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We propose an improved quark coalescence model for spin alignment of vector mesons and polarization
of baryons by spin density matrix with phase space dependence. The spin density matrix is defined through
Wigner functions. Within the model we propose an understanding of spin alignments of vector mesons ϕ
and K�0 (including K̄�0) in the static limit: a large positive deviation of ρ00 for ϕ mesons from 1=3 may
come from the electric part of the vector ϕ field, while a negative deviation of ρ00 for K�0 may come from
the electric part of vorticity tensor fields. Such a negative contribution to ρ00 forK�0 mesons, in comparison
with the same contribution to ρ00 for ϕ mesons which is less important, is amplified by a factor of the mass
ratio of strange to light quark times the ratio of hp2

bi on the wave function of K�0 to ϕ (pb is the relative
momentum of two constituent quarks of K�0 and ϕ). These results should be tested by a detailed and
comprehensive simulation of vorticity tensor fields and vector meson fields in heavy ion collisions.
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I. INTRODUCTION

The Barnett effect [1] and the Einstein-de Haas effect [2]
are two well-known effects in materials to connect rotation
and spin polarization which can be converted from one
to another. Similar effects also exist in ultrarelativistic
heavy-ion collisions (HIC), in which a huge orbital angular
momentum (OAM) can be generated in the direction
perpendicular to the reaction plane and is transferred to
the hot and dense medium in the form of the global
polarization of hadrons [3–8] (see, e.g., [9–12], for recent
reviews). In microscopic scenarios the transfer of OAM to
spin polarization of hadrons is through the spin-orbit
coupling in particle scatterings [3,8,13,14], while in macro-
scopic approaches it is through the spin-vorticity coupling
in the fluid [15–22]. The global polarization can be
measured through the polarization of hyperons such as
Λ (including Λ̄ hereafter) since they have weak decay
channels [3]. The STAR collaboration has recently mea-
sured a nonvanishing global polarization of Λ hyperons in
Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV [23,24].
In principle vector mesons can also be polarized in

heavy ion collisions, but the polarization of vector mesons
cannot be measured since they mainly decay through strong
interaction. Instead, ρ00, the 00-element of the vector
meson’s spin density matrix, can be measured through
the angular distribution of its decay daughters [4,25]. If

ρ00 ≠ 1=3, the distribution is anisotropic and the spin of the
vector meson is aligned to the spin quantization direction.
In 2008, the STAR collaboration measured ρ00 for the
vector meson ϕð1020Þ in Auþ Au collisions at 200 GeV,
but the result is consistent to 1=3, indicating no spin
alignment within errors [26]. Recent preliminary data of
STAR for the ϕ meson’s ρ00 (denoted as ρϕ00 hereafter) at
lower energies show a significant positive deviation from
1=3, which is beyond conventional understanding of the
polarization [27]. In Ref. [28], some of us proposed that
such a large positive deviation of ρϕ00 from 1=3 may
possibly be explained by the ϕ field. In such a proposal
[28], a quark coalescence model is employed which is
based on spin density operators in momentum space [25].
As the quark polarization comes mainly from vorticity and
vector meson fields which are functions of space-time, the
space dependence of the quark polarization in Ref. [28] is
put in a phenomenological way. The purpose of this paper
is to improve the quark coalescence model of Ref. [25] by
defining and using spin density operators in phase space
with the help of spin Wigner functions. In such an
improved quark coalescence model, the quark polarization
as a function of space-time can be treated in a rigorous and
systematic way. So one can then naturally describe spin
alignments of vector mesons such as ϕ and K�0 (including
K̄�0 if not stated explicitly) as functions of space-time. It is
expected to implement the improved coalescence model in
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real time simulations and to provide insights in spin
alignments of vector mesons.
The paper is organized as follows. In Sec. II, we

formulate the improved coalescence model through the
spin density matrix in phase space with coordinate depend-
ence. In Sec. III, we give spin polarization of quarks in
phase space from vorticity and vector meson fields. In
Sec. IV, we analyze global and local polarization of Λ
(including Λ̄ if not stated explicitly) using the improved
coalescence model. In Sec. V, using the improved coa-
lescence model we formulate spin alignments of vector
mesons ϕ and K�0. In Sec. VI, we solve the Klein-Gordon
equation to give vector meson fields generated by point
charge sources. Finally we make a summary of the results.
Notations and conventions. We adopt the sign conven-

tion for the metric tensor gμν ¼ ð1;−1;−1;−1Þ. A four-
vector is represented by Greek indices, e.g, xμ or pμ with
μ ¼ 0, 1, 2, 3. A three-vector is represented in a boldfaced
symbol, e.g., x or p. The components of a three-vector is
represented by the Latin index, but we do not distinguish
the superscript and subscript, for example, we do not
distinguish xi and xi with i ¼ 1, 2, 3. We use the shorthand
notation ½d3p�≡ d3p=ð2πÞ3.

II. SPIN DENSITY MATRIX AND QUARK
COALESCENCE MODEL IN PHASE SPACE

In Ref. [25], a quark coalescence model is constructed
based on the spin density matrix in momentum represen-
tation. In order to describe space-time dependence of spin
polarization, we need to formulate an improved coales-
cence model through the spin density matrix in phase space
with coordinate dependence. Wework at the formation time
t of a hadron, for simplicity of notation, throughout the
paper we suppress the time dependence of all quantities
unless it is necessary to show it explicitly.
In momentum representation, the spin density operator

for single particle states is defined as [25]

ρ ¼ 1

Ω

X
s

Z
½d3p�wðs;pÞjs;pihs;pj; ð2:1Þ

where wðs;pÞ is the weight function corresponding to the
particle state with spin s and momentum p, Ω is the space
volume, and the spin-momentum state js;pi is the direct
product of the spin state and the momentum state,
js;pi≡ jsijpi. The weight function is given by

wðs;pÞ ¼ hs;pjρjs;pi; ð2:2Þ

which satisfies the normalization condition Trρ ¼ 1 equiv-
alent to

X
s

Z
½d3p�wðs;pÞ ¼ 1: ð2:3Þ

The definition and convention of single particle states in
nonrelativistic quantum mechanics are given in the
Appendix A.
For the quark and antiquark with spin 1=2, the weight

functions have the form

wðqjs;pÞ ¼ 1

2
fqðpÞ½1þ sPqðpÞ�;

wðq̄js;pÞ ¼ 1

2
fq̄ðpÞ½1þ sPq̄ðpÞ�; ð2:4Þ

where s ¼ � label two spin states with sz ¼ �1=2 in the
spin quantization direction z, and fq=q̄ðpÞ and Pq=q̄ðpÞ
denote the distribution and polarization of the quark/
antiquark respectively. Here the quark polarization is
normalized to 1 and given by

PqðpÞ ¼
wðqjþ;pÞ − wðqj−;pÞ
wðqjþ;pÞ þ wðqj−;pÞ : ð2:5Þ

The polarization for antiquark Pq̄ðpÞ has the same form as
above. We note that generally the weight functions (2.4) are
2 × 2 matrices in spin space. Throughout this paper we
assume that they are diagonalized in the spin quantization
direction.
Now we generalize (2.1) by introducing the space

variable into the density operator as

ρ ¼
X
s

Z
d3x

Z
½d3p�wðs;x;pÞ

×
Z

½d3q�e−iq·x
���s;pþ q

2

ED
s;p −

q
2

���: ð2:6Þ

We see that the momenta of state bases differ by q with x
being its conjugate position. The weight function wðs;x;pÞ
is actually the Wigner function which can be obtained by
projecting the above density operator onto two states with
the same spin and different momenta

wðs;x;pÞ ¼
Z

½d3q�eiq·x
D
s;pþ q

2

���ρ���s;p −
q
2

E
: ð2:7Þ

By an integration over x for wðs;x;pÞ one can recover the
weight function (2.2), therefore the normalization condition
for wðs;x;pÞ reads

