direction. Then the
charge and current density are in the forms in space-time
and momentum,

p(t.x) = Q5(x)6(y)8(z — vt)
j(t.x) = Que.8(x)8(y)8(z — vr)
plw, k) =2706(w — k.v),
j(o, k) =27Qve 6(w — k,v) = vep(w, k). (D8)

We evaluate the integral of p(w,k) in (D7)

dod®k p(w.k)
I, = /ﬁexp( iot + ik - x)m
—Q/ sexp [—ik (vt — z) + ik - X7]
k%/}’ + kT
dkrdOdk
= — /Tifexp [—ik, (vt — 2) + ikyxy cos 6]
(27)
kr

-, D9
Rl G+ m? (D9)
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wherey = 1/V'1 — v, ky = k7|, x7 = |x7], k. = k., and we have used cylindrical coordinates in the last step. We then use
the formula for the Bessel function, 27z.J,(x) = 02” d6 exp(ix cos 0), and complete the k, integral by contour integral around

the poles at k, = +iy+/k% + m?, where + depends on the sign of vt — z. The result is

0 / . r*krdo(krxr)
1, = —— [ dkrdk,exp |—ik (vt —z
! (27)? rdkz exp [=ik:( ) (k, + iy\/ k3 + m*)(k, — iy\/ k3 + m?)
—%fdkrexp [—y(vt—z)Vk%%—mz]%/k%;), vt—2>0
- 0 31 ky, (ka ) (D10)
_T;fdkTexp[y(vt—z)\/kT—km}%\/TT”;, vi—2<0
The integral over k; can also be worked out by the formula
L 2 J (bx) o
dxe=aV/erm 2000, dye=™ Jo(bmy/y* — 1
/0 2 ] Yy o y )
1
=———exp(-mVa*+b?). D11
Vo thy (o1
Finally we obtain
Or _ma
I —— m DI2
ey (D12)
with A = \/x*> +y? + y*(vt — z). In the same way we can also obtain
dod’k ) ) jlo,k)
12 = /Wexp(—lwt + ik - X)m
Or
= —’UeZ4ﬂ_—A€ A. (D13)

Inserting Eq. (D12) and (D13) into (D7), we obtain Eq. (6.2).
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