X
s

Z
d3x

Z
½d3p�wðs;x;pÞ ¼ 1: ð2:8Þ

From above condition one can see that wðs;x;pÞ is
dimensionless. For the quark and antiquark, with new
weight functions wðq=q̄js;x;pÞ we have similar formula
to Eqs. (2.4), (2.5) with the distribution fq=q̄ðx;pÞ and
polarization Pq=q̄ðx;pÞ as functions in phase space.
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A. Mesons

To describe the formation of mesons from a quark and an
antiquark, we define the spin density operator for a quark-
antiquark pair

ρqq̄ ¼
X
s1;s2

X
q1;q̄2

Z
d3x1d3x2

Z
½d3p1�½d3p2�

Z
½d3q1�½d3q2�

× wðq1js1;x1;p1Þwðq̄2js2;x2;p2Þe−iq1·x1e−iq2·x2

×

����q1; q̄2; s1; s2;p1 þ
q1

2
;p2 þ

q2

2

�

×

�
q1; q̄2; s1; s2;p1 −

q1

2
;p2 −

q2

2

����; ð2:9Þ

where q1 ¼ u; d; s and q̄2 ¼ ū; d̄; s̄ denote the quark and
antiquark respectively, the sum over quark and antiquark
flavors have been taken, the quark-antiquark state is the
direct product of the quark state and the antiquark state

����q1; q̄2; s1; s2;p1 þ
q1

2
;p2 þ

q2

2

�

¼
����q1; s1;p1 þ

q1

2

�����q̄2; s2;p2 þ
q2

2

�

¼ jq1; q̄2ijs1; s2i
����p1 þ

q1

2
;p2 þ

q2

2

�
; ð2:10Þ

where jq1; q̄2i ¼ jq1ijq̄2i is the flavor state for the quark-
antiquark pair, and s1; s2 ¼ �1=2 denote spins of the quark
and the antiquark in the quantization direction. All quan-
tities with index “1” and “2” in (2.9) and (2.10) are those of
the quark and antiquark respectively. The Wigner functions
have similar forms to (2.4),

wðqjs;x;pÞ ¼ 1

2
fqðx;pÞ½1þ sPqðx;pÞ�;

wðq̄js;x;pÞ ¼ 1

2
fq̄ðx;pÞ½1þ sPq̄ðx;pÞ�: ð2:11Þ

The polarization Pq=q̄ðx;pÞ can be determined from the
Wigner function wðq=q̄js;x;pÞ in a similar way to (2.5).
Note that we do not include color wave functions for
hadrons since they are totally decoupled from other parts of
wave functions. As we have mentioned, the spin Wigner
functions in (2.11) are generally 2 × 2 matrices in spin
space, but throughout the paper we assume that they are
diagonalized in the spin quantization direction.
To obtain spin density matrix elements of mesons, we

put ρqq̄ between two meson states

ρMSz1;Sz2ðx;pÞ

¼
Z

½d3q�eiq·x
D
M;S;Sz1;pþ

q
2

���ρqq̄
���M;S;Sz2;p−

q
2

E
;

ð2:12Þ

where M labels the type of the meson, S and Sz denote spin
states which are the total spin and spin in a quantization
direction (chosen to be þz or any direction) respectively,
and pþ q=2 and p − q=2 label two momentum states. The
details of the evaluation of (2.12) are given in Appendix B.
The result is

ρMSz1;Sz2ðx;pÞ ¼
Z

d3xb½d3pb�½d3qb� exp ð−iqb · xbÞ

× φ�
M

�
pb þ

qb

2

�
φM

�
pb −

qb

2

�

×
X
s1;s2

w

�
q1js1;xþ xb

2
;
p
2
þ pb

�

× w

�
q̄2js2;x −

xb

2
;
p
2
− pb

�

× hS; Sz1js1; s2ihs1; s2jS; Sz2i; ð2:13Þ

where φM is the meson wave function in relative momen-
tum between the quark and the antiquark, and xb, pb and qb
are relative position and momenta which are related to
positions and momenta of the quark and the antiquark in
(B4). Equation (2.13) is one of the main results in
this paper.
For convenience of notation, hereafter we use x1 ¼

xþ xb=2, p1 ¼ p=2þ pb, x2 ¼ x − xb=2, and p2 ¼
p=2 − pb, see Fig. 1 for illustration. These relations can
be obtained from (B4) by setting xa ¼ x and pa ¼ p.
A simple choice of the meson wave function φMðkÞ is

the Gaussian distribution [29,30]

φMðkÞ ¼
�
2

ffiffiffi
π

p
aM

�
3=2

exp

�
−

k2

2a2M

�
; ð2:14Þ

where aM is the momentum width parameter of the meson.
If we use the above Gaussian form of the wave function we
can complete the integral over qb in (2.13) to obtain the
most simple form

FIG. 1. Quark positions and momenta inside a meson in its rest
frame.
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ρMSz1;Sz2ðx;pÞ ¼
1

π3

Z
d3xbd3pb exp

�
−
p2
b

a2M
− a2Mx

2
b

�

×
X
s1;s2

wðq1js1;x1;p1Þwðq̄2js2;x2;p2Þ

× hS; Sz1js1; s2ihs1; s2jS; Sz2i: ð2:15Þ

We see that the Gaussian wave packet form appears in the
integral which depends on the relative position and relative
momentum between the quark and the antiquark.
Now we apply (2.15) to the vector meson ϕ with S ¼ 1

and Sz ¼ −1, 0, 1. The diagonal elements of the spin
density matrix for ϕ mesons are given in Eq. (B5). With
spin Wigner functions (2.11), the normalization condition
(2.8) reads

Z
d3x

Z
½d3p�fq=q̄ðx;pÞ ¼ 1: ð2:16Þ

Since we are concerned mainly with polarization functions
that are small Pq=q̄ðx;pÞ ≪ 1, without loss of generality,
we can assume fqðx;pÞ ¼ fq and fq̄ðx;pÞ ¼ fq̄ are
constants. Under these assumptions, with (B5) we obtain

ρ̄ϕ00 ¼
ρϕ00ðx;pÞ

ρϕ00ðx;pÞ þ ρϕ11ðx;pÞ þ ρϕ−1;−1ðx;pÞ

≈
1

3
−
4

9
hPsðx1;p1ÞPs̄ðx2;p2Þiϕ; ð2:17Þ

where the average h� � �iM is taken on the meson wave
packet

h� � �iM ≡ 1

π3

Z
d3xbd3pb exp

�
−
p2
b

a2M
− a2Mx

2
b

�
ð� � �Þ:

ð2:18Þ
If Ps=s̄ are independent of positions, we can recover the
result of Ref. [25]. In the remainder of this paper we will
reuse ρM00 to denote the normalized ρ̄M00 for simplicity of
notation.
In the same way, we can also obtain the normalized ρ00

for the vector meson K�0 with the flavor content ðds̄Þ

ρK
�

00 ≈
1

3
−
4

9
hPdðx1;p1ÞPs̄ðx2;p2ÞiK� : ð2:19Þ

The result for K̄�0 with the flavor content ðsd̄Þ can be
obtained similarly.

B. Baryons

In this subsection we will derive the spin density matrix
for baryons in phase space. The starting point is the spin
density operator for three quarks. The spin, flavor, and
momentum part of the wave function for three quarks is the
direct product of that for each single quark,

jq1; q2; q3; s1; s2; s3;p1;p2;p3i
≡ jq1; s1;p1ijq2; s2;p2ijq3; s3;p3i
¼ jq1; q2; q3; s1; s2; s3ijp1;p2;p3i; ð2:20Þ

where s1;2;3 ¼ �1=2 denote spins in the quantization
direction and q1;2;3 ¼ u; d; s denote the spin states in the
z-direction and quark flavors respectively. The second
equality implies that the spin and flavor part of the wave
function for three quarks is independent of the momentum
part. The spin density operator for three quarks has the form

ρqqq ¼
X

s1;s2;s3

X
q1;q2;q3

Z Y3
i¼1

d3xi

Y3
i¼1

½d3pi�
Y3
i¼1

½d3qi�

×
Y3
i¼1

wðqijsi;xi;piÞe−iqi·xi

×

����q1; q2; q3; s1; s2; s3;p1 þ
q1

2
;p2 þ

q2

2
;p3 þ

q3

2

�

×

�
q1; q2; q3; s1; s2; s3;p1 −

q1

2
;p2 −

q2

2
;p3 −

q3

2

����:
ð2:21Þ

The spin density matrix element for baryons with spin S is
given by putting ρqqq between two baryon states

ρBSz1;Sz2ðx;pÞ

¼
Z

½d3q�eiq·x
D
B; S; Sz1;pþ q

2

���ρqqq
���B; S; Sz2;p −

q
2

E
:

ð2:22Þ

For ground state (spin-1=2 octet and spin-3=2 decuplet)
baryons, the spin-flavor part of the wave function is
decoupled from the momentum or spatial part, but for
excited states of baryons, they are generally entangled. In
this paper we only consider ground state baryons so the
momentum or spatial part of the baryon wave function is
disentangled from the spin-flavor part. Using the Gaussian
form of the baryon momentum wave function, we obtain

ρBSz1;Sz2ðx;pÞ ¼
1

π6

Z
d3xbd3xcd3pbd3pc

× exp

�
−

p2
b

a2B1
−

p2
c

a2B2
− a2B1x

2
b − a2B2x

2
c

�

×
X

s1;s2;s3

X
q1;q2;q3

wðq1js1;x1;p1Þ

× wðq2js2;x2;p2Þwðq3js3;x3;p3Þ
× hB; S; Sz1jq1; q2; q3; s1; s2; s3i
× hq1; q2; q3; s1; s2; s3jB; S; Sz2i; ð2:23Þ
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where pi and xi (i ¼ 1, 2, 3) are expressed in terms of
Jacobi variables pj and xj (j ¼ a, b, c) defined in Eq. (C3)
and (C6) respectively and finally by setting xa ¼ x and
pa ¼ p, see Fig. 2 for illustration of positions of three
quarks inside a baryon. The detailed derivation of (2.23) is
given in Appendix C. We see that the wave packet form of
the baryon emerges as a function of relative coordinates and
relative momenta of three quarks.

As an example, we can apply (2.23) to the octet baryonΛ
with its SU(6) spin-flavor wave function. The spin-flavor
wave function of Λ tells that its spin in the quantization
direction is carried by the s-quark while spins of u- and
d-quark cancel. Similar to mesons, we also assume the
polarization is small, Pq=q̄ðx;pÞ ≪ 1 and fqðx;pÞ ¼ fq
and fq̄ðx;pÞ ¼ fq̄ are constants. The result for the diagonal
element of the spin density matrix ρΛþþ ≡ ρΛ1

2
;1
2

is then

ρΛþþðx;pÞ ¼
1

24π6
fufd

Z
d3xbd3xcd3pbd3pc

× exp

�
−

p2
b

a2Λ1
−

p2
c

a2Λ2
− a2Λ1x

2
b − a2Λ2x

2
c

�

× fwðsjþ;x1;p1Þ½2 − Puðx2;p2ÞPdðx3;p3Þ − Puðx3;p3ÞPdðx2;p2Þ�
þ wðsjþ;x2;p2Þ½2 − Puðx3;p3ÞPdðx1;p1Þ − Puðx1;p1ÞPdðx3;p3Þ�
þ wðsjþ;x3;p3Þ½2 − Puðx1;p1ÞPdðx2;p2Þ − Puðx2;p2ÞPdðx1;p1Þ�g: ð2:24Þ

Another diagonal element ρΛ−− ≡ ρΛ−1
2
;−1

2

can be obtained
from ρΛþþ ≡ ρΛ1

2
;1
2

by flipping the s-quark’s spin, i.e.,

wðsjþ;xi;piÞ → wðsj−;xi;piÞ with i ¼ 1, 2, 3. Finally
we can read out the polarization of Λ from spin density
matrix elements

PΛðx;pÞ ¼
ρΛþþðx;pÞ − ρΛ−−ðx;pÞ
ρΛþþðx;pÞ þ ρΛ−−ðx;pÞ

≈
1

3
hPsðx1;p1Þ þ Psðx2;p2Þ þ Psðx3;p3ÞiΛ;

ð2:25Þ
where the average hOðxi;piÞiB with i ¼ 1, 2, 3 are taken on
the wave packet function of baryons

hOðxi;piÞiB ≡ 1

π6

Z
d3xbd3xcd3pbd3pcOðxi;piÞ

× exp

�
−

p2
b

a2B1
−

p2
c

a2B2
− a2B1x

2
b − a2B2x

2
c

�
:

ð2:26Þ
Note that the integral in the average is normalized to 1, i.e.,
h1i ¼ 1.

III. SPIN POLARIZATION OF QUARKS

In the last section we have constructed an improved quark
coalescencemodelinphasespace.Themodelisbasedonthespin
density operator for quarks with spin dependent Wigner func-
tions asweights, fromwhich one can obtain spin densitymatrix
elements in phase space for mesons and baryons. Once spin
polarization functions for quarks inphase space (or equivalently
spin Wigner functions) are known, one can calculate a vector
meson’s spin alignment and a hyperon’s polarization.
There are different sources of spin polarization for massive

fermions: vorticity fields, electromagnetic fields, and mean
fields of vector mesons. The first two sources, vorticity and
electromagnetic fields, have been extensively studied in
quantum kinetic approach through Wigner functions
[18,19,31–35]. The polarization effect by vector meson fields
was first proposed in Ref. [36] in the study of Λ polarization.
It was generalized to the spin alignment of vector mesons in
Ref. [28]. For each kind of field, one can distinguish the
electric and magnetic part. It is believed that the contribution
from electromagnetic fields is negligible [28,36]. Therefore in
the remainder of this paper we consider vorticity and vector
meson fields as main sources of spin polarization.
The spin polarization distribution in phase space for

quarks (upper sign) and antiquarks (lower sign) is in the
form [25,28]

FIG. 2. Positions of three quarks inside a baryon. The momenta
conjugate to Jacobi coordinates xa ¼ x, xb and xc are pa, pb and
pc respectively, see Eq. (C3) and (C6).
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Pμ
�ðx; pÞ ¼

1

2m

�
ω̃μν
th � gV

EpT
F̃μν
V

�
pν½1 − fFDðEp ∓ μÞ�;

ð3:1Þ
where pμ ¼ ðEp;�pÞ are on-shell momenta of quarks and

antiquarks with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q

q
, ω̃μν

th ¼ 1
2
ϵμνσρωth

σρ is the

dual of the thermal vorticity tensor defined by ωth
σρ ¼

1
2
½∂σðβuρÞ − ∂ρðβuσÞ� with β≡ 1=T being the temperature

inverse (note that there is a sign difference in the definition
of ωth

σρ from Ref. [15]), F̃μν
V ¼ 1

2
ϵμνσρFV

σρ is the dual of the
field strength tensor of vector mesons, and fFD is the
Fermi-Dirac distribution. The electric and magnetic part of
vector meson fields as three-vectors are defined as Ei

V ¼
EV

i ¼ Fi0
V and Bi

V ¼ BV
i ¼ − 1

2
ϵijkF

jk
V respectively with

i; j; k ¼ x, y, z. In a similar way, one can define the
three-vector of thermal vorticity as ωi ¼ ωi ¼ ω̃i0

th which is
the magnetic part of the thermal vorticity tensor, while the
electric part of the thermal vorticity tensor is εi ¼ εi ¼ ωi0

th .
Written explicitly in three-vector forms, they are

ω ¼ 1

2
∇ × ðβuÞ;

ε ¼ −
1

2
½∂tðβuÞ þ∇ðβu0Þ�: ð3:2Þ

We take xz plane as the reaction plane with one nucleus
moving along þz direction at x ¼ −b=2 while the other

nucleus moving along −z direction at x ¼ b=2. The global
OAM is along þy direction. Therefore we assume that the
spin quantization direction is þy, and that the Wigner
functions in (2.11) are diagonalized in þy direction. Then
the polarization distribution for q and q̄ along þy direction
can be written as [28]

Py
q=q̄ðx;pÞ ¼

1

2
ωy �

1

2mq
ðε × pÞy

� gV
2mqT

BV
y þ gV

2mqEpT
ðEV × pÞy; ð3:3Þ

where gV is the coupling constant of quarks and antiquarks
to vector meson fields, and we have taken the Boltzmann
limit 1 − fFDðEp ∓ μÞ ≃ 1. The last term of Eq. (3.3) is the
spin-orbit term for quarks and antiquarks involving the
electric part of vector meson fields, the similar term is the
key to the nuclear shell structure if applying to nucleons in
meson fields [37,38]. For q ¼ s and q̄ ¼ s̄, the vector
meson field should be the ϕ field, i.e., V ¼ ϕ.

IV. GLOBAL AND LOCAL POLARIZATION OF Λ

In this sectionwe look at the polarization ofΛ (including Λ̄ if
not stated explicitly) in Eq. (2.25)with the polarization of s and s̄
given inEq. (3.3). In thiscase thevectormesonfield is theϕ field,
i.e., V ¼ ϕ. By choosingþy as the spin quantization direction,
the spin polarization of Λ and Λ̄ in phase space is now

Py
Λ=Λ̄ðx;pÞ ≈

1

3
hPy

s=s̄ðx1;p1Þ þ Py
s=s̄ðx2;p2Þ þ Py

s=s̄ðx3;p3ÞiΛ=Λ̄
≈
1

6
hωyðx1Þ þ ωyðx2Þ þ ωyðx3ÞiΛ=Λ̄

� 1

6ms
ŷ · hεðx1Þ × p1 þ εðx2Þ × p2 þ εðx3Þ × p3iΛ=Λ̄

� gϕ
6msT

hBϕ
y ðx1Þ þBϕ

y ðx2Þ þ Bϕ
y ðx3ÞiΛ=Λ̄

þ gϕ
6m2

sT
ŷ · hEϕðx1Þ × p1 þ Eϕðx2Þ × p2 þ Eϕðx3Þ × p3iΛ=Λ̄; ð4:1Þ

where we have taken nonrelativistic limit Ep ≈ms. We
can take an average over a space volume at the formation
time of Λ. If all fields change slowly inside Λ, we can
approximate OðxiÞ ≈OðxÞ for i ¼ 1, 2, 3. Then we
obtain

hPy
Λ=Λ̄ðx;pÞi ≈

1

2
hωyðxÞi �

1

6ms
½hεðxÞi × p�y

� gϕ
2ms

hβBϕ
y ðxÞi þ gϕ

6m2
s
½hβEϕðxÞi × p�y;

ð4:2Þ

where h·i represents the volume average at the formation
time of Λ. Note that the spin-orbit term Eϕ × p has the
same sign for Λ and Λ̄.
For static Λwith p ¼ 0, the terms involving ε andEϕ are

vanishing [28], but for nonstatic Λ with nonvanishing
momenta, they are generally present. However, for the
global spin polarization in the direction of þy (direction of
the global OAM) with all Λ and Λ̄ in momentum spectra
being included, these terms of ε and Eϕ are vanishing. So
the global polarization for Λ and Λ̄ measured in STAR

experiments [23,24] comes mainly from ωy and Bϕ
y . Note

that the Bϕ
y term for Λ̄ has an opposite sign to Λ. This
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provides a possible explanation of the difference between
magnitudes of Py

Λ and Py
Λ̄, similar to the scenario of

Ref. [36]. The fact Py
Λ̄ > Py

Λ shown in experimental data

indicates gϕhβBϕ
y ðxÞi < 0.

Recent STAR measurements [39] of the longitudinal
spin polarization of Λ as functions show a positive
sin ð2ϕ − 2Ψ2Þ behavior with ϕ andΨ2 being the azimuthal
angle of Λ and the second-order event plane respectively,
while theoretical results of relativistic hydrodynamics
model [40] and transport models [41–43] show an opposite
sign. The simulation from chiral kinetic theory in Ref. [44]
and results from a simple phenomenological model in
Ref. [45] gives the correct sign as the data. The sign
problem in local polarization may indicate the assumption
of global equilibrium of spin may not be justified, so the
thermal vorticity may not be the right quantity for the spin
chemical potential [46]. The azimuthal angle dependence
of Py

Λ=Λ̄ has been measured by the STAR collaboration with

the trend that Py
Λ=Λ̄ in the reaction plane is larger than that

out of the reaction plane. This phenomenon has not been
well understood [46].
The spin-orbit term may provide an additional contri-

bution to the polarization along the beam direction Pz
Λ=Λ̄ in

heavy ion collisions [39]. To this end, we split the whole
space into four parts corresponding to four quadrants of the
transverse plane which we denote asþþ, −þ, −−, andþ−
respectively. Let us look at hPz

Λ=Λ̄i in the first and second

quadrant

hPz
Λ=Λ̄ðx;pÞiþþ ∼

gϕ
2m2

s
½hβEx

ϕiþþpT sinðϕpÞ

− hβEy
ϕiþþpT cosðϕpÞ�;

hPz
Λ=Λ̄ðx;pÞi−þ ∼

gϕ
2m2

s
½hβEx

ϕi−þpT sinðϕpÞ

− hβEy
ϕi−þpT cosðϕpÞ�: ð4:3Þ

If hβEϕi is dominated by the x component in the first and
second quadrant and if gϕhβEx

ϕiþþ ¼ −gϕhβEx
ϕi−þ > 0,

then we can obtain the patterns observed in experiments
[39]: hPy

Λ=Λ̄ðx;pÞiþþ > 0 and hPy
Λ=Λ̄ðx;pÞi−þ < 0.

Furthermore the spin-orbit term Eϕ × p in Py
Λ=Λ̄ may

also provide a possible additional contribution to the
azimuthal angle dependence of the polarization along
þy in heavy ion collisions [47], if there is a correlation
betweenEϕ and p in a certain region. In order to look at the
relevant observable, we choose the region for taking the
average to be x > 0; y > 0 corresponding to the first
quadrant of the transverse plane in collisions, the average
quantity is denoted as hβEϕiþþ which may not be vanish-
ing (the average of βEϕ over the full space should be
vanishing). Then the azimuthal angle part of Py

Λ=Λ̄ in the

first quadrant of the transverse plane is

hPy
Λ=Λ̄ðx;pÞiþþ ∼

gϕ
2m2

s
hβEz

ϕiþþpT cosðϕpÞ; ð4:4Þ

where ϕp is the azimuthal angle relative to that of the
reaction plane, and pT ≡ jpT j is the scalar transverse
momentum. We see that the spin-orbit term may provide
an additional contribution to the azimuthal angle depend-
ence of Py

Λ=Λ̄.

V. SPIN ALIGNMENTS OF ϕ AND K�0

We now investigate spin alignments of vector mesons ϕ
and K�0. In the remainder of this paper, when we say K�0

we imply to include K̄�0 if there is no ambiguity.
Let us first look at the spin alignment of ϕ. Substituting

Eq. (3.3) for q ¼ s and q̄ ¼ s̄ into Eq. (2.17) and taking an
average on a space volume, we obtain the spin density
matrix element for ϕ mesons

hρϕ00ðx;pÞi≈
1

3
−
4

9
hPy

s ðx1;p1ÞPy
s̄ ðx2;p2Þiϕ;Vol

≈
1

3
−
1

9
hω2

yi þ
1

9m2
s
hðε× p1Þyðε× p2Þyiϕ;Vol

þ g2ϕ
9m2

s
hðβBϕ

y Þ2i

−
g2ϕ
9m2

s

�
β2

Ep1Ep2
ðEϕ × p1ÞyðEϕ × p2Þy

�
ϕ;Vol

;

ð5:1Þ
where the spin quantization direction is chosen as þy, h·i
denotes the volume average at the formation time of ϕ
mesons, and we have put index “Vol” to distinguish the
volume average from the average on the ϕ meson wave
function if both averages are taken. In deriving Eq. (5.1) we
have made approximations: (a) The size of the vector
meson is much smaller than the hydrodynamic scale, so we
put x1 ≈ x2 ≈ x for vorticity fields and the ϕ fields; (b) We
neglect correlation in the volume between different fields
except between themselves [28], for example, no correla-
tion between Eϕ and Bϕ, between ε and Eϕ, or between ω
and Bϕ, etc.. We also neglect correlation in the volume
between different components of the same field, for
example, between Ex

ϕ and Ez
ϕ or between εz and εx, etc..

We now simplify terms involving ε and Eϕ in (5.1). The
ε term is evaluated as

hðε × p1Þyðε × p2Þyiϕ;Vol
≈
1

4
hε2zip2

x þ
1

4
hε2xip2

z − hε2zihp2
b;xiϕ − hε2xihp2

b;ziϕ
¼ 1

4
hε2zip2

x þ
1

4
hε2xip2

z −
1

3
ðhε2zi þ hε2xiÞhp2

biϕ; ð5:2Þ

and the Eϕ term is evaluated as
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�
β2

Ep1Ep2
ðEϕ × p1ÞyðEϕ × p2Þy

�
ϕ;Vol

≈
1

4
hβ2E2

ϕ;zi
�

1

Ep1Ep2

�
ϕ

p2
x þ

1

4
hβ2E2

ϕ;xi
�

1

Ep1Ep2

�
ϕ

p2
z

− hβ2E2
ϕ;zi

�
p2
b;x

Ep1Ep2

�
ϕ

− hβ2E2
ϕ;xi

�
p2
b;z

Ep1Ep2

�
ϕ

; ð5:3Þ

where we have used p1;2 ¼ p=2� pb and dropped terms with mixture of different fields or different components of the
same field. Inserting (5.2) and (5.3) into (5.1) we obtain

hρϕ00ðx;pÞi ≈
1

3
−
1

9
hω2

yi −
1

27m2
s
ðhε2zi þ hε2xiÞhp2

biϕ

þ g2ϕ
9m2

s
hðβBϕ

y Þ2i þ
g2ϕ
9m2

s

�
hβ2E2

ϕ;zi
�

p2
b;x

Ep1Ep2

�
ϕ

þ hβ2E2
ϕ;xi

�
p2
b;z

Ep1Ep2

�
ϕ

	

þ ρpðε2zÞp2
x þ ρpðε2xÞp2

z − ρpðϕ;E2
ϕ;zÞp2

x − ρpðϕ;E2
ϕ;xÞp2

z ; ð5:4Þ

where we have used following positive coefficients

ρpðε2i Þ ¼
1

36m2
s
hε2i i;

ρpðϕ;E2
ϕ;iÞ ¼

g2ϕ
36m2

s
hβ2E2

ϕ;ii
�

1

Ep1Ep2

�
ϕ

; ð5:5Þ

with i ¼ x, y, z. For nearly static ϕ mesons with jpj ≪ jpbj the terms proportional to p2
x and p2

z in (5.4) are very small and
can be neglected compared with the hp2

biϕ term, in this case we recover the result of Ref. [28] in nonrelativistic limit with
Ep1 ≈ Ep2 ≈ms

hρϕ00ðx;p ≈ 0Þi ≈ 1

3
−
1

9
hω2

yi −
1

27m2
s
ðhε2zi þ hε2xiÞhp2

biϕ

þ g2ϕ
9m2

s
hðβBϕ

y Þ2i þ
g2ϕ
9m4

s
½hβ2E2

ϕ;zihp2
b;xiϕ þ hβ2E2

ϕ;xihp2
b;ziϕ�: ð5:6Þ

In Eqs. (5.4) and (5.6) there are averages of squares of
relative momenta of two quarks on the wave function of ϕ
mesons and there are also space volume averages of field
squares.
Equation (5.4) with (5.6) as its static limit is part of our

main results in the paper. A few remarks are in order about
Eq. (5.4): (a) All contributions appear independently as
positive or negative quantities. This is the main feature of
ρ00 for ϕ mesons. (b) The second term is from the vorticity
vector (magnetic part of the vorticity tensor), while the
third term is from the electric part of the vorticity tensor.
Both terms are negative definite. (c) The fourth term is
from the magnetic part of the ϕ field, while the fifth term
is from the electric part of the ϕ field. Both terms are
positive definite. (d) The last line collects contributions
proportional to momentum squares of the ϕ meson, where

the contribution from the electric part of the vorticity
tensor is always positive while that from the electric part
of the ϕ field is always negative. (e) We have argued in

Ref. [28] that the dominant contribution to ρϕ00 may
possibly be from the electric part of the ϕ field which
is positive definite.
Let us turn to the spin alignment of another vector

meson K�0. Different from the ϕ meson with flavor
content ðss̄Þ, K�0 has flavor ðds̄Þ. Vector meson (ρ or ω)
fields that can polarize light quarks are different from
the ϕ field which mainly polarize s and s̄. We will see
that such a difference has significant consequences on
ρK

�
00 . Following the same procedure and taking the same
approximations as in deriving (5.1), we obtain the spin
density matrix element for K�0, a counterpart of
Eq. (5.4),
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hρK�
00 ðx;pÞi ≈

1

3
−
1

9
hω2

yi −
1

27msmd
ðhε2zi þ hε2xiÞhp2

biK�

þ gϕgV
9msmd

hβ2Bϕ
yBV

y i

þ gϕgV
9msmd

�
hβ2Eϕ

zEV
z i
�

p2
b;x

Ed
p1E

s̄
p2

�
K�

þ hβ2Eϕ
xEV

x i
�

p2
b;z

Ed
p1E

s̄
p2

�
K�

	

þ ms

md
ρpðε2zÞp2

x þ
ms

md
ρpðε2xÞp2

z

− ρpðK�;Eϕ
zEV

z Þp2
x − ρpðK�;Eϕ

xEV
x Þp2

z ;

ð5:7Þ

where Bϕ
i and Eϕ

i with i ¼ x, y, z are from the
polarization of s̄, while BV

i and EV
i are vector meson

fields (ρ or ω mesons) that polarize the d-quark, and
ρpðK�;Eϕ

i E
V
i Þ are defined as

ρpðK�;Eϕ
i E

V
i Þ ¼

gϕgV
36msmd

hβ2Eϕ
i E

V
i i
�

1

Ed
p1E

s̄
p2

�
K�
: ð5:8Þ

In (5.7) we have shown terms of volume averages of
different fields, hβ2Bϕ

yBV
y i and hβ2Eϕ

i E
V
i i, for the

purpose of illustration and comparison, since they should
have been neglected in accordance with the approxima-
tion that different fields do not have large correlation in
space as compared with the correlation between the
same fields. After implementing this approximation, we
obtain

hρK�
00 ðx;pÞi ≈

1

3
−
1

9
hω2

yi −
1

27msmd
ðhε2zi þ hε2xiÞhp2

biK�

þ ms

md
½ρpðε2zÞp2

x þ ρpðε2xÞp2
z �: ð5:9Þ

We can see that the slope of ρK
�

00 with respect to p2
T is

positive. For nearly static K�0 mesons with jpj ≪ jpbj,
the terms proportional to p2

x and p2
z in (5.4) are very

small and can be neglected, then we have

hρK�
00 ðx;p ≈ 0Þi ≈ 1

3
−
1

9
hω2

yi

−
1

27msmd
ðhε2zi þ hε2xiÞhp2

biK� : ð5:10Þ

We see in (5.9) and (5.10) the absence of the contribution
from vector meson fields. Therefore the spin alignment of
K�0 is dominated by the vorticity contribution which must
be negative for nearly static K�0. This is the significant
difference from the spin alignment of ϕ mesons which may

possibly be dominated by ϕ fields whose contribution is
positive definite for nearly static ϕmesons. Another feature
of ρK

�
00 in (5.9) and (5.10) is that the contribution from the

electric part of the vorticity tensor is amplified by a factor
ðms=mdÞðhp2

biK�=hp2
biϕÞ compared with ρϕ00. Note that the

ratio hp2
biK�=hp2

biϕ is about 1.4–1.5 in the quark model.
This may provide a sizable magnitude of the negative
contribution to ρK

�
00 as shown in ALICE experiments [48].

We note that the above arguments are only valid for
primary K�0. The lifetime of K�0 is much shorter and the
interaction of K�0 with the surrounding matter is much
stronger than the ϕ meson. This may bring other contri-
butions to ρK

�
00 from the interaction of K�0 with medium.

A caveat is that the above arguments are based on the
approximation that different fields do not have large
correlation in space as compared with the correlation
between the same fields. This seems to work for ρϕ00 since
there are squares of the same vector meson field. However
it is not the case for ρK

�
00 that all terms of vector meson fields

are mixture of different fields which are thought to be
equally small. In this case, in order to justify the approxi-
mation, we may need to evaluate these terms and compare
their magnitudes with the negative contribution from
vorticity tensor fields. This is beyond the scope of this
paper and will be studied in the future.
To summarize, in the picture of the coalescence model,

we propose that a large positive contribution to the spin
matrix element ρϕ00 should be from the ϕ field [28]. This is
due to the correlation between the ϕ field that polarizes the
s-quark and that polarizes s̄, see Fig. 3 for illustration.

FIG. 3. An example for the effects of vector meson fields on the
spin density matrices of ϕ and K�0 mesons in their rest frame.
There is large correlation between vector meson fields acting on s
and s̄ in the ϕ meson but almost no correlation between vector
meson fields acting on d and s̄ in K�0. Due to the short distance
nature of vector meson fields, the dominant contribution to the
fields at the position of a constituent quark of ϕ or K�0 is from
the quark of its nearest neighbor. The relative momentum of the
quark and antiquark inside the meson is shown as 2p (instead of
2pb in the text).
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However this is not thecase forρK
�

00 : theϕ field that polarizes s̄
does not correlate much with vector meson fields (ρ or ω
mesons) that polarize the d-quark, the former is from other
strange quarks not belonging to K�0, while the latter come
from other light quarks surrounding d, see Fig. 3. Therefore
ρK

�
00 is dominated by the contribution from vorticity fields
which is negative definite for static K�0. Such a negative
contribution from vorticity fields in ρK

�
00 is amplified relative

to ρϕ00 by the mass ratio of strange to light quark and by the
ratio of hp2

bi on K�0’s to ϕ’s wave function.

VI. SOLVING VECTOR MESON FIELDS
GENERATED BY SOURCES

In this section we solve the mean vector field which
satisfies the Klein-Gordon equation [36]

∂μF
μν
V þm2

VV
ν ¼ gVJν; ð6:1Þ

where Fμν
V ≡ ∂μVν − ∂νVμ is the field strength tensor, the

source of the field Jμ is the current density associated with a
conserved quantum number, mV is the vector meson mass,
and gV is the coupling constant. We can write Vμ and Jμ

explicitly as Vμ ¼ ðϕ;AÞ and Jμ ¼ ðρ; jÞ. We can also
define the electric and magnetic part of Fμν

V as three-vectors
as in Sec. III. IfmV is very large comparedwith the derivative
term,wecan just neglect latter inEq. (6.1). In this caseVμ can
be approximately proportional to the current density [36],
Vμ ≈ ðgV=m2

VÞJμ, knownas the current-field identity [49,50]
in the vector dominance model [51,52].
We can use the Green’s function method to solve the

Klein-Gordon equation (6.1) as to solve Maxwell’s equa-
tions in Ref. [53]. The only difference is the presence of the
vector meson mass which brings a little more complexity.
We consider a point chargeQ located at the original point at
t ¼ 0 moves with velocity v in þz direction. The charge Q
corresponds to a quantum number such as the baryon
number for quarks or the strangeness number for s and s̄.
Finally we obtain the electric and magnetic parts of vector
meson fields as

Ex
Vðt;xÞ ¼ gVQ

γvð1þmVΔÞ
4πΔ3

xe−mVΔ;

Ey
Vðt;xÞ ¼ gVQ

γvð1þmVΔÞ
4πΔ3

ye−mVΔ;

Ez
Vðt;xÞ ¼ gVQ

γvð1þmVΔÞ
4πΔ3

ðz − vtÞe−mVΔ;

Bx
Vðt;xÞ ¼ −gVQ

γvð1þmVΔÞ
4πΔ3

ye−mVΔ;

By
Vðt;xÞ ¼ gVQ

γvð1þmVΔÞ
4πΔ3

xe−mVΔ;

Bz
Vðt;xÞ ¼ 0; ð6:2Þ

where Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ γ2ðvt − zÞ2

p
with γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
being the Lorentz contraction factor. We see that an
exponential decay factor e−mVΔ appears in vector meson
fields produced by a point charge, which reflects the finite
distance nature of vector meson fields. Such a factor is
absent in electromagnetic fields produced by electric
charges [53,54]. The detailed derivation of (6.2) is given
in Appendix D.
If we can determine the strangeness current, we can

apply Eq. (6.2) to obtain the ϕ field with Q being the
strangeness number. Due to the short distance nature of
the vector meson field, the ϕ field that can polarize the
constituent s-quark in a ϕ meson is dominated by the
field produced by its constituent partner s̄ in the same ϕ
meson which is in its nearest neighborhood in space, and
vice versa.

VII. SUMMARY

We have constructed an improved quark coalescence
model based on the spin density matrix in phase space
with coordinate dependence. The spin density matrices for
mesons and ground state baryons depend on spin Wigner
functions of quark systems. The quark spin polarization
functions in phase space are encoded in spin Wigner
functions. The spin polarization of baryons can be obtained
from spin density matrices for hadrons. As an example we
obtain the spin polarization of Λ which is determined by
that of strange quarks. The spin polarization of quarks
comes mainly from vorticity tensor fields and vector meson
fields. We discussed a possible role that the electric part of
the vector meson field may play in understanding exper-
imental observations in local polarization of Λ. Most
importantly we propose an understanding of spin align-
ments of vector mesons ϕ and K�0 (including K̄�0) in the
static limit: a large positive deviation of ρ00 for ϕ mesons
from 1=3 may come from the electric part of the vector ϕ
field, while a large magnitude of negative deviation of ρ00
for K�0 may come from the electric part of vorticity tensor
fields. Such a large negative contribution to ρ00 for K�0, in
contrast to the same contribution to that for ϕ which is less
important, may be due to a large mass ratio of strange
quarks to light quarks. These results should be tested by a
detailed and comprehensive simulation of vorticity tensor
fields and vector meson fields in heavy ion collisions.
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APPENDIX A: SINGLE PARTICLE
STATE IN COORDINATE AND

MOMENTUM SPACE

In this Appendix, we give definition and convention for
single particle states in coordinate and momentum repre-
sentation in nonrelativistic quantum mechanics.
A position eigenstate is denoted as jxi and satisfies

following orthogonality and completeness conditions

hx0jxi ¼ δð3Þðx0 − xÞ;

1 ¼
Z

d3xjxihxj: ðA1Þ

The normalization of the state jxi is then

hxjxi ¼ δð3Þðx − xÞ ¼
Z

½d3p� ¼ 1

Ω

X
p

; ðA2Þ

where Ω is the space volume and ½d3p�≡ d3p=ð2πÞ3.
A momentum eigenstate is denoted as jpi and satisfies

following orthogonality and completeness conditions

hp0jpi ¼ ð2πÞ3δð3Þðp − p0Þ;

1 ¼
Z

½d3p�jpihpj: ðA3Þ

The normalization of jpi is then

hpjpi ¼ ð2πÞ3δð3Þðp − pÞ ¼ Ω: ðA4Þ

From Eq. (A1) and (A3) we can define the inner product
hxjpi as

hxjpi ¼ eip·x: ðA5Þ

With the above relation we can check

δð3Þðx − x0Þ ¼ hx0jxi ¼
Z

½d3p�hx0jpihpjxi

¼
Z

½d3p�eip·ðx0−xÞ; ðA6Þ

where we have inserted the completeness relation (A3). We
can express jxi in terms of jpi and vice versa,

jxi ¼
Z

½d3p�jpihpjxi ¼
Z

½d3p�e−ip·xjpi;

jpi ¼
Z

d3xjxihxjpi ¼
Z

d3xeip·xjxi: ðA7Þ

APPENDIX B: DERIVATION OF DENSITY
MATRIX ELEMENTS FOR MESONS

In this Appendix, we evaluate (2.12), the spin density
matrix element on two meson states,

ρMSz1;Sz2ðx;pÞ ¼
Z

½d3q�eiq·x
Z

d3x1d3x2

×
Z

½d3p1�½d3p2�½d3q1�½d3q2�e−iq1·x1e−iq2·x2

×

�
M;pþ q

2

����p1 þ
q1

2
;p2 þ

q2

2

�

×

�
p1 −

q1

2
;p2 −

q2

2

����M;p −
q
2

�

×
X
s1;s2

wðq1js1;x1;p1Þwðq̄2js2;x2;p2Þ

× hS; Sz1js1; s2ihs1; s2jS; Sz2i; ðB1Þ

where hS; Sz1js1; s2i denotes the Clebsch-Gordan coeffi-
cient for spin states,

P
q1;q̄2

jhq1; q̄2jMij2 ¼ 1 with jMi
being the flavor part of the meson’s wave function,
hq1; q̄2jMi denotes the Clebsch-Gordan coefficient for
the flavor state (here we have used the fact that the flavor
part is decoupled from its spin part in a meson’s wave
function), and the amplitudes between the meson’s and
quark-antiquark’s momentum states are

ðMjq; q̄Þ ¼
�
M;pþ q

2

����p1 þ
q1

2
;p2 þ

q2

2

�

¼ ð2πÞ3δð3Þ
�
p1 þ p2 − pþ q1 þ q2 − q

2

�

× φ�
M

�
p1 − p2

2
þ q1 − q2

4

�
;

ðq; q̄jMÞ ¼
�
p1 −

q1

2
;p2 −

q2

2

����M;p −
q
2

�

¼ ð2πÞ3δð3Þ
�
p1 þ p2 − p −

q1 þ q2 − q
2

�

× φM

�
p1 − p2

2
−
q1 − q2

4

�
; ðB2Þ

where the meson wave function in relative momentum of
two quarks is normalized as

R ½d3k�jφMðkÞj2 ¼ 1 with
φMðkÞ being related to the wave function in relative
position, φMðkÞ ¼

R
d3ye−ik·yφMðyÞ. Here we have used

the same symbol φM to denote the meson wave function in
coordinate and momentum without ambiguity.
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Equation (B1) can be simplified as

ρMSz1;Sz2ðx;pÞ ¼
Z

d3xad3xb

Z
½d3pb�½d3qa�½d3qb� exp ð−iqb · xbÞ exp ½−iqa · ðxa − xÞ�

× φ�
M

�
pb þ

qb

2

�
φM

�
pb −

qb

2

�X
s1;s2

w

�
q1js1;xa þ

xb

2
;
p
2
þ pb

�
w

�
q̄2js2;xa −

xb

2
;
p
2
− pb

�

× hS; Sz1js1; s2ihs1; s2jS; Sz2i; ðB3Þ

where we have used

pa ¼ p1 þ p2 ≡ p;

pb ¼
1

2
ðp1 − p2Þ;

qa ¼ q1 þ q2;

qb ¼
1

2
ðq1 − q2Þ;

xa ¼
1

2
ðx1 þ x2Þ;

xb ¼ x1 − x2: ðB4Þ

Note that qa and qb are conjugate momenta of xa and xb respectively. Completing integrals in (B3) over qa and xa, we
obtain Eq. (2.13).
Using the Gaussian form of the meson wave function in Eq. (2.14), we can further simplify Eq. (2.13) to obtain the most

simple form in Eq. (2.15) for the spin matrix elements. Applying Eq. (2.15) to the vector meson ϕ with S ¼ 1 and Sz ¼ −1,
0, 1, we obtain diagonal elements of the spin density matrix for ϕ,

ρϕ00ðx;pÞ ¼
1

2π3

Z
d3xbd3pb exp

�
−
p2
b

a2ϕ
− a2ϕx

2
b

��
w

�
s
���þ;xþ xb

2
;
p
2
þ pb

�
w

�
s̄
���−;x −

xb

2
;
p
2
− pb

�

þ w

�
s
���−;xþ xb

2
;
p
2
þ pb

�
w

�
s̄
���þ;x −

xb

2
;
p
2
− pb

�	
;

ρϕ11ðx;pÞ ¼
1

π3

Z
d3xbd3pb exp

�
−
p2
b

a2ϕ
− a2ϕx

2
b

�
w

�
s
���þ;xþ xb

2
;
p
2
þ pb

�
w

�
s̄
���þ;x −

xb

2
;
p
2
− pb

�
;

ρϕ−1;−1ðx;pÞ ¼
1

π3

Z
d3xbd3pb exp

�
−
p2
b

a2ϕ
− a2ϕx

2
b

�
w

�
s
���−;xþ xb

2
;
p
2
þ pb

�
w

�
s̄
���−;x −

xb

2
;
p
2
− pb

�
: ðB5Þ

APPENDIX C: DERIVATION OF DENSITY MATRIX ELEMENTS FOR BARYONS

In this Appendix we will evaluate Eq. (2.22) for ground state baryons to give Eq. (2.23). The spatial or momentum parts
of wave functions for these baryons are independent of spin-flavor parts. Inserting (2.21) into (2.22) we obtain

ρBSz1;Sz2ðx;pÞ ¼
Z

½d3q�eiq·x
Z Y3

i¼1

d3xi

Y3
i¼1

½d3pi�
Y3
i¼1

½d3qi� exp ½−iðq1 · x1 þ q2 · x2 þ q3 · x3Þ�

×

�
B;pþ q

2

����p1 þ
q1

2
;p2 þ

q2

2
;p3 þ

q3

2

��
p1 −

q1

2
;p2 −

q2

2
;p3 −

q3

2

����B;p −
q
2

�

×
X

s1;s2;s3

X
q1;q2;q3

Y3
i¼1

wðqijsi;xi;piÞhB; S; Sz1jq1; q2; q3; s1; s2; s3ihq1; q2; q3; s1; s2; s3jB; S; Sz2i: ðC1Þ
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The amplitudes between momentum states of the baryon and three quarks are given by

ðq; q; qjBÞ ¼
�
q;p1 −

q1

2
;p2 −

q2

2
;p3 −

q3

2

����B;p −
q
2

�

¼ ð2πÞ3δð3Þ
�
pa − p −

qa − q
2

�
φB

�
pb −

qb

2
;pc −

qc

2

�
;

ðBjq; q; qÞ ¼
�
B;pþ q

2

����q;p1 þ
q1

2
;p2 þ

q2

2
;p3 þ

q3

2

�

¼ ð2πÞ3δð3Þ
�
pa − pþ qa − q

2

�
φ�
B

�
pb þ

qb

2
;pc þ

qc

2

�
; ðC2Þ

where φBðkb;kcÞ is wave function of the baryon in the
momentum representation to defined in (C5) and (C7), and
we have used momenta in Jacobi form

pa ¼ p1 þ p2 þ p3;

pb ¼
1

3
ðp1 þ p2 − 2p3Þ;

pc ¼
1

2
ðp1 − p2Þ;

qa ¼ q1 þ q2 þ q3;

qb ¼
1

3
ðq1 þ q2 − 2q3Þ;

qc ¼
1

2
ðq1 − q2Þ: ðC3Þ

To obtain the amplitudes (C2), we have inserted the
completeness relation

Z Y3
i¼1

d3xijxiihxij ¼ 1; ðC4Þ

between the baryon and three-quarks state. We have also
used

hx1;x2;x3jB;pi ¼ exp ðip · xaÞφBðxb;xcÞ; ðC5Þ
where φBðxb;xcÞ is the spatial wave function of the
baryon depending on relative distance xb and xc of Jacobi
coordinates defined as

xa ¼
1

3
ðx1 þ x2 þ x3Þ;

xb ¼
1

2
ðx1 þ x2Þ − x3;

xc ¼ x1 − x2: ðC6Þ

The momentum state φBðkb;kcÞ in (C2) can be obtained
from φBðxb;xcÞ by Fourier transformation

φBðkb;kcÞ ¼
Z

d3xbd3xc exp ð−ikb · xb − ikc · xcÞ

× φBðxb;xcÞ; ðC7Þ

where kb and kc are conjugate momenta to xb and xc
respectively. Note that we have used for simplicity of
notation the same symbol φB for the wave function
in both coordinate and momentum representation. We
assume normalization conditions for φBðxb;xcÞ and
φBðkb;kcÞ as

Z
d3xbd3xcjφBðxb;xcÞj2 ¼ 1;

Z
½d3kb�½d3kc�jφBðkb;kcÞj2 ¼ 1: ðC8Þ

We insert (C2) into (C1) and complete integrals over q,
xa and pa, then we obtain

ρBSz1;Sz2ðx;pÞ ¼
Z Y

i¼b;c

d3xi

Y
i¼b;c

½d3pi�
Y
i¼b;c

½d3qi� exp ½−iðqb · xb þ qc · xcÞ�φB

�
pb −

qb

2
;pc −

qc

2

�
φ�
B

�
pb þ

qb

2
;pc þ

qc

2

�

×
X

s1;s2;s3

X
q1;q2;q3

w

�
q1
���s1;xþ 1

3
xb þ

1

2
xc;

1

3
pþ 1

2
pb þ pc

�
w

�
q2
���s2;xþ 1

3
xb −

1

2
xc;

1

3
pþ 1

2
pb − pc

�

× w

�
q3
���s3;x −

2

3
xb;

1

3
p − pb

�
hB; S; Sz1jq1; q2; q3; s1; s2; s3ihq1; q2; q3; s1; s2; s3jB; S; Sz2i: ðC9Þ
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The above equation is another main result in this paper.
Now we assume that the baryon’s momentum wave
function has the Gaussian form [29,30]

φBðkb;kcÞ ¼
Z

d3xbd3xc exp ð−ikb · xb − ikc · xcÞ

× φBðxb;xcÞ

¼ ð2 ffiffiffi
π

p Þ3
�

1

aB1aB2

�
3=2

exp

�
−

k2
b

2a2B1
−

k2
c

2a2B2

�
;

ðC10Þ

where aB1 and aB2 are two width parameters in the
Gaussian wave function of the baryon. One can verify
the normalization condition (C8) holds for the above form
of φBðkb;kcÞ. Substituting (C10) into (C9), we can
complete integrals over qb and qc to arrive at Eq. (2.23).

APPENDIX D: SOLVING KLEIN-GORDON
EQUATION FOR VECTOR MESON FIELDS

In this Appendix, we will solve the Klein-Gordon
equation (6.1) for vector meson fields using the Green’s
function method [53].
In terms of Vμ ¼ ðϕ;AÞ and Jμ ¼ ðρ; jÞ, the Klein-

Gordon equation (6.1) can be put in a three-vector form

∂2ϕ − ∂tð∂tϕþ ∇ ·AÞ þm2ϕ ¼ gρ;

∂2Aþ ∇ð∂tϕþ ∇ ·AÞ þm2A ¼ gj: ðD1Þ

For simple notations, in this Appendix we suppress the
index “V” of following quantities: m≡mV , g≡ gV ,
E≡EV , and B ¼ BV . The electric and magnetic vector
meson fields are given by

E ¼ −∂tA − ∇ϕ;

B ¼ ∇ ×A: ðD2Þ

From the equations for ϕ and A we derive the following
equation for E and B,

ð∂2 þm2ÞE ¼ −gð∂tjþ ∇ρÞ;
ð∂2 þm2ÞB ¼ g∇ × j: ðD3Þ

We can solve Eq. (D3) by taking Fourier transformation

f̃ðω;kÞ ¼
Z

dtd3x expðiωt − ik · xÞfðt;xÞ;

fðt;xÞ ¼
Z

d4k
ð2πÞ4 expð−iωtþ ik · xÞf̃ðω;kÞ; ðD4Þ

where f can be E, B, ρ, and j. Then in momentum
representation Eq. (D3) becomes

ð−ω2 þ k2 þm2ÞEðω;kÞ ¼ igωjðω;kÞ − igkρðω;kÞ;
ð−ω2 þ k2 þm2ÞBðω;kÞ ¼ igk × jðω;kÞ; ðD5Þ

where we have suppressed tildes on all variables in
momentum representation for simple notations. The sol-
utions have the form

Eðω;kÞ ¼ −ig
ωjðω;kÞ − kρðω;kÞ

ω2 − k2 −m2
;

Bðω;kÞ ¼ −ig
k × jðω;kÞ
ω2 − k2 −m2

: ðD6Þ

The solutions in space-time can be obtained from their
momentum forms by Fourier transformation

Eðt;xÞ ¼ g∂t

Z
dωd3k
ð2πÞ4 expð−iωtþ ik · xÞ jðω;kÞ

ω2 − k2 −m2

þ g∇
Z

dωd3k
ð2πÞ4 expð−iωtþ ik · xÞ

×
ρðω;kÞ

ω2 − k2 −m2
;

Bðt;xÞ ¼ −g∇ ×
Z

dωd3k
ð2πÞ4 expð−iωtþ ik · xÞ

×
jðω;kÞ

ω2 − k2 −m2
: ðD7Þ

We consider a point charge located at the original point at
t ¼ 0 and moves with velocity v in þz direction. Then the
charge and current density are in the forms in space-time
and momentum,

ρðt;xÞ ¼ QδðxÞδðyÞδðz − vtÞ;
jðt;xÞ ¼ QvezδðxÞδðyÞδðz − vtÞ;
ρðω;kÞ ¼ 2πQδðω − kzvÞ;
jðω;kÞ ¼ 2πQvezδðω − kzvÞ ¼ vezρðω;kÞ: ðD8Þ

We evaluate the integral of ρðω;kÞ in (D7)

I1 ¼
Z

dωd3k
ð2πÞ4 expð−iωtþ ik · xÞ ρðω;kÞ

ω2 − k2 −m2

¼ −Q
Z

d3k
ð2πÞ3 exp ½−ikzðvt − zÞ þ ikT · xT �

×
1

k2z=γ2 þ k2
T þm2

¼ −Q
Z

dkTdθdkz
ð2πÞ3 exp ½−ikzðvt − zÞ þ ikTxT cos θ�

×
kT

k2z=γ2 þ k2T þm2
; ðD9Þ
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where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, kT ≡ jkT j, xT ≡ jxT j, kz ≡ kz, and we have used cylindrical coordinates in the last step. We then use

the formula for the Bessel function, 2πJ0ðxÞ ¼
R
2π
0 dθ expðix cos θÞ, and complete the kz integral by contour integral around

the poles at kz ¼ �iγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2T þm2

p
, where � depends on the sign of vt − z. The result is

I1 ¼ −
Q

ð2πÞ2
Z

dkTdkz exp ½−ikzðvt − zÞ� γ2kTJ0ðkTxTÞ
ðkz þ iγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2T þm2

p
Þðkz − iγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2T þm2

p
Þ

¼
8<
:

− Qγ
4π

R
dkT exp ½−γðvt − zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2T þm2

p
� kTJ0ðkTxTÞffiffiffiffiffiffiffiffiffiffiffi

k2Tþm2
p ; vt − z > 0

− Qγ
4π

R
dkT exp ½γðvt − zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2T þm2

p
� kTJ0ðkTxT Þffiffiffiffiffiffiffiffiffiffiffi

k2Tþm2
p ; vt − z < 0

ðD10Þ

The integral over kT can also be worked out by the formula

Z
∞

0

dxe−a
ffiffiffiffiffiffiffiffiffiffi
x2þm2

p xJ0ðbxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

p ¼ m
Z

∞

1

dye−amyJ0ðbm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p exp ð−m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Þ: ðD11Þ

Finally we obtain

I1 ¼ −
Qγ

4πΔ
e−mΔ; ðD12Þ

with Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ γ2ðvt − zÞ2

p
. In the same way we can also obtain

I2 ¼
Z

dωd3k
ð2πÞ4 expð−iωtþ ik · xÞ jðω;kÞ

ω2 − k2 −m2

¼ −vez
Qγ

4πΔ
e−mΔ: ðD13Þ

Inserting Eq. (D12) and (D13) into (D7), we obtain Eq. (6.2).
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